WO2018227679A1 - 液晶显示装置 - Google Patents

液晶显示装置 Download PDF

Info

Publication number
WO2018227679A1
WO2018227679A1 PCT/CN2017/092851 CN2017092851W WO2018227679A1 WO 2018227679 A1 WO2018227679 A1 WO 2018227679A1 CN 2017092851 W CN2017092851 W CN 2017092851W WO 2018227679 A1 WO2018227679 A1 WO 2018227679A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
liquid crystal
resisting unit
substrate
color resisting
Prior art date
Application number
PCT/CN2017/092851
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/578,244 priority Critical patent/US10690954B2/en
Publication of WO2018227679A1 publication Critical patent/WO2018227679A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display device.
  • Quantum Dots are invisible to the naked eye, extremely tiny inorganic nanocrystals, and most of the three-dimensional size nanomaterials composed of II-VI or III-V elements. Due to the quantum confinement effect, the transport of electrons and holes inside is limited, so that the continuous band structure becomes a separate energy level structure.
  • the quantum dots When excited by external energy such as light or electricity, the quantum dots emit colored light. The color of the light is determined by the composition and size of the quantum dots.
  • the quantum confinement of electrons and holes The degree is different. The discrete energy levels are different. Generally, the smaller the particles, the longer the waves will be absorbed. The larger the particles, the shorter the waves will be absorbed.
  • quantum dots absorb short-wave blue light and excite long-wavelength light. This feature allows quantum dots to change the color of the light emitted by the source.
  • the advantage of the quantum dot is that by adjusting the size of the quantum dot, the wavelength range of the light can be covered to the infrared and the entire visible light band, and the emitted light band is narrow, the color saturation is high; the quantum dot material has high quantum conversion efficiency; the material property is stable; The method is simple and diverse, can be prepared from a solution, and is rich in resources.
  • the color of a liquid crystal display is realized by a color filter (CF) layer.
  • the conventional CF layer is formed by a color photoresist material after a series of yellow light processes, and the color photoresist material dissolves a polymer, a monomer, a photo initator, and a pigment. Dispersed in a solvent to form.
  • companies such as Samsung Electronics have proposed the idea of preparing QD materials into QD Color Filters (QDCF) to replace traditional color filters.
  • a conventional liquid crystal display panel including a QDCF includes: an array substrate 10 , a color filter substrate 20 disposed opposite to the array substrate 10 , and between the array substrate 10 and the color filter substrate 20 .
  • the board 20 includes a base substrate 21 and a quantum dot color filter 22 and an encapsulation layer 23 sequentially disposed on a side of the base substrate 21 adjacent to the array substrate 10, wherein the quantum dot color filter 22 includes a pixel spacer layer 221, and a red color resist unit 223, a green color resist unit 224, and a blue color resist unit 225 which are spaced apart by the pixel spacer layer 221, wherein the red color resist is as shown in FIG.
  • the unit 223 and the green color resist unit 224 are respectively formed by a red quantum dot ink material and a green quantum dot ink material by an inkjet process, and the blue color resist unit 225 can be formed by filling with a transparent organic material, which is emitted. Blue light can be provided by a backlight module that produces blue fluorescence. In the optical path of the liquid crystal display panel, the normal optical paths of the normally incident light and the obliquely incident light are different through the liquid crystal layer 30, as shown in FIG.
  • An object of the present invention is to provide a liquid crystal display device capable of preventing a black screen of a liquid crystal display device from exhibiting a bright and color cast phenomenon when displayed at a large viewing angle, thereby improving display performance.
  • the present invention provides a liquid crystal display device including a liquid crystal panel and a backlight module disposed under the liquid crystal panel.
  • the liquid crystal panel includes a first substrate and a second substrate disposed opposite to each other, and is disposed on a liquid crystal layer between the first substrate and the second substrate;
  • the first substrate includes a first substrate, and a quantum dot color filter and an encapsulation layer disposed on the side of the first substrate adjacent to the liquid crystal layer from top to bottom;
  • the quantum dot color filter includes a pixel spacer layer, and a plurality of arrays of color resist units arranged by the pixel spacer layer;
  • the plurality of color resisting units include: a first color resisting unit, a second color resisting unit, and a third color resisting unit;
  • At least one of the first color resisting unit, the second color resisting unit, and the third color resisting unit is a quantum dot color resisting unit.
  • the quantum dot color resisting unit and the A transparent stacked layer is further disposed between the encapsulation layers such that the quantum dot color resisting unit stands on the encapsulation layer from a higher height than the pixel spacer layer.
  • the pixel spacer layer and the transparent stacked layer are both disposed on a surface of the encapsulation layer.
  • the sum of the height of the quantum dot color resisting unit and the height of the transparent stacked layer is less than or equal to the height of the pixel spacer layer.
  • the first color resisting unit is a red quantum dot color resisting unit.
  • the second color resisting unit is a green quantum dot color resisting unit, and the third color resisting unit is a blue color resisting unit.
  • the backlight module is a blue fluorescent light source.
  • the red quantum dot color resisting unit and the green quantum dot color resisting unit are respectively formed by a red quantum dot ink material and a green quantum dot ink material by an inkjet printing process, and the material of the blue color resisting unit is a transparent organic material.
  • the first substrate further includes an optical film layer having a filtering function disposed between the first substrate and the quantum dot color filter.
  • the optical film layer is formed by a patterning process for removing backlight light emitted by the backlight module and not converted after passing through the quantum dot color resisting unit.
  • the first substrate further includes an upper polarizer disposed on a side of the encapsulation layer adjacent to the liquid crystal layer.
  • the first base substrate is a glass substrate, a PI substrate, or a PET substrate.
  • the present invention also provides a liquid crystal display device including a liquid crystal panel and a backlight module disposed under the liquid crystal panel;
  • the liquid crystal panel includes a first substrate and a second substrate disposed opposite to each other, and is disposed on the first a liquid crystal layer between the substrate and the second substrate;
  • the first substrate includes a first substrate, and a quantum dot color filter and an encapsulation layer disposed on the side of the first substrate adjacent to the liquid crystal layer from top to bottom;
  • the quantum dot color filter includes a pixel spacer layer, and a plurality of arrays of color resist units arranged by the pixel spacer layer;
  • the plurality of color resisting units include: a first color resisting unit, a second color resisting unit, and a third color resisting unit;
  • At least one of the first color resisting unit, the second color resisting unit, and the third color resisting unit is a quantum dot color resisting unit.
  • the quantum dot color resisting unit and the a transparent stacked layer is further disposed between the encapsulation layers such that the quantum dot color resisting unit stands on the encapsulation layer from a higher height than the pixel spacer layer;
  • the pixel spacer layer and the transparent stack layer are both disposed on a surface of the encapsulation layer
  • the sum of the height of the quantum dot color resisting unit and the height of the transparent stacked layer is less than or equal to the height of the pixel spacing layer;
  • two of the first color resisting unit, the second color resisting unit, and the third color resisting unit are quantum dot color resisting units, specifically: the first color resisting unit is a red quantum dot color resisting unit.
  • the second color resisting unit is a green quantum dot color resisting unit, and the third color resisting unit is a blue color resisting unit. unit;
  • the first substrate further includes an optical film layer having a filtering function disposed between the first substrate and the quantum dot color filter;
  • the optical film layer is formed by a patterning process for removing backlight light emitted by the backlight module and not converted after passing through the quantum dot color resisting unit.
  • the present invention provides a liquid crystal display device, wherein the liquid crystal panel includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer disposed between the first substrate and the second substrate;
  • the first substrate includes a first substrate, a quantum dot color filter, and an encapsulation layer;
  • the quantum dot color filter includes a pixel spacer layer, and a plurality of arrays arranged by the pixel spacer layer a color resisting unit; the plurality of color resisting units comprising a first color resisting unit, a second color resisting unit, and a third color resisting unit; the first color resisting unit, the second color resisting unit, and the third color resist
  • At least one of the cells is a quantum dot color resisting unit, and in the quantum dot color filter, a transparent stacked layer is further disposed between the quantum dot color resisting unit and the encapsulating layer, thereby making the quantum dot color resistance
  • the unit stands on the encapsulation layer from a higher height
  • FIG. 1 is a schematic structural view of a conventional liquid crystal display panel
  • FIG. 2 is a schematic view of the quantum dot color filter and the encapsulation layer of FIG. 1;
  • FIG. 3 is a schematic view showing an optical path of the quantum dot color filter of FIG. 2;
  • FIG. 4 is a schematic structural view of a liquid crystal display device of the present invention.
  • FIG. 5 is a schematic view of a quantum dot color filter and an encapsulation layer in a liquid crystal display device of the present invention
  • FIG. 6 is a schematic view showing an optical path of the quantum dot color filter of FIG. 5;
  • FIG. 7 is a cross-sectional view of a quantum dot color filter in a liquid crystal display device of the present invention corresponding to a quantum dot color resisting unit;
  • FIG. 8 is a plan view of a quantum dot color filter in a liquid crystal display device of the present invention corresponding to a quantum dot color resisting unit.
  • a liquid crystal display device of the present invention includes a liquid crystal panel 800 and a backlight module 900 disposed under the liquid crystal panel 800.
  • the liquid crystal panel 800 includes a first substrate 100 and a second substrate 200 disposed opposite each other. And a liquid crystal layer 300 disposed between the first substrate 100 and the second substrate 200;
  • the first substrate 100 includes a first base substrate 110 and a quantum dot color filter 120 and an encapsulation layer 130 disposed on the first substrate substrate 110 from the top to the bottom of the liquid crystal layer 300.
  • the encapsulation layer 130 encapsulates and protects the quantum dot color filter 120 and functions as a flattening.
  • the quantum dot color filter 120 includes a pixel spacer layer 101, and a plurality of arrays of color resist units 102 spaced apart by the pixel spacer layer 101;
  • the color resisting unit 102 includes: a first color resisting unit 121, a second color resisting unit 122, and a third color resisting unit 123;
  • At least one of the first color resist unit 121, the second color resist unit 122, and the third color resist unit 123 is a quantum dot color resist unit.
  • the quantum dot color A transparent stacked layer 103 is further disposed between the resistive unit and the encapsulating layer 130 such that the quantum dot color resisting unit stands on the encapsulating layer 130 from a higher height than the pixel spacer layer 101.
  • the present invention provides a transparent stacked layer 103 between the quantum dot color resisting unit and the encapsulating layer 130, so that the quantum dot color resisting unit is more than the pixel spacer layer 101.
  • a high height stands on the encapsulation layer 130, which is equivalent to raising the quantum dot color resistance unit on the encapsulation layer 130, so that the maximum incident angle of the light that is incident on the quantum dot in the quantum dot color resistance unit can be incident.
  • the pixel spacer layer 101 and the transparent stacked layer 103 stand on the encapsulation layer 130 at the same height. Further, the pixel spacer layer 101 and the transparent stack layer 103 are both disposed in the package. On the surface of layer 130.
  • a sum of a height h1 of the quantum dot color resisting unit and a height h2 of the transparent stacked layer 103 is less than or equal to a height h of the pixel spacing layer 101.
  • the first substrate 100 further includes an optical film layer 140 having a filtering function disposed between the first substrate 110 and the quantum dot color filter 120 for removing the backlight module 900. Backlight rays that are not converted after passing through the quantum dot color resisting unit.
  • the first substrate 100 further includes an upper polarizer 150 disposed on a side of the encapsulation layer 130 adjacent to the liquid crystal layer 300, that is, a built-in polarizer is used to make the quantum dot color filter.
  • the quantum dots in 120 do not change the polarization state of light within the liquid crystal panel 800.
  • the first substrate 100 further includes a first electrode 160 disposed on a side of the upper polarizer 150 near the liquid crystal layer 300, the second substrate 200 is an array substrate, and the second substrate 200 is disposed on the second substrate 200.
  • a TFT array (not shown) and a second electrode (not shown).
  • the first base substrate 110 is a glass substrate, a PI substrate, or a PET substrate.
  • the second substrate 200 may be a substrate having a glass substrate, a PI substrate, or a PET substrate as a substrate.
  • the material of the pixel spacer layer 101 may be selected from various materials including a resin material as needed, and the light shielding condition of the present invention may be satisfied.
  • the material of the transparent stacked layer 103 is preferably soluble polytetrafluoroethylene. Polytetrafluoro ethylene (PFA).
  • the first color resist unit 121 is red.
  • the quantum dot color resisting unit, the second color resisting unit 122 is a green quantum dot color resisting unit, and the third color resisting unit 123 is a blue color resisting unit.
  • the backlight module 900 is a blue fluorescent light source.
  • the red quantum dot color resisting unit and the green quantum dot color resisting unit are respectively formed by a red quantum dot ink material and a green quantum dot ink material by an inkjet printing process, and the material of the blue color resisting unit is a transparent organic material.
  • blue light Since blue light has higher energy, it can excite red quantum dots (quantum dots emitting red light) and green quantum dots (quantum dots emitting green light) to generate red and green light, respectively, so that a backlight mode that produces blue fluorescence can be used.
  • the group 900 serves as a backlight, and the blue light is provided by the backlight module 900 itself, so that the blue color resist unit can be formed by filling with a transparent organic material.
  • the optical film layer 140 is formed by a patterning process for removing unconverted blue fluorescence emitted by the backlight module 900 through the red quantum dot color resisting unit and the green quantum dot color resisting unit. Light.
  • the maximum incident angle b of the light that can be incident on the quantum dot in the quantum dot color resisting unit depends on the height and the width of the transparent stacked layer 103, so that the actual liquid crystal display device is required.
  • the light leakage effect is designed to specifically design the height h2 of the transparent stacked layer 103.
  • the transparent stacked layer 103 has a maximum width w1' on its short side, a minimum width w1, a maximum width w2' on the long side thereof, and a minimum width w2.
  • the maximum incident angle b on the short side of the transparent stacked layer 103 has the following relationship with the height and width of the transparent stacked layer 103:
  • Tanb ((w1'-w1)/2+w1)/h2;
  • the maximum incident angle b' on the long side of the transparent stacked layer 103 and the transparent stacked layer 103 are the same.
  • the height and width have the following relationship:
  • Tanb' ((w2'-w2) / 2+w2) / h2.
  • the maximum incident angle b on the short side of layer 103 is not more than 60°, then ((w1'-w1)/2+w1)/h2 should be less than or equal to ⁇ 3, ie h2 ⁇ ((w1'-w1)/2+ W1) / ⁇ 3.
  • the liquid crystal panel includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer disposed between the first substrate and the second substrate;
  • a substrate includes a first substrate, a quantum dot color filter, and an encapsulation layer;
  • the quantum dot color filter includes a pixel spacer layer, and a plurality of arrays of colors spaced apart by the pixel spacer layer
  • the color resisting unit includes a first color resisting unit, a second color resisting unit, and a third color resisting unit; the first color resisting unit, the second color resisting unit, and the third color resisting unit At least one of them is a quantum dot color resisting unit.
  • a transparent stacked layer is further disposed between the quantum dot color resisting unit and the encapsulating layer, thereby making the quantum dot color resisting unit Standing on the encapsulation layer from a higher height than the pixel spacer layer; it is possible to prevent the black screen of the liquid crystal display device from exhibiting a bright and color cast phenomenon when displayed at a large viewing angle, thereby improving the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

一种液晶显示装置,其液晶面板(800)包括上下相对设置的第一基板(100)与第二基板(200);第一基板(100)包括由上至下依次设置的第一衬底基板(110)、量子点彩色滤光片(120)、及封装层(130);量子点彩色滤光片(120)包括像素间隔层(101)、以及由像素间隔层(101)间隔开的数个色阻单元(102);数个色阻单元(102)包括第一色阻单元(121)、第二色阻单元(122)、以及第三色阻单元(123),且其中至少有一个为量子点色阻单元,且在量子点彩色滤光片(120)中,量子点色阻单元与封装层(130)之间还设有透明堆叠层(103),从而使得量子点色阻单元比像素间隔层(101)从更高的高度站立在封装层(130)上;能够防止液晶显示装置的黑画面在大视角显示时呈现出发亮、偏色的现象,提升显示效果。

Description

液晶显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶显示装置。
背景技术
随着科技的发展和社会的进步,人们对于信息交流和传递等方面的依赖程度日益增加。而显示器件作为信息交换和传递的主要载体和物质基础,现已成为众多从事信息光电研究科学家争相抢占的热点和高地。
量子点(Quantum Dots,简称QD)是肉眼看不到的,极其微小的无机纳米晶体,大部分由Ⅱ-Ⅵ族、或Ⅲ-Ⅴ族元素组成的三个维度尺寸的纳米材料。由于量子限域效应,其内部的电子和空穴的运输受到限制,使得连续的能带结构变成分离的能级结构。每当受到光或电等外来能量激发后,量子点便会发出有色光线,光线的颜色由量子点的组成材料和大小形状决定,当量子点的尺寸不同时,电子与空穴的量子限域程度不一样,分立的能级结构不同,一般颗粒若越小,会吸收长波,颗粒越大,会吸收短波。通常量子点,可吸收短波的蓝色光,激发出长波段的色光。这一特性使得量子点能够改变光源发出的光线颜色。
量子点的优势在于:通过调控量子点的尺寸,可以实现发光波长范围覆盖到红外及整个可见光波段,且发射光波段窄,色彩饱和度高;量子点材料量子转换效率高;材料性能稳定;制备方法简单多样,可以从溶液中制备,资源丰富。
目前液晶显示器(Liquid Crystal Display,LCD)的色彩是依靠彩色滤光片(color filter,CF)层来实现。传统CF层是由彩色光阻材料经过一系列黄光制程后形成,而彩色光阻材料是将树脂(polymer)、单体(monomer)、光引发剂(photo initator)和颜料(pigment)溶解和分散在溶剂(solvent)后形成的。近几年来,三星电子等公司提出了将QD材料制备成量子点彩色滤光片(QD Color Filter,QDCF)以替代传统彩色滤光片的构想。
将QD纳米材料制作成现有的QDCF,需要一系列溶剂和配体的搭配,业界已经取得了一些进展。例如,现行的一些发明专利中均已公开了使用量子点制作的彩色滤光片。如图1所示,现有的含有QDCF的液晶显示面板包括:阵列基板10、与所述阵列基板10相对设置的彩膜基板20、以及设于所述阵列基板10与彩膜基板20之间的液晶层30,其中,所述彩膜基 板20包括:衬底基板21、及依次设于所述衬底基板21靠近所述阵列基板10一侧的量子点彩色滤光片22与封装层23,其中,所述量子点彩色滤光片22包括像素间隔层221、以及由所述像素间隔层221间隔开的红色色阻单元223、绿色色阻单元224、及蓝色色阻单元225,其中,如图2所示,所述红色色阻单元223、绿色色阻单元224分别由红色量子点油墨材料、绿色量子点油墨材料经喷墨打印(inkjet)工艺形成,所述蓝色色阻单元225可通过透明有机材料填充而形成,其发出的蓝光可以通过产生蓝色荧光的背光模组提供。在液晶显示面板的光路中,垂直入射的光和斜入射的光线,经过液晶层30的实际光程是不同的,如图3所示,当像素间隔层221和含有量子点材料的红色色阻单元223、绿色色阻单元224以同一高度站立在封装层23时,几乎所有的光线均可以入射到达含有量子点材料的红色色阻单元223、绿色色阻单元224,最大入射角度a接近90°,从而在黑画面信号下,即使正视角显示的是亮度低至0.05nits的黑画面,在斜视的方向上,也很可能由于光程的偏离产生偏振的变化,从而由于视角上的漏光导致量子点材料被激发,进而导致黑画面在大视角显示时呈现出发亮、偏色的现象。
针对上述问题,有必要提出一种新结构的液晶显示装置。
发明内容
本发明的目的在于提供一种液晶显示装置,能够防止液晶显示装置的黑画面在大视角显示时呈现出发亮、偏色的现象,提升显示效果。
为实现上述目的,本发明提供一种液晶显示装置,包括液晶面板和设于所述液晶面板下方的背光模组;所述液晶面板包括上下相对设置的第一基板与第二基板、及设于所述第一基板与第二基板之间的液晶层;
所述第一基板包括第一衬底基板、以及由上至下依次设于第一衬底基板靠近液晶层一侧的量子点彩色滤光片和封装层;
所述量子点彩色滤光片包括像素间隔层、以及由所述像素间隔层间隔开的数个阵列排布的色阻单元;
所述数个色阻单元包括:第一色阻单元、第二色阻单元、以及第三色阻单元;
所述第一色阻单元、第二色阻单元、以及第三色阻单元中至少有一个为量子点色阻单元,在所述量子点彩色滤光片中,该量子点色阻单元与所述封装层之间还设有透明堆叠层,从而使得该量子点色阻单元比所述像素间隔层从更高的高度站立在所述封装层上。
所述像素间隔层与所述透明堆叠层均设于所述封装层的表面上。
所述量子点色阻单元的高度与所述透明堆叠层的高度之和小于或等于所述像素间隔层的高度。
所述第一色阻单元、第二色阻单元、以及第三色阻单元中有两个为量子点色阻单元,具体为:所述第一色阻单元为红色量子点色阻单元,所述第二色阻单元为绿色量子点色阻单元,所述第三色阻单元为蓝色色阻单元。
所述背光模组为蓝色荧光光源。
所述红色量子点色阻单元、绿色量子点色阻单元分别由红色量子点油墨材料、绿色量子点油墨材料经喷墨打印工艺形成,所述蓝色色阻单元的材料为透明有机材料。
所述第一基板还包括设于第一衬底基板与量子点彩色滤光片之间的具有滤波功能的光学膜层。
所述光学膜层经图案化工艺形成,用于去除所述背光模组发出的穿过所述量子点色阻单元后未被转化的背光光线。
所述第一基板还包括设于所述封装层靠近液晶层一侧的上偏光片。
所述第一衬底基板为玻璃基板、PI基板、或PET基板。
本发明还提供一种液晶显示装置,包括液晶面板和设于所述液晶面板下方的背光模组;所述液晶面板包括上下相对设置的第一基板与第二基板、及设于所述第一基板与第二基板之间的液晶层;
所述第一基板包括第一衬底基板、以及由上至下依次设于第一衬底基板靠近液晶层一侧的量子点彩色滤光片和封装层;
所述量子点彩色滤光片包括像素间隔层、以及由所述像素间隔层间隔开的数个阵列排布的色阻单元;
所述数个色阻单元包括:第一色阻单元、第二色阻单元、以及第三色阻单元;
所述第一色阻单元、第二色阻单元、以及第三色阻单元中至少有一个为量子点色阻单元,在所述量子点彩色滤光片中,该量子点色阻单元与所述封装层之间还设有透明堆叠层,从而使得该量子点色阻单元比所述像素间隔层从更高的高度站立在所述封装层上;
其中,所述像素间隔层与所述透明堆叠层均设于所述封装层的表面上;
其中,所述量子点色阻单元的高度与所述透明堆叠层的高度之和小于或等于所述像素间隔层的高度;
其中,所述第一色阻单元、第二色阻单元、以及第三色阻单元中有两个为量子点色阻单元,具体为:所述第一色阻单元为红色量子点色阻单元,所述第二色阻单元为绿色量子点色阻单元,所述第三色阻单元为蓝色色阻 单元;
其中,所述第一基板还包括设于第一衬底基板与量子点彩色滤光片之间的具有滤波功能的光学膜层;
其中,所述光学膜层经图案化工艺形成,用于去除所述背光模组发出的穿过所述量子点色阻单元后未被转化的背光光线。
本发明的有益效果:本发明提供的液晶显示装置,其液晶面板包括上下相对设置的第一基板与第二基板、及设于所述第一基板与第二基板之间的液晶层;所述第一基板包括第一衬底基板、量子点彩色滤光片和封装层;所述量子点彩色滤光片包括像素间隔层、以及由所述像素间隔层间隔开的数个阵列排布的色阻单元;所述数个色阻单元包括第一色阻单元、第二色阻单元、以及第三色阻单元;所述第一色阻单元、第二色阻单元、以及第三色阻单元中至少有一个为量子点色阻单元,在所述量子点彩色滤光片中,该量子点色阻单元与所述封装层之间还设有透明堆叠层,从而使得该量子点色阻单元比所述像素间隔层从更高的高度站立在所述封装层上;能够防止液晶显示装置的黑画面在大视角显示时呈现出发亮、偏色的现象,提升显示效果。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为现有一种液晶显示面板的结构示意图;
图2为图1中量子点彩色滤光片与封装层的示意图;
图3为经过图2中的量子点彩色滤光片的光路示意图;
图4为本发明的液晶显示装置的结构示意图;
图5为本发明的液晶显示装置中量子点彩色滤光片与封装层的示意图;
图6为经过图5中的量子点彩色滤光片的光路示意图;
图7为本发明的液晶显示装置中量子点彩色滤光片在对应一量子点色阻单元处的剖视图;
图8为本发明的液晶显示装置中量子点彩色滤光片在对应一量子点色阻单元处的俯视图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图4,本发明的液晶显示装置,包括液晶面板800和设于所述液晶面板800下方的背光模组900;所述液晶面板800包括上下相对设置的第一基板100与第二基板200、及设于所述第一基板100与第二基板200之间的液晶层300;
所述第一基板100包括第一衬底基板110、以及由上至下依次设于第一衬底基板110靠近液晶层300一侧的量子点彩色滤光片120和封装层130;其中,所述封装层130对所述量子点彩色滤光片120进行封装保护,并起到平坦化的作用。
如图5所示,所述量子点彩色滤光片120包括像素间隔层101、以及由所述像素间隔层101间隔开的数个阵列排布的色阻单元102;
所述数个色阻单元102包括:第一色阻单元121、第二色阻单元122、以及第三色阻单元123;
所述第一色阻单元121、第二色阻单元122、以及第三色阻单元123中至少有一个为量子点色阻单元,在所述量子点彩色滤光片120中,该量子点色阻单元与所述封装层130之间还设有透明堆叠层103,从而使得该量子点色阻单元比所述像素间隔层101从更高的高度站立在所述封装层130上。
具体地,如图6所示,本发明通过在量子点色阻单元与所述封装层130之间设置透明堆叠层103,从而使得所述量子点色阻单元比所述像素间隔层101从更高的高度站立在所述封装层130上,相当于在封装层130上垫高了量子点色阻单元,使得能够入射到量子点色阻单元中对量子点进行激发的光线的最大入射角度b,远小于量子点色阻单元与像素间隔层101以同一高度站立时的最大入射角度a,从而能够防止液晶显示装置的黑画面在大视角显示时呈现出发亮、偏色的现象,提升显示效果。
具体地,所述像素间隔层101与所述透明堆叠层103以同一高度站立在所述封装层130上,进一步地,所述像素间隔层101与所述透明堆叠层103均设于所述封装层130的表面上。
具体地,所述量子点色阻单元的高度h1与所述透明堆叠层103的高度h2之和小于或等于所述像素间隔层101的高度h。
具体地,所述第一基板100还包括设于第一衬底基板110与量子点彩色滤光片120之间的具有滤波功能的光学膜层140,用于去除所述背光模组900发出的穿过所述量子点色阻单元后未被转化的背光光线。
具体地,所述第一基板100还包括设于所述封装层130靠近液晶层300一侧的上偏光片150,即采用内置偏光片的方式,使得量子点彩色滤光片 120中的量子点不改变液晶面板800内的光线偏振状态。
进一步地,所述第一基板100还包括设于所述上偏光片150靠近液晶层300一侧的第一电极160,所述第二基板200为阵列基板,所述第二基板200上设有TFT阵列(未图示)、以及第二电极(未图示)。
具体地,所述第一衬底基板110为玻璃基板、PI基板、或PET基板,同样的,所述第二基板200也可以为以玻璃基板、PI基板、或PET基板作为衬底的基板。
需要说明的是,所述像素间隔层101的材料可以根据需要选择包括树脂材料在内的各种材料,能够满足本发明的遮光条件即可,所述透明堆叠层103的材料优选可溶性聚四氟乙烯(Polytetrafluoro ethylene,PFA)。
具体地,所述第一色阻单元121、第二色阻单元122、以及第三色阻单元123中有两个为量子点色阻单元,具体为:所述第一色阻单元121为红色量子点色阻单元,所述第二色阻单元122为绿色量子点色阻单元,所述第三色阻单元123为蓝色色阻单元。
具体地,所述背光模组900为蓝色荧光光源。
具体地,所述红色量子点色阻单元、绿色量子点色阻单元分别由红色量子点油墨材料、绿色量子点油墨材料经喷墨打印工艺形成,所述蓝色色阻单元的材料为透明有机材料。由于蓝光具有较高的能量,可以激发红色量子点(发红色光的量子点)和绿色量子点(发绿色光的量子点)分别产生红、绿光,因此可以使用产生蓝色荧光的背光模组900作为背光源,而蓝光由背光模组900本身提供,因此所述蓝色色阻单元可通过透明有机材料填充而形成。
具体地,所述光学膜层140经图案化工艺形成,用于去除所述背光模组900发出的穿过所述红色量子点色阻单元及绿色量子点色阻单元后未转化的蓝色荧光光线。
需要说明的是,本发明中,能够入射到量子点色阻单元中对量子点进行激发的光线的最大入射角度b,依赖于透明堆叠层103的高度和宽度,从而要根据液晶显示装置实际的漏光效果,有针对性地设计透明堆叠层103的高度h2。如图7及图8所示,设所述透明堆叠层103在其短边侧的最大宽度为w1’,最小宽度为w1,在其长边侧的最大宽度为w2’,最小宽度为w2。那么在透明堆叠层103短边侧的最大入射角度b与透明堆叠层103的高度和宽度存在如下关系:
tanb=((w1’-w1)/2+w1)/h2;
同理,在透明堆叠层103长边侧的最大入射角度b’与透明堆叠层103 的高度和宽度存在如下关系:
tanb’=((w2’-w2)/2+w2)/h2。
由上述关系式可以看出,所述透明堆叠层103的高度h2越大,能够入射到量子点色阻单元中对量子点进行激发的光线的最大入射角度就越小,例如为了使得在透明堆叠层103短边侧的最大入射角度b不大于60°,那么((w1’-w1)/2+w1)/h2就应该小于等于√3,即h2≥((w1’-w1)/2+w1)/√3。
综上所述,本发明提供的液晶显示装置,其液晶面板包括上下相对设置的第一基板与第二基板、及设于所述第一基板与第二基板之间的液晶层;所述第一基板包括第一衬底基板、量子点彩色滤光片和封装层;所述量子点彩色滤光片包括像素间隔层、以及由所述像素间隔层间隔开的数个阵列排布的色阻单元;所述数个色阻单元包括第一色阻单元、第二色阻单元、以及第三色阻单元;所述第一色阻单元、第二色阻单元、以及第三色阻单元中至少有一个为量子点色阻单元,在所述量子点彩色滤光片中,该量子点色阻单元与所述封装层之间还设有透明堆叠层,从而使得该量子点色阻单元比所述像素间隔层从更高的高度站立在所述封装层上;能够防止液晶显示装置的黑画面在大视角显示时呈现出发亮、偏色的现象,提升显示效果。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (15)

  1. 一种液晶显示装置,包括液晶面板和设于所述液晶面板下方的背光模组;所述液晶面板包括上下相对设置的第一基板与第二基板、及设于所述第一基板与第二基板之间的液晶层;
    所述第一基板包括第一衬底基板、以及由上至下依次设于第一衬底基板靠近液晶层一侧的量子点彩色滤光片和封装层;
    所述量子点彩色滤光片包括像素间隔层、以及由所述像素间隔层间隔开的数个阵列排布的色阻单元;
    所述数个色阻单元包括:第一色阻单元、第二色阻单元、以及第三色阻单元;
    所述第一色阻单元、第二色阻单元、以及第三色阻单元中至少有一个为量子点色阻单元,在所述量子点彩色滤光片中,该量子点色阻单元与所述封装层之间还设有透明堆叠层,从而使得该量子点色阻单元比所述像素间隔层从更高的高度站立在所述封装层上。
  2. 如权利要求1所述的液晶显示装置,其中,所述像素间隔层与所述透明堆叠层均设于所述封装层的表面上。
  3. 如权利要求2所述的液晶显示装置,其中,所述量子点色阻单元的高度与所述透明堆叠层的高度之和小于或等于所述像素间隔层的高度。
  4. 如权利要求1所述的液晶显示装置,其中,所述第一色阻单元、第二色阻单元、以及第三色阻单元中有两个为量子点色阻单元,具体为:所述第一色阻单元为红色量子点色阻单元,所述第二色阻单元为绿色量子点色阻单元,所述第三色阻单元为蓝色色阻单元。
  5. 如权利要求4所述的液晶显示装置,其中,所述背光模组为蓝色荧光光源。
  6. 如权利要求5所述的液晶显示装置,其中,所述红色量子点色阻单元、绿色量子点色阻单元分别由红色量子点油墨材料、绿色量子点油墨材料经喷墨打印工艺形成,所述蓝色色阻单元的材料为透明有机材料。
  7. 如权利要求1所述的液晶显示装置,其中,所述第一基板还包括设于第一衬底基板与量子点彩色滤光片之间的具有滤波功能的光学膜层。
  8. 如权利要求7所述的液晶显示装置,其中,所述光学膜层经图案化工艺形成,用于去除所述背光模组发出的穿过所述量子点色阻单元后未被转化的背光光线。
  9. 如权利要求1所述的液晶显示装置,其中,所述第一基板还包括设于所述封装层靠近液晶层一侧的上偏光片。
  10. 如权利要求1所述的液晶显示装置,其中,所述第一衬底基板为玻璃基板、PI基板、或PET基板。
  11. 一种液晶显示装置,包括液晶面板和设于所述液晶面板下方的背光模组;所述液晶面板包括上下相对设置的第一基板与第二基板、及设于所述第一基板与第二基板之间的液晶层;
    所述第一基板包括第一衬底基板、以及由上至下依次设于第一衬底基板靠近液晶层一侧的量子点彩色滤光片和封装层;
    所述量子点彩色滤光片包括像素间隔层、以及由所述像素间隔层间隔开的数个阵列排布的色阻单元;
    所述数个色阻单元包括:第一色阻单元、第二色阻单元、以及第三色阻单元;
    所述第一色阻单元、第二色阻单元、以及第三色阻单元中至少有一个为量子点色阻单元,在所述量子点彩色滤光片中,该量子点色阻单元与所述封装层之间还设有透明堆叠层,从而使得该量子点色阻单元比所述像素间隔层从更高的高度站立在所述封装层上;
    其中,所述像素间隔层与所述透明堆叠层均设于所述封装层的表面上;
    其中,所述量子点色阻单元的高度与所述透明堆叠层的高度之和小于或等于所述像素间隔层的高度;
    其中,所述第一色阻单元、第二色阻单元、以及第三色阻单元中有两个为量子点色阻单元,具体为:所述第一色阻单元为红色量子点色阻单元,所述第二色阻单元为绿色量子点色阻单元,所述第三色阻单元为蓝色色阻单元;
    其中,所述第一基板还包括设于第一衬底基板与量子点彩色滤光片之间的具有滤波功能的光学膜层;
    其中,所述光学膜层经图案化工艺形成,用于去除所述背光模组发出的穿过所述量子点色阻单元后未被转化的背光光线。
  12. 如权利要求11所述的液晶显示装置,其中,所述背光模组为蓝色荧光光源。
  13. 如权利要求12所述的液晶显示装置,其中,所述红色量子点色阻单元、绿色量子点色阻单元分别由红色量子点油墨材料、绿色量子点油墨材料经喷墨打印工艺形成,所述蓝色色阻单元的材料为透明有机材料。
  14. 如权利要求11所述的液晶显示装置,其中,所述第一基板还包括 设于所述封装层靠近液晶层一侧的上偏光片。
  15. 如权利要求11所述的液晶显示装置,其中,所述第一衬底基板为玻璃基板、PI基板、或PET基板。
PCT/CN2017/092851 2017-06-13 2017-07-13 液晶显示装置 WO2018227679A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/578,244 US10690954B2 (en) 2017-06-13 2017-07-13 Liquid crystal display device having transparent stacked layer between quantum-dot color resist layer and encapsulation layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710444253.1 2017-06-13
CN201710444253.1A CN107092125B (zh) 2017-06-13 2017-06-13 液晶显示装置

Publications (1)

Publication Number Publication Date
WO2018227679A1 true WO2018227679A1 (zh) 2018-12-20

Family

ID=59640088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092851 WO2018227679A1 (zh) 2017-06-13 2017-07-13 液晶显示装置

Country Status (2)

Country Link
CN (1) CN107092125B (zh)
WO (1) WO2018227679A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092125B (zh) * 2017-06-13 2019-12-24 深圳市华星光电技术有限公司 液晶显示装置
US10690954B2 (en) 2017-06-13 2020-06-23 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display device having transparent stacked layer between quantum-dot color resist layer and encapsulation layer
CN107505767A (zh) * 2017-10-16 2017-12-22 京东方科技集团股份有限公司 光转换结构、背光模组、彩膜基板以及显示装置
KR102444287B1 (ko) 2017-11-15 2022-09-16 삼성전자주식회사 디스플레이 장치 및 그 제조방법
TWI673541B (zh) * 2018-05-23 2019-10-01 友達光電股份有限公司 顯示面板及彩色陣列基板
CN110568659A (zh) * 2018-06-06 2019-12-13 深圳Tcl新技术有限公司 一种量子点像素光致发光液晶显示模组及其制造方法
CN109765728B (zh) * 2019-03-29 2022-06-03 京东方科技集团股份有限公司 量子点彩膜及其制备方法、显示面板、显示装置
CN110297354B (zh) * 2019-05-09 2021-10-12 京东方科技集团股份有限公司 彩膜基板、液晶显示装置及制备方法
CN111338124A (zh) * 2020-04-13 2020-06-26 武汉华星光电技术有限公司 一种量子点显示面板、量子点显示装置及其制备方法
CN112462552A (zh) * 2020-12-10 2021-03-09 深圳市华星光电半导体显示技术有限公司 彩膜基板及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291188A1 (en) * 2005-06-23 2006-12-28 Takahiro Nakayama Display device and luminous panel
CN104460103A (zh) * 2014-12-29 2015-03-25 厦门天马微电子有限公司 彩色滤光基板和显示模组
CN105204221A (zh) * 2015-10-28 2015-12-30 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置
CN106324893A (zh) * 2016-10-12 2017-01-11 深圳市华星光电技术有限公司 液晶显示装置
CN106773328A (zh) * 2017-03-31 2017-05-31 深圳市华星光电技术有限公司 液晶显示装置
CN107092125A (zh) * 2017-06-13 2017-08-25 深圳市华星光电技术有限公司 液晶显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928543B2 (ja) * 2001-12-11 2007-06-13 セイコーエプソン株式会社 電機光学装置用基板及びその製造方法、電気光学装置並びに電子機器
KR20130140462A (ko) * 2012-06-14 2013-12-24 삼성디스플레이 주식회사 포토루미네슨스 표시 장치
CN105467650B (zh) * 2014-09-12 2018-11-30 深超光电(深圳)有限公司 彩色滤光片基板及显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291188A1 (en) * 2005-06-23 2006-12-28 Takahiro Nakayama Display device and luminous panel
CN104460103A (zh) * 2014-12-29 2015-03-25 厦门天马微电子有限公司 彩色滤光基板和显示模组
CN105204221A (zh) * 2015-10-28 2015-12-30 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置
CN106324893A (zh) * 2016-10-12 2017-01-11 深圳市华星光电技术有限公司 液晶显示装置
CN106773328A (zh) * 2017-03-31 2017-05-31 深圳市华星光电技术有限公司 液晶显示装置
CN107092125A (zh) * 2017-06-13 2017-08-25 深圳市华星光电技术有限公司 液晶显示装置

Also Published As

Publication number Publication date
CN107092125B (zh) 2019-12-24
CN107092125A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
WO2018227679A1 (zh) 液晶显示装置
CN105353533B (zh) 显示面板及使用其的显示设备
US10690954B2 (en) Liquid crystal display device having transparent stacked layer between quantum-dot color resist layer and encapsulation layer
CN107153297B (zh) 显示面板及显示设备
WO2018176519A1 (zh) 液晶显示装置
CN104317099B (zh) 一种彩膜基板及显示装置
US9442343B2 (en) Electronic paper display device
WO2018176520A1 (zh) 液晶显示装置
US10048537B2 (en) Liquid crystal display apparatus
CN101460886B (zh) 液晶显示面板及液晶显示装置、和液晶显示面板的制造方法
CN104360536A (zh) 显示面板和显示装置
US10203545B2 (en) Display panels and polarizers thereof
US11171312B2 (en) Display panel and display device having dispersion and non-dispersion areas
CN110007508A (zh) 彩膜基板、液晶显示面板及液晶显示装置
JP2017219846A (ja) 偏光発光板及びそれを含む液晶表示装置
CN105204221A (zh) 彩膜基板、显示面板及显示装置
CN109739051A (zh) 量子点液晶显示器
US11500239B2 (en) Display device
CN108873470A (zh) 一种量子点彩膜背光结构
CN208110210U (zh) 显示装置
KR20180107385A (ko) 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
KR102298922B1 (ko) 액정표시장치
CN213750585U (zh) 显示面板及显示装置
KR101308079B1 (ko) 표면 플라즈몬 컬러필터
CN207992648U (zh) 量子点液晶面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913614

Country of ref document: EP

Kind code of ref document: A1