WO2023273105A1 - 面向一体式结构薄壁阵列的在位冰冻加工方法 - Google Patents

面向一体式结构薄壁阵列的在位冰冻加工方法 Download PDF

Info

Publication number
WO2023273105A1
WO2023273105A1 PCT/CN2021/131063 CN2021131063W WO2023273105A1 WO 2023273105 A1 WO2023273105 A1 WO 2023273105A1 CN 2021131063 W CN2021131063 W CN 2021131063W WO 2023273105 A1 WO2023273105 A1 WO 2023273105A1
Authority
WO
WIPO (PCT)
Prior art keywords
freezing
array
cup
cavity
wall
Prior art date
Application number
PCT/CN2021/131063
Other languages
English (en)
French (fr)
Inventor
刘海波
王诚鑫
王永青
李旭
刘阔
马小飞
郭东明
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/785,657 priority Critical patent/US11969846B2/en
Publication of WO2023273105A1 publication Critical patent/WO2023273105A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/062Work-clamping means adapted for holding workpieces having a special form or being made from a special material
    • B23Q3/065Work-clamping means adapted for holding workpieces having a special form or being made from a special material for holding workpieces being specially deformable, e.g. made from thin-walled or elastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • B23Q3/086Work-clamping means other than mechanically-actuated using a solidifying liquid, e.g. with freezing, setting or hardening means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2703/00Work clamping
    • B23Q2703/02Work clamping means
    • B23Q2703/10Devices for clamping workpieces of a particular form or made from a particular material

Definitions

  • the invention belongs to the technical field of mechanical processing, and relates to an in-situ freezing processing method for an integrated thin-walled array.
  • One-piece structure thin-walled arrays are widely used in high-end equipment in aerospace and other fields. It has the characteristics of complex structure and weak rigidity, which increases the difficulty of clamping during processing, which leads to low processing efficiency and precision, poor surface integrity, and ultimately Reduced performance. Therefore, how to realize high-performance clamping of thin-walled arrays with integrated structures is one of the core problems to be solved in this field.
  • the common clamping methods of thin-walled parts mainly include profiling clamping, box clamping, lattice clamping, modular clamping, adsorption clamping and so on.
  • the profiling clamping process is simple and efficient, but the mold needs to be customized based on the workpiece geometry, with poor flexibility, high cost and long process cycle.
  • Box-type clamping can build a corresponding clamping frame according to the shape and size of the workpiece, but it can only realize the overall clamping of the workpiece, and its clamping method is difficult to adapt to the processing process.
  • Dot matrix clamping can adjust the dot matrix layout according to the geometry of the workpiece to match the surface shape of the workpiece, but scratches on the workpiece surface and clamping stress will occur at the contact point between the fixture and the workpiece, which will reduce the surface quality.
  • Modular clamping high flexibility, is a standardized fixture that can be randomly combined according to the workpiece configuration to achieve clamping, but the manufacturing cost of the combined fixture is extremely high, and the adjustment time is long, and the clamping efficiency is low.
  • the modular fixture unit When combining, it is easy to generate error accumulation and reduce the clamping accuracy.
  • Adsorption clamping uses air pressure to clamp the workpiece, but the suction cup is in direct contact with the surface of the workpiece, which is prone to wear and air leakage.
  • Dalian University of Technology discloses a freezing support device and method for large thin-walled parts in the patent CN201910123624.5.
  • ice of a certain thickness is formed on the support side of the processing area to realize large-scale thin-walled parts.
  • the frozen support of the wall parts, and as the processing progresses, the ice is always used as the support to achieve the effect of follow-up support.
  • the contact area between the support and the surface of the thin-walled part in this invention is small, and the overall stability of the processing process cannot be guaranteed.
  • Suzhou Jincheng Precision Casting Co., Ltd. discloses a frozen thin-wall auxiliary aluminum alloy parts processing device in the patent CN202020249319.9. By placing the aluminum alloy parts in the thin-walled cavity and injecting water to freeze them, the rigid support for workpiece processing is realized. Deformation is prevented; however, this patent does not consider thermally induced losses from freezing due to processing heat.
  • the present invention aims at the clamping and processing problems of the thin-walled array of the integrated structure, and invents an in-situ freezing processing method for the thin-walled array of the integrated structure.
  • the invention designs an in-situ freezing fixture system, realizes in-situ freezing clamping of workpieces, avoids error accumulation caused by repeated installation of fixtures, and at the same time enables efficient cooling, suppresses environmental and cutting heat interference, and ensures stable freezing clamping sex.
  • the invention utilizes the fluidity of water to realize the filling of the space of the thin-walled array structure before the water freezes, and ensures the close fit between the water and the surface of the workpiece after the water freezes; it uses the freezing rigidity to provide reliable support for the processing process and achieve anti-frozen Vibration and reduce the effect of processing deformation; use the freezing viscosity to effectively clamp the workpiece and maintain the stability of the processing process; use the low temperature of ice to reduce cutting heat and avoid thermal stress.
  • An in-situ freezing fixture system for thin-wall arrays with integrated structures which consists of freezing devices, auxiliary devices and refrigeration systems.
  • the freezing device mainly includes a freezing fixture housing 11 and a heat preservation cover 6; the freezing fixture housing 11 has a heat preservation effect, and a refrigeration pipe is arranged inside, and refrigeration is realized by the flow of liquid nitrogen in the refrigeration pipe; the heat preservation cover 6 is used for the heat preservation effect of the freezing process .
  • Described auxiliary device mainly comprises pressing plate 14, template 7 and locator 13; Wherein, template 7 is located in the freezing fixture housing 11, and locator 13 and template 7 are used for the location of blank 15; Pressing plate 14 is used for clamping blank. Embryo 15 edge.
  • the refrigeration system mainly includes a liquid nitrogen tank 8, a spray pipe 5 and a refrigeration device 12; wherein the refrigeration device 12 is connected to the refrigeration pipe in the freezing fixture housing 11 to control the inflow of liquid nitrogen in the freezing fixture housing 11 to realize refrigeration. Power control; the nozzle 5 is connected to the liquid nitrogen tank 8 to realize spraying liquid nitrogen to the processing part.
  • An in-situ freezing processing method for an integrated structure thin-walled array based on the above-mentioned in-situ freezing fixture system, firstly, the processing of the cup array 1 is carried out, the inter-cup area of the cup array 1 is cut off, and the edge material 18 of the cup array is left. Secondly, the rough machining and finishing machining of the outer wall of the cup array 1 are carried out, and then the inner wall of the cup array 1 is roughly machined. Finally, the cup array groove 17 formed by the cup array edge residue 18 and the cup array 1 are filled with water and frozen, and the in-situ freezing process of the cup inner wall of the cup array 1 is carried out.
  • the inter-cavity area of the cavity array 2 is cut off, and the edge material 23 of the cavity array is left.
  • the cavity array groove 22 formed by the cavity array edge residue 23 and the cavity array 2 are filled with water and frozen, and the in-situ freezing process of the cavity array 2 inner wall is carried out.
  • the nozzle 5 is connected to the liquid nitrogen tank 8, follows the processing track, and sprays liquid nitrogen to the processing part to avoid the melting of the ice 20 caused by cutting heat.
  • the ice 20 is melted, and the waste water is discharged; in the process of cutting off the remaining material 18 at the edge of the cup array, in order to prevent the pressure plate 14 from indenting the surface of the substrate 3, the pressure plate 14 and the positioner 13 are removed, and the water layer 16 is in the Under the refrigeration condition of the refrigeration device 12 and the freezing fixture housing 11, the ice layer 24 is frozen, and the frozen viscosity of the ice layer 24 is used to clamp the workpiece to complete the removal of the remaining material 18 at the edge of the cup array.
  • Processing cleaning chips, filling cavity array groove 22 and cavity array 2 with water 19, covering the freezing fixture housing 11 with a thermal insulation cover 6, starting the refrigeration device 12, and controlling the freezing fixture housing 11 to refrigerate and freeze the water 19 .
  • the cooling effect of the refrigeration device 12 and the freezing fixture shell 11 is always maintained to prevent environmental heat interference
  • the resulting ice 20 melts.
  • the nozzle 5 is connected to the liquid nitrogen tank 8, follows the processing track, and sprays liquid nitrogen to the processing part to avoid the melting of the ice 20 caused by cutting heat.
  • the ice 20 is melted, and the waste water is discharged; in the process of removing the remaining material 23 at the edge of the cavity array, in order to prevent the pressing plate 14 from indenting the surface of the substrate 3, the pressing plate 14 and the positioner 13 are removed, and the cooling device 12 Under the cooling condition of the clamp housing 11 and the freezing fixture, the water layer 16 forms an ice layer 24, and the frozen viscosity of the ice layer 24 is used to clamp the workpiece to complete the removal of the remaining material 23 at the edge of the cavity array.
  • the present invention proposes an in-situ freezing processing method for an integrated thin-walled array, realizes the in-situ freezing and clamping of workpieces, avoids error accumulation caused by repeated installation of fixtures, and can efficiently refrigerate at the same time , suppressing the interference of environment and cutting heat, and ensuring the stability of freezing clamping.
  • the invention makes full use of the fluidity of water, the rigidity of ice, freezing viscosity and low temperature, and realizes the high-performance clamping of in-situ freezing that matches the processing process, and effectively suppresses the thin-walled array of an integrated structure due to weak rigidity and strong Time-variation leads to problems such as machining chatter, deformation and low machining efficiency, so as to obtain the best machined surface quality and precision.
  • Fig. 1 is a structural schematic diagram of a thin-walled array with an integrated structure.
  • Figure 2 is a schematic diagram of the freezing fixture system.
  • Figure 3 is a schematic diagram of blank clamping.
  • Fig. 4 is a schematic diagram of rough machining on the cup array side.
  • Fig. 5 is a schematic diagram of in-situ water filling and freezing on the side of the cup array.
  • Fig. 6 is a schematic diagram of in-situ freezing processing on the cup array side.
  • Fig. 7 is a schematic diagram of removing residual material from the side edge of the cup array.
  • Figure 8 is a schematic diagram of lifting and turning over.
  • Fig. 9 is a schematic diagram of rough machining on the cavity array side.
  • Fig. 10 is a schematic diagram of in-situ water filling and freezing at the chamber array side.
  • Fig. 11 is a schematic diagram of in-situ freezing processing on the cavity array side.
  • Fig. 12 is a schematic diagram of removing residual material at the side edge of the cavity array.
  • Figure 13 is an enlarged view at A of Figures 6, 7, 11, and 12.
  • the one-piece structure thin-walled array is made of aluminum alloy, double-sided 4 ⁇ 4 array, one side is cup array 1, the other side is cavity array 2, and the size of substrate 3 is 1600mm ⁇ 1600mm ⁇ 0.8mm; the height of the cup 100mm, wall thickness 0.8mm, cup outer wall diameter 200mm; chamber height 100mm, wall thickness 0.8mm, chamber outer wall size 220mm ⁇ 220mm.
  • the method specifically includes the following steps:
  • cup array 1 firstly, cut off the inter-cup area of cup array 1, leave the edge material 18 of cup array, form cup array groove 17; secondly, carry out the roughening of cup outer wall Machining and finishing; finally, carry out the rough machining of the inner wall of the cup, as shown in Figure 4; clean up the chips, fill the cup array groove 17 and the cup array 1 with water 19, and put the heat preservation cover 6 on the freezing fixture housing 11 , start the refrigeration device 12, and control the freezing fixture housing 11 to refrigerate and freeze the water 19, as shown in FIG. 5 . After the icing is completed, remove the heat preservation cover 6, and use the tool 4 to carry out in-situ freezing processing on the inner wall of the side cup of the cup array 1.
  • the nozzle 5 is connected to the liquid nitrogen tank 8, follows the processing track, and sprays liquid nitrogen to the processing part to avoid the melting of the ice 20 caused by the cutting heat, as shown in FIG. 6 .
  • the ice 20 is melted, and the waste water is discharged; in the process of removing the remaining material 18 at the edge of the cup array, in order to prevent the pressure plate 14 from indenting the surface of the substrate 3, the pressure plate 14 and the positioner 13 are removed, and the water layer 16 is in the Under the cooling conditions of the refrigeration device 12 and the freezing fixture housing 11, the ice layer 24 is frozen, and the workpiece is clamped by the frozen viscosity of the ice layer 24, as shown in FIG. Show.
  • the nozzle 5 is connected to the liquid nitrogen tank 8, follows the processing track, and sprays liquid nitrogen to the processing part to avoid the melting of the ice 20 caused by the cutting heat, as shown in FIG. 11 .
  • the ice 20 is melted, and the waste water is discharged; in the process of removing the remaining material 23 at the edge of the cavity array, in order to prevent the pressing plate 14 from indenting the surface of the substrate 3, the pressing plate 14 and the positioner 13 are removed, and the cooling device 12 And under the cooling condition of the freezing fixture housing 11, the water layer 16 forms an ice layer 24, and the workpiece is clamped by the freezing viscosity of the ice layer 24, as shown in Figure 13, and the removal of the remaining material 23 at the edge of the cavity array is completed, as shown in Figure 12 shown. So far, the integrated thin-walled array has been processed.
  • the in-situ freezing processing method for an integrated thin-walled array proposed by the present invention realizes the in-situ freezing and clamping of workpieces, avoids the accumulation of errors caused by repeated installation of fixtures, and can efficiently refrigerate at the same time, suppressing the environment and cutting heat. Interference ensures the stability of the frozen clamping. It makes full use of the fluidity of water and its high flexibility, which can meet the clamping and processing requirements of an integrated thin-walled array, improve processing efficiency and save costs; use the freezing viscosity and rigidity of ice to achieve reliable freezing of workpieces and effectively suppress vibrations , greatly reducing processing deformation; the low temperature of ice can effectively reduce the cutting local temperature and avoid thermal deformation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

一种面向一体式结构薄壁阵列的在位冰冻加工方法,属于机械加工技术领域。先切除杯间区域;再加工杯阵列外壁;最后充水冰冻,在位冰冻加工杯阵列内壁。然后吊装换面,切除腔间区域;再加工腔阵列外壁;最后充水冰冻,在位冰冻加工腔阵列内壁。实现了工件的在位冰冻装夹,避免了夹具的反复安装导致的误差累积,同时能够高效制冷,抑制了环境与切削热干扰,保证了冰冻装夹稳定性。充分利用了水的流动性,可以满足一体式结构薄壁阵列装夹与加工需求,提高加工效率,节约成本;利用冰的冻粘性和刚性,实现工件的可靠冰冻,有效抑振,大幅度降低了加工变形;冰的低温性能够有效降低切削局部温度,避免热变形。

Description

面向一体式结构薄壁阵列的在位冰冻加工方法 技术领域
本发明属于机械加工技术领域,涉及面向一体式结构薄壁阵列的在位冰冻加工方法。
背景技术
一体式结构薄壁阵列广泛应用于航空航天等领域的高端装备中,其具有结构复杂、刚性弱等特点,增加了加工过程的装夹难度,进而导致加工效率和精度低、表面完整性差,最终降低了使役性能。因此,如何实现一体式结构薄壁阵列的高性能装夹是该领域亟待解决的核心问题之一。
目前,常用薄壁件装夹方式主要包括靠模装夹、盒式装夹、点阵装夹、模块化装夹、吸附装夹等等。其中,靠模装夹工艺简捷、效率高,但模具需要基于工件几何定制,柔性差、成本高、工艺周期长。盒式装夹可以根据工件外形与尺寸,构建相应装夹框架,但仅能实现工件的整体装夹,其装夹方式难以与加工过程相适应。点阵装夹可以根据工件几何调整点阵布局,与工件表面外形相匹配,但夹具与工件接触点处会产生工件表面划痕以及装夹应力,降低表面质量。模块化装夹,柔性高,是一种标准化夹具,可以根据工件构型随机组合实现装夹,但是组合夹具制造成本极高,且调装时间较长,装夹效率低,此外,模块化夹具单元组合时,易产生误差累积,降低装夹精度。吸附装夹利用气压夹紧工件,但吸盘与工件表面直接接触,易产生磨损、漏气等现象。以上装夹方式由于结构与性能的局限性,难以实现一体式结构薄壁阵列的高性能装夹与加工。因此,亟需发展面向一体式结构薄壁阵列的在位冰冻加工方法,提高其装夹可靠性和加工效率,满足该类薄壁件高精度、高性能制造需求。
大连理工大学在专利CN201910123624.5中公开了一种针对大型薄壁件的冰冻支撑装置及方法,通过冰冻系统与辅助系统,在加工区的支撑侧结成一定厚度的冰,来实现对大型薄壁件的冰冻支撑,且随着加工的进行,始终以冰作为支撑,起到随动支撑的效果。但是,该发明支撑与薄壁件表面接触面积较少,无法保证加工过程整体稳定性。苏州金澄精密铸造有限公司在专利CN202020249319.9中公开了一种冰冻薄壁辅助铝合金件加工装置,通过将铝合金件放置在薄壁腔体内,并注水冰冻,实现工件加工的刚性支撑,防止变形;但是该专利没有考虑加工热导致的冰冻的热致损失。
上述研究均未提及面向一体式结构薄壁阵列的在位冰冻加工方法。
技术问题
为了克服上述方法的不足,本发明针对一体式结构薄壁阵列装夹与加工难题,发明了一种面向一体式结构薄壁阵列的在位冰冻加工方法。本发明设计了在位冰冻夹具系统,实现了工件的在位冰冻装夹,避免了夹具的反复安装导致的误差累积,同时能够高效制冷,抑制了环境与切削热干扰,保证了冰冻装夹稳定性。本发明利用水的流动性,实现水结冰前,对薄壁阵列结构空间的填充,保证水结冰后,与工件表面的紧密贴合;利用冰冻刚度,对加工过程提供可靠支撑,达到抑振和降低加工变形的作用;利用冰冻粘性,有效夹紧工件,维持加工过程的稳定性;利用冰的低温性,降低切削热,避免热应力产生。
技术解决方案
一种面向一体式结构薄壁阵列的在位冰冻夹具系统,该系统由冰冻装置、辅助装置和制冷系统组成。
冰冻装置主要包括冰冻夹具壳体11和保温盖6;冰冻夹具壳体11具有保温作用,且内部设置有制冷管,通过制冷管内的液氮流动实现制冷;保温盖6用于冰冻过程的保温作用。所述辅助装置主要包括压板14、模板7和定位器13;其中,模板7设于冰冻夹具壳体11中,定位器13和模板7用于毛胚15的定位;压板14用于夹紧毛胚15边缘。所述制冷系统主要包括液氮罐8、喷管5和制冷装置12;其中,制冷装置12与冰冻夹具壳体11内的制冷管相连,控制冰冻夹具壳体11的液氮流入,来实现制冷功率调控;喷管5连接液氮罐8,实现对加工局部喷射液氮。
一种基于上述在位冰冻夹具系统的一体式结构薄壁阵列的在位冰冻加工方法,首先,开展杯阵列1加工,切除杯阵列1的杯间区域,并留有杯阵列边缘余料18。其次,开展杯阵列1外壁的粗加工与精加工,之后,粗加工杯阵列1内壁。最后,对杯阵列边缘余料18形成的杯阵列凹槽17内及杯阵列1内充水冰冻,开展杯阵列1的杯内壁在位冰冻加工。吊装换面,开展腔阵列2加工,首先,切除腔阵列2的腔间区域,并留有腔阵列边缘余料23。开展腔阵列2外壁的粗加工与精加工,之后,粗加工腔阵列2内壁。最后,对腔阵列边缘余料23形成的腔阵列凹槽22内及腔阵列2内充水冰冻,开展腔阵列2内壁在位冰冻加工。具体实施步骤如下:
第一步,杯阵列侧在位冰冻加工
利用定位销10将冰冻夹具壳体11固定于机床工作台9上,模板7、压板14和定位器13固连于冰冻夹具壳体11中,将毛胚15吊装到模板7上,其中,模板7上设有与杯阵列1相匹配的杯槽21,模板7表面涂有水层16;利用定位器13对毛胚15的侧面进行定位,利用压板14对毛胚15的边缘进行压紧;利用刀具4开展杯阵列1加工:首先,切除杯阵列1的杯间区域,留有杯阵列边缘余料18,形成杯阵列凹槽17;其次,进行杯外壁的粗加工与精加工;最后,进行杯内壁的粗加工;清理切屑,将杯阵列凹槽17及杯阵列1内充满水19,在冰冻夹具壳体11上盖上保温盖6,启动制冷装置12,控制冰冻夹具壳体11对水19进行制冷冰冻。待结冰完成后,移除保温盖6,利用刀具4开展杯阵列1侧杯内壁在位冰冻加工,加工过程中,始终保持制冷装置12和冰冻夹具壳体11的制冷作用,防止环境热干扰导致的冰20融化。喷管5连接液氮罐8,跟随加工轨迹,对加工局部喷射液氮,避免切削热导致的冰20融化。在位冰冻加工完成后,融化冰20,排出废水;在切除杯阵列边缘余料18过程中,为避免压板14对基板3表面产生压痕,移除压板14和定位器13,水层16在制冷装置12和冰冻夹具壳体11的制冷条件下冻结成冰层24,利用冰层24的冻粘性夹紧工件,完成杯阵列边缘余料18的切除。
第二步,腔阵列侧在位冰冻加工
吊装翻面,将杯阵列1插入模板7的杯槽21内,其中,模板7表面涂有水层16;利用定位器13对工件定位,利用压板14对工件压紧;利用刀具4开展腔阵列2的加工:首先,切除腔阵列2的腔间区域,留有腔阵列边缘余料23,形成腔阵列凹槽22;其次,进行腔外壁的粗加工与精加工;最后,进行腔内壁的粗加工;清理切屑,将腔阵列凹槽22及腔阵列2内充满水19,在冰冻夹具壳体11上盖上保温盖6,启动制冷装置12,控制冰冻夹具壳体11对水19进行制冷冰冻。待结冰完成后,移除保温盖6,利用刀具4开展腔阵列2的腔内壁在位冰冻加工,加工过程中,始终保持制冷装置12和冰冻夹具壳体11的制冷作用,防止环境热干扰导致的冰20融化。喷管5连接液氮罐8,跟随加工轨迹,对加工局部喷射液氮,避免切削热导致的冰20融化。在位冰冻加工完成后,融化冰20,排出废水;在切除腔阵列边缘余料23过程中,为避免压板14对基板3表面产生压痕,移除压板14和定位器13,在制冷装置12和冰冻夹具壳体11的制冷条件下,水层16结成冰层24,利用冰层24的冻粘性夹紧工件,完成腔阵列边缘余料23的切除。
至此,一体式结构薄壁阵列加工完成。
有益效果
本发明的有益效果是:本发明提出了面向一体式结构薄壁阵列的在位冰冻加工方法,实现了工件的在位冰冻装夹,避免了夹具的反复安装导致的误差累积,同时能够高效制冷,抑制了环境与切削热干扰,保证了冰冻装夹稳定性。本发明充分利用了水的流动性,冰的刚度、冻粘性和低温等特性,实现与加工过程相匹配的在位冰冻高性能装夹,有效抑制了一体式结构薄壁阵列由于弱刚性和强时变性导致加工颤振、变形和加工效率低等问题,获得最佳的加工表面质量与精度。
附图说明
图1为一体式结构薄壁阵列的结构示意图。
图2为冰冻夹具系统示意图。
图3为毛胚装夹示意图。
图4为杯阵列侧粗加工示意图。
图5为杯阵列侧在位充水冰冻示意图。
图6为杯阵列侧在位冰冻加工示意图。
图7为杯阵列侧边缘余料去除示意图。
图8为吊装翻面示意图。
图9为腔阵列侧粗加工示意图。
图10为腔阵列侧在位充水冰冻示意图。
图11为腔阵列侧在位冰冻加工示意图。
图12为腔阵列侧边缘余料去除示意图。
图13为图6、7、11、12在A处放大图。
图中:1-杯阵列;2-腔阵列;3-基板;4-刀具;5-喷管;6-保温盖;7-模板;8-液氮罐;9-机床工作台;10-定位销;11-冰冻夹具壳体;12-制冷装置;13-定位器;14-压板;15-毛胚;16-水层;17-杯阵列凹槽;18-杯阵列边缘余料;19-水;20-冰;21-杯槽;22-腔阵列凹槽;23-腔阵列边缘余料;24-冰层。
本发明的实施方式
以下结合附图和技术方案详细说明本发明的实施方式。
如图1所示,一体式结构薄壁阵列为铝合金材料,双面4×4阵列,一面为杯阵列1,另一面为腔阵列2,基板3尺寸为1600mm×1600mm×0.8mm;杯高度为100mm,壁厚0.8mm,杯外壁直径200mm;腔高度为100mm,壁厚0.8mm,腔外壁尺寸220mm×220mm。
该方法具体包括以下步骤:
第一步,杯阵列侧在位冰冻加工
利用定位销10将冰冻夹具壳体11固定于机床工作台9上,模板7、压板14和定位器13固连于冰冻夹具壳体11中,将毛胚15吊装到模板7上,其中,模板7上设有与杯阵列1相匹配的杯槽21,模板7表面涂有水层16;利用定位器13对毛胚15的侧面进行定位,利用压板14对毛胚15的边缘进行压紧,如图3所示;利用刀具4,开展杯阵列1加工:首先,切除杯阵列1的杯间区域,留有杯阵列边缘余料18,形成杯阵列凹槽17;其次,进行杯外壁的粗加工与精加工;最后,进行杯内壁的粗加工,如图4所示;清理切屑,将杯阵列凹槽17及杯阵列1内充满水19,在冰冻夹具壳体11上盖上保温盖6,启动制冷装置12,控制冰冻夹具壳体11对水19进行制冷冰冻,如图5所示。待结冰完成后,移除保温盖6,利用刀具4开展杯阵列1侧杯内壁在位冰冻加工,加工过程中,始终保持制冷装置12和冰冻夹具壳体11的制冷作用,防止环境热干扰导致的冰20融化。喷管5连接液氮罐8,跟随加工轨迹,对加工局部喷射液氮,避免切削热导致的冰20融化,如图6所示。在位冰冻加工完成后,融化冰20,排出废水;在切除杯阵列边缘余料18过程中,为避免压板14对基板3表面产生压痕,移除压板14和定位器13,水层16在制冷装置12和冰冻夹具壳体11的制冷条件下冻结成冰层24,利用冰层24的冻粘性夹紧工件,如图13所示,完成杯阵列边缘余料18的切除,如图7所示。
第二步,腔阵列侧在位冰冻加工
吊装翻面,将杯阵列1插入模板7的杯槽21内,其中,模板7表面涂有水层16;利用定位器13对工件定位,利用压板14对工件压紧,如图8所示;利用刀具4,开展腔阵列2的加工:首先,切除腔阵列2的腔间区域,留有腔阵列边缘余料23,形成腔阵列凹槽22;其次,进行腔外壁的粗加工与精加工;最后,进行腔内壁的粗加工,如图9所示;清理切屑,将腔阵列凹槽22及腔阵列2内充满水19,在冰冻夹具壳体11上盖上保温盖6,启动制冷装置12,控制冰冻夹具壳体11对水19进行制冷冰冻,如图10所示。待结冰完成后,移除保温盖6,利用刀具4开展腔阵列2的腔内壁在位冰冻加工,加工过程中,始终保持制冷装置12和冰冻夹具壳体11的制冷作用,防止环境热干扰导致的冰20融化。喷管5连接液氮罐8,跟随加工轨迹,对加工局部喷射液氮,避免切削热导致的冰20融化,如图11所示。在位冰冻加工完成后,融化冰20,排出废水;在切除腔阵列边缘余料23过程中,为避免压板14对基板3表面产生压痕,移除压板14和定位器13,在制冷装置12和冰冻夹具壳体11的制冷条件下,水层16结成冰层24,利用冰层24的冻粘性夹紧工件,如图13所示,完成腔阵列边缘余料23的切除,如图12所示。至此,一体式结构薄壁阵列加工完成。
本发明提出的面向一体式结构薄壁阵列的在位冰冻加工方法,实现了工件的在位冰冻装夹,避免了夹具的反复安装导致的误差累积,同时能够高效制冷,抑制了环境与切削热干扰,保证了冰冻装夹稳定性。充分利用了水的流动性,其柔性高,可以满足一体式结构薄壁阵列装夹与加工需求,提高加工效率,节约成本;利用冰的冻粘性和刚性,实现工件的可靠冰冻,有效抑振,大幅度降低了加工变形;冰的低温性能够有效降低切削局部温度,避免热变形。

Claims (2)

  1. 一种面向一体式结构薄壁阵列的在位冰冻加工方法,其特征在于,该方法基于一种在位冰冻夹具系统实现,所述的在位冰冻夹具系统由冰冻装置、辅助装置和制冷系统组成;
    所述冰冻装置包括冰冻夹具壳体(11)和保温盖(6);冰冻夹具壳体(11)具有保温作用,且内部设置有制冷管,通过制冷管内的液氮流动实现制冷;保温盖(6)用于冰冻过程的保温;
    所述辅助装置包括压板(14)、模板(7)和定位器(13);其中,模板(7)设于冰冻夹具壳体(11)中,定位器(13)和模板(7)用于毛胚(15)的定位,压板(14)用于夹紧毛胚(15)边缘;
    所述制冷系统包括液氮罐(8)、喷管(5)和制冷装置(12);其中,制冷装置(12)与冰冻夹具壳体(11)内的制冷管相连,控制冰冻夹具壳体的液氮流入,来实现制冷功率调控;喷管(5)连接液氮罐(8),实现对加工局部喷射液氮;
    所述的在位冰冻加工方法,包括以下步骤:
    第一步,杯阵列侧在位冰冻加工
    将冰冻夹具壳体(11)固定于机床工作台(9)上,模板(7)、压板(14)和定位器(13)固连于冰冻夹具壳体(11)中,将毛胚(15)吊装到模板(7)上,其中,模板(7)上设有与杯阵列(1)相匹配的杯槽(21),模板(7)表面涂有水层(16);利用定位器(13)对毛胚(15)的侧面进行定位,利用压板(14)对毛胚(15)的边缘进行压紧;利用刀具(4)开展杯阵列(1)加工:
    首先,切除杯阵列(1)的杯间区域,留有杯阵列边缘余料(18),形成杯阵列凹槽(17);其次,进行杯外壁的粗加工与精加工;最后,进行杯内壁的粗加工;清理切屑,将杯阵列凹槽(17)及杯阵列(1)内充满水(19),在冰冻夹具壳体(11)上盖上保温盖(6),启动制冷装置(12),控制冰冻夹具壳体(11)对水(19)进行制冷冰冻;待结冰完成后,移除保温盖(6),利用刀具(4)开展杯阵列(1)侧杯内壁在位冰冻加工,加工过程中,始终保持制冷装置(12)和冰冻夹具壳体(11)的制冷作用,防止环境热干扰导致的冰(20)融化;在位冰冻加工完成后,融化冰(20),排出废水;在切除杯阵列边缘余料(18)过程中,为避免压板(14)对基板(3)表面产生压痕,移除压板(14)和定位器(13),水层(16)在制冷装置(12)和冰冻夹具壳体(11)的制冷条件下冻结成冰层(24),利用冰层(24)的冻粘性夹紧工件,完成杯阵列边缘余料的切除;
    第二步,腔阵列侧在位冰冻加工
    吊装翻面,将杯阵列(1)插入模板(7)的杯槽(21)内,其中,模板(7)表面涂有水层(16);利用定位器(13)对工件定位,利用压板(14)对工件压紧;利用刀具(4)开展腔阵列(2)的加工:
    首先,切除腔阵列(2)的腔间区域,留有腔阵列边缘余料(23),形成腔阵列凹槽(22);其次,进行腔外壁的粗加工与精加工;最后,进行腔内壁的粗加工;清理切屑,将腔阵列凹槽(22)及腔阵列(2)内充满水(19),在冰冻夹具壳体(11)上盖上保温盖(6),启动制冷装置(12),控制冰冻夹具壳体(11)对水(19)进行制冷冰冻;待结冰完成后,移除保温盖(6),利用刀具(4)开展腔阵列(2)的腔内壁在位冰冻加工,加工过程中,始终保持制冷装置(12)和冰冻夹具壳体(11)的制冷作用,防止环境热干扰导致的冰(20)融化;在位冰冻加工完成后,融化冰(20),排出废水;在切除腔阵列边缘余料(23)过程中,移除压板(14)和定位器(13),在制冷装置(12)和冰冻夹具壳体(11)的制冷条件下,水层(16)结成冰层(24),利用冰层(24)的冻粘性夹紧工件,完成腔阵列边缘余料的切除;
    至此,一体式结构薄壁阵列加工完成。
  2. 根据权利要求1所述的在位冰冻加工方法,其特征在于,在冰冻加工杯阵列(1)的杯内壁和腔阵列(2)的腔内壁过程中,喷管(5)连接液氮罐(8),并跟随加工轨迹,对加工局部喷射液氮,避免切削热导致的冰融化。
PCT/CN2021/131063 2021-06-28 2021-11-17 面向一体式结构薄壁阵列的在位冰冻加工方法 WO2023273105A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/785,657 US11969846B2 (en) 2021-06-28 2021-11-17 In-situ freezing machining method for integrated thin-walled array structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110718338.0 2021-06-28
CN202110718338.0A CN113478269B (zh) 2021-06-28 2021-06-28 面向一体式结构薄壁阵列的在位冰冻加工方法

Publications (1)

Publication Number Publication Date
WO2023273105A1 true WO2023273105A1 (zh) 2023-01-05

Family

ID=77936269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131063 WO2023273105A1 (zh) 2021-06-28 2021-11-17 面向一体式结构薄壁阵列的在位冰冻加工方法

Country Status (3)

Country Link
US (1) US11969846B2 (zh)
CN (1) CN113478269B (zh)
WO (1) WO2023273105A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113478269B (zh) * 2021-06-28 2022-04-12 大连理工大学 面向一体式结构薄壁阵列的在位冰冻加工方法
CN114147516A (zh) * 2021-12-02 2022-03-08 大连理工大学 一种复叠式制冷冰冻装夹装置
CN114131371A (zh) * 2021-12-02 2022-03-04 大连理工大学 一种基于分体式压缩制冷的冰装夹系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100907A (zh) * 2013-01-28 2013-05-15 北京航空航天大学 一种用于薄壁零件数控切削加工的冰固柔性夹具
CN105171460A (zh) * 2015-07-28 2015-12-23 大连理工大学 一种金属蜂窝工件冰固持加工方法
KR101860887B1 (ko) * 2017-07-24 2018-05-24 이병섭 주강 또는 주물 스틸 가공방법에 적용되는 가공 툴
CN109894888A (zh) * 2019-02-19 2019-06-18 大连理工大学 一种针对于大型薄壁件的冰冻支撑装置及方法
CN110103055A (zh) * 2019-06-20 2019-08-09 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种用于薄壁零件加工的固定装置
CN111266897A (zh) * 2020-02-27 2020-06-12 东莞长盈精密技术有限公司 冷冻定位装置和冷冻定位方法
CN211805061U (zh) * 2020-03-04 2020-10-30 苏州金澄精密铸造有限公司 一种冰冻薄壁辅助铝合金件加工装置
CN113478269A (zh) * 2021-06-28 2021-10-08 大连理工大学 面向一体式结构薄壁阵列的在位冰冻加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899379A (en) * 1967-10-09 1975-08-12 Western Electric Co Releasable mounting and method of placing an oriented array of devices on the mounting
JPH10277929A (ja) * 1997-03-30 1998-10-20 Ricoh Co Ltd 薄板のチャッキング方法及び装置
US10074626B2 (en) * 2016-06-06 2018-09-11 Shin-Etsu Chemical Co., Ltd. Wafer laminate and making method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100907A (zh) * 2013-01-28 2013-05-15 北京航空航天大学 一种用于薄壁零件数控切削加工的冰固柔性夹具
CN105171460A (zh) * 2015-07-28 2015-12-23 大连理工大学 一种金属蜂窝工件冰固持加工方法
KR101860887B1 (ko) * 2017-07-24 2018-05-24 이병섭 주강 또는 주물 스틸 가공방법에 적용되는 가공 툴
CN109894888A (zh) * 2019-02-19 2019-06-18 大连理工大学 一种针对于大型薄壁件的冰冻支撑装置及方法
CN110103055A (zh) * 2019-06-20 2019-08-09 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种用于薄壁零件加工的固定装置
CN111266897A (zh) * 2020-02-27 2020-06-12 东莞长盈精密技术有限公司 冷冻定位装置和冷冻定位方法
CN211805061U (zh) * 2020-03-04 2020-10-30 苏州金澄精密铸造有限公司 一种冰冻薄壁辅助铝合金件加工装置
CN113478269A (zh) * 2021-06-28 2021-10-08 大连理工大学 面向一体式结构薄壁阵列的在位冰冻加工方法

Also Published As

Publication number Publication date
CN113478269B (zh) 2022-04-12
CN113478269A (zh) 2021-10-08
US20240075568A1 (en) 2024-03-07
US11969846B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2023273105A1 (zh) 面向一体式结构薄壁阵列的在位冰冻加工方法
CN206405772U (zh) 一种运用冰冻技术对板材薄壁材料进行固定的万能夹具
CN105171460A (zh) 一种金属蜂窝工件冰固持加工方法
CN105737433A (zh) 一种用于蜂窝芯材料加工的制冷夹持装置及方法
CN206717477U (zh) 无应力冰冻盘工装
CN109894888B (zh) 一种针对于大型薄壁件的冰冻支撑装置及方法
CN102039441B (zh) 一种机械加工辅助冷却装置
EP0650535A1 (en) Method of soldering a sputtering target to a backing member
CN201931147U (zh) 一种机械加工辅助冷却装置
CN210060055U (zh) 一种薄壁锥体构件的真空钎焊用工装
CN212095376U (zh) 异型薄壁壳体零件加工用装夹装置
CN209998817U (zh) 一种用于薄壁零件加工的固定装置
CN110732681B (zh) 一种用于带陶瓷涂层薄壁弱刚性钣焊零件的车加工方法
CN105758058B (zh) 一种高电压密集型温差电致冷器及其制备方法
CN114939741B (zh) 涡轮叶片气膜冷却孔超声射流辅助飞秒激光旋切复合加工装备及方法
CN116254495A (zh) 一种pcb板生产中的喷锡设备
CN211615049U (zh) 一种雕铣机用冷却装置
CN112140023A (zh) 冰冻吸盘在手机摄像头支座的加工应用
JPH0631567A (ja) 被工作物の固定方法及び固定装置
JPH09123161A (ja) ワイヤソーのワーク保持装置
CN207840208U (zh) 一种基板冷却加工装置
CN110983435A (zh) 一种cvd单晶金刚石籽晶和生长层的分离方法
CN213561426U (zh) 一种模具生产加工机床用定位装置
CN211052458U (zh) 一种变速箱壳体加工用模具
CN220902097U (zh) 一种能去螺纹毛刺的内冷合金铣刀

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17785657

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948031

Country of ref document: EP

Kind code of ref document: A1