WO2023272849A1 - 海上风电牺牲阳极保护工艺 - Google Patents

海上风电牺牲阳极保护工艺 Download PDF

Info

Publication number
WO2023272849A1
WO2023272849A1 PCT/CN2021/108712 CN2021108712W WO2023272849A1 WO 2023272849 A1 WO2023272849 A1 WO 2023272849A1 CN 2021108712 W CN2021108712 W CN 2021108712W WO 2023272849 A1 WO2023272849 A1 WO 2023272849A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
protection
steel pipe
calculate
pipe pile
Prior art date
Application number
PCT/CN2021/108712
Other languages
English (en)
French (fr)
Inventor
逯彦伟
刘光洲
陈士强
刘菲菲
唐彪
江玉仁
Original Assignee
山东德瑞防腐材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东德瑞防腐材料有限公司 filed Critical 山东德瑞防腐材料有限公司
Publication of WO2023272849A1 publication Critical patent/WO2023272849A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/04Controlling or regulating desired parameters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/10Controlling or regulating parameters

Definitions

  • the invention belongs to the field of protection technology, in particular to an offshore wind power sacrificial anode protection technology.
  • the object of the present invention is to provide an offshore wind power sacrificial anode protection process to solve the above problems, which solves the problems mentioned in the background technology.
  • the present invention provides a technical solution:
  • Offshore wind power sacrificial anode protection process including the following steps:
  • steel pipe piles are divided into atmospheric area, tidal range area, full immersion area and submud area according to the actual situation;
  • S is the sum of the area of the atmospheric area and the tidal range area
  • D is the diameter of the steel pipe pile
  • ⁇ H is the vertical height of the steel pipe pile in each area.
  • the formula for calculating the initial water resistance of the sacrificial anode in the step S6 is:
  • I ai is the initial current of each anode
  • ⁇ E is the anode driving voltage difference
  • seawater ⁇ E 0.25V
  • sea mud ⁇ E 0.15V.
  • the formula for calculating the total number of anodes required for the initial stage of protection in the step S7 is:
  • I ci is the total anode current required in the initial period
  • N i is the number of anodes required in the initial protection period.
  • step S8 of the total number of anodes required to meet the mid-term protection of fan steel pipe piles specifically includes the following steps:
  • the formula for calculating the total net weight of the anode required during the protection period in the step S81 is:
  • t f is the effective service life of the anode
  • t f 30
  • is the design capacity of the anode
  • seawater ⁇ 2000Ah/Kg
  • u is the utilization rate of the anode
  • u 0.9
  • M is the total net weight of the anode
  • I cm is the mid-term The total amount of protection current required.
  • the formula for calculating the required anode dosage during the protection period in the step S82 is:
  • m ai is the net weight of a single anode
  • N m is the number of anodes required in the medium-term protection period.
  • the calculation of the total number of anodes required to meet the final protection period of the fan steel pipe pile in the step S9 specifically includes the following steps:
  • the formula for calculating the equivalent radius of the final monolithic anode in S91 is:
  • ma af is the final net weight of single anode
  • mai is the initial net weight of single anode
  • is the density of aluminum anode
  • ⁇ V Fe is the volume of anode iron core
  • n is the shielding coefficient, the value is 1.3,
  • I cf is the total current required in the final stage
  • N f is the total number of anodes required in the final protection period.
  • the present invention divides the steel pipe pile into the atmospheric area, the tidal range area, the full immersion area and the submud area, and carries out the coating anti-corrosion operation within the range of the atmospheric area and the tidal range area, which can effectively Prevent the corrosion of the steel structure by corrosive media, and at the same time isolate seawater and resist mechanical damage, and calculate the sacrificial anode dosage according to the actual situation in the full immersion area and the submud area, and carry out sacrificial anode protection, so that the steel pipe pile can be guaranteed
  • the corrosion is effectively suppressed, and the protection effect is stable and reliable, without any maintenance and special management.
  • Fig. 1 is a schematic diagram of the cladding structure of steel pipe piles of the present invention
  • Fig. 2 is a schematic diagram of the anode installation structure of the present invention.
  • Offshore wind power sacrificial anode protection process including the following steps:
  • steel pipe piles are divided into atmospheric area, tidal range area, full immersion area and submud area according to the actual situation;
  • the mineral anti-corrosion paste is an artificial light brown oily paste
  • Corrosion inhibitor compound directly applied on the surface of steel structure, has good anti-corrosion performance in humid environment, can effectively and stably protect steel structure from corrosion in severe corrosive environment for a long time, the compound anti-corrosion compound in mineral anti-corrosion paste
  • the rust conversion agent contained in the rust agent can convert the rust layer on the metal surface into a hard chelating compound, which has dual functions of rust removal and rust prevention, reduces the requirements for surface treatment, and saves labor costs.
  • the composite anti-rust agent also contains surface active substances with asymmetric structure, which can replace the water film on the metal surface, so the mineral anti-corrosion paste can be constructed underwater, and the molecular micelles of the composite anti-rust agent can absorb and trap corrosive substances. substance, and seal it in the micelles, so that it does not come into contact with the metal, so as to play a long-term anti-corrosion effect.
  • the tape is a non-woven fabric made of artificial fibers soaked in light yellow and coated with anti-corrosion compounds.
  • the mineral lipid anti-corrosion material and mineral anti-corrosion paste in the mineral anti-corrosion tape are the same series of anti-corrosion materials. It can completely isolate the base material from contact with air and water, thereby protecting the base material.
  • the anti-corrosion protective cover includes glass fiber reinforced plastic and polyethylene buffer lining.
  • the main function of the anti-corrosion protective cover is to prevent the internal petrolatum anti-corrosion paste and petrolatum anti-corrosion belt from being damaged by the external force of waves and sea breeze, which will affect the anti-corrosion performance.
  • the anti-corrosion protective cover Covered outside the petrolatum anti-corrosion belt it is divided into two main parts in the longitudinal direction, which is a semicircular symmetrical structure, and is buckled to form a barrel shape.
  • the flanges formed by the buckling parts extending outward are fixed to each other by bolts, and the bottom part is fixed by bolts.
  • the clamp is fixed, and the inner side of the anti-corrosion protective cover is lined with a polyethylene buffer lining, so even if the steel surface is uneven due to corrosion and other reasons, its protective effect will not be affected.
  • the buffer lining has good shock absorption and heat insulation. , waterproof and slow down the impact of external force on the anti-corrosion protective cover;
  • S is the sum of the area of the atmospheric area and the tidal range area
  • D is the diameter of the steel pipe pile
  • ⁇ H is the vertical height of the steel pipe pile in each area.
  • I ai is the initial current of each anode
  • ⁇ E is the anode driving voltage difference
  • seawater ⁇ E 0.25V
  • sea mud ⁇ E 0.15V.
  • I ci is the total anode current required in the initial period
  • N i is the number of anodes required in the initial protection period.
  • step S8 of the total number of anodes required to meet the mid-term protection requirements of the fan steel pipe pile specifically includes the following steps:
  • t f is the effective service life of the anode
  • t f 30
  • is the design capacity of the anode
  • seawater ⁇ 2000Ah/Kg
  • u is the utilization rate of the anode
  • u 0.9
  • M is the total net weight of the anode
  • I cm is the mid-term The total amount of protection current required.
  • m ai is the net weight of a single anode
  • N m is the number of anodes required in the medium-term protection period.
  • step S9 of the total number of anodes required to meet the final protection period of the fan steel pipe pile specifically includes the following steps:
  • ma af is the final net weight of single anode
  • mai is the initial net weight of single anode
  • is the density of aluminum anode
  • ⁇ V Fe is the volume of anode iron core
  • n is the shielding coefficient, the value is 1.3,
  • I cf is the total current required in the final stage
  • N f is the total number of anodes required in the final protection period.
  • the total protection current is required
  • the formula for calculating the required anode consumption during the protection period is: Among them, m ai is the net weight of a single anode, N m is the number of anodes required in the medium-term protection period, calculate the total number of anodes required to meet the end-stage protection of fan steel pipe piles, calculate the equivalent radius of a single anode in the end-stage, and calculate the equivalent radius of a single-block anode in the end-stage The formula for calculating the equivalent radius is: Among them, ma af is the final
  • first”, “second”, “third” and “fourth” are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly specifying the number of indicated technical features, Thus, a feature defined as “first”, “second”, “third” and “fourth” may explicitly or implicitly include at least one of such features.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

本发明公开了海上风电牺牲阳极保护工艺,包括以下步骤:首先将钢管桩按照实际情况分为大气区、潮差区、全浸区和泥下区;然后计算大气区与潮差区的面积总和,并在大气区与潮差区范围内的钢管桩外侧涂覆矿质防蚀膏,涂覆完成之后在矿质防蚀膏的外侧包覆矿质防蚀带,本发明通过将钢管桩分为大气区、潮差区、全浸区和泥下区,并在大气区与潮差区范围内进行包覆防腐操作,能够有效的阻止腐蚀性介质对钢结构的侵蚀,同时还能够隔绝海水,抵御机械损伤,并且通过在全浸区和泥下区根据实际情况计算牺牲阳极用量,并进行牺牲阳极保护,从而能够保证钢管桩的腐蚀得到有效的抑制,同时保护效果稳定可靠,不需要任何维修保养和专人管理。

Description

海上风电牺牲阳极保护工艺 技术领域
本发明属于保护工艺领域,具体为海上风电牺牲阳极保护工艺。
背景技术
现有生活中,在海上风电浅水区风机平台常常会安装钢管桩,而现有的钢管桩大都为固定式钢质结构,钢管桩在大气区、浪溅区、水位变动区、水下区和泥下区这些腐蚀区域为无涂层裸露状态,严重威胁着钢管桩的安全运行和长期使用,因此对钢管桩采取及时有效的阴极保护是十分必要的。
发明内容:
本发明的目的就在于为了解决上述问题而提供海上风电牺牲阳极保护工艺,解决了背景技术中提到的问题。
为了解决上述问题,本发明提供了一种技术方案:
海上风电牺牲阳极保护工艺,包括以下步骤:
S1、首先将钢管桩按照实际情况分为大气区、潮差区、全浸区和泥下区;
S2、然后计算大气区与潮差区的面积总和,并在大气区与潮差区范围内的钢管桩外侧涂覆矿质防蚀膏,涂覆完成之后在矿质防蚀膏的外侧包覆矿质防蚀带,接着在矿质防蚀带的外侧设置密封缓冲层,最后在外侧通过螺栓与螺母安装防蚀保护罩;
S3、接着计算全浸区和泥下区的面积总和,然后根据海上风电浅水区工程风机基础所处位置、介质电阻率、海水温度、流速、波高、钢管桩材质和涂层的保护效果等实际情况,选择阴极保护电流密度i c,同时涂层破损率计为1;
S4、计算钢管桩所需的保护电流I c=Si c
S5、选择合适的牺牲阳极材料;
S6、先计算牺牲阳极的初期接水电阻,然后再计算每块阳极初期发生电 流量;
S7、计算满足风机钢管桩保护初期所需的阳极总数量;
S8、计算满足风机钢管桩保护中期所需的阳极总数量;
S9、计算满足风机钢管桩保护末期所需的阳极总数量;
S10、在每根钢管桩泥下安装1块TYPE D型阳极,水上安装3块TYPE E型阳极。
作为优选,所述步骤S2中大气区与潮差区的面积总和计算公式为:S=πDΔH,
其中,S为大气区与潮差区的面积总和,D为钢管桩直径,ΔH为各区域的钢管桩的垂直高度。
作为优选,所述步骤S6中计算牺牲阳极的初期接水电阻的公式为:
Figure PCTCN2021108712-appb-000001
其中,ρ为海水电阻率,海水ρ=25Ω·cm,海泥ρ=50Ω·cm,L为阳极初期长度,r i为阳极初期当量半径,n-屏蔽系数,取值1.3,
Figure PCTCN2021108712-appb-000002
C为阳极横截面周长,
所述步骤S6中每块阳极初期发生电流量的公式为:
Figure PCTCN2021108712-appb-000003
其中I ai为每块阳极初期发生电流量,ΔE为阳极驱动电压差,海水ΔE=0.25V,海泥ΔE=0.15V。
作为优选,所述步骤S7中保护初期所需的阳极总数量计算公式为:
Figure PCTCN2021108712-appb-000004
其中I ci为初期所需阳极总电流,N i为初期保护期内所需阳极数量。
作为优选,所述步骤S8中计算满足风机钢管桩保护中期所需的阳极总数量具体包括以下步骤:
S81、根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极总净重;
S82、根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极用量。
作为优选,所述步骤S81中计算保护期内所需阳极总净重的公式为:
Figure PCTCN2021108712-appb-000005
其中,t f为阳极有效使用寿命,t f=30,ε为阳极设计电容量,海水ε=2000Ah/Kg,u为阳极利用率,u=0.9,M为阳极总净重,I cm为中期所需总的保护电流量。
作为优选,所述步骤S82中计算保护期内所需阳极用量的公式为:
Figure PCTCN2021108712-appb-000006
其中,m ai为单个阳极净重,N m为中期保护期内所需阳极数量。
作为优选,所述步骤S9中计算满足风机钢管桩保护末期所需的阳极总数量具体包括以下步骤:
S91、计算末期单块阳极的当量半径;
S92、计算阳极末期接水电阻;
S93、计算末期单块阳极的发生电流量;
S94、计算末期的阳极数量。
作为优选,所述S91中末期单块阳极的当量半径计算公式为:
Figure PCTCN2021108712-appb-000007
其中,m af为单块阳极的末期净重,m ai为单块阳极的初期净重,δ为铝阳极的密度,△V Fe为阳极铁芯的体积,
所述S92中接水电阻计算公式为:
Figure PCTCN2021108712-appb-000008
其中n为屏蔽系数,取值1.3,
所述S93中末期单块阳极的发生电流量计算公式为:
Figure PCTCN2021108712-appb-000009
所述S94中末期的阳极数量计算公式为:
Figure PCTCN2021108712-appb-000010
其中,I cf为末期所需总电流,N f为末期保护期内所需阳极总数量。
本发明的有益效果是:本发明通过将钢管桩分为大气区、潮差区、全浸区和泥下区,并在大气区与潮差区范围内进行包覆防腐操作,能够有效的阻止腐蚀性介质对钢结构的侵蚀,同时还能够隔绝海水,抵御机械损伤,并且通过在全浸区和泥下区根据实际情况计算牺牲阳极用量,并进行牺牲阳极保护,从而能够保证钢管桩的腐蚀得到有效的抑制,同时保护效果稳定可靠,不需要任何维修保养和专人管理。
附图说明:
为了易于说明,本发明由下述的具体实施及附图作以详细描述。
图1是本发明钢管桩包覆结构示意图;
图2是本发明阳极安装结构示意图。
图中:1、钢管桩;2、矿质防蚀膏;3、矿质防蚀带;4、密封缓冲层;5、防蚀保护罩;6、泥面;7、TYPE E型阳极;8、TYPE D型阳极。
具体实施方式:
如图1-2所示,本具体实施方式采用以下技术方案:
实施例:
海上风电牺牲阳极保护工艺,包括以下步骤:
S1、首先将钢管桩按照实际情况分为大气区、潮差区、全浸区和泥下区;
S2、然后计算大气区与潮差区的面积总和,并在大气区与潮差区范围内的钢管桩外侧涂覆矿质防蚀膏,矿质防蚀膏是一种人造的淡褐色油性膏状缓蚀剂化合物,直接涂抹于钢结构表面,在潮湿环境中具有很好的防腐蚀性能,能够长期高效稳定地使钢结构物在严酷的腐蚀环境免遭腐蚀,矿质防蚀膏中 的复合防锈剂中含锈转化剂,可将金属表面的锈层转化为坚硬的螯合化合物,起到除锈、防锈双重作用,降低表面处理的要求,节约人工成本。复合防锈剂还含有不对称结构的表面活性物质,可以将金属表面的水膜置换掉,因此矿质防蚀膏可以在水下进行施工,复合防锈剂分子胶束可以吸附和捕集腐蚀性物质,并将其封存于胶束之中,使之不与金属接触,从而起到长效的防腐蚀作用,涂覆完成之后在矿质防蚀膏的外侧包覆矿质防蚀带,矿质防蚀带是一种淡黄色浸透并且涂满了抗腐蚀化合物的人造纤维制成的无纺布,矿质防蚀带中矿物脂类防蚀材料和矿质防蚀膏是同一系列的防腐蚀材料,相互之间粘结为一体,可以完全地隔绝基材与空气、水的接触,从而保护基材,接着在矿质防蚀带的外侧设置密封缓冲层,最后在外侧通过螺栓与螺母安装防蚀保护罩,防蚀保护罩包括玻璃钢和聚乙烯缓冲衬里,防蚀防护罩主要作用就是避免内部的矿脂防蚀膏和矿脂防蚀带受海浪、海风的外力的破坏,影响防腐性能,防蚀保护罩覆盖在矿脂防蚀带外,纵向分为两部分主体,为半圆形对称结构,扣合形成桶形,其扣合部各自向外侧延伸形成的法兰通过螺栓相互固定,底端部用卡箍固定,防蚀保护罩内侧加衬了聚乙烯缓冲衬里,所以即使钢材表面因腐蚀等原因而凹凸不平,其保护效果也不受影响,缓冲衬里具有较好的减震作用、隔热性、防水性及减缓外力对防蚀保护罩的冲击;
S3、接着计算全浸区和泥下区的面积总和,然后根据海上风电浅水区工程风机基础所处位置、介质电阻率、海水温度、流速、波高、钢管桩材质和涂层的保护效果等实际情况,选择阴极保护电流密度i c,同时涂层破损率计为1;
S4、计算钢管桩所需的保护电流I c=Si c
S5、选择合适的牺牲阳极材料;
S6、先计算牺牲阳极的初期接水电阻,然后再计算每块阳极初期发生电流量;
S7、计算满足风机钢管桩保护初期所需的阳极总数量;
S8、计算满足风机钢管桩保护中期所需的阳极总数量;
S9、计算满足风机钢管桩保护末期所需的阳极总数量;
S10、在每根钢管桩泥下安装1块TYPE D型阳极,水上安装3块TYPE E型阳极。
进一步的,所述步骤S2中大气区与潮差区的面积总和计算公式为:S=πDΔH,
其中,S为大气区与潮差区的面积总和,D为钢管桩直径,ΔH为各区域的钢管桩的垂直高度。
进一步的,所述步骤S6中计算牺牲阳极的初期接水电阻的公式为:
Figure PCTCN2021108712-appb-000011
其中,ρ为海水电阻率,海水ρ=25Ω·cm,海泥ρ=50Ω·cm,L为阳极初期长度,r i为阳极初期当量半径,n-屏蔽系数,取值1.3,
Figure PCTCN2021108712-appb-000012
C为阳极横截面周长,
所述步骤S6中每块阳极初期发生电流量的公式为:
Figure PCTCN2021108712-appb-000013
其中I ai为每块阳极初期发生电流量,ΔE为阳极驱动电压差,海水ΔE=0.25V,海泥ΔE=0.15V。
进一步的,所述步骤S7中保护初期所需的阳极总数量计算公式为:
Figure PCTCN2021108712-appb-000014
其中I ci为初期所需阳极总电流,N i为初期保护期内所需阳极数量。
进一步的,所述步骤S8中计算满足风机钢管桩保护中期所需的阳极总数量具体包括以下步骤:
S81、根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极总净 重;
S82、根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极用量。
进一步的,所述步骤S81中计算保护期内所需阳极总净重的公式为:
Figure PCTCN2021108712-appb-000015
其中,t f为阳极有效使用寿命,t f=30,ε为阳极设计电容量,海水ε=2000Ah/Kg,u为阳极利用率,u=0.9,M为阳极总净重,I cm为中期所需总的保护电流量。
进一步的,所述步骤S82中计算保护期内所需阳极用量的公式为:
Figure PCTCN2021108712-appb-000016
其中,m ai为单个阳极净重,N m为中期保护期内所需阳极数量。
进一步的,所述步骤S9中计算满足风机钢管桩保护末期所需的阳极总数量具体包括以下步骤:
S91、计算末期单块阳极的当量半径;
S92、计算阳极末期接水电阻;
S93、计算末期单块阳极的发生电流量;
S94、计算末期的阳极数量。
进一步的,所述S91中末期单块阳极的当量半径计算公式为:
Figure PCTCN2021108712-appb-000017
其中,m af为单块阳极的末期净重,m ai为单块阳极的初期净重,δ为铝阳极的密度,△V Fe为阳极铁芯的体积,
所述S92中接水电阻计算公式为:
Figure PCTCN2021108712-appb-000018
其中n为屏蔽系数,取值1.3,
所述S93中末期单块阳极的发生电流量计算公式为:
Figure PCTCN2021108712-appb-000019
所述S94中末期的阳极数量计算公式为:
Figure PCTCN2021108712-appb-000020
其中,I cf为末期所需总电流,N f为末期保护期内所需阳极总数量。
具体的:在进行实际的操作时,首先将钢管桩按照实际情况分为大气区、潮差区、全浸区和泥下区,然后计算大气区与潮差区的面积总和,公式为S=πDΔH,并在大气区与潮差区范围内的钢管桩外侧涂覆矿质防蚀膏,涂覆完成之后在矿质防蚀膏的外侧包覆矿质防蚀带,接着在矿质防蚀带的外侧设置密封缓冲层,最后在外侧通过螺栓与螺母安装防蚀保护罩;接着计算全浸区和泥下区的面积总和,然后根据海上风电浅水区工程风机基础所处位置、介质电阻率、海水温度、流速、波高、钢管桩材质和涂层的保护效果等实际情况,选择阴极保护电流密度i c,同时涂层破损率计为1;计算钢管桩所需的保护电流I c=Si c;选择合适的牺牲阳极材料;先计算牺牲阳极的初期接水电阻,然后再计算每块阳极初期发生电流量,计算牺牲阳极的初期接水电阻的公式为:
Figure PCTCN2021108712-appb-000021
其中,ρ为海水电阻率,海水ρ=25Ω·cm,海泥ρ=50Ω·cm,L为阳极初期长度,r i为阳极初期当量半径,n-屏蔽系数,取值1.3,
Figure PCTCN2021108712-appb-000022
C为阳极横截面周长,每块阳极初期发生电流量的公式为:
Figure PCTCN2021108712-appb-000023
其中I ai为每块阳极初期发生电流量,ΔE为阳极驱动电压差,海水ΔE=0.25V,海泥ΔE=0.15V;计算满足风机钢管桩保护初期所需的阳极总数量,保护初期所需的阳极总数量计算公式为:
Figure PCTCN2021108712-appb-000024
其中I ci为初期所需阳极总电流,N i为初期保护期内所需阳极数量,计算满足风机钢管桩保护中期所需的阳极总数量,根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极总净重,根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极用量,计算保护期内所需阳极总净重的公式为:
Figure PCTCN2021108712-appb-000025
其中,t f为阳极有效使用 寿命,t f=30,ε为阳极设计电容量,海水ε=2000Ah/Kg,u为阳极利用率,u=0.9,M为阳极总净重,I cm为中期所需总的保护电流量,计算保护期内所需阳极用量的公式为:
Figure PCTCN2021108712-appb-000026
其中,m ai为单个阳极净重,N m为中期保护期内所需阳极数量,计算满足风机钢管桩保护末期所需的阳极总数量,计算末期单块阳极的当量半径,末期单块阳极的当量半径计算公式为:
Figure PCTCN2021108712-appb-000027
其中,m af为单块阳极的末期净重,m ai为单块阳极的初期净重,δ为铝阳极的密度,△V Fe为阳极铁芯的体积,计算阳极末期接水电阻,接水电阻计算公式为:
Figure PCTCN2021108712-appb-000028
其中n为屏蔽系数,取值1.3,计算末期单块阳极的发生电流量,末期单块阳极的发生电流量计算公式为:
Figure PCTCN2021108712-appb-000029
计算末期的阳极数量,末期的阳极数量计算公式为:
Figure PCTCN2021108712-appb-000030
其中,I cf为末期所需总电流,N f为末期保护期内所需阳极总数量;在每根钢管桩泥下安装1块TYPE D型阳极,水上安装3块TYPE E型阳极,如图1和图2所示。
在本发明的描述中,需要理解的是,术语“同轴”、“底部”、“一端”、“顶部”、“中部”、“另一端”、“上”、“一侧”、“顶部”、“内”、“前部”、“中央”、“两端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明 示或者隐含地包括至少一个该特征。
在本发明中,除非另有明确的规定和限定,术语“安装”、“设置”、“连接”、“固定”、“旋接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

  1. 海上风电牺牲阳极保护工艺,其特征在于,包括以下步骤:
    S1、首先将钢管桩按照实际情况分为大气区、潮差区、全浸区和泥下区;
    S2、然后计算大气区与潮差区的面积总和,并在大气区与潮差区范围内的钢管桩外侧涂覆矿质防蚀膏,涂覆完成之后在矿质防蚀膏的外侧包覆矿质防蚀带,接着在矿质防蚀带的外侧设置密封缓冲层,最后在外侧通过螺栓与螺母安装防蚀保护罩;
    S3、接着计算全浸区和泥下区的面积总和,然后根据海上风电浅水区工程风机基础所处位置、介质电阻率、海水温度、流速、波高、钢管桩材质和涂层的保护效果等实际情况,选择阴极保护电流密度i c,同时涂层破损率计为1;
    S4、计算钢管桩所需的保护电流I c=Si c
    S5、选择合适的牺牲阳极材料;
    S6、先计算牺牲阳极的初期接水电阻,然后再计算每块阳极初期发生电流量;
    S7、计算满足风机钢管桩保护初期所需的阳极总数量;
    S8、计算满足风机钢管桩保护中期所需的阳极总数量;
    S9、计算满足风机钢管桩保护末期所需的阳极总数量;
    S10、在每根钢管桩泥下安装1块TYPE D型阳极,水上安装3块TYPE E型阳极。
  2. 根据权利要求1所述的海上风电牺牲阳极保护工艺,其特征在于,所述步骤S2中大气区与潮差区的面积总和计算公式为:S=πDΔH,
    其中,S为大气区与潮差区的面积总和,D为钢管桩直径,ΔH为各区域的钢管桩的垂直高度。
  3. 根据权利要求1所述的海上风电牺牲阳极保护工艺,其特征在于,所 述步骤S6中计算牺牲阳极的初期接水电阻的公式为:
    Figure PCTCN2021108712-appb-100001
    其中,ρ为海水电阻率,海水ρ=25Ω·cm,海泥ρ=50Ω·cm,L为阳极初期长度,r i为阳极初期当量半径,n-屏蔽系数,取值1.3,
    Figure PCTCN2021108712-appb-100002
    C为阳极横截面周长,
    所述步骤S6中每块阳极初期发生电流量的公式为:
    Figure PCTCN2021108712-appb-100003
    其中I ai为每块阳极初期发生电流量,ΔE为阳极驱动电压差,海水ΔE=0.25V,海泥ΔE=0.15V。
  4. 根据权利要求1所述的海上风电牺牲阳极保护工艺,其特征在于,所述步骤S7中保护初期所需的阳极总数量计算公式为:
    Figure PCTCN2021108712-appb-100004
    其中I ci为初期所需阳极总电流,N i为初期保护期内所需阳极数量。
  5. 根据权利要求1所述的海上风电牺牲阳极保护工艺,其特征在于,所述步骤S8中计算满足风机钢管桩保护中期所需的阳极总数量具体包括以下步骤:
    S81、根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极总净重;
    S82、根据风机钢管桩中期所需总保护电流,计算保护期内所需阳极用量。
  6. 根据权利要求5所述的海上风电牺牲阳极保护工艺,其特征在于,所述步骤S81中计算保护期内所需阳极总净重的公式为:
    Figure PCTCN2021108712-appb-100005
    其中,t f为阳极有效使用寿命,t f=30,ε为阳极设计电容量,海水ε=2000Ah/Kg,u为阳极利用率,u=0.9,M为阳极总净重,I cm为中期所需总的保护电流量。
  7. 根据权利要求5所述的海上风电牺牲阳极保护工艺,其特征在于,所述步骤S82中计算保护期内所需阳极用量的公式为:
    Figure PCTCN2021108712-appb-100006
    其中,m ai为单个阳极净重,N m为中期保护期内所需阳极数量。
  8. 根据权利要求1所述的海上风电牺牲阳极保护工艺,其特征在于,所述步骤S9中计算满足风机钢管桩保护末期所需的阳极总数量具体包括以下步骤:
    S91、计算末期单块阳极的当量半径;
    S92、计算阳极末期接水电阻;
    S93、计算末期单块阳极的发生电流量;
    S94、计算末期的阳极数量。
  9. 根据权利要求8所述的海上风电牺牲阳极保护工艺,其特征在于,所述S91中末期单块阳极的当量半径计算公式为:
    Figure PCTCN2021108712-appb-100007
    其中,m af为单块阳极的末期净重,m ai为单块阳极的初期净重,δ为铝阳极的密度,△V Fe为阳极铁芯的体积,
    所述S92中接水电阻计算公式为:
    Figure PCTCN2021108712-appb-100008
    其中n为屏蔽系数,取值1.3,
    所述S93中末期单块阳极的发生电流量计算公式为:
    Figure PCTCN2021108712-appb-100009
    所述S94中末期的阳极数量计算公式为:
    Figure PCTCN2021108712-appb-100010
    其中,I cf为末期所需总电流,N f为末期保护期内所需阳极总数量。
PCT/CN2021/108712 2021-06-30 2021-07-27 海上风电牺牲阳极保护工艺 WO2023272849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110731729.6 2021-06-30
CN202110731729.6A CN113445055A (zh) 2021-06-30 2021-06-30 海上风电牺牲阳极保护工艺

Publications (1)

Publication Number Publication Date
WO2023272849A1 true WO2023272849A1 (zh) 2023-01-05

Family

ID=77814154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108712 WO2023272849A1 (zh) 2021-06-30 2021-07-27 海上风电牺牲阳极保护工艺

Country Status (2)

Country Link
CN (1) CN113445055A (zh)
WO (1) WO2023272849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116791090A (zh) * 2023-08-29 2023-09-22 山东德瑞防腐材料有限公司 一种海洋环境下分体式阴极保护及检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658041A (zh) * 2022-04-21 2022-06-24 华能灌云清洁能源发电有限责任公司 一种海上钢管桩防腐蚀处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078124A (zh) * 2006-05-26 2007-11-28 株式会社那卡波技工 钢材的包覆防蚀方法
CN101109087A (zh) * 2007-08-22 2008-01-23 青岛双瑞防腐防污工程有限公司 钢筋混凝土桥墩的牺牲阳极保护方法
CN203498874U (zh) * 2013-07-22 2014-03-26 中交武汉港湾工程设计研究院有限公司 海工结构钢管桩的防腐蚀结构
CN108396323A (zh) * 2018-03-26 2018-08-14 中国海洋大学 一种用于海水中裸钢结构阴极保护的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761729A (zh) * 2009-10-26 2010-06-30 上海青草沙投资建设发展有限公司 非开挖施工大口径管道腐蚀控制联合施工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078124A (zh) * 2006-05-26 2007-11-28 株式会社那卡波技工 钢材的包覆防蚀方法
CN101109087A (zh) * 2007-08-22 2008-01-23 青岛双瑞防腐防污工程有限公司 钢筋混凝土桥墩的牺牲阳极保护方法
CN203498874U (zh) * 2013-07-22 2014-03-26 中交武汉港湾工程设计研究院有限公司 海工结构钢管桩的防腐蚀结构
CN108396323A (zh) * 2018-03-26 2018-08-14 中国海洋大学 一种用于海水中裸钢结构阴极保护的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116791090A (zh) * 2023-08-29 2023-09-22 山东德瑞防腐材料有限公司 一种海洋环境下分体式阴极保护及检测方法

Also Published As

Publication number Publication date
CN113445055A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2023272849A1 (zh) 海上风电牺牲阳极保护工艺
CN107366297A (zh) 海上风电桩复层矿脂包覆防腐结构及其施工方法
CN204098030U (zh) 用于海洋环境的混凝土桩结构
CN106760870B (zh) 一种输电塔塔脚防腐蚀方法
CN103643238B (zh) 一种保障牺牲阳极正常运行的装置
CN107725970A (zh) 一种用于管道的保护装置
CN203213265U (zh) 用于污水深海排放的防腐型扩散器
CN203517022U (zh) 低洼耐蚀合金化防腐保温管道
CN213168486U (zh) 一种新型浮筒
CN201077862Y (zh) 一种钢筋混凝土牺牲阳极保护装置
US4487672A (en) Method for decreasing corrosion of internal surfaces of metallic conduit systems
CN106544680A (zh) 一种用于核电站重要厂用水系统管道的防腐蚀装置
CN103469213B (zh) 基于薄板状锌合金阳极的储罐外底阴极保护系统
CN101696503A (zh) 非开挖施工大口径管道阴极保护系统
CN213117833U (zh) 一种复合防腐钢筋混凝土排水管
CN217153509U (zh) 一种耐高温的管件
CN215173283U (zh) 一种防腐蚀油气管道
CN214246203U (zh) 一种建筑防腐蚀外墙结构
CN216919084U (zh) 防水耐腐蚀钢构件
CN219261102U (zh) 一种桥梁水下桩基的导流装置
CN103174214A (zh) 用于污水深海排放的防腐型扩散器
CN107701856A (zh) 一种防腐的管道结构
CN218564613U (zh) 一种具有防腐保温结构的管道
CN213417745U (zh) 一种水库大坝防洪加固结构
CN219118094U (zh) 一种拼装栅格结构复合方管消波条

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE