WO2023272704A1 - 检测膜及制作方法、芯片键合检测方法及装置、分类方法 - Google Patents

检测膜及制作方法、芯片键合检测方法及装置、分类方法 Download PDF

Info

Publication number
WO2023272704A1
WO2023272704A1 PCT/CN2021/104112 CN2021104112W WO2023272704A1 WO 2023272704 A1 WO2023272704 A1 WO 2023272704A1 CN 2021104112 W CN2021104112 W CN 2021104112W WO 2023272704 A1 WO2023272704 A1 WO 2023272704A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
detection
colloidal crystal
film
microspheres
Prior art date
Application number
PCT/CN2021/104112
Other languages
English (en)
French (fr)
Inventor
翟峰
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2021/104112 priority Critical patent/WO2023272704A1/zh
Publication of WO2023272704A1 publication Critical patent/WO2023272704A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present application relates to the field of chip detection, in particular to a detection film and a manufacturing method, a chip bonding detection method and device, and a classification method.
  • the mini LED (Light-emitting diode, light-emitting diode) display is a new display technology based on inorganic semiconductor LED chips, and the LED chip spacing is between 0.6mm-1.2mm. Professional fields such as broadcasting, high-end theaters, medical testing, or commercial fields such as outdoor advertising, conferences and exhibitions, and office displays. Due to the use of inorganic semiconductor materials, the mini LED has a brightness of up to 5000 nit, and can be viewed in full color outdoors under strong light; the photoelectric response can reach the nanosecond level, and the service life exceeds 10 years. Generally, the mini LED display uses a PCB circuit board.
  • soldering between the PCB pad on the PCB circuit board and the LED chip pad is achieved by tin or solder paste.
  • LED displays often use printed solder paste as solder, and then LED chip through SMT (Surface Mounted Technology, surface mount technology) and the PCB substrate to achieve bonding, often need to go through a high temperature reflow furnace for reflow soldering.
  • SMT Surface Mounted Technology, surface mount technology
  • the reflow soldering process is carried out in a thermal environment of about 200 ° C.
  • the solder remelts, which may easily lead to the completion of the bonded mini
  • the tilt of the LED chip will eventually lead to differences in the light-emitting angle of the mini LED chip, which will affect the display effect.
  • the purpose of this application is to provide a detection film and its production method, a chip bonding detection method and device, and a classification method, aiming at solving the problem of how to detect the miniature bonded to the circuit board in related technologies. Whether the LED chip is tilted or not.
  • the present application provides a detection film, which is used to cover a chip bonded to a circuit board; the detection film includes a film layer, and colloidal crystal microspheres distributed in the film layer, wherein, The colloidal crystal microspheres are arranged in order in the film layer.
  • the above-mentioned detection film includes colloidal crystal microspheres distributed in the film layer, and the colloidal crystal microspheres are arranged in an orderly manner in the film layer. During detection, the detection film can be covered on the chip bonded to the circuit board. Based on the Bragg reflection effect of colloidal crystal microspheres, it corresponds to the different characteristics of the light reflected by the corresponding colloidal crystal microspheres on chips with different inclination angles after bonding, so it can be based on the colloidal crystal microspheres on each chip The light reflected by the Bragg reflection effect is used to determine the inclination angle of the chip after bonding, so as to determine whether the chip bonded to the circuit board is tilted, that is, the chip bonded to the circuit board is realized (for example, it may include but not limited to mini LED chip) to detect whether the tilt occurs.
  • the present application also provides a method for manufacturing a detection film, which is used to cover a chip bonded to a circuit board; the method for manufacturing a detection film includes:
  • a colloidal crystal layer composed of colloidal crystal microspheres arranged in order is formed on the carrier substrate;
  • At least the gaps between the colloidal crystal microspheres are filled with film material to form a film layer.
  • Colloidal crystal microspheres arranged in an orderly arrangement are distributed in the detection film prepared by the above detection film manufacturing method. Based on the Bragg reflection effect of the colloidal crystal microspheres, the detection film can be covered on the surface bonded to the circuit board during detection. On the chip, based on the light reflected by the Bragg reflection of the colloidal crystal microspheres on each chip to determine the tilt angle after the chip is bonded, so as to determine whether the chip bonded to the circuit board is tilted, that is, to achieve Check whether the chip bonded to the circuit board is tilted.
  • the present application also provides a chip bonding detection method, including:
  • the chip bonded on the circuit board is placed in a preset light environment, and the above-mentioned detection film is covered on the chip, and colloidal crystals arranged in an orderly arrangement are distributed in the detection film Microspheres are based on the Bragg reflection of colloidal crystal microspheres, so the inclination angle of the chip after bonding can be determined based on the light reflected by the Bragg reflection of the colloidal crystal microspheres on each chip, so as to determine the bonding on the circuit board. Whether the chip on the circuit board is tilted, that is, to detect whether the chip bonded to the circuit board is tilted.
  • the present application also provides a chip bonding detection device, including:
  • Light detection equipment used for when the chip bonded on the circuit board is placed in a preset light environment, the chip faces the light incident direction, and the above-mentioned detection film is covered on the chip Detecting the light reflected by the colloidal crystal microspheres on the chip, and determining the inclination angle of the chip after bonding according to the detection result.
  • the above-mentioned light detection equipment can determine the inclination angle of the chip after bonding based on the light reflected by the Bragg reflection of the colloidal crystal microspheres on each chip, so as to determine whether the chip bonded to the circuit board is tilted, that is, to realize Check whether the chip bonded to the circuit board is tilted.
  • this application also provides a classification method for display panels, the display panel includes a display backplane, and several light-emitting chips bonded to the display backplane, the classification method includes:
  • the above classification method for display panels can detect the inclination angles of the light-emitting chips on each display panel after bonding through the above chip bonding detection method, and carry out targeted classification for each display panel according to the detected inclination angles, which is more conducive to Targeted and reasonable application of subsequent display panels, and/or overhaul.
  • the present application also provides a method for manufacturing a display screen, including:
  • At least two display panels are selected from the set display panels;
  • Splicing is performed on at least two selected display panels.
  • the manufacturing method of the above-mentioned display screen can select more reasonable display panels according to the type for splicing, which is more conducive to improving the problem of strabismus bright spots in large-size linear display screens, so as to improve the overall quality of the display screen.
  • the detection film and its production method, chip bonding detection method and device, and classification method provided by the application include colloidal crystal microspheres distributed in the film layer, and the colloidal crystal microspheres are arranged in an orderly manner in the film layer , during detection, the detection film can be covered on the chip bonded to the circuit board, based on the Bragg reflection effect of colloidal crystal microspheres, corresponding to the reflection of the corresponding colloidal crystal microspheres on the chip with different inclination angles after bonding Therefore, the angle of inclination after bonding of the chip can be determined based on the light reflected by the Bragg reflection of the colloidal crystal microspheres on each chip, so as to determine whether the chip bonded to the circuit board is tilted. That is, the detection of whether the chip bonded to the circuit board is tilted is realized.
  • FIG. 1 is a schematic diagram of the bonding process of a mini LED chip on a circuit board in the related art
  • FIG. 2 is a schematic diagram of the detection membrane structure provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the orderly arrangement of colloidal crystal microspheres provided in the examples of the present application.
  • Fig. 4 is a schematic flow chart of a method for making a detection membrane provided in another optional embodiment of the present application.
  • Fig. 5 is a schematic diagram of the formation process of the colloidal crystal layer provided by another optional embodiment of the present application.
  • Fig. 6 is a schematic diagram of the formation process of the film layer provided by another optional embodiment of the present application.
  • Fig. 7 is a schematic diagram of the formation process of the detection film provided by another optional embodiment of the present application.
  • FIG. 8 is a schematic flow chart of a chip bonding detection method provided in another optional embodiment of the present application.
  • Fig. 9 is a first schematic diagram of a detection film covered on a light-emitting chip provided by another optional embodiment of the present application.
  • Fig. 10 is a second schematic diagram of the detection film covered on the light-emitting chip provided by another optional embodiment of the present application.
  • Fig. 11 is a third schematic diagram of the detection film covered on the light-emitting chip provided by another optional embodiment of the present application.
  • Fig. 12 is a schematic diagram 4 of the detection film covered on the light-emitting chip provided by another optional embodiment of the present application;
  • FIG. 13 is a schematic structural diagram of a light detection device provided in another optional embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a method for classifying display panels provided in another optional embodiment of the present application.
  • Fig. 15 is a schematic flowchart of a method for manufacturing a display screen provided by another optional embodiment of the present application.
  • the mini LED display screen uses a PCB circuit board, and the PCB pad on the PCB circuit board and the LED chip pad are soldered by tin or solder paste.
  • LED displays often use printed solder paste as solder, and then LED chip through SMT (Surface Mounted Technology, surface mount technology) and the PCB substrate to achieve bonding, often need to go through a high temperature reflow furnace for reflow soldering.
  • SMT Surface Mounted Technology, surface mount technology
  • This embodiment provides a detection film, which is used to detect the inclination angle of a chip bonded to a circuit board. During detection, the detection film can be covered on the chip bonded to a circuit board.
  • the detection film includes a film layer and colloidal crystal microspheres distributed in the film layer, and each colloidal crystal microsphere is arranged in order in the film layer. For ease of understanding, the following will be described with reference to the detection film 2 shown in FIG. 2 as an example.
  • the detection film 2 includes a film layer 21 and colloidal crystal microspheres 22 distributed in the film layer 21 .
  • the chip to be detected in this embodiment may include but not limited to a light-emitting chip, wherein the light-emitting chip may be but not limited to a micro-light-emitting chip.
  • the micro-light-emitting chip in this embodiment refers to a um-level light-emitting chip. Not limited to Mini LED chips, Micro At least one of the LED chips.
  • the miniature light-emitting chip can also be replaced with a light-emitting chip of a normal size or a large size according to requirements, and details will not be repeated here.
  • the chips to be detected in this embodiment are not limited to light-emitting chips, and can also be replaced with other chips, such as driver chips, resistor chips, capacitor chips, FPGA chips, etc. according to requirements.
  • the colloidal crystal microspheres 22 distributed in the film layer 21 are arranged in an orderly manner, that is, they are arranged in a three-dimensional order in a three-dimensional space.
  • a schematic diagram of the orderly arrangement of the colloidal crystal microspheres 22 in the film layer 21 See Figure 3.
  • the detection film 2 can be covered on the chip bonded to the circuit board. It should be understood that the detection film 2 can be directly covered on the chip bonded to the circuit board. Contacts can also be located on top of the chip bonded to the circuit board without making direct contact with the chip.
  • the inclination angle after chip bonding can be determined, so as to determine whether the chip bonded to the circuit board is tilted, that is, to achieve Check whether the chip bonded to the circuit board is tilted.
  • the colloidal crystal microspheres in the film layer can be but not limited to nanoscale colloidal crystal microspheres, for example, the particle size of the colloidal crystal microspheres can be greater than or equal to 173 nanometers and less than or equal to 190 nanometers. Nano; for example, in some application scenarios, the particle size of the colloidal crystal microspheres can be but not limited to 173 nm, 175 nm, 180 nm, 189 nm or 190 nm. And it should be understood that, in some application examples, the particle diameters of the colloidal crystal microspheres 22 shown in FIG. 3 may be the same, or a part of the colloidal crystal microspheres 22 may have different particle diameters. Of course, in some application scenarios in this embodiment, the particle size of the colloidal crystal microspheres 22 may also be in the micron order or smaller than the nanometer order.
  • the material of the colloidal crystal microspheres distributed in the film layer can also be flexibly selected under the condition of satisfying the Bragg reflection effect.
  • the colloidal crystal microspheres include but are not limited to silicon dioxide Sio2 microspheres and polymer At least one of the material microspheres, wherein the polymer material microspheres may include but not limited to at least one of polystyrene microspheres, polyacrylic acid microspheres and nanoscale microspheres copolymerized with various monomers.
  • the colloidal crystal microspheres distributed in the film layer can be colloidal crystal microspheres of a material, such as Sio2 microspheres, polystyrene microspheres, polyacrylic acid microspheres One of the nano-scale microspheres copolymerized with various monomers.
  • the colloidal crystal microspheres distributed in the film layer can also include colloidal crystal microspheres of various materials, such as Sio2 microspheres, polystyrene microspheres, polyacrylic acid microspheres and various monomers At least two of the nanoscale microspheres formed by copolymerization.
  • the film material forming the film layer is filled in the gaps between the colloidal crystal microspheres.
  • the colloidal crystal microspheres can occupy 74% of the total volume of the detection film.
  • membrane material occupies the remaining 26%.
  • the material of the film material forming the film layer in this embodiment can be flexibly selected according to the application requirements, for example, PDMS (Polydimethylsiloxane, polydimethylsiloxane) can be selected, but not limited to, that is, the film in this embodiment
  • PDMS Polydimethylsiloxane, polydimethylsiloxane
  • the material of the layer includes PDMS, and of course other materials can also be used for equivalent replacement.
  • the integrated refractive index n of the detection film can be calculated by the following formula (1).
  • is the proportion of the film material in the total volume of the detection film
  • n microsphere is the refractive index of the colloidal crystal microsphere
  • n film material is the refractive index of the film material.
  • k is the coefficient
  • D is the particle size of the colloidal crystal microsphere
  • n is the comprehensive refractive index of the detection film
  • is the light incident angle. Therefore, when the material of the colloidal crystal microsphere and the film material are selected After that, its comprehensive refractive index n can be determined. For chips that do not appear tilted after bonding, their normal light incident angle ⁇ can be obtained under the preset light environment; then the preset standard color (also called which is the initial color) to determine its wavelength. For example, when blue is selected, the wavelength ⁇ of blue can be determined; then the above parameters can be substituted into the above formula (2) to obtain the value of the particle size D of the crystal microspheres.
  • the above-mentioned determined material and particle size of the colloidal crystal microspheres and the above-mentioned membrane material of the determined material can be used to form the detection membrane.
  • the color of the light reflected from the colloidal crystal microspheres on the chip is the same as or different from the preset standard color.
  • the color of the light reflected by the colloidal crystal microspheres on the tilted chip is different from the preset standard color, or is not within the preset standard range.
  • the color of the above light can also be equivalently replaced by the wavelength.
  • the detection film provided in this embodiment it is possible to detect whether the chip after bonding is tilted, and to determine the specific angle range of the tilt according to the requirements, so as to prevent unqualified chips after bonding from being applied to the The light emitting effect and display effect caused by the subsequent process are not good. It is more conducive to improving the yield rate of lighting products or display products and reducing costs.
  • the detection film in this embodiment can be reused, and the detection result can be directly observed according to the color of the light, the detection is simple and convenient, and the cost is low, and the environmental protection is good.
  • this embodiment provides an exemplary method for fabricating a detection membrane, which is used to fabricate the detection membrane as described above.
  • the detection membrane manufacturing method provided in this embodiment includes:
  • S401 forming a colloidal crystal layer composed of colloidal crystal microspheres arranged in order on the carrier substrate.
  • the material of the carrying substrate in this embodiment can be flexibly selected, for example, but not limited to, a silicon substrate, a quartz substrate, or other materials can be used instead.
  • Figure 5 the method of forming a colloidal crystal layer composed of colloidal crystal microspheres in an orderly arrangement on the carrier substrate is shown in Figure 5, which may include but not limited to:
  • Matching colloidal crystal microspheres are selected and dispersed in a volatile solvent to obtain a microsphere mixture.
  • the selected volatile solvent has no effect on the film material forming the film layer.
  • the selected volatile solvent can be but not limited to an oil solvent.
  • isopropanol with low boiling point and other fast-volatile inert solvents oil phase solvent non-aqueous phase
  • disperse colloidal crystal microspheres such as SiO2 microspheres
  • An inert solvent that has no effect on the PDMS material yields a microsphere mixture.
  • the colloidal crystal microspheres are self-assembled by gravity to form a three-dimensional ordered volume cubic or face cubic structure similar to that shown in Figure 3 by utilizing the volatilization characteristics of the volatile solvent.
  • it can be evenly coated on the carrier substrate by but not limited to spin coating, inkjet printing technology or spray coating technology.
  • S402 At least filling the gaps between the colloidal crystal microspheres with a film material to form a film layer.
  • a film material for example, an example of forming a film layer is shown in Figure 6, which includes but is not limited to:
  • the viscosity of the formed film material solution can be but not limited to 20 to 50 mPa (mPa s).
  • the diluent in this embodiment can be selected flexibly, for example, acetone, methanol or n-hexane solvent can be selected as the diluent but not limited to.
  • S602 Coating the prepared membrane material solution on the colloidal crystal layer, the membrane material solution flows into the gaps between the colloid crystal microspheres and solidifies to form a membrane layer.
  • the coating in this step may include, but not limited to, drop coating in addition to the various coating methods exemplified above.
  • the colloidal crystal microspheres self-assemble through gravity to form a colloidal crystal layer.
  • S702 drip-coat the prepared membrane material solution on the colloid crystal layer to form a membrane material solution layer 33 .
  • the membrane material solution flows into the gaps between the colloidal crystal microspheres and solidifies to form the detection membrane 2 .
  • S703 Separate the detection film 2 from the carrier substrate 31 .
  • the thickness of the detection film 2 can be flexibly set according to application requirements, and there is no limitation here.
  • the manufacturing method of the detection membrane provided in this embodiment is simple, efficient, low-cost, and can be mass-produced on a large scale.
  • the chip bonding detection method provided in this embodiment includes but is not limited to:
  • S801 placing the chip bonded on the circuit board under a preset light environment, with the chip facing the light incident direction, so that the light can enter the detection film subsequently provided on the chip.
  • the preset light environment in S801 may be a preset natural light environment or a preset light source illumination environment; as long as the light incident on the detection film meets the detection conditions.
  • the circuit boards in this embodiment may include, but are not limited to, display backplanes and various circuit boards used for lighting.
  • S803 Detect the light reflected by the colloidal crystal microspheres on the chip, and determine the inclination angle of the chip after bonding according to the detection result.
  • detecting the light reflected by the colloidal crystal microspheres on the chip, and determining the inclination angle after the chip is bonded according to the detection result may include but not limited to :
  • the observation in this embodiment can be visual observation directly manually through vision, and the detection method is simple and effective.
  • the n of the prepared detection film is a fixed value, and the particle diameter of the Sio2 microspheres corresponding to selection is between 173 nanometers and 190 nanometers. Between nanometers, at this time, the light reflected by the colloidal crystal microspheres has a wavelength of 420 nanometers to 460 nanometers, and will appear blue. Therefore, in some examples, Sio2 microspheres with a particle size between 173 nm and 190 nm can be selected to form a detection film, and the preset standard color is set to blue, which can be reflected by the colloidal crystal microspheres on the observation chip. Whether the actual color of the light is blue, if not, it can be determined that the chip has been tilted after bonding.
  • the particle size of Sio2 microspheres is selected as 189nm, which shows a blue wavelength of 457nm; therefore, in some examples, the particle size of 189nm can be selected as Sio2 microspheres
  • the spheres form a layer of colloidal crystals, and the preset standard color is blue. It should be understood that, on the basis of the above principles, the preset standard color can be adjusted by flexibly adjusting at least one of the material and particle size of the colloidal crystal microspheres and the film material, and is not limited to the Sio2 of the above example. Correspondence between material and particle size and blue wavelength.
  • detecting the light reflected by the colloidal crystal microspheres on the chip, and determining the inclination angle after chip bonding according to the detection results include:
  • the actual light incident angle ⁇ 1 of the chip is calculated by the following formula (3);
  • k is a coefficient
  • D is the particle size of the colloidal crystal microsphere
  • n is the comprehensive refractive index of the detection film
  • the inclination angle after chip bonding is determined.
  • the standard light incident angle ⁇ 0 in this embodiment is the incident angle of light obtained under the above detection environment when the chip is not tilted after bonding. Therefore, according to the difference between the actual light incident angle ⁇ 1 and the preset standard light incident angle ⁇ 0 , it can be determined whether the corresponding chip is tilted or not; and according to the specific difference between the two, it can also be determined to characterize the tilt of the corresponding chip Angle value or range of tilt angles.
  • the display panel includes several light-emitting chips 42 bonded to a display backplane 41 , assuming that none of the light-emitting chips 42 shown in FIG. 9 is tilted after being bonded.
  • the color of light reflected by the colloidal crystal microspheres on the light-emitting chip 42 can be used as a standard color, and the light incident angle can be used as a standard light incident angle ⁇ 0 .
  • the detection film 2 may have a certain rigidity, and is directly disposed on the light emitting chip 42 .
  • an encapsulation layer can also be provided on the display backplane 41, the encapsulation layer can fill the gap between adjacent light-emitting chips 42, and can be flush with or higher than the light-emitting chips 42 and Cover the entire light-emitting chip 42 .
  • the detection film 2 can be disposed on the encapsulation layer.
  • the encapsulation layer in this embodiment can be flexibly set, for example, may include an encapsulation adhesive layer, and may also include a luminescence conversion layer, a color resist layer, an optical isolation layer, etc. disposed on the light-emitting chip 42 .
  • the actual light incident angle ⁇ 1 can be calculated through the above formula (3), and the actual light incident angle ⁇ 1 can be calculated according to the actual light incident angle ⁇ 1 and the preset The difference of the standard light incident angle ⁇ 0 determines whether the corresponding chip is tilted or not.
  • an encapsulation layer 43 is also provided on the display backplane 41 , and the detection film 2 is disposed on the encapsulation layer 43 .
  • the encapsulation layer 43 is relatively flatter and more convenient for detection.
  • the actual color of the light reflected by the colloidal crystal microspheres on the tilted light-emitting chip is different from the standard color.
  • the actual light incident angle ⁇ 1 can be calculated through the above formula (3), and the actual light incident angle ⁇ 1 can be calculated according to the actual light incident angle ⁇ 1 and the preset The difference of the standard light incident angle ⁇ 0 determines whether the corresponding chip is tilted or not.
  • This embodiment also provides a chip bonding detection device, including:
  • the light detection device is used to detect the light on the chip when the chip bonded on the circuit board is placed in a preset light environment, the chip faces the light incident direction, and the above-mentioned detection film is covered on the chip.
  • the light reflected by the colloidal crystal microspheres above determines the inclination angle of the chip after bonding according to the detection results.
  • the way of determining the inclination angle after chip bonding according to the detection result can be referred to but not limited to the above examples.
  • the light detection device 51 includes but is not limited to:
  • the wavelength collection device 511 is used to collect the actual wavelength ⁇ 1 of the light reflected by the colloidal crystal microspheres on the chip; the wavelength collection device 511 can be but not limited to a spectrometer;
  • the analysis device 512 is used to calculate the actual light incident angle ⁇ 1 of the chip according to the ⁇ 1 obtained by the wavelength acquisition device 511 through the above formula (3), and calculate the difference between the actual light incident angle ⁇ 1 and the preset standard light incident angle ⁇ 0 , to determine the tilt angle after chip bonding.
  • the detection device may further include a transport device for transporting the transfer device to be detected to a preset light environment, or a light source device for generating a corresponding light source, and the like.
  • This embodiment provides a method for classifying display panels.
  • the display panel includes a display backplane and a number of light-emitting chips bonded to the display backplane.
  • the classification method is shown in FIG. 14 , which includes:
  • S1402 Classify each display panel according to the inclination angle.
  • the inclination angle can be classified according to the preset step size, and those whose maximum inclination angle or average inclination angle or minimum inclination angle of the light-emitting chips that are inclined on the display panel fall into the corresponding step size are classified into this step. In the category corresponding to the step size.
  • the details can be flexibly set according to application requirements. In some examples, it can also be set that when the tilt angle exceeds a certain threshold, the corresponding light-emitting chip is judged to be unqualified and needs to be repaired.
  • This embodiment also provides a method for manufacturing a display screen, as shown in FIG. 15 , which includes:
  • S1501 Select at least two display panels from the display panels of the setting category among the various types of display panels obtained through the above-mentioned classification method of display panels;
  • S1502 Splicing the at least two selected display panels. In this embodiment, no limitation is imposed on the manner of splicing processing.
  • the display panels can be classified in advance, and according to different customer specifications, display panels with similar chip inclinations or complementary inclination angles can be selected for inspection. Splicing can improve the problem of strabismus highlights in the existing large-size linear display, so as to improve the overall quality of the display.
  • This embodiment also provides a display screen, including a frame and a display panel; the display panel is fixed on the frame.
  • the display screen can be applied to but not limited to various intelligent mobile terminals, vehicle-mounted terminals, PCs, monitors, electronic billboards and the like.

Abstract

本申请涉及一种检测膜及制作方法、芯片键合检测方法及装置、分类方法,将检测膜(2)覆盖在键合于电路板(11)的芯片之上,检测膜(2)中分布有呈有序排列的胶体晶体微球(22),基于胶体晶体微球的布拉格反射作用,根据各芯片之上的胶体晶体微球(22)反射出的光确定芯片是否发生倾斜。

Description

检测膜及制作方法、芯片键合检测方法及装置、分类方法 技术领域
本申请涉及芯片检测领域,尤其涉及一种检测膜及制作方法、芯片键合检测方法及装置、分类方法。
背景技术
mini LED(Light-emitting diode, 发光二极管)显示是基于无机半导体LED芯片,LED芯片间距在0.6mm-1.2mm之间的新型显示技术,mini LED可以应用于超大屏高清显示,如监控指挥,高清演播,高端影院,医疗检测等专业领域或者户外广告,会议会展,办公显示等商业领域。mini LED由于采用无机半导体材料,亮度可达5000nit,在户外强光可全彩可视;光电响应可达纳秒级别,使用寿命超10年。一般情况下,mini LED显屏使用的是PCB线路板,PCB线路板上的PCB pad与LED 芯片 pad之间通过锡或者锡膏来实现焊接, LED显示往往是通过印刷锡膏做焊料,再将LED芯片通过SMT(Surface Mounted Technology,表面贴装技术)与PCB基板实现键合,往往最后需要经过高温回焊炉进行回流焊。
一般回流焊过程是在200℃左右的热环境下进行,在此过程中焊料重新熔融,容易导致完成键合的mini LED芯片出现倾斜,最终导致mini LED芯片的发光角度出现差异性,影响显示效果。目前尚无有效检测手段实现完成键合的mini LED芯片是否发生倾斜的检测。
因此,如何检测完成键合的mini LED芯片是否倾斜是亟需解决的问题。
技术问题
鉴于上述现有技术的不足,本申请的目的在于提供一种检测膜及制作方法、芯片键合检测方法及装置、分类方法,旨在解决相关技术中,如何检测键合于电路板的mini LED芯片是否倾斜的问题。
技术解决方案
本申请提供一种检测膜,所述检测膜用于覆盖在键合于电路板的芯片之上;所述检测膜包括膜层,以及分布于所述膜层中的胶体晶体微球,其中,所述胶体晶体微球在所述膜层中有序排列。
上述检测膜中,包括分布于膜层中的胶体晶体微球,该胶体晶体微球在所述膜层中有序排列,在检测时,可将检测膜覆盖在键合于电路板的芯片之上,基于胶体晶体微球的布拉格反射作用,对应于完成键合后不同倾斜角度的芯片上对应的胶体晶体微球反射出的光不同的特性,因此可基于各芯片之上的胶体晶体微球的布拉格反射作用反射出的光来确定芯片键合后的倾斜角度,从而确定键合于电路板的芯片是否发生倾斜,也即实现了键合于电路板的芯片(例如可包括但不限于mini LED芯片)是否发生倾斜的检测。
基于同样的发明构思,本申请还提供一种检测膜制作方法,所述检测膜用于覆盖在键合于电路板的芯片之上;所述检测膜制作方法包括:
在承载基板上形成由胶体晶体微球有序排列组成的胶体晶体层;
至少在各所述胶体晶体微球之间的空隙内填充膜材形成膜层。
上述检测膜制作方法所制得的检测膜中,分布有呈有序排列的胶体晶体微球,基于胶体晶体微球的布拉格反射作用,在检测时,可将检测膜覆盖在键合于电路板的芯片之上,基于各芯片之上的胶体晶体微球的布拉格反射作用反射出的光来确定芯片键合后的倾斜角度,从而确定键合于电路板的芯片是否发生倾斜,也即实现了键合于电路板的芯片是否发生倾斜的检测。
基于同样的发明构思,本申请还提供一种芯片键合检测方法,包括:
将键合于电路板上的芯片置于预设光环境下,所述芯片朝向光入射方向;
将如上所述的检测膜覆盖在所述芯片之上;
检测位于所述芯片之上的所述胶体晶体微球反射出的光,根据检测结果确定所述芯片键合后的倾斜角度。
上述芯片键合检测方法,将键合于电路板上的芯片置于预设光环境下,并将如上所述的检测膜覆盖在芯片之上,检测膜中分布有呈有序排列的胶体晶体微球,基于胶体晶体微球的布拉格反射作用,因此可基于各芯片之上的胶体晶体微球的布拉格反射作用反射出的光来确定芯片键合后的倾斜角度,从而确定键合于电路板上的芯片是否发生倾斜,也即实现了键合于电路板的芯片是否发生倾斜的检测。
基于同样的发明构思,本申请还提供一种芯片键合检测装置,包括:
光检测设备,用于在键合于电路板上的芯片置于预设光环境下,所述芯片朝向光入射方向光入射方向,以及将如上所述的检测膜覆盖在所述芯片之上时,检测位于所述芯片之上的所述胶体晶体微球反射出的光,根据检测结果确定所述芯片键合后的倾斜角度。
上述光检测设备可基于各芯片之上的胶体晶体微球的布拉格反射作用反射出的光来确定芯片键合后的倾斜角度,从而确定键合于电路板的芯片是否发生倾斜,也即实现了键合于电路板的芯片是否发生倾斜的检测。
基于同样的发明构思,本申请还提供一种显示面板的分类方法,所述显示面板包括显示背板,以及键合于所述显示背板上的若干发光芯片,所述分类方法包括:
通过如上所述的芯片键合检测方法,检测出各显示面板上的发光芯片键合后的倾斜角度;
根据所述倾斜角度对各所述显示面板进行分类。
上述显示面板的分类方法,可通过上述芯片键合检测方法检测出各显示面板上的发光芯片键合后的倾斜角度,并根据检测到的倾斜角度对各显示面板进行针对性的分类,更利于后续显示面板的针对性合理应用,和/或检修。
基于同样的发明构思,本申请还提供一种显示屏的制作方法,包括:
在通过如上所述的显示面板的分类方法分得的各类显示面板中,从设定类显示面板中选择出至少两个显示面板;
对选择出的至少两个显示面板进行拼接。
上述显示屏的制作方法,可按类选择出更合理的显示面板进行拼接,更利于改善大尺寸线显屏中斜视亮点问题,以此来提升显屏的整体质量。
有益效果
本申请提供的检测膜及制作方法、芯片键合检测方法及装置、分类方法,检测膜中包括分布于膜层中的胶体晶体微球,该胶体晶体微球在所述膜层中有序排列,在检测时,可将检测膜覆盖在键合于电路板的芯片之上,基于胶体晶体微球的布拉格反射作用,对应于完成键合后不同倾斜角度的芯片上对应的胶体晶体微球反射出的光不同的特性,因此可基于各芯片之上的胶体晶体微球的布拉格反射作用反射出的光来确定芯片键合后的倾斜角度,从而确定键合于电路板的芯片是否发生倾斜,也即实现了键合于电路板的芯片是否发生倾斜的检测。
附图说明
图1为相关技术中的mini LED芯片在电路板上完成键合的过程意图;
图2为本申请实施例提供的检测膜结构示意图;
图3为本申请实施例提供的胶体晶体微球有序排列示意图;
图4为本申请另一可选实施例提供的检测膜的制作方法流程示意图;
图5为本申请另一可选实施例提供的胶体晶体层的形成过程示意图;
图6为本申请另一可选实施例提供的膜层的形成过程示意图;
图7为本申请另一可选实施例提供的检测膜的形成过程示意图;
图8为本申请又一可选实施例提供的芯片键合检测方法流程示意图;
图9为本申请又一可选实施例提供的检测膜覆盖在发光芯片之上的示意图一;
图10为本申请又一可选实施例提供的检测膜覆盖在发光芯片之上的示意图二;
图11为本申请又一可选实施例提供的检测膜覆盖在发光芯片之上的示意图三;
图12为本申请又一可选实施例提供的检测膜覆盖在发光芯片之上的示意图四;
图13为本申请又一可选实施例提供的光检测设备结构示意图;
图14为本申请另一可选实施例提供的显示面板的分类方法流程示意图;
图15为本申请另一可选实施例提供的显示屏的制作方法流程示意图;
附图标记说明:
11-电路板,12-电路板焊盘,13-mini LED芯片,2-检测膜,21-膜层,22-胶体晶体微球,31-承载基板,32-微球混合液层,33-膜材溶液层,41-显示背板,42-发光芯片,43-封装层。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
相关技术中,mini LED显屏使用的是PCB线路板,PCB线路板上的PCB pad与LED 芯片 pad之间通过锡或者锡膏来实现焊接, LED显示往往是通过印刷锡膏做焊料,再将LED芯片通过SMT(Surface Mounted Technology,表面贴装技术)与PCB基板实现键合,往往最后需要经过高温回焊炉进行回流焊。一种制作过程参见图1所示,包括:
S101:在电路板11上的各芯片键合区内设置电路板焊盘12。
S102:将mini LED芯片13转移至各芯片键合区内与对应的电路板焊盘12适对接。
S103:经过高温回焊炉进行回流焊,完成mini LED芯片13在电路板11上的键合。在此过程中,由于回流焊过程是在200℃左右的热环境下进行,在此过程中电路板焊盘12重新熔融,容易导致键合于电路板的mini LED芯片出现倾斜,例如参见图1中发生倾斜的mini LED芯片13,最终导致mini LED芯片的发光角度出现差异性,影响显示效果。目前尚无有效检测手段实现键合于电路板的mini LED芯片是否发生倾斜的检测。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本实施例提供了一种检测膜,该检测膜用于对键合于电路板的芯片的倾斜角度进行检测,在检测时,可将该检测膜覆盖在键合于电路板的芯片之上。其中,该检测膜包括膜层,以及分布于膜层中的胶体晶体微球,且各胶体晶体微球在膜层中有序排列。为了便于理解,下面结合图2所示的检测膜2为示例进行说明。
参见图2所示,检测膜2包括膜层21,以及分布于膜层21中的胶体晶体微球22。应当理解的是,本实施例中检测膜2的形状和尺寸大小可以根据应用需求,例如可根据但不限于待检测的芯片的颗数、芯片的分布情况等灵活设置,本实施例对其不做任何限制。本实施例中待检测的芯片可以包括但不限于发光芯片,其中,该发光芯片可以为但不限于微型发光芯片,本实施例中的微型发光芯片是指um级的发光芯片,例如可包括但不限于Mini LED芯片、Micro LED芯片中的至少一种。当然,该微型发光芯片也可根据需求替换为普通尺寸或大尺寸的发光芯片,在此不再赘述。且本实施例中待检测的芯片并不限于发光芯片,也可根据需求等同的替换为其他芯片,例如驱动芯片,电阻芯片、电容芯片、FPGA芯片等。
本实施例中,分布于膜层21中的胶体晶体微球22有序排列,也即在三维空间中呈三维有序排列,一种胶体晶体微球22在膜层21中有序排列的示意图参见图3所示。
本实施例中,在检测时,可将检测膜2覆盖在键合于电路板的芯片之上,应当理解的是,检测膜2可直接覆盖在键合于电路板的芯片之上与芯片直接接触,也可位于键合于电路板的芯片的上方,不与芯片直接接触。基于胶体晶体微球的布拉格反射作用,在各芯片完成键合后,当其中的一些芯片发生倾斜时,不同倾斜角度的芯片上对应的胶体晶体微球反射出的光不同(颜色或波长不同)的特性,因此可基于各芯片之上的胶体晶体微球的布拉格反射作用反射出的光来确定芯片键合后的倾斜角度,从而确定键合于电路板的芯片是否发生倾斜,也即实现了键合于电路板的芯片是否发生倾斜的检测。避免完成键合后的且不合格的芯片被应用到后续制程中而导致的出光效果及显示效果不佳的情况发生。更利于提升照明产品或显示产品的良品率,降低成本。
在本实施例中的一种示例中,膜层中的胶体晶体微球可为但不限于纳米级胶体晶体微球,例如该胶体晶体微球的粒径可为大于等于173纳米,小于等于190纳米;例如,一些应用场景中,胶体晶体微球的粒径可为但不限于173纳米,175纳米,180纳米,189纳米或190纳米。且应当理解的是,在一些应用示例中,图3所示的各胶体晶体微球22的粒径可以相同,也可存在一部分胶体晶体微球22的粒径不同。当然,本实施例中一些应用场景中,胶体晶体微球22的粒径也可为微米级或小于纳米级。
在本实施例中,膜层中分布的胶体晶体微球的材质在满足布拉格反射作用的情况下,也可灵活选用,例如,胶体晶体微球包括但不限于二氧化硅Sio2微球和聚合物材质微球中的至少一种,其中聚合物材质微球可以包括但不限于聚苯乙烯微球,聚丙烯酸微球和多种单体共聚而成的纳米级微球中的至少一种。应当理解的是,在本实施例的一些示例中,膜层中所分布的胶体晶体微球可以是一种材质的胶体晶体微球,例如Sio2微球,聚苯乙烯微球,聚丙烯酸微球和多种单体共聚而成的纳米级微球中的一种。当然,在一些应用场景中,膜层中所分布的胶体晶体微球也可包括多种材质的胶体晶体微球,例如Sio2微球,聚苯乙烯微球,聚丙烯酸微球和多种单体共聚而成的纳米级微球中的至少两种。
在本实施例中,形成膜层的至少一部分膜材填充于各胶体晶体微球之间的空隙内,在本实施例的一些示例中,胶体晶体微球可占用检测膜的总体积的74%,膜材占用剩余的26%。当然,胶体晶体微球和形成膜层的膜材各自占用的体积比可根据应用需求灵活设置。应当理解的是,本实施例中形成膜层的膜材的材质可以根据应用需求灵活选择,例如可以选用但不限于PDMS(Polydimethylsiloxane,聚二甲基硅氧烷),也即本实施例中膜层的材质包括PDMS,当然也可选用其他材质进行等同替换。
为了便于理解,下面结合布拉格反射原理,对利用检测膜对完成键合后的芯片的倾斜角度进行检测的原理进行示例说明。
其中,检测膜的综合折射率n可通过以下公式(1)计算得到。
Figure 23724dest_path_image001
…………………………………………(1)
上述公式(1)中,Φ为膜材在检测膜的总体积中所占的比例,n 微球为胶体晶体微球的折射率,n 膜材为膜材的折射率。
布拉格公式参见以下公式(2)所示:
Figure 165992dest_path_image002
………………………………(2)
上述公式(2)中,k为系数, D为胶体晶体微球的粒径, n为检测膜的综合折射率,θ为光入射角,因此,当胶体晶体微球和膜材的材质选定后,其综合折射率n就能确定,对于完成键合后未出现倾斜的芯片,在预设光环境下可获取其正常的光入射角θ;然后可以选定预设标准颜色(也可称之为初始颜色)从而确定其波长。例如,选择蓝色时,则可确定蓝色的波长λ;然后将以上参数代入上述公式(2),即可得到晶体微球的粒径D的值。进而在形成检测膜时,则可采用上述确定的胶体晶体微球的材质和粒径以及上述确定材质的膜材形成检测膜。这样当键合后的芯片在同样的检测环境下,对于完成键合后未出现倾斜的芯片,从该芯片之上的胶体晶体微球反射出的光的颜色与预设标准颜色相同或差异在预设的标准范围内;而出现倾斜的芯片之上的胶体晶体微球反射出的光的颜色则与预设标准颜色不同,或不在预设的标准范围内。当然,以上光的颜色也可等同替换为波长。因此利用本实施例所提供的检测膜,可以检测完成键合后的芯片是否发生倾斜,并可根据需求确定出具体倾斜的角度大小范围,避免完成键合后的且不合格的芯片被应用到后续制程中而导致的出光效果及显示效果不佳的情况发生。更利于提升照明产品或显示产品的良品率,降低成本。且本实施例中的检测膜可以重复使用,且还可直接根据光的颜色直接观测得到检测结果,检测简单便捷,且成本低,环保性好。
另一可选实施例:
为了便于理解,本实施例提供了一种示例的检测膜的制作方法,用于制作如上所示的检测膜。参见图4所示,本实施例提供的检测膜制作方法包括:
S401:在承载基板上形成由胶体晶体微球有序排列组成的胶体晶体层。
应当理解的是,本实施例中承载基板的材质可以灵活选用,例如可以采用但不限于硅基板、石英基板,也可采用其他材质替换。
在本实施例中,在承载基板上形成由胶体晶体微球有序排列组成的胶体晶体层的方式参见图5所示,其可包括但不限于:
S501:将胶体晶体微球混合于易挥发溶剂中得到微球混合液。
选取匹配的胶体晶体微球分散于易挥发溶剂中得到微球混合液。且选择的易挥发溶剂对形成膜层的膜材无影响,例如,膜材为PDMS材料时,选择的易挥发溶剂可为但不限于油项溶剂。比如低沸点的异丙醇等快速挥发性且对PDMS材料无影响的惰性溶剂(油相溶剂非水相),将胶体晶体微球(例如SiO2微球)分散于异丙醇等快速挥发性且对PDMS材料无影响的惰性溶剂得到微球混合液。
S502:在承载基板上涂覆微球混合液,通过易挥发溶剂的挥发,胶体晶体微球通过重力自组装形成胶体晶体层。
在承载基板上涂覆微球混合液后,利用易挥发溶剂的挥发特性,胶体晶体微球通过重力自组装形成类似图3所示的三维有序的体立方或者面立方结构。
在本实施例的一些示例中,可通过但不限于旋涂、喷墨打印技术或者喷涂技术等将其均匀涂覆在承载基板上。
S402:至少在各胶体晶体微球之间的空隙内填充膜材形成膜层。例如,一种形成膜层的示例参见图6所示,其包括但不限于:
S601:制备膜材溶液。
例如,将聚二甲基硅氧烷的预聚物A 和交联剂B混合后,通过稀释液进行稀释得到膜材溶液,形成的膜材溶液的黏度可在但不限于20至50毫帕(mPa·s)。本实施例中的稀释液可灵活选择,例如可选择但不限于丙酮,甲醇或者正己烷类溶剂作为稀释液。
S602:将制得的膜材溶液涂覆在胶体晶体层上,膜材溶液流入各胶体晶体微球之间的空隙内固化后形成膜层。本步骤中的涂覆除了上述示例的各种涂覆方式外,还可包括但不限于滴涂的方式。
为了便于理解,下面结合图7所示的检测膜的制作过程为示例进行说明,其包括但不限于:
S701:在承载基板31上旋涂制得的微球混合液形成微球混合液32。
利用易挥发溶剂的挥发特性,在易挥发溶剂挥发后,胶体晶体微球通过重力自组装形成胶体晶体层。
S702:将制得的膜材溶液滴涂在胶体晶体层上形成膜材溶液层33。
在本步骤中,膜材溶液流入各胶体晶体微球之间的空隙内固化后形成检测膜2。
S703:将检测膜2与承载基板31分离。其中检测膜2的厚度可根据应用需求灵活设置,在此对其不做限制。
可见,本实施例提供的检测膜的制作方法制作简单高效,成本低,可大规模的量产。
又一可选实施例:
为了便于理解,本实施例下面以利用上述实施例所示的检测膜对芯片键合情况进行检测的方法进行示例说明。参见图8所示,本实施例所提供的芯片键合检测方法包括但不限于:
S801:将键合于电路板上的芯片置于预设光环境下,芯片朝向光入射方向,以供光射入后续设于该芯片之上的检测膜。
在本实施例中,S801中的预设光环境可以为预设自然光环境,也可为预设光源照射环境;只要满足射入检测膜的光满足检测条件即可。本实施例中的电路板可以包括但不限于显示背板、用于照明的各种电路板。
S802:将如上所述的检测膜覆盖在所述芯片之上,以供光射入。
S803:检测位于芯片之上的胶体晶体微球反射出的光,根据检测结果确定芯片键合后的倾斜角度。
参见上述公式(2)所示,在本实施例的一种示例中,检测位于芯片之上的胶体晶体微球反射出的光,根据检测结果确定芯片键合后的倾斜角度可包括但不限于:
观测位于芯片之上的胶体晶体微球反射出的光的实际颜色,根据实际颜色和预设标准颜色的差异,确定芯片键合后的倾斜角度。本实施例中的观测可以是直接人工通过视觉进行可视观测,检测方式简单有效。
例如,在一种示例中,以胶体晶体微球为Sio2微球,膜材为PDMS为例,制得的检测膜的n是定值,对应选用的Sio2微球的粒径在173纳米至190纳米之间,此时胶体晶体微球反射出的光呈现出的波长是420纳米至460纳米的波段,会呈现蓝色。因此,在一些示例中,可以选用粒径在173纳米至190纳米之间的Sio2微球形成检测膜,设定预设标准颜色为蓝色,则可通过观测芯片上的胶体晶体微球反射出的光的实际颜色是否为蓝色,如否,则可确定该芯片键合后发生了倾斜。
基于上述原理,经测试,针对具体的单一蓝光波长,选定Sio2微球的粒径为189nm,表现出来的是457nm的蓝色波长;因此在一些示例中,可以选用粒径为189nm为Sio2微球形成胶体晶体层,预设标准颜色为蓝色。应当理解的是时,在上述原理基础上,可以通过灵活的调整胶体晶体微球的材质和粒径和膜材中的至少一种,来对应调整预设标准颜色,并不限于上述示例的Sio2材质以及粒径和蓝色波长的对应关系。
参见上述公式(2)所示,在本实施例的另一种示例中,检测位于所述芯片之上的胶体晶体微球反射出的光,根据检测结果确定芯片键合后的倾斜角度包括:
获取位于芯片之上的胶体晶体微球反射出的光的实际波长λ1;
根据获取的λ1,通过以下公式(3)计算出芯片的实际光入射角θ1;
Figure 254034dest_path_image003
………………………………(3)
上述公式(3)中,k为系数,D为胶体晶体微球的粒径,n为检测膜的综合折射率;
根据实际光入射角θ1和预设的标准光入射角θ 0的差异,确定芯片键合后的倾斜角度。
本实施例中的标准光入射角θ 0为芯片键合后未发生倾斜时在上述检测环境下的得到的光的入射角。因此根据实际光入射角θ1和预设的标准光入射角θ 0的差异,可以确定对应芯片是否发生倾斜等情况;且根据二者之间的具体差值还可确定表征出对应的芯片的倾斜角度值或倾斜角度范围。
可见,通过本实施例提供的检测方法,当完成键合后的芯片发生倾斜时,根据布拉格公式,由于其倾斜导致其实际光入射倾斜角度发生变化,也即公式(2)中的θ变化,在D跟n确定的情况下,λ发生变化,所以导致胶体晶体微球反射出的光的颜色发生变化,从而能够表现出来颜色差异;且在一些示例中,不同芯片倾斜的角度不同时,其上的胶体晶体微球反射出的光的颜色不同,通过统计还可进一步根据相应的光颜色确定出具体的倾斜情况,例如不同倾斜角度各自对应的颜色等;从而在检测时,可直观的根据各芯片上的胶体晶体微球反射出的光的颜色来判断芯片的倾斜情况,检测简单,效率高,成本低,且准确率高。
为了便于理解,下面结合一种具体的应用场景为示例进行说明。
参见图9所示的显示面板,显示面板包括在显示背板41上键合有若干发光芯片42,假设图9中所示的发光芯片42键合后都未发生倾斜。将显示面板置于预设光环境下,此时发光芯片42之上的胶体晶体微球反射出的光的颜色可作为标准颜色,光入射角则可作为标准光入射角θ 0。在图9所示的示例中,检测膜2可具有一定的刚性,直接设置于发光芯片42上。当然在一些示例中,也可在显示背板41上设置封装层,该封装层可将相邻发光芯片42之间的间隙填充满,且可于发光芯片42齐平或高于发光芯片42并将发光芯片42全部覆盖。检测膜2则可设置于该封装层之上。本实施例中的封装层可以灵活设定,例如可以包括封装胶层,还可包括设于发光芯片42之上的发光转换层、色阻层、光隔离层等。
参见图10所示的显示面板,图10中显示面板上的发光芯片42在显示背板41上完成键合后,置于预设光环境下,将检测膜2设于各发光芯片42之上,其中发生倾斜后的发光芯片之上的胶体晶体微球反射出的光的实际颜色则与标准颜色不同。且可根据发生倾斜后的发光芯片之上的胶体晶体微球反射出的光的实际波长通过上述公式(3)计算出其实际光入射角θ1,并可根据实际光入射角θ1和预设的标准光入射角θ 0的差异,确定对应芯片是否发生倾斜等情况。
参见图11和图12所示,在显示背板41上还设有封装层43,将检测膜2设于封装层43之上,封装层43相对更为平整,更利于检测。其中发生倾斜后的发光芯片之上的胶体晶体微球反射出的光的实际颜色则与标准颜色不同。且可根据发生倾斜后的发光芯片之上的胶体晶体微球反射出的光的实际波长通过上述公式(3)计算出其实际光入射角θ1,并可根据实际光入射角θ1和预设的标准光入射角θ 0的差异,确定对应芯片是否发生倾斜等情况。
本实施例还提供了一种芯片键合检测装置,包括:
光检测设备,用于在键合于电路板上的芯片置于预设光环境下,芯片朝向光入射方向光入射方向,以及将如上所述的检测膜覆盖在芯片之上时,检测位于芯片之上的胶体晶体微球反射出的光,根据检测结果确定芯片键合后的倾斜角度。其中根据检测结果确定芯片键合后的倾斜角度的方式可参见但不限于上述各示例所示。例如,在一种示例中,参见图13所示,光检测设备51包括但不限于:
波长采集设备511,用于采集位于芯片之上的胶体晶体微球反射出的光的实际波长λ1;波长采集设备511可以为但不限于光谱仪;
分析设备512,用于根据波长采集设备511获取的λ1,通过以上公式(3)计算出芯片的实际光入射角θ1,并根据实际光入射角θ1和预设的标准光入射角θ 0的差异,确定芯片键合后的倾斜角度。
在本实施例的另一些示例中,检测装置还可包括将待检测的转移装置输送到预设光环境下的输送装置,或产生相应光源的光源装置等。
另一可选实施例:
本实施例提供了一种显示面板的分类方法,该显示面板包括显示背板,以及键合于显示背板上的若干发光芯片,该分类方法参见图14所示,其包括:
S1401:通过如上所述的芯片键合检测方法,检测出各显示面板上的发光芯片键合后的倾斜角度。
S1402:根据倾斜角度对各所述显示面板进行分类。
例如,在一些示例中,可将倾斜角度按预设步长进行分类,显示面板上发生倾斜的发光芯片的最大倾斜角度或平均倾斜角度或最小倾斜角度落入对应步长的则分入到该步长对应的一类中。具体可根据应用需求灵活设置。在一些示例中,还可设置倾斜角度超过一定阈值时,对应的发光芯片被判定为不合格,需要返修。
本实施例还提供了一种显示屏的制作方法,参见图15所示,其包括:
S1501:在通过如上所述的显示面板的分类方法分得的各类显示面板中,从设定类显示面板中选择出至少两个显示面板;
S1502:对选择出的至少两个显示面板进行拼接。本实施例中对于拼接处理的方式不做任何限制。
也即,在本实施例中,基于本实施例提供的芯片键合的检测技术,可以事先将显示面板进行提前分类,针对不同的客户规格要求,选用芯片倾斜相近或倾斜角度互补的显示面板进行拼接,达到改善现有大尺寸线显屏中斜视亮点问题,以此来提升显屏的整体质量。
本实施例还提供了一种显示屏,包括框架和显示面板;显示面板固定在框架上。该显示屏可应用于但不限于各种智能移动终端,车载终端、PC、显示器、电子广告板等。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (20)

  1. 一种检测膜,所述检测膜用于覆盖在键合于电路板的芯片之上;所述检测膜包括膜层,以及分布于所述膜层中的胶体晶体微球,其中,所述胶体晶体微球在所述膜层中有序排列。
  2. 如权利要求1所述的检测膜,其中,所述胶体晶体微球为纳米级胶体晶体微球。
  3. 如权利要求2所述的检测膜,其中,所述胶体晶体微球的粒径大于等于173纳米,小于等于190纳米。
  4. 如权利要求1所述的检测膜,其中,所述胶体晶体微球包括二氧化硅微球和聚合物材质微球中的至少一种。
  5. 如权利要求1所述的检测膜,其中,所述膜层的材质包括聚二甲基硅氧烷。
  6. 如权利要求1所述的检测膜,其中,所述胶体晶体微球占所述检测膜的总体积的74%。
  7. 一种检测膜制作方法,所述检测膜用于覆盖在键合于电路板的芯片之上;所述检测膜制作方法包括:
    在承载基板上形成由胶体晶体微球有序排列组成的胶体晶体层;
    至少在各所述胶体晶体微球之间的空隙内填充膜材形成膜层。
  8. 如权利要求7所述的检测膜制作方法,其中,所述在承载基板上形成由胶体晶体微球有序排列组成的胶体晶体层包括:
    将胶体晶体微球混合于易挥发溶剂中得到微球混合液;
    在所述承载基板上涂覆所述微球混合液,通过所述易挥发溶剂的挥发,所述胶体晶体微球通过重力自组装形成所述胶体晶体层。
  9. 如权利要求8所述的检测膜制作方法,其中,所述易挥发溶剂为油项溶剂。
  10. 如权利要求7所述的检测膜制作方法,其中,所述至少在各所述胶体晶体微球之间的空隙内填充膜材形成膜层包括:
    制备膜材溶液;
    将所述膜材溶液涂覆在所述胶体晶体层上,所述膜材溶液流入各所述胶体晶体微球之间的空隙内固化后形成所述膜层。
  11. 如权利要求10所述的检测膜制作方法,其中,所述制备膜材溶液包括:
    将聚二甲基硅氧烷的预聚物A 和交联剂B混合后,通过稀释液进行稀释得到膜材溶液。
  12. 一种芯片键合检测方法,包括:
    将键合于电路板上的芯片置于预设光环境下;
    将如权利要求1所述的检测膜覆盖在所述芯片之上;
    检测位于所述芯片之上的所述胶体晶体微球反射出的光,根据检测结果确定所述芯片键合后的倾斜角度。
  13. 如权利要求12所述的芯片键合检测方法,其中,所述预设光环境为预设自然光环境,或预设光源照射环境。
  14. 如权利要求12所述的芯片键合检测方法,其中,所述检测位于所述芯片之上的所述胶体晶体微球反射出的光,根据检测结果确定所述芯片键合后的倾斜角度包括:
    观测位于所述芯片之上的所述胶体晶体微球反射出的光的实际颜色,根据所述实际颜色和预设标准颜色的差异,确定所述芯片键合后的倾斜角度。
  15. 如权利要求12所述的芯片键合检测方法,其中,所述检测位于所述芯片之上的所述胶体晶体微球反射出的光,根据检测结果确定所述芯片键合后的倾斜角度包括:
    获取位于所述芯片之上的所述胶体晶体微球反射出的光的实际波长λ1;
    根据所述λ1,通过以下公式计算出所述芯片的实际光入射角θ1;
    Figure 538229dest_path_image001
    ,所述k为系数,所述D为所述胶体晶体微球的粒径,所述n为所述检测膜的综合折射率;
    根据所述实际光入射角θ1和预设的标准光入射角θ 0的差异,确定所述芯片键合后的倾斜角度。
  16. 如权利要求12所述的芯片键合检测方法,其中,所述电路板上设有将所述芯片覆盖的封装层,所述将如权利要求1所述的检测膜覆盖在所述芯片之上包括:
    将所述检测膜覆盖在所述封装层上。
  17. 如权利要求12所述的芯片键合检测方法,其中,所述芯片包括mini LED芯片和Micro LED芯片中的至少一种。
  18. 一种芯片键合检测装置,包括:
    光检测设备,用于在键合于电路板的芯片置于预设光环境下,所述芯片朝向光入射方向光入射方向,以及将如权利要求1所述的检测膜覆盖在所述芯片之上时,检测位于所述芯片之上的所述胶体晶体微球反射出的光,根据检测结果确定所述芯片键合后的倾斜角度。
  19. 如权利要求18所述的芯片键合检测装置,其中,所述光检测设备包括:
    波长采集设备,用于采集位于所述芯片之上的所述胶体晶体微球反射出的光的实际波长λ1;
    分析设备,用于根据所述λ1,通过以下公式计算出所述芯片的实际光入射角θ1,并根据所述实际光入射角θ1和预设的标准光入射角θ 0的差异,确定所述芯片键合后的倾斜角度;
    Figure 602000dest_path_image002
    ,所述k为系数,所述D为所述胶体晶体微球的粒径,所述n为所述检测膜的综合折射率。
  20. 一种显示面板的分类方法,所述显示面板包括显示背板,以及键合于所述显示背板上的若干发光芯片,所述分类方法包括:
    通过如权利要求12所述的芯片键合检测方法,检测出各显示面板上的发光芯片键合后的倾斜角度;
    根据所述倾斜角度对各所述显示面板进行分类。
PCT/CN2021/104112 2021-07-01 2021-07-01 检测膜及制作方法、芯片键合检测方法及装置、分类方法 WO2023272704A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/104112 WO2023272704A1 (zh) 2021-07-01 2021-07-01 检测膜及制作方法、芯片键合检测方法及装置、分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/104112 WO2023272704A1 (zh) 2021-07-01 2021-07-01 检测膜及制作方法、芯片键合检测方法及装置、分类方法

Publications (1)

Publication Number Publication Date
WO2023272704A1 true WO2023272704A1 (zh) 2023-01-05

Family

ID=84692220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104112 WO2023272704A1 (zh) 2021-07-01 2021-07-01 检测膜及制作方法、芯片键合检测方法及装置、分类方法

Country Status (1)

Country Link
WO (1) WO2023272704A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222572A (ja) * 1988-07-11 1990-01-25 Yamaha Corp 集積回路の配線検査法
US5844249A (en) * 1993-12-24 1998-12-01 Hoechst Aktiengesellschaft Apparatus for detecting defects of wires on a wiring board wherein optical sensor includes a film of polymer non-linear optical material
CN106653638A (zh) * 2016-12-16 2017-05-10 通富微电子股份有限公司 一种检测半导体封装产品虚焊的系统和方法
CN108375349A (zh) * 2017-01-31 2018-08-07 欧姆龙株式会社 倾斜测定装置
CN110017814A (zh) * 2019-04-30 2019-07-16 深圳格兰达智能装备股份有限公司 一种检测芯片倾斜的方法及系统
CN110459140A (zh) * 2019-08-16 2019-11-15 云谷(固安)科技有限公司 发光元件和显示面板
CN111220621A (zh) * 2020-03-13 2020-06-02 上海御微半导体技术有限公司 芯片倾斜表面检测方法
CN112033996A (zh) * 2020-08-17 2020-12-04 苏州和萃新材料有限公司 一种芯片缺陷检测定位系统及其应用方法
CN112964635A (zh) * 2020-10-13 2021-06-15 重庆康佳光电技术研究院有限公司 一种芯片检测方法以及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222572A (ja) * 1988-07-11 1990-01-25 Yamaha Corp 集積回路の配線検査法
US5844249A (en) * 1993-12-24 1998-12-01 Hoechst Aktiengesellschaft Apparatus for detecting defects of wires on a wiring board wherein optical sensor includes a film of polymer non-linear optical material
CN106653638A (zh) * 2016-12-16 2017-05-10 通富微电子股份有限公司 一种检测半导体封装产品虚焊的系统和方法
CN108375349A (zh) * 2017-01-31 2018-08-07 欧姆龙株式会社 倾斜测定装置
CN110017814A (zh) * 2019-04-30 2019-07-16 深圳格兰达智能装备股份有限公司 一种检测芯片倾斜的方法及系统
CN110459140A (zh) * 2019-08-16 2019-11-15 云谷(固安)科技有限公司 发光元件和显示面板
CN111220621A (zh) * 2020-03-13 2020-06-02 上海御微半导体技术有限公司 芯片倾斜表面检测方法
CN112033996A (zh) * 2020-08-17 2020-12-04 苏州和萃新材料有限公司 一种芯片缺陷检测定位系统及其应用方法
CN112964635A (zh) * 2020-10-13 2021-06-15 重庆康佳光电技术研究院有限公司 一种芯片检测方法以及系统

Similar Documents

Publication Publication Date Title
US10381430B2 (en) Redistribution layer for substrate contacts
US11092849B2 (en) LED backlight device and display device
US10782002B2 (en) LED optical components
WO2019200825A1 (zh) 直下式背光模组及其制作方法
CN106903945B (zh) 一种广色域的量子点膜及其制备方法
WO2018227679A1 (zh) 液晶显示装置
US11094751B2 (en) Display panel, method for fabricating the same, and display device
US20060131601A1 (en) Illumination assembly and method of making same
US20060132697A1 (en) Liquid crystal device, liquid crystal display, and liquid crystal projector
CN108732816A (zh) 面光源背光模组及液晶显示面板
EP1829123A2 (en) Illumination assembly and method of making same
US11545607B2 (en) Upper substrate for miniature LED component, miniature LED component, and miniature LED display device
US11703716B2 (en) Display apparatus
TW201037813A (en) Light emitting apparatus
KR20210108523A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
CN112882282A (zh) 一种显示装置
CN110879495A (zh) 显示装置
KR20160031616A (ko) 표시 장치 및 그 제조 방법
CN209248982U (zh) Cob显示模组以及led显示设备
WO2023272704A1 (zh) 检测膜及制作方法、芯片键合检测方法及装置、分类方法
JP2008270406A (ja) 光源基板の製造方法および光源基板製造装置
US7741774B2 (en) Backlight module including at least one luminescence element, and method of fabricating the same
CN112213885A (zh) 背光模组及显示装置
WO2022247941A1 (zh) 一种显示装置
WO2022262654A1 (zh) 一种纤维机械增强的led显示阵列以及制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17910345

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE