WO2023272600A1 - 起降平台、无人机、起降系统、收纳装置和起降控制方法 - Google Patents

起降平台、无人机、起降系统、收纳装置和起降控制方法 Download PDF

Info

Publication number
WO2023272600A1
WO2023272600A1 PCT/CN2021/103660 CN2021103660W WO2023272600A1 WO 2023272600 A1 WO2023272600 A1 WO 2023272600A1 CN 2021103660 W CN2021103660 W CN 2021103660W WO 2023272600 A1 WO2023272600 A1 WO 2023272600A1
Authority
WO
WIPO (PCT)
Prior art keywords
take
landing
landing platform
unmanned aerial
guide
Prior art date
Application number
PCT/CN2021/103660
Other languages
English (en)
French (fr)
Inventor
宋健宇
张松
张顺
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/103660 priority Critical patent/WO2023272600A1/zh
Priority to CN202180078865.8A priority patent/CN116490429A/zh
Publication of WO2023272600A1 publication Critical patent/WO2023272600A1/zh
Priority to US18/395,107 priority patent/US20240124169A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/97Means for guiding the UAV to a specific location on the platform, e.g. platform structures preventing landing off-centre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/04Noseplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/02Arresting gear; Liquid barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/92Portable platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/20Transport or storage specially adapted for UAVs with arrangements for servicing the UAV
    • B64U80/25Transport or storage specially adapted for UAVs with arrangements for servicing the UAV for recharging batteries; for refuelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/40Transport or storage specially adapted for UAVs for two or more UAVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, in particular to a take-off and landing platform for multiple unmanned aerial vehicles, an unmanned aerial vehicle, a take-off and landing system for unmanned aerial vehicles, a storage device and an unmanned aerial vehicle.
  • Aircraft take-off and landing control method Aircraft take-off and landing control method.
  • the embodiment of the present application provides a take-off and landing platform for multiple unmanned aerial vehicles , an unmanned aerial vehicle, an unmanned aerial vehicle take-off and landing system, a storage device and an unmanned aerial vehicle take-off and landing control method.
  • the embodiment of the present application provides a take-off and landing platform for multiple unmanned aerial vehicles, the take-off and landing platform includes:
  • a bracket one end of the bracket is fixed on the base, the other end of the bracket extends away from the base, and the bracket is provided with a vertical guide rail;
  • the plurality of unmanned aerial vehicles can be vertically stacked on the support along the guide rail, and can take off from the support.
  • the lifting platform includes a storage state and a charging state; in the charging state, the lifting platform is used to give the Charge multiple drones.
  • the landing platform is further provided with: a plurality of first charging modules, the plurality of first charging modules are vertically stacked on the support;
  • one of the first charging modules can be electrically connected with a second charging module of the drone to charge the drone.
  • the first charging module includes a charging plug and a signal transmission plug
  • the charging plug is used to charge the drone
  • the signal transmission plug is used to realize the Data exchange between the first charging module and the second charging module.
  • the height of the fuselage of the drone is a first height
  • the vertical interval between two adjacent first charging modules is a first interval
  • the first interval is greater than the first height
  • the take-off and landing platform also includes a storage state, and the positions of the plurality of drones relative to the bracket in the storage state are the same as those of the plurality of drones in the charging state. The positions of the brackets are different.
  • the bracket is provided with accommodating spaces for accommodating the plurality of drones.
  • the bracket includes a first bracket and a second bracket
  • the first bracket and the second bracket are relatively spaced apart, and the accommodating space is formed between the first bracket and the second bracket.
  • the guide rails of the first support and the second support are at least partially embedded in the plurality of drones, so as to limit the movement of the drones in the accommodation space.
  • the number of the bracket is one, and the accommodating space is formed on the bracket.
  • the drone is provided with installation through holes, and when the plurality of drones are vertically stacked on the bracket, the installation through holes of the drone are socketed on the bracket.
  • the guide rails on the support are at least partially embedded in the plurality of drones, so as to limit the movement of the drones in the accommodation space.
  • the landing platform further includes: a guide carrier, the guide carrier is at least partially disposed in the accommodation space, and the guide carrier is used to carry the UAV.
  • the guide carrier includes a lower concave portion and a first guide portion, wherein the lower concave portion is arranged in a central area of the guide carrier, and the first guide portion is arranged in an edge region of the guide carrier and arranged around the lower recess;
  • One side of the first guide portion is connected to the edge of the lower recess, and the other side of the first guide portion extends away from the lower recess and obliquely upward.
  • the lower recess is a planar structure.
  • the first guide part is an inclined planar structure or a curved surface structure.
  • the bracket when the bracket includes the first bracket and the second bracket, the first guide part is provided with a first opening and a second opening, and the first opening is sleeved on the The guide rail of the first bracket, the second opening is sleeved on the guide rail of the second bracket, so as to limit the movement of the guide carrier on the first bracket and the second bracket.
  • the top of the guide rail of the first support is provided with a first inclined surface
  • the top of the guide rail of the second support is provided with a second inclined surface
  • the first inclined surface, the second inclined surface The shape is adapted to the shape of the first guide part;
  • the first inclined surface and the second inclined surface can be flush with the first guide part.
  • the support is also provided with a lifting module, the lifting module can slide along the support and is connected with the guide carrier, and the lifting module is used to lift the drone.
  • the lifting module includes: a driving member, a lead screw and a slider; wherein,
  • the output end of the driving member is connected to the lead screw for driving the lead screw to rotate, and the axial direction of the lead screw is parallel to the guiding of the guide rail;
  • the slider is provided with a threaded hole, and the threaded hole is sleeved on the lead screw and is threadedly connected with the lead screw.
  • the rotation of the lead screw can drive the slider along the axis of the lead screw.
  • the sliding block is used to connect with the guide carrier to drive the guide carrier to slide along the bracket.
  • the driving member is a servo motor, and the servo motor is connected to the bottom of the lead screw.
  • the bracket includes: a housing and a sealing plate that can be matedly connected, and an accommodation cavity is formed between the housing and the sealing plate; wherein,
  • the guide rail is arranged on the housing;
  • Both the driving part and the lead screw are arranged in the accommodating cavity, and at least part of the slider is exposed and extends out of the guide rail so as to be connected with the guide carrier.
  • the lifting module further includes a support block, one end of the support block is fixed on the slider, and the other end extends out of the guide rail and is connected to the bottom of the guide carrier.
  • the lifting platform further includes: a control module, the control module is electrically connected to the lifting module; wherein,
  • control module controls the lifting module to drive the guide carrier to descend, so that the multiple unmanned aerial vehicles can be vertically stacked on the support along the guide rail;
  • control module controls the lifting module to drive the guide carrier up, so that the plurality of unmanned aerial vehicles can take off on the support.
  • the landing platform further includes: an elastic receiving member, at least part of which is disposed in the accommodation space, and the elastic receiving member is used to receive the UAV.
  • the compression direction of the elastic receiving member is consistent with the extension direction of the guide rail.
  • the elastic receiving member includes at least one of a spring and a shrapnel.
  • the landing platform further includes: a guide, the guide is connected to the support, and the guide is used to guide the drone into the accommodation space.
  • the guide includes a guide frame, the guide frame is arranged on the top of the bracket, and is arranged around the accommodation space, and the guide frame can utilize the downward movement generated by the drone The airflow pushes the drone toward the accommodation space.
  • the flow guide frame is provided with a flow guide opening, and the flow guide opening is opposite to the accommodating space.
  • the deflector frame includes a plurality of deflectors, the plurality of deflectors are sequentially connected around the circumference of the deflector, one side of the deflector is close to the deflector, The other side extends in a direction away from the guide opening and obliquely upward.
  • the deflector is an inclined flat plate or an arc-shaped plate.
  • the deflector frame further includes: a support frame connected to the deflector to support the deflector.
  • a buffer pad is also provided on the flow guiding frame.
  • the buffer pad includes: at least one of a rubber pad and a foam pad.
  • the guide includes: an airflow generating device, the airflow generating device is arranged on the top of the first bracket and the second bracket, and is arranged around the accommodation space, and the plurality of airflow devices can Pushing the drone towards the receiving space.
  • the airflow generating device includes: a plurality of airflow outlets arranged around the accommodation space.
  • the lifting platform further includes: a lifting device, the lifting direction of the lifting device is consistent with the extending direction of the support; wherein,
  • the lifting device can transport the objects carried on the UAV.
  • the lifting device includes a lifting mechanism and a storage bin, and the storage bin can be used to accommodate the target;
  • the storage bin is connected to the lifting mechanism, and the lifting mechanism can drive the storage bin to rise or fall to transport the object.
  • the lifting device further includes: an overlapping mechanism, the overlapping mechanism is connected to the storage compartment, and when the accommodation compartment is aligned with the target drone, the overlapping mechanism can be connected to Between the storage bin and the target UAV, to transfer the target on the target UAV to the storage bin, or transfer the target in the storage bin to the target UAV on board.
  • the overlapping mechanism includes an unfolded state and a folded state; wherein,
  • the overlapping mechanism In the unfolded state, the overlapping mechanism can be overlapped between the accommodation bin and the target drone, and in the retracted state, the overlapping mechanism can be folded into the accommodation bin.
  • the landing platform further includes: a base, one end of the support is fixed on the base, and the other end of the support extends away from the base;
  • An auxiliary moving device is also provided on the bottom of the base, and the auxiliary moving device can assist the movement of the lifting platform.
  • the auxiliary moving device includes at least one of rollers and casters.
  • the embodiment of the present application also discloses a drone, the bottom of the drone is provided with one of a convex structure and a concave structure, and the top of the drone is formed with a convex structure and a concave
  • the protruding structure can be at least partially embedded in the concave structure, so as to facilitate the vertical stacking of a plurality of the drones.
  • the UAV includes: a fuselage and a plurality of arms connected to the fuselage; wherein,
  • the concave structure is arranged on the top of the fuselage, and the protruding structure is arranged on the bottom of the fuselage.
  • the protruding structure includes: a plane part and a second guide part arranged around the plane part, and the second guide part can guide the protruding structure into the other drone. sunken structure.
  • the top of the fuselage is also provided with a receiving platform, the receiving platform is located between the plurality of arms, and the receiving platform is used to cooperate with the plane part of another drone .
  • one end of the machine arm is fixed on the receiving platform, and the other end extends away from the receiving platform and obliquely upward, and the plurality of the machine arms surround to form the concave structure.
  • connection frame is also provided between two adjacent arms, the shape of the top surface of the connection frame is adapted to the shape of the top surface of the arms, and the connection frame is connected to the shape of the arms. collectively form the recessed structure.
  • the connecting frame is provided with a third opening and a fourth opening, and the third opening and the fourth opening are used to avoid guide rails on the lifting platform.
  • the UAV also includes: a propeller and a propeller protective cover; wherein,
  • the propeller is fixed on the other end of the arm, and the propeller protective cover covers the propeller to protect the propeller;
  • the side of the propeller protective cover close to the arm is provided with a guide part, and the guide part can guide another protruding structure of the drone into the concave structure.
  • the embodiment of the present application also discloses a take-off and landing system
  • the take-off and landing system includes: the take-off and landing platform described in any one of the above, and the unmanned aerial vehicle described in any one of the above; wherein,
  • the number of the drones is multiple;
  • a plurality of the unmanned aerial vehicles can be stacked vertically on the take-off and landing platform. In the case of taking off of a plurality of unmanned aerial vehicles, the plurality of unmanned aerial vehicles can take off from the landing platform. .
  • the embodiment of the present application also provides a storage device, the storage device includes: a storage platform and any one of the lifting platforms described above, the number of the lifting platforms is multiple, and each The take-off and landing platform is capable of stacking multiple drones vertically.
  • a plurality of first telescopic frames are arranged on the storage platform, and the telescopic direction of the first telescopic frames is the first direction;
  • Each of the first telescopic frames is connected to a plurality of lifting platforms, and the plurality of lifting platforms are movably connected to the first telescopic frames along the first direction to adjust the adjacent lifting platforms. The distance between platforms.
  • the first telescopic frame includes: a first bracket body and a first telescopic mechanism, and the first telescopic mechanism is telescopically connected to the first bracket body;
  • the plurality of lifting platforms are connected to the first support body, so as to adjust the distance between adjacent lifting platforms through the expansion and contraction of the first telescopic mechanism.
  • the storage device further includes a second telescopic frame, the direction of the second telescopic frame is a second direction, and the second direction is perpendicular to the first direction;
  • the plurality of first telescopic frames are successively connected to the second telescopic frames at intervals along the second direction, so as to adjust the distance between adjacent first telescopic frames.
  • the second telescopic frame includes: a second bracket body and a second telescopic mechanism, and the second telescopic mechanism is telescopically connected to the second bracket body;
  • the plurality of first telescopic brackets are connected to the second bracket body, so as to adjust the distance between adjacent second telescopic brackets through the expansion and contraction of the second telescopic mechanism. .
  • the embodiment of the present application also provides a take-off and landing control method, which is applied to the main control device, and is characterized in that the take-off and landing control method includes:
  • the operating instructions including take-off instructions and recall instructions
  • a plurality of the drones are controlled to land and vertically stacked on the landing platform along the guide rail.
  • the step of controlling a plurality of unmanned aerial vehicles vertically stacked on the take-off and landing platform to take off from the take-off and landing platform includes:
  • the take-off and landing platform is controlled to push the plurality of unmanned aerial vehicles out of the take-off and landing platform in sequence, and the pushed-out unmanned aerial vehicles are controlled to take off.
  • the step of controlling a plurality of unmanned aerial vehicles vertically stacked on the take-off and landing platform to take off from the take-off and landing platform includes:
  • the step of controlling a plurality of unmanned aerial vehicles vertically stacked on the take-off and landing platform to take off from the take-off and landing platform includes:
  • the plurality of unmanned aerial vehicles in the hovering state are controlled to take off simultaneously.
  • the step of controlling a plurality of the drones to land and vertically stack them on the landing platform along the guide rail includes:
  • the unmanned aerial vehicle After each unmanned aerial vehicle is determined to be in a hovering state, the unmanned aerial vehicle is controlled to land and vertically stacked on the take-off and landing platform along the guide rail.
  • the step of controlling a plurality of the drones to land and vertically stack them on the landing platform along the guide rail includes:
  • the multiple drones in the hovering state are controlled to land in sequence and vertically stacked on the landing platform along the guide rail.
  • the step of controlling a plurality of the unmanned aerial vehicles to land and vertically stack on the landing platform along the guide rail it also includes:
  • control the take-off and landing platform In response to the received charging instruction, control the take-off and landing platform to charge the plurality of unmanned aerial vehicles.
  • the embodiment of the present application also provides a take-off and landing control method for the take-off and landing platform described in any one of the above, and the take-off and landing control method includes:
  • the plurality of unmanned aerial vehicles landed are vertically stacked on the landing platform along the guide rail.
  • the take-off and landing control method also includes:
  • the plurality of drones vertically stacked on the take-off and landing platform are charged.
  • the step of charging a plurality of unmanned aerial vehicles vertically stacked on the landing platform includes:
  • the step of controlling the storage of a plurality of unmanned aerial vehicles vertically stacked on the landing platform includes:
  • the embodiment of the present application also provides a take-off and landing control method, which is applied to unmanned aerial vehicles, wherein the take-off and landing control method includes:
  • the plurality of drones take off from the take-off and landing platform;
  • the plurality of unmanned aerial vehicles land and vertically stack on the landing platform along the guide rail.
  • the step of taking off the plurality of unmanned aerial vehicles from the take-off and landing platform includes:
  • the plurality of unmanned aerial vehicles are pushed out of the take-off and landing platform in turn, and the pushed-out unmanned aerial vehicles take off.
  • the step of taking off the plurality of unmanned aerial vehicles from the take-off and landing platform includes:
  • the drone that was launched took off.
  • the step of taking off the plurality of unmanned aerial vehicles from the take-off and landing platform includes:
  • the plurality of UAVs turn their paddles to a hovering state
  • the plurality of unmanned aerial vehicles in the hovering state take off simultaneously.
  • the steps of landing and vertically stacking the plurality of drones on the landing platform along the guide rails include:
  • the UAVs in the hovering state land and are vertically stacked on the take-off and landing platform along the guide rail.
  • the steps of landing and vertically stacking the plurality of drones on the landing platform along the guide rails include:
  • the plurality of unmanned aerial vehicles are simultaneously recalled to the top of the take-off and landing platform, switched to a hovering state and arranged vertically in the vertical direction;
  • a plurality of the drones in the hovering state land in sequence and are vertically stacked on the landing platform along the guide rail.
  • the multiple drones can be vertically stacked on the bracket along the guide rails.
  • the plurality of unmanned aerial vehicles can take off from the support, that is, the take-off and landing platform can be used to realize the take-off and landing of the plurality of unmanned aerial vehicles.
  • the take-off and landing platform can be used to realize the take-off and landing of the plurality of unmanned aerial vehicles.
  • Fig. 1 schematically shows a schematic structural view of a landing platform according to an embodiment of the present application
  • Fig. 2 schematically shows a schematic structural view of the landing system applying the landing platform shown in Fig. 1;
  • Fig. 3 schematically shows a structural diagram of another angle of the take-off and landing system shown in Fig. 2;
  • Fig. 4 schematically shows a structural diagram of another angle of the take-off and landing system shown in Fig. 2
  • Fig. 5 schematically shows a schematic structural view of a first bracket according to an embodiment of the present application
  • Fig. 6 schematically shows a schematic diagram of an exploded structure of the first bracket shown in Fig. 5;
  • FIG. 7 schematically shows a schematic structural view of a second bracket according to an embodiment of the present application.
  • Fig. 8 schematically shows a schematic diagram of an exploded structure of the second bracket shown in Fig. 7;
  • FIG. 9 schematically shows a schematic structural view of a guide carrier 12 according to an embodiment of the present application.
  • Fig. 10 schematically shows a schematic structural view of another landing platform according to the embodiment of the present application.
  • Fig. 11 schematically shows a schematic structural view of another landing platform according to the embodiment of the present application.
  • Fig. 12 schematically shows a structural diagram of another angle of the landing platform shown in Fig. 11;
  • Fig. 13 schematically shows one of the structural schematic diagrams of another lifting platform according to the embodiment of the present application.
  • Fig. 14 schematically shows the second structural diagram of the landing platform shown in Fig. 13;
  • Fig. 15 schematically shows a schematic structural view of an unmanned aerial vehicle according to an embodiment of the present application
  • Fig. 16 schematically shows a structural diagram of another angle of the UAV shown in Fig. 15;
  • Fig. 17 schematically shows a schematic structural view of the section A-A of the UAV shown in Fig. 15;
  • Fig. 18 schematically shows a schematic structural view of a storage device described in the embodiment of the present application.
  • Fig. 19 schematically shows a structural diagram of another angle of the storage device shown in Fig. 18;
  • Fig. 20 schematically shows a structural diagram of another angle of the storage device shown in Fig. 18;
  • Fig. 21 schematically shows a schematic structural view of another storage device according to the embodiment of the present application.
  • Fig. 22 schematically shows a structural diagram of another angle of the storage device shown in Fig. 21
  • Fig. 23 schematically shows a schematic structural view of a first telescopic frame according to an embodiment of the present application
  • Fig. 24 schematically shows a flow chart of the steps of a take-off and landing control method described in the embodiment of the present application
  • Fig. 25 schematically shows a flow chart of steps of another take-off and landing control method described in the embodiment of the present application.
  • Fig. 26 schematically shows a flow chart of the steps of a take-off and landing control method described in the embodiment of the present application
  • Fig. 27 schematically shows a flow chart of steps of another take-off and landing control method described in the embodiment of the present application
  • Fig. 28 schematically shows a flow chart of steps of another take-off and landing control method described in the embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • FIG. 1 shows a schematic structural view of a landing platform according to an embodiment of the present application.
  • FIG. 2 shows a schematic structural view of a landing system using the landing platform shown in Fig. 1, referring to Fig. 3 , shows a structural schematic view of another angle of the take-off and landing system shown in Figure 2, referring to Figure 4, shows a structural schematic view of another angle of the take-off and landing system shown in Figure 2, the lift-off and landing platform may specifically include:
  • a support 10, the support 10 is provided with a vertical guide rail 101;
  • a plurality of drones 100 can be vertically stacked on the support 10 along the guide rail 101 , and can take off from the support 10 .
  • multiple drones 100 can be vertically stacked on the bracket 10 along the guide rail 101, and the In the case of the take-off of the man-machine 100 , multiple unmanned aerial vehicles 100 can take off from the support 10 , that is, the take-off and landing platform can be used to realize the take-off and landing of the multiple unmanned aerial vehicles 100 .
  • the take-off and landing platform can be used to realize the take-off and landing of the multiple unmanned aerial vehicles 100 .
  • the cost of the operation can also improve the efficiency of the cooperative operation of multiple drones 100 .
  • multiple drones 100 can be stacked and stored on the take-off and landing platform.
  • the multiple unmanned aerial vehicles 100 can take off from the support 10 on the take-off and landing platform.
  • a plurality of unmanned aerial vehicles 100 can be vertically stacked on the support 10 along the guide rail 101 on the support 10, avoiding first landing the unmanned aerial vehicles 100 to the take-off site, and relying on manual lifting of the plurality of unmanned aerial vehicles 100 Problems with recycling.
  • it can reduce the space investment and manpower input required for the UAV 100 performance, and on the other hand, it can also improve the efficiency of the UAV 100 performance.
  • the landing platform may include a storage state and a charging state; wherein, in the storage state, the landing platform is used to accommodate multiple In the charging state, the take-off and landing platform can be used to charge multiple drones 100, so as to improve the endurance of the drones 100.
  • the plurality of unmanned aerial vehicles 100 on the take-off and landing platform can be arranged as compactly as possible to reduce the volume occupied by the plurality of unmanned aerial vehicles 100 , so as to reduce the space required for storage and transfer of the landing platform and the UAV 100 .
  • the distance between the drones 100 should be reasonably controlled so as to facilitate charging of multiple drones 100 and improve charging safety. Therefore, the positions of the plurality of drones 100 relative to the stand 10 in the stored state are different from the positions of the plurality of drones 100 relative to the stand 10 in the charging state.
  • the landing platform is also provided with: a plurality of first charging modules 11, and the plurality of first charging modules 11 are vertically stacked on the bracket 10; in the charging state, one first charging module 11 can It is electrically connected with a second charging module of the drone 100 to charge the drone 100 to improve the endurance of the drone 100 .
  • a control module can also be provided on the landing platform, and the control module can communicate with a plurality of first charging modules 11 to control the first charging modules 11 to charge the UAV 100 .
  • the first charging module 11 may include a charging connector and a signal transmission connector, the charging connector may be used to charge the UAV 100, and the signal transmission connector may be used to realize the second Data exchange between a charging module 11 and the second charging.
  • the charging plug and the signal transmission plug can be plugged and connected to the second charging module at the same time.
  • the charging connector can be electrically connected to the charging interface on the drone 100 to charge the drone 100
  • the signal transmission connector can be connected to the signal interface on the drone 100, To perform data exchange between the first charging module 11 and the drone 100 . For example, downloading the data of the drone 100, updating the firmware of the drone 100, identifying the serial number of the drone 100, or inputting a route, etc.
  • the height of the fuselage of the UAV 100 is the first height
  • the vertical interval between two adjacent first charging modules 11 is the first interval
  • the first interval is greater than the first height
  • the distance between the UAVs 100 can be adjusted with reference to the first distance between the first charging modules 11, so that the second charging module on the UAV 100 can be connected to the second charging module on the landing platform.
  • the first charging module 11 is aligned.
  • the support 10 is provided with accommodating spaces for accommodating the plurality of drones 100 . Specifically, when multiple drones 100 are stacked on the bracket 10, the multiple drones 100 can be accommodated in the accommodating space.
  • both the guide rail 101 and the first charging module 11 can be arranged in the accommodating space, so that the guide rail 101 guides the stacking of the drone 100, and facilitates the first charging module 11 to the drone 100. to charge.
  • the bracket 10 may include a first bracket 102 and a second bracket 103, wherein the first bracket 102 and the second bracket 103 are relatively spaced apart, and the accommodation space is formed between the first bracket 102 and the second bracket 103 between.
  • Both the first bracket 102 and the second bracket 103 are provided with guide rails 101 to guide the drone 100 from both sides, guide the drone 100 into the accommodation space, and support the drone 100 from both sides to improve Stack reliability of UAV 100.
  • the guide rails 101 of the first bracket 102 and the second bracket 103 are at least partially embedded in a plurality of drones 100, so as to limit the movement of the drones 100 in the accommodating space and avoid unmanned The unmanned aerial vehicle 100 shakes in the accommodating space, so as to improve the stacking reliability of the unmanned aerial vehicle 100 in the accommodating space.
  • the accommodating space is formed on the bracket 10 .
  • the accommodating space may be located at the center of the support 10 .
  • the drone 100 is provided with installation through holes, and when multiple drones 100 are vertically stacked on the bracket 10 , the installation through holes of the drone 100 can be socketed on the bracket 10 .
  • the installation through hole may be provided in the central area of the UAV 100 to improve the stacking reliability of the UAV 100 on the bracket 10 .
  • the installation through hole on the UAV 100 can be aligned with the bracket 10, so that, then, the UAV 100 is landed, so that the UAV 100
  • the installation through hole on the 100 is socketed on the bracket 10 to realize the stacking of the UAV 100 on the bracket 10 .
  • the guide rail 101 on the support 10 is at least partially embedded in a plurality of drones 100, so as to limit the movement of the drones 100 in the accommodation space and prevent the drones 100 from happening on the support 10. shaking.
  • an opening can be provided on the UAV 100, and when multiple UAVs 100 need to be stacked vertically, the opening on the UAV 100 can be aligned with the guide rail 101 on the bracket 10 , and then control the UAV 100 to descend, so that the guide rail 101 on the bracket 10 is embedded in the opening of the UAV 100 .
  • the accommodating space is formed between the two brackets 10 .
  • the number of brackets 10 can be selected according to actual conditions.
  • the number of brackets 10 may be 1, 2, 3 or 5, etc., and the embodiment of the present application may not limit the number of brackets 10 .
  • the accommodation space may be formed between the plurality of brackets 10 .
  • the landing platform may further include: a guide carrier 12, the guide carrier 12 is at least partially disposed in the accommodation space, and the guide carrier 12 is used to carry the UAV 100 .
  • the guide carrier 12 can be movably connected to the bracket 10 .
  • the guide carrier 12 can move upwards to lift the UAV 100 .
  • the guide carrier 12 can move down, so that the UAV 100 vertically falls and stacks on the bracket 10 .
  • FIG. 5 shows a schematic structural diagram of a first bracket according to an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of an exploded structure of the first bracket shown in FIG. 5.
  • FIG. 8 which is a schematic structural diagram of a second bracket in an embodiment, it shows a schematic diagram of an exploded structure of the second bracket shown in FIG. 7 .
  • the guide carrier 12 can be connected to the first bracket 102 and the second bracket 103 , and the first charging module 11 can be connected to the second bracket 103 .
  • FIG. 9 it shows a schematic structural view of a guide carrier 12 according to an embodiment of the present application.
  • the first guide portion 122 is arranged on the edge region of the guide carrier plate 12 and is arranged around the lower concave portion 121; one side of the first guide portion 122 is connected with the edge of the lower concave portion 121, and the first guide portion The other side of 122 extends away from the lower concave portion 121 and obliquely upward.
  • the lower recess 121 may be located at the center of the accommodation space, and is used for connecting with the bottom of the fuselage of the UAV 100 to support the UAV 100 .
  • the first guide part 122 can be used to guide the drone 100 into the lower concave part 121 .
  • the lower concave portion 121 may be a planar structure, so as to fully contact with the bottom of the fuselage of the UAV 100 , so as to improve the support reliability of the UAV 100 by the guide carrier plate 12 .
  • the first guide part 122 is an inclined planar structure or a curved surface structure, so that the drone 100 can slide into the lower concave part 121 along the inclined first guide part 122 during the landing process of the drone 100 , so as to realize reliable support of the UAV 100 by the guide carrier plate 12 .
  • the first guide part 122 may be provided with a first opening 123 and a second opening 124, and the first opening 123 is sleeved on the first bracket 102
  • the guide rail 101 of the second opening 124 is sleeved on the guide rail 101 of the second bracket 103 to limit the movement of the guide carrier 12 on the first bracket 102 and the second bracket 103 .
  • the first opening 123 and the second opening 124 are provided on the first guide portion 122 of the guide carrier 12, and the first opening 123 is sleeved on the guide rail 101 on the first bracket 102, the second The two openings 124 are sleeved on the guide rail 101 on the second bracket 103, so that the guide carrier 12 can only be slid along the guide rail 101 on the first bracket 102 and the second bracket 103, and the guide carrier 12 is prevented from sliding in the first bracket 102.
  • Fig. 10 it shows a schematic structural view of another lifting platform according to the embodiment of the present application.
  • the top of the guide rail 101 of the first support 102 is provided with a first inclined surface 1021
  • the top of the second support 103 The top of the guide rail 101 is provided with a second inclined surface 1031, and the shapes of the first inclined surface 1021 and the second inclined surface 1031 are adapted to the shape of the first guide part 122; wherein, when the guide carrier plate 12 moves to the top of the guide rail 101 Next, the first inclined surface 1021 and the second inclined surface 1031 can be flush with the first guiding portion 122 to form a complete outline, and better guide the drone 100 into the lower concave portion 121 in the central area of the guiding carrier 12 .
  • the adaptation of the shapes of the first inclined surface 1021 and the second inclined surface 1031 to the first guide part 122 may specifically be:
  • the cross-sectional shape is the same.
  • the cross-sectional shapes of the first inclined surface 1021 and the second inclined surface 1031 may be correspondingly inclined planes.
  • the cross-sectional shapes of the first inclined surface 1021 and the second inclined surface 1031 may be correspondingly inclined curved surfaces.
  • the bracket 10 is also provided with a lifting module 13 , which can slide along the bracket 10 and is connected with the guide carrier 12 , and the lifting module 13 can be used to lift the guide carrier 12 .
  • the guide carrier 12 can be driven to slide up and down along the bracket 10, so as to lift the UAV 100 on the guide carrier 12 to the top of the bracket 10, or to move the guide carrier 12 to the top of the bracket 10.
  • the drone 100 on the carrier board 12 descends to the bottom of the support 10 .
  • the lifting module 13 may include: a driving member 131, a lead screw 132 and a slide block 133; wherein, the output end of the driving member 131 is connected to the lead screw 132 for driving the lead screw 132 to rotate, and the axial direction of the lead screw 132 Parallel to the guidance of the guide rail 101; the slide block 133 is provided with a threaded hole, the threaded hole is sleeved on the lead screw 132 and connected with the screw thread of the lead screw 132, the rotation of the lead screw 132 can drive the slide block 133 along the lead screw 132
  • the sliding block 133 can be used to connect with the guide carrier 12 to drive the guide carrier 12 to slide along the bracket 10 .
  • the driving member 131 may be a servo motor, and the servo motor may be connected to the bottom of the lead screw 132 .
  • the output end of the servo motor can be connected with the lead screw 132, when the servo motor rotates, it can drive the lead screw 132 to rotate accordingly, and the direction of rotation of the lead screw 132 can be consistent with the direction of rotation of the servo motor .
  • lifting modules 13 may be provided in both the first bracket 102 and the second bracket 103 .
  • the bracket 10 may also include: a housing 104 and a sealing plate 105 that can be matedly connected, and an accommodation cavity is formed between the housing 104 and the sealing plate 105; wherein, the guide rail 101 is arranged on the housing 104; the driving member 131, The lead screws 132 are all disposed in the accommodating cavity, and at least part of the slider 133 is exposed and extends out of the guide rail 101 to connect with the guide carrier 12 .
  • the first bracket 102 can be enclosed by a casing 104 and a sealing plate 105 .
  • the second bracket 103 can also be enclosed by a casing 104 and a sealing plate 105 accordingly.
  • the driving member 131 and the lead screw 132 can be protected to prevent external water and impurities from entering the drive.
  • the inside of the driving member 131 and the lead screw 132 may cause a short circuit of the driving member 131 or affect the movement accuracy of the lead screw 132 , thereby improving the working reliability of the lifting module 13 .
  • an elongated opening 106 may be provided on the guide rail 101 so that the slider 133 slides along the opening 106, and the opening 106
  • the extending direction of the guide rail 101 may be consistent with that of the guide rail 101 .
  • the lifting module 13 can also include a support block 134, one end of the support block 134 can be fixed on the slider 133, and the other end can extend out of the guide rail 101 and connect with the bottom of the guide carrier 12 to fully support
  • the guide carrier 12 is used to improve the support reliability of the lifting module 13 for the guide carrier 12 .
  • the take-off and landing platform may also include a control module, which is electrically connected to the lifting module 13; wherein, in the case of a plurality of unmanned aerial vehicles 100 landing, the control module may control the lifting module 13 to drive the guide
  • the carrier plate 12 descends so that multiple drones 100 can be vertically stacked on the support 10 along the guide rail 101; when multiple drones 100 take off, the control module can control the lifting module 13 to drive the guide carrier plate 12 to rise , so that multiple drones 100 can take off on the support 10 .
  • control module can be electrically connected with the driving member 131 in the lifting module 13 to control the driving member 131 to rotate forward or reverse to drive the guide carrier 12 to rise or fall. Furthermore, the UAV 100 is driven to rise or fall by the rise or fall of the guide carrier 12 .
  • control module can be arranged in the receiving cavity inside the bracket 10, or in the base 16 at the bottom of the bracket 10, and the embodiment of the present application does not limit the position of the control module.
  • the landing platform may further include: an elastic receiving member, at least part of which is disposed in the accommodation space, and the elastic receiving member may be used to receive the UAV 100 .
  • the UAV 100 can first land on the elastic receiving member, since the elastic receiving member is at least partly arranged in the accommodation space, through the elastic
  • the elastic compression of the receiving part can not only buffer the impact of the landing of the UAV 100, but also guide the UAV 100 into the accommodation space.
  • the compression direction of the elastic receiving member may be consistent with the extension direction of the guide rail 101 .
  • the UAV 100 can be driven to slide along the guide rail 101 through the compression of the elastic receiving member along the compression direction, thereby improving the stacking efficiency of multiple UAVs 100 .
  • the elastic receiving member may include at least one of a spring and a shrapnel, and the embodiment of the present application does not specifically limit the specific type of the elastic receiving member.
  • the landing platform may further include: a guide, the guide is connected to the bracket 10, and the guide may be used to guide the UAV 100 into the accommodation space, so that the UAV 100 can Quickly stacked in the accommodation space of the bracket 10.
  • the guide may include at least one of a mechanical guide, an electric guide, or a pneumatic guide, and the embodiment of the present application may not limit the specific type of the guide.
  • FIG. 11 it shows a schematic structural view of another lifting platform according to the embodiment of the present application.
  • FIG. 12 it shows a schematic structural view of another angle of the lifting platform shown in FIG. 11 .
  • the guide may include a guide frame 14, which is arranged on the top of the support 10 and arranged around the accommodating space, and the guide frame 14 can be produced by a UAV 100 The downward airflow pushes the UAV 100 towards the accommodation space.
  • the air guide frame 14 can be arranged around the accommodation space of the bracket 10. During the landing process of the UAV 100, the UAV 100 will generate a downward airflow, and the downward airflow will act on the air guide frame 14. In the above situation, under the blocking effect of the air guide frame 14, the downward airflow will rebound, and when the rebounded airflow acts on the UAV 100, it can push the UAV 100 to the accommodating space .
  • the flow guide frame 14 may be provided with a flow guide opening 141, and the flow guide opening 141 is opposite to the accommodating space.
  • the diversion frame 14 can push the UAV 100 into the diversion port 141, so that the UAV 100 enters the opposite accommodation space through the diversion port 141, and realizes the movement of the UAV 100 in the accommodation space. stack.
  • the flow guide frame 14 may include a plurality of flow guide plates 142, and the plurality of flow guide plates 142 are sequentially connected around the circumference of the flow guide opening 141, one side of the flow guide plate 142 is close to the flow guide opening 141, and the other side Extending away from the guide opening 141 and extending obliquely upward.
  • the drone 100 can be pushed toward the air guide port 141 by setting the air guide plate 142 obliquely around the air guide port 141 .
  • a plurality of deflectors 142 may be circularly connected in the circumferential direction of the diversion opening 141, or may be in the shape of a rectangle, a pentagon or a hexagon, etc.
  • the embodiment of the present application does not specifically limit the winding shapes of the plurality of deflectors 142 .
  • the two adjacent deflectors 142 can be fixedly connected by means of clamping connection, fastener connection, etc., and the fixed connection between the deflectors 142 in the embodiment of the present application may not be fixed. Be specific.
  • the deflector 142 is an inclined flat plate or an arc-shaped plate, and the specific shape of the deflector 142 is not limited in the embodiment of the present application.
  • the deflector frame 14 may further include: a support frame 143 connected to the deflector 142 to support the deflector 142 , and the support frame 143 may be arranged around the support 10 .
  • the support frame 143 can be fixed on the base 16 at the bottom of the support frame 10 together with the support frame 10, or can be separated from the support frame 10. Be specific.
  • a buffer pad is also provided on the flow guide frame 14 , and the buffer pad can be used to buffer the impact force of the UAV 100 landing on the flow guide frame 14 .
  • the UAV 100 may fail to land on the deflector 141 accurately but land on the position of the deflector 142 .
  • the impact when the UAV 100 contacts the deflector 142 can be reduced, and the service life of the deflector frame 14 can be improved.
  • the buffer pad may include: at least one of a rubber pad and a foam pad, and the specific content of the buffer pad may not be limited in this embodiment of the present application.
  • the guide may include: an airflow generating device 18, the airflow generating device 18 is arranged on the top of the first support 102 and the second support 103, and is arranged around the accommodating space.
  • the man-machine 100 is pushed toward the accommodation space.
  • the airflow generating device 18 can generate an airflow. Since the airflow generating device 18 is arranged around the accommodating space, when the UAV 100 lands, the airflow generated by the airflow generating device 18 can push the UAV 100 to the The accommodating space facilitates the stacking of the UAV 100 in the accommodating space.
  • the airflow generating device 18 may include: a plurality of airflow outlets 181 , and each airflow outlet 181 can release airflow to propel the drone 100 .
  • a plurality of airflow outlets 181 can be arranged around the accommodation space to push the drone 100 toward the accommodation space from multiple directions. In this way, even if the landing position of the UAV 100 is relatively complicated, the UAV 100 can still be accurately pushed to the accommodation space through the synergistic effect of the plurality of airflow outlets, improving the airflow generating device 18 for the UAV. 100 guide accuracy.
  • each airflow outlet 181 may share one airflow generating device 18, or each airflow outlet may correspond to an independent airflow generating device 18, which is not limited in this embodiment of the present application.
  • FIG. 13 it shows one of the structural schematic diagrams of another lifting platform according to the embodiment of the present application.
  • FIG. 14 it shows the second structural schematic diagram of the lifting platform shown in FIG. 13 .
  • the landing platform can also include: a lifting device 15, the lifting direction of the lifting device 15 is consistent with the extension direction of the support 10; wherein, when the unmanned aerial vehicle 100 is stacked on the support 10 , the lifting device 15 can transport the objects carried on the UAV 100 .
  • the lifting device 15 can be used in conjunction with the bracket 10, and the lifting device 15 is consistent with the extension direction of the bracket 10, and can be raised or lowered vertically.
  • the lifting device 15 can transport the target objects carried on the unmanned aerial vehicles 100 to a position other than the support 10, or, the target objects can be transported from the outside of the support 10. It is transported to the UAV 100 to realize the input and output of the target.
  • the target object may be passengers or cargo.
  • the target object may be a passenger.
  • the target object may be goods.
  • the embodiment of the present application may not limit the specific content of the target object.
  • the lifting device 15 may specifically include a lifting mechanism 151 and an accommodating bin 152, the accommodating bin 152 may be used to accommodate the target object; the accommodating bin 152 is connected to the elevating mechanism 151, and the elevating mechanism 151 can drive the accommodating bin 152 to rise Or land to transport the object.
  • the lifting mechanism 151 can be provided with a lifting bracket and a lifting driving mechanism, and the lifting driving mechanism can be connected with the storage bin 152 to drive the storage bin 152 to rise or fall along the lifting bracket.
  • the lifting drive mechanism may include a motor, a push rod, etc., which can drive the storage bin 152 to rise or fall, and the embodiment of the present application may not limit the specific content of the lifting drive mechanism.
  • the holding bin 152 may include a cabin body and a hatch door for accommodating the target object.
  • the hatch door When the hatch door is opened, it is convenient for the target object to enter and exit the cabin body; In the case of , the target in the cabin can be protected.
  • the lifting device 15 can also include: an overlapping mechanism 153, the overlapping mechanism 153 is connected to the accommodation bin 152, and when the accommodation bin 152 is aligned with the target drone, the overlapping mechanism 153 can be connected Between the storage bin 152 and the target drone, the objects on the target drone are transferred to the storage bin 152, or the objects in the storage bin 152 are transferred to the target drone.
  • the target UAV may be the UAV 100 among the plurality of UAVs 100 that needs to transfer the target object.
  • the target UAV may be the UAV 100 among the plurality of UAVs 100 that needs to transfer the target object.
  • the drone 100 on the top can be used as the target drone.
  • the overlapping mechanism 153 is used as a bridge connecting the storage bin 152 and the target UAV, through the overlapping mechanism 153, the target in the storage bin 152 can be transferred to the target UAV, or , transferring the target object in the target drone to the storage bin 152 .
  • the overlapping mechanism 153 may specifically include an unfolded state and a folded state. As shown in Figure 14, in the unfolded state, the overlapping mechanism 153 can be overlapped between the accommodation bin 152 and the target drone, so as to realize that the target object is placed between the accommodation bin 152 and the target drone. transfer between. As shown in FIG. 13 , in the folded state, the overlapping mechanism 153 can be folded into the storage compartment 152 to realize the storage of the overlapping mechanism 153 .
  • the lapping mechanism 153 can be deployed so that the lapping mechanism 153 remains in the unfolded state, realizing the described The transfer of objects between the container 152 and the target drone.
  • the overlapping mechanism 153 can be folded into the storage bin 152 to prevent the overlapping mechanism 153 from affecting the lifting and lowering of the storage bin 152 .
  • the lifting platform may also include: a base 16, one end of the support 10 is fixed on the base 16, and the other end of the support 10 extends away from the base 16; the bottom of the base 16 also An auxiliary moving device 17 is provided, and the auxiliary moving device 17 can assist the movement of the lifting platform, so as to improve the convenience of moving the lifting platform.
  • the auxiliary moving device 17 may include at least one of rollers and casters, and the specific content of the auxiliary moving device 17 may not be limited in the implementation of this application.
  • the landing platform described in the embodiment of the present application can at least include the following advantages:
  • the multiple drones can be vertically stacked on the bracket along the guide rails.
  • the plurality of unmanned aerial vehicles can take off from the support, that is, the take-off and landing platform can be used to realize the take-off and landing of the plurality of unmanned aerial vehicles.
  • the take-off and landing platform can be used to realize the take-off and landing of the plurality of unmanned aerial vehicles.
  • the embodiment of the present application also provides a drone, which may include but not limited to manned drones, logistics drones, aerial photography drones, performance drones, combat drones and Any of the agricultural plant protection drones, the embodiment of the present application does not specifically limit the type of the drone.
  • one of the convex structure and the concave structure is provided on the bottom of the drone, and the other of the convex structure and the concave structure is formed on the top of the drone, and the convex The structure can be at least partially embedded in the concave structure, so as to facilitate vertical stacking of multiple drones, so as to realize high-density storage of multiple drones on the landing platform.
  • a raised structure can be set at the bottom of the drone, and a concave structure can be set at the top of the drone.
  • the protruding structure at the bottom of the upper drone may be at least partially embedded in the concave structure at the top of the lower drone.
  • a concave structure may be provided at the bottom of the drone, and a raised structure may be provided at the top of the drone.
  • the convex structure on the top of the drone below can be at least partially embedded in the concave structure on the top of the drone above.
  • the protruding structure is set on the bottom of the drone and the concave structure is set on the top of the drone.
  • the bottom of the drone is provided with a concave structure, and the situation of providing a raised structure on the top of the drone can be implemented by referring to the situation.
  • FIG. 15 shows a schematic structural diagram of a drone according to the embodiment of the present application.
  • FIG. 16 shows a schematic structural diagram of another angle of the drone shown in FIG. 15.
  • FIG. 17 it shows The structural schematic diagram of the A-A section of the UAV shown in Figure 15.
  • the drone may specifically include: a fuselage 20 and a plurality of arms 21 connected to the fuselage 20; wherein, the concave structure 22 is arranged on the top of the fuselage 20, and the raised structure 23 is arranged on the top of the fuselage 20.
  • the bottom of the fuselage 20 is arranged on the fuselage 20.
  • the fuselage 20 of the drone can be used as the structural body of the drone, and one end of the arm 21 can be connected to the fuselage 20 , and the other end can be used to connect the propeller 25 .
  • the arm 21 may be a foldable arm or a non-foldable arm, which is not limited in this embodiment of the present application.
  • the top of the fuselage 20 is provided with a concave structure 22, and the bottom of the fuselage 20 is provided with a raised structure 23, when a plurality of drones are vertically stacked, the upper and lower adjacent two In one of the drones, the raised structure 23 at the bottom of the drone fuselage 20 above can be at least partially embedded in the concave structure 22 at the top of the drone fuselage 20 below, so as to realize multiple drones.
  • the protruding structure 23 may include: a plane part 231 and a second guide part 232 arranged around the plane part 231, the second guide part 232 can guide the protruding structure 23 into another concave structure 22 of the drone , to facilitate the vertical stacking of multiple drones.
  • the plane part 231 may be the bottommost surface of the fuselage 20, and the second guide part 232 may be an inclined plane or a curved structure. Through the guiding effect of the second guide part 232, the plane part 231 can be introduced into the recessed structure 22 on the top of another drone, so that the drone can be accurately landed on the landing platform and stacked vertically, Realize the high-density storage of the drone.
  • a receiving platform 201 is provided on the top of the fuselage 20, and the receiving platform 201 is located between a plurality of arms 21, and the receiving platform 201 can be used to cooperate with another plane part 231 of the drone. Since the contact area between the receiving platform 201 and the plane part 231 is relatively large, the pressure between the upper and lower UAVs can be reduced, thereby reducing wear and tear when the UAVs are stacked.
  • one end of the machine arm 21 is fixed on the receiving platform 201 , and the other end extends away from the receiving platform 201 and obliquely upward, and a plurality of said machine arms 21 surround to form a recessed structure 22 .
  • the drone generally includes a plurality of arms 21 , and the plurality of arms 21 can be arranged around the receiving platform 201 on the top of the fuselage 20 .
  • the directionality of the machine arm 21 extends obliquely upward. Therefore, a plurality of obliquely surrounding machine arms 21 can enclose and form a concave structure 22 arranged around the receiving platform 201 .
  • the raised structure 23 at the bottom of the UAV fuselage 20 can slide onto the receiving platform 201 along the arm 21, so that the UAV can be accurately landed on the take-off and landing platform. Platform and stack vertically.
  • the number of arms 21 of the drone can be Set according to the actual situation, for example, the number of arms 21 can be 3, 5 or 8, etc., the embodiment of the present application does not specifically limit the number of arms 21 on the drone.
  • a connection frame 24 may also be provided between adjacent two machine arms 21, the top surface shape of the connection frame 24 is adapted to the top surface shape of the machine arm 21, and the connection frame 24 and the machine arm 21 jointly form a depression structure 22 to improve the integrity of the recessed structure 22 on the top of the drone.
  • the drone is introduced into the receiving platform 201 of the drone below, which further improves the guiding range of the concave structure 22 on the top of the drone for the drone to land, and improves the alignment efficiency of the drone when it lands .
  • connection frame 24 can be hollowed out.
  • the connecting frame 24 is provided with a third opening 241 and a fourth opening 242, and the third opening 241 and the fourth opening 242 can be used to avoid guide rails on the lifting platform.
  • the third opening 241 can be sleeved outside the guide rail of the first bracket
  • the fourth opening 242 can be sleeved outside the guide rail of the first bracket. Outside the guide rail of the second bracket.
  • the guide rails on the first support and the second support can guide the landing of the UAV, which is beneficial to the UAV. Achieve vertical stacking.
  • the plurality of unmanned aerial vehicles are vertically stacked on the landing platform, by inserting the guide rail on the first bracket into the third opening 241, and inserting the guide rail on the second bracket into the third opening 241,
  • the four openings 242 can play a limiting role through the guide rails to prevent the UAV from shaking in the circumferential direction in the take-off and landing platform, and then, can improve the movement of the plurality of UAVs in the take-off and landing platform. Stack reliability on the platform.
  • the number of openings on the connecting frame 24 may correspond to the number of brackets on the lifting platform.
  • an opening can be adaptively opened on the connecting frame 24; 4 openings are opened selectively.
  • the embodiment of the present application may not limit the number of openings on the connecting frame 24 .
  • the drone may also include: a propeller 25 and a propeller protective cover 26; wherein the propeller 25 is fixed at the other end of the arm 21, and the propeller protective cover 26 is covered outside the propeller 25 for protecting the propeller 25;
  • the side of the propeller protective cover 26 close to the arm 21 is provided with a guide portion, and the guide portion can guide another protruding structure 23 of the drone into the concave structure 22 .
  • the guide portion can be used as a peripheral structure of the recessed structure 22 to further increase the area of the recessed structure 22 .
  • the UAV is introduced into the receiving platform 201 of the UAV below, which further improves the guiding range of the concave structure 22 on the top of the UAV when the UAV lands, and improves the alignment of the UAV when it lands. efficiency.
  • the UAV described in the embodiment of the present application can at least include the following advantages:
  • the other of the convex structure and the concave structure is formed on the top of the drone, and the convex
  • the structure can be at least partially embedded in the recessed structure to facilitate vertical stacking of a plurality of the drones.
  • the raised structure at the bottom of the fuselage of the drone above can be at least partially embedded in the bottom of the drone below.
  • the concave structure on the top of the UAV fuselage high-density storage of multiple UAVs can be realized.
  • the embodiment of the present application also provides a take-off and landing system as shown in Figure 2 to Figure 4, the take-off and landing system may specifically include: the take-off and landing platform described in any of the above-mentioned embodiments, and any of the above-mentioned embodiments
  • the unmanned aerial vehicle wherein, the number of the unmanned aerial vehicles is multiple; a plurality of the unmanned aerial vehicles can be vertically stacked on the take-off and landing platform, and when the plurality of unmanned aerial vehicles land, The plurality of unmanned aerial vehicles can be vertically stacked on the take-off and landing platform, and when the plurality of unmanned aerial vehicles take off, the plurality of unmanned aerial vehicles can take off from the take-off and landing platform.
  • the structure of the lifting platform may be the same as that of the lifting platform in the above-mentioned embodiments, and its working principle is also similar, which will not be repeated here.
  • the specific structure of the drone may also be the same as that of the drones in the above-mentioned embodiments, and its working principle is also similar, which will not be repeated here.
  • the multiple drones can be vertically stacked on the bracket along the guide rail.
  • the plurality of unmanned aerial vehicles can take off from the support, that is, the take-off and landing platform can be used to realize the take-off and landing of a plurality of unmanned aerial vehicles .
  • the take-off and landing platform can be used to realize the take-off and landing of a plurality of unmanned aerial vehicles .
  • the embodiment of the present application also provides a storage device for storing the take-off and landing platform and the drone.
  • FIG. 18 shows a schematic structural diagram of a storage device according to an embodiment of the present application.
  • FIG. 19 shows a schematic structural diagram of another angle of the storage device shown in FIG. 18.
  • FIG. 20 it shows A structural schematic diagram of another angle of the storage device shown in FIG. 18 ;
  • the storage device may specifically include: a storage platform 30 and a take-off and landing platform 31, the number of take-off and landing platforms 31 is multiple, and each take-off and landing platform 31 can vertically stack multiple drones.
  • the storage platform 30 may serve as the structural main body of the storage device and support multiple lifting platforms 31 .
  • the take-off and landing platform 31 can vertically stack multiple unmanned aerial vehicles to make full use of the vertical space to accommodate the multiple unmanned aerial vehicles.
  • high-density storage of the drones can be realized.
  • multiple take-off and landing platforms 31 can be placed on the storage platform 30 along the horizontal direction, while multiple unmanned aerial vehicles on the take-off and landing platform 31 can be vertically stacked on the support of the take-off and landing platform 31 to make full use of
  • the horizontal space and the vertical space of the storage device realize high-density storage of the UAV, so as to facilitate the storage and transfer of the UAV.
  • FIG. 21 it shows a schematic structural view of another storage device according to an embodiment of the present application.
  • FIG. 22 it shows a schematic structural view of another storage device shown in FIG. 21 .
  • a plurality of first telescopic frames 301 are arranged on the storage platform 30, and the telescopic direction of the first telescopic frames 301 is the first direction; Platform 31 , multiple lifting platforms 31 are movably connected to the first telescopic frame 301 along the first direction, so as to adjust the distance between adjacent lifting platforms 31 .
  • the first telescopic frame 301 can be unfolded along the first direction, so as to connect multiple lifting platforms to the first telescopic frame 301 .
  • the first telescopic frame 301 can be compressed along the first direction, so that the distance between two adjacent lifting platforms 31 in the first direction The distance becomes shorter, so as to reduce the space occupied by the plurality of landing platforms 31 in the first direction.
  • the first telescopic frame 301 may include: a first bracket body 3011 and a first telescopic mechanism 3012, the first telescopic mechanism 3012 is telescopically connected to the first bracket body 3011; a plurality of lifting platforms 31 are connected Based on the first bracket body 3011 , the distance between adjacent landing platforms 31 can be adjusted through the expansion and contraction of the first telescopic mechanism 3012 .
  • the first support body 3011 can be used as a structural main body on the first telescopic support 301 , and the first support body 3011 can be used to support the lifting platform 31 .
  • the first telescopic mechanism 3012 can be movably connected to the first support body 3011, and multiple lifting platforms 31 can be connected to the first support body 3011 through the first telescopic mechanism 3012, so that The distance between two adjacent landing platforms 31 in the first direction can be adjusted.
  • the first bracket body 3011 can be a support rod extending along the first direction
  • the first telescopic mechanism 3012 can be a spring, a folding hinge, etc., whose stretching direction is along the first direction.
  • the embodiment of the present application is for the first
  • the specific content of the bracket body 3011 and the first retractable mechanism 3012 may not be limited.
  • the storage device may further include a second telescopic frame 302, the direction of the second telescopic frame 302 is a second direction, and the second direction is perpendicular to the first direction; a plurality of first telescopic frames 301 along The second direction is sequentially connected to the second telescopic frame 302 at intervals to adjust the distance between adjacent first telescopic frames 301 .
  • the first direction and the second direction may be perpendicular to each other.
  • a two-dimensional coordinate system can be established on the horizontal plane of the storage platform 30 .
  • the first direction may be the direction of the horizontal axis in the two-dimensional coordinate system
  • the second direction may be the coordinate of the vertical axis in the two-dimensional coordinate system.
  • the first direction may be the direction of the vertical axis in the two-dimensional coordinate system
  • the second direction may be the coordinate of the horizontal axis in the two-dimensional coordinate system. This embodiment of the present application does not limit this.
  • the second telescopic frame 302 may be deployed along the second direction first, so as to connect multiple lifting platforms 31 to the second telescopic frame 301 .
  • the second telescopic frame 302 can be compressed along the second direction, so that the distance between the two adjacent lifting platforms 31 in the second direction The distance between them becomes shorter, so as to reduce the space occupied by the plurality of landing platforms 31 in the second direction.
  • the second telescopic bracket 301 may include: a second bracket body and a second telescopic mechanism, the second telescopic mechanism is telescopically connected to the second bracket body; the plurality of first telescopic brackets are connected In the second bracket body, the distance between adjacent second telescopic frames can be adjusted through the expansion and contraction of the second telescopic mechanism.
  • the second support body can be used as a structural main body on the telescopic support, and the second support body can be used to support the lifting platform 31 .
  • the second telescopic mechanism can be movably connected to the second support body, and the plurality of lifting platforms 31 can be connected to the second support body through the second telescopic mechanism, so that through the second telescopic
  • the expansion and contraction of the mechanism along the second direction can adjust the distance between two adjacent lifting platforms 31 in the second direction.
  • the second bracket body may be a support rod extending along the second direction
  • the second telescoping mechanism may be a spring, a folding hinge, etc. whose telescoping direction is along the second direction.
  • the specific content of the second bracket body and the second retractable mechanism may not be limited.
  • the specific structure of the second telescopic frame 301 can refer to the first telescopic frame 301 described in FIG. 23 , and details will not be repeated here.
  • casters or rollers may be provided at the bottom of the lifting platform to assist the movement of the lifting platform on the storage platform 30 and realize the movement between the lifting platforms. distance adjustment.
  • the storage device may not only be used for storing the drone, but also be used for take-off and landing of multiple drones.
  • the first telescopic frame 301 and the second telescopic frame 302 can be contracted to shorten the distance between the landing platforms 31 and reduce the distance between the landing platforms 31 and 31.
  • the occupied space on the receiving platform 30 is to accommodate as many drones as possible in as small a space as possible.
  • the first telescopic frame 301 and the second telescopic frame 302 can be expanded to increase the distance between the take-off and landing platforms 31 to facilitate the take-off and landing. A reasonable distance can be kept between the landing platforms 31 to facilitate the take-off or landing of the drone.
  • the UAV can also be linked with the expansion and contraction of the take-off and landing platform 31 .
  • the drones on the take-off and landing platforms 31 can be automatically folded and stored to avoid interference between the drones on the take-off and landing platforms 31 .
  • the unmanned aerial vehicles on the take-off and landing platforms 31 can be performed to take off, and the unmanned aerial vehicles on the two adjacent take-off and landing platforms 31 can not simultaneously Take off, to provide the required clearance space when the drone takes off.
  • the storage device in the embodiment of the present application can at least include the following advantages:
  • the storage platform may serve as a structural main body of the storage device to support the plurality of lifting and landing platforms.
  • the take-off and landing platform can vertically stack a plurality of unmanned aerial vehicles to make full use of the vertical space to accommodate the plurality of unmanned aerial vehicles.
  • by stacking multiple drones vertically on each take-off and landing platform, and placing multiple take-off and landing platforms on the storage platform high-density storage of the drones can be realized.
  • the embodiment of the present application also provides a take-off and landing control method, which is applied to a main control device.
  • FIG. 24 it shows a flow chart of the steps of a take-off and landing control method described in the embodiment of the present application.
  • the take-off and landing control method may specifically include the following steps:
  • Step S11 receiving operation instructions for multiple drones, the operation instructions include take-off instructions and recall instructions.
  • the main control device may be a device used to control the take-off and landing platform and the UAV to perform related operations, and the main control device includes but is not limited to computers, consoles or remote controllers. In any one, the embodiment of the present application may not limit the specific content of the master control device.
  • the communication connection between the main control device and the take-off and landing platform can be realized through a wired connection or a wireless connection
  • the connection between the main control device and the UAV can be realized through a wireless connection. communication connection.
  • the main control device can send control instructions to the take-off and landing platform and the UAV to control the The take-off and landing platform or the unmanned aerial vehicle perform related operations.
  • the main control device is integrated in the landing platform.
  • the master control device is one of a plurality of drones.
  • the main control device may be provided with an instruction receiving device, which may be used for operating instructions for multiple drones, and the instruction receiving device may include but is not limited to a touch screen , a button or at least one of a voice recognition module.
  • the user can issue an operation instruction for the drone through a touch operation on the touch screen, a press or rotation operation on a button, and voice.
  • the operation instruction may include a take-off instruction and a recall instruction
  • the take-off instruction may be used to control the unmanned aerial vehicle to take off from the take-off and landing platform
  • the recall instruction may be used to recall the unmanned aerial vehicle and send the unmanned aerial vehicle
  • the plurality of unmanned aerial vehicles are vertically stacked on the support of the landing platform.
  • Step S12 In response to the take-off instruction, control a plurality of unmanned aerial vehicles vertically stacked on the take-off and landing platform to take off from the take-off and landing platform.
  • the main control device may respond to the take-off instruction and control multiple UAVs vertically stacked on the take-off and landing platform from the The takeoff and landing platform takes off.
  • the main control device can control the multiple unmanned aerial vehicles to take off in sequence from top to bottom.
  • a first charging module may be provided on the landing platform, and the first charging module is electrically connected to a second charging module on the drone to charge the drone.
  • the UAV before controlling the UAV to take off, the UAV should be controlled to release the electrical connection with the first charging module, so that the UAV can perform a take-off operation. take off from the landing platform.
  • the method for controlling a plurality of unmanned aerial vehicles vertically stacked on the take-off and landing platform to take off from the take-off and landing platform may specifically include the following sub-steps:
  • the blades of the multiple drones vertically stacked on the take-off and landing platform can be controlled to start rotating, and the The drone provides lift.
  • all drones on the take-off and landing platform can be controlled to turn their propellers to a hovering state.
  • the UAV is in the hovering state, the UAV is in a state where it can take off.
  • the hovering state may specifically be: the lift force generated by the rotation of the blades on the UAV is not enough to enable the UAV to complete a complete take-off action, but the UAV can be placed under the ground. In the case of a little support, it can keep its own posture stable (the posture can include the horizontal posture and the posture of the rotation direction) and can move along the guiding feature.
  • the plurality of UAVs on the takeoff and landing platform can be taken off status.
  • control the take-off and landing platform to push the plurality of unmanned aerial vehicles out of the take-off and landing platform in sequence, and control the pushed-out said unmanned aerial vehicles to take off.
  • the main control device may control the take-off and landing platform to push the multiple UAVs out of the take-off and landing platform in turn, and based on the communication connection between the main control device and the UAV, the control is pushed out The drone takes off.
  • the main control device can control the lifting module on the take-off and landing platform to move the multiple UAVs to the hovering state.
  • the unmanned aerial vehicle raises the height of one unmanned aerial vehicle, so that the uppermost unmanned aerial vehicle is pushed out of the take-off and landing platform, and then the unmanned aerial vehicle that is pushed out is controlled to take off.
  • the above-mentioned steps are executed in a loop, and in the order from top to bottom, the UAVs on the take-off and landing platform push out the take-off and landing platform and perform the operation of taking off, so that a plurality of unmanned vehicles on the take-off and landing platform The planes are pushed out one by one and take off to realize continuous take-off and reach the destination.
  • the unmanned aerial vehicle by controlling a plurality of UAVs vertically stacked on the takeoff and landing platform to turn the propellers to a hovering state, and then controlling the takeoff and landing platform to push the plurality of UAVs out of the takeoff and landing platform in sequence, And control the method that the said unmanned aerial vehicle that is pushed out takes off. Since the unmanned aerial vehicle is already in a hovering state where it can take off on the take-off and landing platform, after pushing out the take-off and landing platform, the unmanned aerial vehicle can take off quickly, so that the multiple The continuous take-off of the UAV has high take-off efficiency.
  • the method for controlling multiple unmanned aerial vehicles vertically stacked on the takeoff and landing platform to take off from the takeoff and landing platform may specifically include the following sub-steps:
  • the main control device can control the lifting module on the take-off and landing platform to raise the UAV by a fuselage height, so as to push all the UAVs on the top of the take-off and landing platform out of the landing platform.
  • the unmanned aerial vehicle that is pushed out is controlled to take off.
  • the main control device can control the blades of the pushed out drone to rotate and take off. Then, the above steps are executed in a loop until all the unmanned aerial vehicles on the take-off and landing platform are taken off in order from top to bottom.
  • the operation of the UAV rotating the blades in the take-off and landing platform can be avoided to maximize Interference between the blades of the UAV and the take-off and landing platform is avoided, and the take-off safety of the UAV is improved.
  • the method for controlling a plurality of unmanned aerial vehicles vertically stacked on the takeoff and landing platform to take off from the takeoff and landing platform may specifically include the following sub-steps:
  • the main control device may first control the take-off and landing platform to vertically stack all unmanned aerial vehicles on the take-off and landing platform. Man-machine rolls out described take-off and landing platform.
  • the main control device can control the lifting module on the take-off and landing platform to lift the plurality of unmanned aerial vehicles to a greater height until all the unmanned aerial vehicles on the take-off and landing platform are pushed out of the landing platform.
  • the main control device can control the rotation of the blades of the multiple drones so that the A plurality of unmanned aerial vehicles turn the paddle to the hover state, that is, make the plurality of unmanned aerial vehicles that push out the take-off and landing platform be in a state that can take off.
  • the multiple unmanned aerial vehicles in the hovering state are controlled to take off simultaneously.
  • the main control device can control the drones in the hovering state Two drones take off at the same time and reach the target location, and the takeoff effect is extremely high.
  • Step S13 In response to the recall instruction received, control a plurality of the drones to land and vertically stack them on the landing platform along the guide rail.
  • the main control device can control a plurality of the drones to land and vertically stack them on the starting track along the guide rail in response to the recall instruction. Lower the platform.
  • the drone recalled first can be stacked at the bottom of the take-off and landing platform.
  • the method of controlling a plurality of the drones to land and vertically stack on the landing platform along the guide rail may specifically include the following sub-steps:
  • the main control device can control the first drone to land within the range of the guide carrier plate of the take-off and landing platform by means of precise landing, and Decreasing the rotational speed of the blades of the UAV, so that the UAV switches from a flying state to a hovering state.
  • the first identity mark can be set on the guide carrier plate of the take-off and landing platform, and the UAV can accurately identify the first identity mark on the guide carrier plate during the landing process. Landing within the range of the guide carrier.
  • the first identity mark may include, but not limited to, an image mark such as a two-dimensional code, or contour features such as protrusions or depressions. The embodiment of the present application does not specifically limit the first identity mark.
  • the unmanned aerial vehicle is controlled to land and vertically stacked on the take-off and landing platform along the guide rail.
  • the UAVs can be controlled to further land and stack along the guide rails on the landing platform.
  • the guide carrier includes a first guide part and a lower recess, wherein the lower recess is arranged in the central area of the guide carrier, and the first guide part is arranged on the guide carrier
  • the edge area is arranged around the lower recess.
  • the main control device can also control the guide carrier plate to drop to the height of the fuselage of the drone, In order to recover the UAV on the guide carrier to the landing platform. Then, recycle the above steps, recall the second UAV to the range of the take-off and landing platform and control the UAV to switch to the hovering state.
  • a second identity mark can be set on each UAV, and by identifying the second identity mark on the UAV, another UAV can be controlled to accurately land within the range of the UAV.
  • the second identity mark may include, but not limited to, an image mark such as a two-dimensional code, or contour features such as protrusions or depressions. The embodiment of the present application does not specifically limit the second identity mark.
  • the bottom of the drone is provided with a raised structure
  • the top of the drone is provided with a concave structure
  • the bottom of the second drone lands on the first drone
  • the raised structure on the bottom of the upper drone can slide along the concave structure on the top of the lower drone until the upper drone lands on the top of the lower drone On the receiving platform, complete the landing of the second UAV.
  • the main control device can also control the guide carrier to drop a UAV body height, to recover the second UAV into the take-off and landing platform. Then, continue to cycle the landing step of the second drone until all the drones are recalled and vertically stacked on the landing platform along the guide rail.
  • the method of controlling a plurality of drones to land and vertically stack on the landing platform along the guide rail may specifically include the following sub-steps:
  • the main control device can simultaneously recall the multiple drones to the top of the take-off and landing platform, and place all drones in order from top to bottom.
  • the plurality of unmanned aerial vehicles are vertically arranged in the vertical direction, and the plurality of unmanned aerial vehicles are switched to the hovering state.
  • the UAVs arranged at the bottom can land within the range of the guide carrier plate of the take-off and landing platform in a precise way.
  • the specific implementation can refer to the description in the foregoing embodiments. I won't go into details here. Counting from bottom to bottom, the second UAV can accurately land on the top of the first UAV with reference to the position of the first UAV. Do repeat. By analogy, until the drones are vertically arranged on the top of the take-off and landing platform, and all the drones are switched to the hovering state.
  • the UAV arranged at the bottom can land on the guide carrier plate of the take-off and landing platform.
  • the guide carrier includes a lower concave part and a first guide part
  • the lower concave part is arranged in the central area of the guide carrier
  • the first guide part is arranged in the edge region of the guide carrier and surrounds the lower Recess setting.
  • the upper drone can land on the top of the lower drone. Since the bottom of the drone is provided with a raised structure, and the top of the drone is provided with a concave structure, therefore, the bottom of the drone above lands within the range of the drone below and is in a hovering state. Under normal circumstances, the raised structure at the bottom of the upper drone can slide along the concave structure at the top of the lower drone until the upper drone is landed on the receiving platform on the top of the lower drone, and the upper drone is completed. The landing of the man-machine. By cyclically executing the above method, the plurality of unmanned aerial vehicles are vertically stacked above the take-off and landing platform.
  • these 16 unmanned aerial vehicles can be recalled to the top of the described take-off and landing platform at the same time, and these 16 unmanned aerial vehicles can be vertically stacked.
  • Directions are arranged vertically and can be toggled on hover.
  • the plurality of drones in the hovering state are controlled to land in sequence and vertically stacked on the landing platform along the guide rail.
  • the main control device when the main control device controls the plurality of drones to be vertically arranged in the vertical direction and switched to the hovering state, the main control device may control the take-off and landing platform The guide carrier plate descends, so that the multiple unmanned aerial vehicles are recovered into the landing platform at the same time.
  • FIG. 25 it shows a flow chart of the steps of another take-off and landing control method described in the embodiment of the present application. As shown in FIG. 25 , after step S13, the take-off and landing control method may further include the following steps:
  • Step S14 In response to the received storage instruction, control the take-off and landing platform to store the plurality of vertically stacked drones.
  • the operation instruction may also include a storage instruction.
  • the main control device may respond to the storage instruction and control the take-off and landing platform to vertically
  • the plurality of unmanned aerial vehicles stacked are stored, so that the plurality of unmanned aerial vehicles are accommodated in the take-off and landing platform, and the space occupied by the plurality of unmanned aerial vehicles on the take-off and landing platform is minimized .
  • the main control device can control the guide carrier plate on the landing platform to drop to the lowest point of the landing platform, realize the storage and storage of the plurality of drones, and facilitate the The landing platform and multiple drones on it are transported.
  • Step S15 Responding to the received charging instruction, controlling the take-off and landing platform to charge the plurality of unmanned aerial vehicles.
  • the storage instruction may also include a charging instruction.
  • the main control device may respond to the charging instruction and control the vertical movement of the take-off and landing platform The multiple unmanned aerial vehicles stacked are charged, so as to improve the battery life of the multiple unmanned aerial vehicles on the take-off and landing platform.
  • a first charging module may be provided on the landing platform, and one first charging module can be electrically connected to a second charging module of the drone to charge the drone.
  • the height of the fuselage of the drone is the first height
  • the vertical interval between two adjacent first charging modules is the first interval
  • the first interval is greater than the first height . Therefore, when it is necessary to charge the unmanned aerial vehicle on the landing platform, the interval between the two adjacent unmanned aerial vehicles can be adjusted so that the distance between the two adjacent unmanned aerial vehicles is The interval is equal to the first interval, so that the first charging module on the landing platform and the second charging module on the drone are aligned one by one, so as to facilitate the electrical connection between the two.
  • the take-off and landing control method described in the embodiment of the present application may specifically include the following advantages:
  • the main control device can receive operation instructions for multiple drones, and the operation instructions include take-off instructions and recall instructions; in response to the take-off instructions, control A UAV takes off from the take-off and landing platform; in response to the recall instruction received, control a plurality of the UAVs to land and vertically stack them on the take-off and landing platform along the guide rails, so as to realize that a plurality of UAVs can fly on the take-off and landing platform. take off and landing on the landing platform.
  • the embodiment of the present application also provides a take-off and landing control method, the take-off and landing control method can be used for the take-off and landing platform described in the above-mentioned embodiments,
  • FIG. 26 it shows a flow chart of the steps of a take-off and landing control method described in the embodiment of the present application. As shown in FIG. 26 , the take-off and landing control method may specifically include the following steps:
  • Step S21 In response to the received take-off instruction, push out the plurality of drones vertically stacked on the take-off and landing platform from the take-off and landing platform.
  • the main control device after the main control device receives the operation instruction for the drone, it can send the operation instruction to the take-off and landing platform.
  • the operation instruction may include a take-off instruction and a recall instruction
  • the take-off instruction may be used to control the unmanned aerial vehicle to take off from the take-off and landing platform
  • the recall instruction may be used to recall the unmanned aerial vehicle and send the unmanned aerial vehicle
  • the plurality of unmanned aerial vehicles are vertically stacked on the support of the landing platform.
  • the take-off and landing platform after receiving the take-off command sent by the main control device, can control the guide carrier to move upwards, so as to move multiple unmanned vehicles vertically stacked on the take-off and landing platform The drone is released from the take-off and landing platform, so that a plurality of unmanned aerial vehicles on the take-off and landing platform take off.
  • Step S22 In response to the received recall instruction, vertically stack the landed drones on the landing platform along the guide rail.
  • the take-off and landing platform after the take-off and landing platform receives the recall instruction sent by the main control device, when the plurality of drones land on the guide carrier, it can control the guide carrier to move toward moving down, so as to vertically stack the plurality of drones on the landing platform along the guide rail of the landing platform, and land the plurality of drones on the landing platform.
  • FIG. 27 shows a flow chart of the steps of another take-off and landing control method described in the embodiment of the present application. As shown in FIG. 27 , after step 22, the take-off and landing control method may further include the following steps:
  • Step S23 In response to the received storage instruction, store a plurality of unmanned aerial vehicles vertically stacked on the take-off and landing platform.
  • the operation instruction may also include a storage instruction.
  • the take-off and landing platform can control the vertical stacking in response to the storage instruction sent by the main control device
  • the plurality of unmanned aerial vehicles are stored, so that the plurality of unmanned aerial vehicles are accommodated in the take-off and landing platform, and the space occupied by the plurality of unmanned aerial vehicles on the take-off and landing platform is minimized.
  • the take-off and landing platform can control the take-off and landing platform to lower the plurality of vertically stacked drones to the storage position when receiving the storage instruction sent by the main control device, so as to realize the Storage and storage of multiple unmanned aerial vehicles, and convenient transportation of the take-off and landing platform and multiple unmanned aerial vehicles thereon.
  • the storage position may be a position where the guide carrier is lowered to the lowest point of the landing platform.
  • Step S24 Responding to the received charging instruction, charge the plurality of drones vertically stacked on the take-off and landing platform.
  • the storage instruction may also include a charging instruction.
  • the main control device may respond to the charging instruction and control the vertical movement of the take-off and landing platform The multiple unmanned aerial vehicles stacked are charged, so as to improve the battery life of the multiple unmanned aerial vehicles on the take-off and landing platform.
  • a first charging module may be provided on the landing platform, and one first charging module can be electrically connected to a second charging module of the drone to charge the drone.
  • the height of the fuselage of the drone is the first height
  • the vertical interval between two adjacent first charging modules is the first interval
  • the first interval is greater than the first height . Therefore, when it is necessary to charge the unmanned aerial vehicle on the landing platform, the interval between the two adjacent unmanned aerial vehicles can be adjusted so that the distance between the two adjacent unmanned aerial vehicles is The interval is equal to the first interval, so that the first charging module on the landing platform and the second charging module on the drone are aligned one by one, so as to facilitate the electrical connection between the two.
  • the take-off and landing control method described in the embodiment of the present application may at least include the following advantages:
  • the take-off and landing platform may push out a plurality of drones vertically stacked on the take-off and landing platform from the take-off and landing platform in response to the received take-off instruction; and in response to the received recall instruction,
  • the plurality of unmanned aerial vehicles that have landed are vertically stacked on the take-off and landing platform along the guide rail, so as to realize the take-off and landing of the plurality of unmanned aerial vehicles on the take-off and landing platform.
  • the embodiment of the present application also provides a take-off and landing control method, which can be applied to the drones in the above-mentioned embodiments.
  • FIG. 28 it shows a flow chart of the steps of a take-off and landing control method described in the embodiment of the present application.
  • the take-off and landing control method may specifically include the following steps:
  • Step S31 In response to the received take-off instruction, the plurality of unmanned aerial vehicles take off from the take-off and landing platform.
  • the main control device may send the operation instruction to the drone.
  • the operation instruction may include a take-off instruction and a recall instruction
  • the take-off instruction may be used to control the unmanned aerial vehicle to take off from the take-off and landing platform
  • the recall instruction may be used to recall the unmanned aerial vehicle and send the unmanned aerial vehicle
  • the plurality of unmanned aerial vehicles are vertically stacked on the support of the landing platform.
  • the UAV takes off from the takeoff and landing platform after receiving the takeoff instruction sent by the main control device.
  • the method for the plurality of unmanned aerial vehicles to take off from the take-off and landing platform may include the following sub-steps:
  • the blades of the multiple UAVs vertically stacked on the take-off and landing platform can start to rotate to provide lift for the UAV.
  • all the drones on the take-off and landing platform can turn their propellers to a hovering state.
  • the UAV is in the hovering state, the UAV is in a state where it can take off.
  • the plurality of unmanned aerial vehicles are pushed out of the take-off and landing platform in turn, and the pushed-out unmanned aerial vehicles take off.
  • the takeoff and landing platform can push the plurality of UAVs out of the takeoff and landing platform in sequence. Lower the platform. Under the push-out action of the take-off and landing platform, the plurality of unmanned aerial vehicles are pushed out of the take-off and landing platform in turn, and the pushed-out unmanned aerial vehicles can take off.
  • the lifting module on the takeoff and landing platform can lift the plurality of UAVs to an unmanned The height of the aircraft, so that the uppermost UAV is pushed out of the take-off and landing platform.
  • the take-off operation can be performed after the drone is pushed out of the take-off and landing platform.
  • the above-mentioned steps are executed in a loop, and in the order from top to bottom, the UAVs on the take-off and landing platform push out the take-off and landing platform and perform the operation of taking off, so that a plurality of unmanned vehicles on the take-off and landing platform The planes are pushed out one by one and take off to realize continuous take-off and reach the destination.
  • the UAV since the UAV is already in a hovering state where it can take off on the take-off and landing platform, after pushing out the take-off and landing platform, the UAV can take off quickly.
  • the continuous take-off of the plurality of unmanned aerial vehicles can be realized, and the take-off efficiency is high.
  • the method for the plurality of unmanned aerial vehicles to take off from the take-off and landing platform may include the following sub-steps:
  • the UAVs that are vertically stacked and in the propeller-stop state are pushed out under the push-out action of the take-off and landing platform.
  • the take-off and landing platform may be used to push the uppermost UAV out of the take-off and landing platform among the vertically stacked UAVs in a state of stopping propellers.
  • the lifting module on the take-off and landing platform can lift the drone to a height of a fuselage, so as to push all the uppermost drones on the take-off and landing platform out of the take-off and landing platform.
  • the blades of the pushed out drone can rotate and take off. Then, the above steps are executed cyclically until all the drones on the take-off and landing platform take off sequentially from top to bottom.
  • the operation of the UAV rotating the blades in the take-off and landing platform can be avoided to maximize Interference between the blades of the UAV and the take-off and landing platform is avoided, and the take-off safety of the UAV is improved.
  • the method for the plurality of unmanned aerial vehicles to take off from the take-off and landing platform may include the following sub-steps:
  • the take-off and landing platform pushes all drones vertically stacked on the take-off and landing platform out of the take-off and landing platform.
  • the lifting module on the take-off and landing platform can lift the plurality of unmanned aerial vehicles to a greater height until all the unmanned aerial vehicles on the take-off and landing platform are pushed out of the take-off and landing platform.
  • the plurality of unmanned aerial vehicles turn their propellers to a hovering state.
  • the blades of the multiple drones can rotate so that the multiple drones rotate Paddle to the hovering state, that is, make a plurality of unmanned aerial vehicles that push out the take-off and landing platform be in the state that can take off.
  • the plurality of unmanned aerial vehicles in the hovering state take off simultaneously.
  • the multiple drones when the multiple drones are all pushed out of the take-off and landing platform and turned to the hovering state, the multiple drones can take off at the same time and reach the target location,
  • the takeoff effect is extremely high.
  • the take-off speed of the UAV needs to be determined according to the take-off mode of the UAV.
  • Step S32 In response to the received recall instruction, the plurality of drones land and vertically stack on the landing platform along the guide rail.
  • the plurality of unmanned aerial vehicles land on the guide carrier and move along the take-off and landing platform.
  • the guide rails are vertically stacked on the lifting platform for landing on the lifting platform.
  • the method for the plurality of unmanned aerial vehicles to land on the landing platform may include the following sub-steps:
  • the main control device can control the first drone to land within the range of the guide carrier plate of the take-off and landing platform by means of precise landing, and Decreasing the rotational speed of the blades of the UAV, so that the UAV switches from a flying state to a hovering state.
  • the first identity mark can be set on the guide carrier plate of the take-off and landing platform, and the UAV can accurately identify the first identity mark on the guide carrier plate during the landing process. Landing within the range of the guide carrier.
  • the first identity mark may include, but not limited to, an image mark such as a two-dimensional code, or contour features such as protrusions or depressions. The embodiment of the present application does not specifically limit the first identity mark.
  • the hovering drones land and are vertically stacked on the take-off and landing platform along the guide rail.
  • the UAVs can be controlled to further land and stack along the guide rails on the landing platform.
  • the main control device can also control the guide carrier plate to drop to the height of the drone fuselage, so that all The unmanned aerial vehicle on the guide carrier board is recovered into the landing platform. Then, recycle the above steps, recall the second UAV to the range of the take-off and landing platform and control the UAV to switch to the hovering state.
  • a second identity mark can be set on each UAV, and by identifying the second identity mark on the UAV, another UAV can be controlled to accurately land within the range of the UAV.
  • the second identity mark may include, but not limited to, an image mark such as a two-dimensional code, or contour features such as protrusions or depressions. The embodiment of the present application does not specifically limit the second identity mark.
  • the bottom of the drone is provided with a raised structure
  • the top of the drone is provided with a concave structure
  • the bottom of the second drone lands on the first drone
  • the raised structure on the bottom of the upper drone can slide along the concave structure on the top of the lower drone until the upper drone lands on the top of the lower drone On the receiving platform, complete the landing of the second UAV.
  • the main control device can also control the guide carrier to drop a UAV body height, to recover the second UAV into the take-off and landing platform. Then, continue to cycle the landing step of the second drone until all the drones are recalled and vertically stacked on the landing platform along the guide rail.
  • the method for the plurality of unmanned aerial vehicles to land on the landing platform may include the following sub-steps:
  • the plurality of drones are simultaneously recalled to the top of the take-off and landing platform, switched to a hovering state and arranged vertically in the vertical direction.
  • the multiple drones can be recalled to the top of the take-off and landing platform at the same time, and arranged vertically in the vertical direction in order from top to bottom. , thereafter, the plurality of drones may switch to the hovering state.
  • the UAVs arranged at the bottom can land within the range of the guide carrier plate of the take-off and landing platform in a precise way.
  • the specific implementation can refer to the description in the foregoing embodiments. I won't go into details here. Counting from bottom to bottom, the second UAV can accurately land on the top of the first UAV with reference to the position of the first UAV. Do repeat. By analogy, until the drones are vertically arranged on the top of the take-off and landing platform, and all the drones are switched to the hovering state.
  • the UAV arranged at the bottom can land on the guide carrier plate of the take-off and landing platform.
  • the guide carrier includes a lower concave part and a first guide part
  • the lower concave part is arranged in the central area of the guide carrier
  • the first guide part is arranged in the edge region of the guide carrier and surrounds the lower Recess setting.
  • the upper drone can land on the top of the lower drone. Since the bottom of the drone is provided with a raised structure, and the top of the drone is provided with a concave structure, therefore, the bottom of the drone above lands within the range of the drone below and is in a hovering state. Under normal circumstances, the raised structure at the bottom of the upper drone can slide along the concave structure at the top of the lower drone until the upper drone is landed on the receiving platform on the top of the lower drone, and the upper drone is completed. The landing of the man-machine. By cyclically executing the above method, the plurality of unmanned aerial vehicles are vertically stacked above the take-off and landing platform.
  • these 16 unmanned aerial vehicles can be recalled to the top of the landing platform at the same time, and these 16 unmanned aerial vehicles can be vertically stacked.
  • Directions are arranged vertically and can be toggled on hover.
  • a plurality of said unmanned aerial vehicles in the hovering state land in sequence and vertically stack on the landing platform along the guide rail.
  • the guide carrier plate of the take-off and landing platform can be lowered so that the plurality of unmanned aerial vehicles The unmanned aerial vehicle is recovered into the take-off and landing platform at the same time.
  • the take-off and landing control method described in the embodiment of the present application may at least include the following advantages:
  • the plurality of drones by responding to the received take-off instruction, the plurality of drones take off from the landing platform; in response to the received recall instruction, the plurality of drones land and vertically stack on the The landing platform.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the application can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Abstract

提供一种起降平台、无人机、起降系统、收纳装置和起降控制方法。起降平台具体包括:支架(10),支架(10)的一端固定在基座上,支架(10)的另一端朝向远离底座的方向延伸,支架(10)设置有垂直的导轨(101);多个无人机(100)能够沿导轨(101)垂直堆叠于支架(10),且能够从支架(10)上起飞。可以减少多个无人机(100)进行协同作业时的人力投入和场地投入,还可以提升多个无人机(100)协同作业的效率。

Description

起降平台、无人机、起降系统、收纳装置和起降控制方法 技术领域
本申请涉及无人机技术领域,尤其涉及一种用于多个无人机的起降平台、一种无人机、一种无人机的起降系统、一种收纳装置以及一种无人机的起降控制方法。
背景技术
随着无人机技术的高速发展,无人机的功能也越来越丰富,无人机的应用场景也越来越广泛。相应地,需要多个无人机进行协同作业的场景也越来越多。例如,在无人机表演或者无人机运输应急物资等场景下,往往需要多个无人机进行协同作业。
现有的技术中,在需要使用多个无人机协同作业时,在无人机起飞场地布置、无人机准备和电池更换、以及无人机降落回收等阶段,皆需要较大的人力投入和较大的场地进行操作。这样,不仅会提高多个无人机协同作业的成本,而且,还会降低协同作业的效率。
发明内容
为了解决现有的技术中现有的技术中,多个无人机协同作业的成本较高且效率较低的问题,本申请实施例提供了一种用于多个无人机的起降平台、一种无人机、一种无人机的起降系统、一种收纳装置以及一种无人机的起降控制方法。
第一方面,本申请实施例提供了一种用于多个无人机的起降平台,所述起降平台包括:
基座;
支架,所述支架的一端固定在所述基座上,所述支架的另一端朝向远离所述底座的方向延伸,所述支架设置有垂直的导轨;
所述多个无人机能够沿所述导轨垂直堆叠于所述支架,且能够从所述支架上起飞。
可选地,在所述多个无人机垂直堆叠于所述支架的情况下,所述起降平台包括收纳状态和充电状态;在所述充电状态,所述起降平台用于给所述多 个无人机充电。
可选地,所述起降平台还设置有:多个第一充电模块,所述多个第一充电模块垂直堆叠于所述支架;
在所述充电状态下,一个所述第一充电模块能够与一个所述无人机的第二充电模块电连接,以给充所述无人机充电。
可选地,所述第一充电模块包括充电插接件和信号传输插接件,所述充电插接件用于给所述无人机充电,所述信号传输插接件用于实现所述第一充电模块与所述第二充电之间的数据交换。
可选地,所述无人机的机身高度为第一高度,两个相邻的所述第一充电模块的垂直间隔为第一间隔,所述第一间隔大于所述第一高度。
可选地,所述起降平台还包括收纳状态,所述多个无人机在所述收纳状态时相对于所述支架的位置与所述多个无人机在所述充电状态时相对于所述支架的位置不同。
可选地,所述支架上设置有用于容纳所述多个无人机的容纳空间。
可选地,所述支架包括第一支架和第二支架;
所述第一支架和所述第二支架相对间隔设置,所述容纳空间形成于所述第一支架和所述第二支架之间。
可选地,所述第一支架和所述第二支架的导轨皆至少部分嵌设于所述多个无人机,以对所述无人机在所述容纳空间内的活动进行限位。
可选地,所述支架的数量为一个,所述容纳空间形成于所述支架上。
可选地,所述无人机上设置有安装通孔,在所述多个无人机垂直堆叠于所述支架的情况下,所述无人机的安装通孔套接在所述支架上。
可选地,所述支架上的导轨至少部分嵌设于所述多个无人机,以对所述无人机在所述容纳空间内的活动进行限位。
可选地,所述起降平台还包括:导向载板,所述导向载板至少部分设置于所述容纳空间内,所述导向载板用于承载所述无人机。
可选地,所述导向载板包括下凹部和第一导向部,其中,所述下凹部设置在所述导向载板的中央区域,所述第一导向部设置在导向载板的边缘区域且环绕所述下凹部设置;
所述第一导向部的一侧与所述下凹部的边缘连接,所述第一导向部的另一侧朝向远离所述下凹部且倾斜向上的方向延伸。
可选地,所述下凹部为平面结构。
可选地,所述第一导向部为倾斜的平面结构或者曲面结构。
可选地,在所述支架包括所述第一支架和所述第二支架的情况下,所述第一导向部设置有第一开口和第二开口,所述第一开口套设于所述第一支架的导轨,所述第二开口套设于所述第二支架的导轨,以对所述导向载板在所述第一支架和所述第二支架上的活动进行限位。
可选地,所述第一支架的导轨的顶部设置有第一倾斜面,所述第二支架的导轨的顶部设置有第二倾斜面,所述第一倾斜面、所述第二倾斜面的形状与所述第一导向部的形状适配;其中,
在所述导向载板活动至所述导轨顶部的情况下,所述第一倾斜面、所述第二倾斜面能够与所述第一导向部平齐。
可选地,所述支架还设置有提升模块,所述提升模块可沿所述支架滑动,且与所述导向载板连接,所述提升模块用于提升所述无人机。
可选地,所述提升模块包括:驱动件、丝杠和滑块;其中,
所述驱动件的输出端与所述丝杠连接,用于驱动所述丝杠转动,所述丝杠的轴向与所述导轨的导向平行;
所述滑块内设置有螺纹孔,所述螺纹孔套接在所述丝杠上且与所述丝杠螺纹连接,所述丝杠的转动能够带动所述滑块沿所述丝杠的轴向滑动,所述滑块用于与所述导向载板连接,以带动所述导向载板沿所述支架滑动。
可选地,所述驱动件为伺服电机,所述伺服电机连接在所述丝杠的底部。
可选地,所述支架包括:可配合连接的壳体和封板,所述壳体和封板之间形成容纳腔;其中,
所述导轨设置在所述壳体上;
所述驱动件、所述丝杠皆设置在所述容纳腔内,所述滑块至少部外露延伸至导轨外,以与导向载板连接。
可选地,所述提升模块上还包括支撑块,所述支撑块的一端固定在所述滑块上,另一端延伸至所述导轨外并与所述导向载板的底部连接。
可选地,所述起降平台还包括:控制模块,所述控制模块与所述提升模块电连接;其中,
在所述多个无人机降落情况下,所述控制模块控制所述提升模块驱动所述导向载板下降,以使所述多个无人机能够沿所述导轨垂直堆叠于所述支架;在所述多个无人机起飞的情况下,所述控制模块控制所述提升模块驱动所述导向载板上升,以使所述多个无人机能够在所述支架上起飞。
可选地,所述起降平台还包括:弹性承接件,所述弹性承接件的至少部分设置于所述容纳空间内,所述弹性承接件用于承接所述无人机。
可选地,所述弹性承接件的压缩方向与所述导轨的延伸方向一致。
可选地,所述弹性承接件包括弹簧、弹片中的至少一种。
可选地,所述起降平台还包括:导向件,所述导向件连接于所述支架,所述导向件用于将所述无人机导入所述容纳空间。
可选地,所述导向件包括导流框架,所述导流框架设置在所述支架的顶部,且环绕所述容纳空间设置,所述导流框架能够利用所述无人机产生的向下气流将所述无人机推向所述容纳空间。
可选地,所述导流框架设有导流口,所述导流口与所述容纳空间相对。
可选地,所述导流框架包括多个导流板,所述多个导流板环绕所述导流口的周向依次连接,所述导流板的一侧靠近所述导流口,另一侧朝向远离所述导流口且倾斜向上的方向延伸。
可选地,所述导流板为倾斜的平板或者弧形板。
可选地,所述导流框架还包括:支撑架,所述支撑架与所述导流板连接,以支撑所述导流板。
可选地,所述导流框架上还设置有缓冲垫。
可选地,所述缓冲垫包括:橡胶垫、泡棉垫中的至少一种。
可选地,所述导向件包括:气流发生装置,所述气流发生装置设置在所述第一支架和所述第二支架的顶部,且环绕所述容纳空间设置,所述多个气流装置能够将所述无人机推向所述容纳空间。
可选地,所述气流发生装置包括:多个气流出口,所述多个气流出口环绕所述容纳空间设置。
可选地,所述起降平台还包括:升降装置,所述升降装置的升降方向与所述支架的延伸方向一致;其中,
在所述无人机堆叠于所述支架的情况下,所述升降装置能够运输所述无人机上承载的目标物。
可选地,所述升降装置包括升降机构和容纳仓,所述容纳仓可以用于容纳所述目标物;
所述容纳仓连接于所述升降机构,所述升降机构能够驱动所述容纳仓上升或者降落,以运输所述目标物。
可选地,所述升降装置还包括:搭接机构,所述搭接机构连接于所述容 纳仓,在所述容纳仓与目标无人机对齐的情况下,所述搭接机构能够连接在所述容纳仓和所述目标无人机之间,以将所述目标无人机上的目标物转运至所述容纳仓内,或将所述容纳仓内的目标物转运至所述目标无人机上。
可选地,所述搭接机构包括展开状态和收拢状态;其中,
在所述展开状态,所述搭接机构能够搭接在所述容纳仓和所述目标无人机之间,在所述收拢状态,所述搭接机构能够收拢至所述容纳仓内。
可选地,所述起降平台还包括:基座,所述支架的一端固定在所述基座上,所述支架的另一端朝向远离所述基座的方向延伸;
所述基座的底部还设置有辅助移动装置,所述辅助移动装置能够辅助所述起降平台移动。
可选地,所述辅助移动装置包括滚轮、脚轮中的至少一种。
第二方面,本申请实施例还公开了一种无人机,所述无人机的底部设置有凸起结构和凹陷结构中的其中之一,所述无人机顶部形成凸起结构和凹陷结构中的其中另一,所述凸起结构能够至少部分地嵌设于所述凹陷结构内,以便于多个所述无人机的垂直堆叠。
可选地,所述无人机包括:机身以及连接于所述机身的多个机臂;其中,
所述凹陷结构设置于所述机身的顶部,所述凸起结构设置于所述机身的底部。
可选地,所述凸起结构包括:平面部和环绕所述平面部设置的第二导向部,所述第二导向部能够将所述凸起结构导入另一个所述无人机的所述凹陷结构。
可选地,所述机身的顶部还设置有承接平台,所述承接平台位于所述多个机臂之间,所述承接平台用于与另一个所述无人机的所述平面部配合。
可选地,所述机臂的一端固定在所述承接平台上,另一端朝向远离所述承接平台且倾斜向上的方向延伸,所述多个所述机臂环绕形成所述凹陷结构。
可选地,相邻的两个所述机臂之间还设置有连接框架,所述连接框架的顶面形状与所述机臂的顶面形状适配,所述连接框架与所述机臂共同形成所述凹陷结构。
可选地,所述连接框架上设置有第三开口和第四开口,所述第三开口和所述第四开口用于避让起降平台上的导轨。
可选地,所述无人机还包括:螺旋桨和螺旋桨保护罩;其中,
所述螺旋桨固定在所述机臂的另一端,所述螺旋桨保护罩覆盖在所述螺旋桨外,用于保护所述螺旋桨;
所述螺旋桨保护罩靠近所述机臂的一侧设置有导向部,所述导向部能够将另一个所述无人机的凸起结构导入所述凹陷结构内。
第三方面,本申请实施例还公开了一种起降系统,所述起降系统包括:上述任一项所述的起降平台,以及,上述任一项所述的无人机;其中,
所述无人机的数量为多个;
多个所述无人机能够垂直堆叠于所述起降平台,在所述多个无人机降落的情况下,所述多个无人机能够垂直堆叠于所述起降平台,在所述多个无人机的起飞的情况下,所述多个无人机能够从所述起降平台上起飞。。
第四方面,本申请实施例还提供了一种收纳装置,所述收纳装置包括:收纳平台以及上述任一项所述的起降平台,所述起降平台的数量为多个,每个所述起降平台能够垂直堆叠多个无人机。
可选地,所述收纳平台上设置有多个第一伸缩架,所述第一伸缩架的伸缩方向为第一方向;
每个所述第一伸缩架上连接有多个所述起降平台,所述多个起降平台沿所述第一方向活动连接于所述第一伸缩架,以调节相邻的所述起降平台之间的距离。
可选地,所述第一伸缩架包括:第一支架本体和第一伸缩机构,所述第一伸缩机构可伸缩地连接于所述第一支架本体上;
所述多个起降平台连接于所述第一支架本体,以通过所述第一伸缩机构的伸缩调节相邻的所述起降平台之间的距离。
可选地,所述收纳装置还包括第二伸缩架,所述第二伸缩架的方向为第二方向,所述第二方向与所述第一方向垂直;
所述多个第一伸缩架沿第二方向依次间隔连接于所述第二伸缩架,以调节相邻的所述第一伸缩支架之间的距离。
可选地,所述第二伸缩架包括:第二支架本体和第二伸缩机构,所述第二伸缩机构可伸缩地连接于所述第二支架本体上;
所述多个第一伸缩支架连接于所述第二支架本体,以通过所述第二伸缩机构的伸缩调节相邻的所述第二伸缩架之间的距离。。
第五方面,本申请实施例还提供了一种起降控制方法,应用于主控设备,其特征在于,所述起降控制方法包括:
接收针对多个无人机的操作指令,所述操作指令包括起飞指令和召回指令;
响应于所述起飞指令,控制垂直堆叠于起降平台的多个无人机从所述起降平台起飞;
响应于接收到的召回指令,控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台。
可选地,所述控制垂直堆叠于起降平台的多个无人机从所述起降平台上起飞的步骤,包括:
控制垂直堆叠于起降平台的多个无人机转桨至悬停状态;
控制所述起降平台将所述多个无人机依次推出所述起降平台,并控制被推出的所述无人机起飞。
可选地,所述控制垂直堆叠于起降平台的多个无人机从所述起降平台上起飞的步骤,包括:
控制所述起降平台将垂直堆叠且处于停桨状态的无人机推出;
控制被推出的所述无人机起飞。
可选地,所述控制垂直堆叠于起降平台的多个无人机从所述起降平台上起飞的步骤,包括:
控制起降平台将垂直堆叠的多个无人机推出;
控制所述多个无人机转桨至悬停状态;
控制处于悬停状态的所述多个无人机同时起飞。
可选地,所述控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
依次将所述无人机召回至所述起降平台的顶部并切换至悬停状态;
每确定一个所述无人机处于悬停状态后,则控制所述无人机降落并沿导轨垂直堆叠于所述起降平台。
可选地,所述控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
将所述多个无人机同时召回至所述起降平台的顶部,并切换至悬停状态且在竖直方向垂直排列;
控制处于悬停状态的多个所述无人机依次降落并沿导轨垂直堆叠于所述起降平台。
可选地,在控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台 的步骤之后,还包括:
响应于接收到的收纳指令,控制所述起降平台对垂直堆叠的所述多个无人机进行收纳;
响应于接收到的充电指令,控制所述起降平台给所述多个无人机充电。
第六方面,本申请实施例还提供了一种起降控制方法,用于上述任一项所述的起降平台,所述起降控制方法包括:
响应于接收到的起飞指令,将垂直堆叠于起降平台的多个无人机从所述起降平台推出;
响应于接收到的召回指令,将降落的所述多个无人机沿导轨垂直堆叠于所述起降平台。
可选地,所述起降控制方法还包括:
响应于接收到的收纳指令,对垂直堆叠于所述起降平台的多个无人机进行收纳;
响应于接收到的充电指令,对垂直堆叠于所述起降平台的多个无人机进行充电。
可选地,所述对垂直堆叠于所述起降平台的多个无人机进行充电的步骤,包括:
获取所述无人机上的第二充电模块的位置;
在所述起降平台上的第一充电模块与所述第二充电模块的位置对齐的情况下,控制所述第一充电模块与所述第二充电模块电连接,以给所述无人机进行充电。
可选地,所述在所述起降平台上的第一充电模块与所述第二充电模块的位置对齐的情况下,控制所述第一充电模块与所述第二充电模块电连接,以给所述无人机进行充电的步骤之后,还包括:
将所述无人机锁定在所述第二充电模块与所述第一充电模块对齐的位置。
可选地,所述控制垂直堆叠于起降平台的多个无人机进行收纳的步骤,包括:
控制起降平台将垂直堆叠的所述多个无人机下降至收纳位置。
第七方面,本申请实施例还提供了一种起降控制方法,应用于无人机,其特征在于,所述起降控制方法包括:
响应于接收到的起飞指令,所述多个无人机从起降平台起飞;
响应于接收到的召回指令,所述多个无人机降落并沿导轨垂直堆叠于所述起降平台。
可选地,所述多个无人机从起降平台起飞的步骤,包括:
垂直堆叠于起降平台的多个无人机转桨至悬停状态;
在所述起降平台的推出作用下,所述多个无人机依次推出所述起降平台,被推出的所述无人机起飞。
可选地,所述多个无人机从起降平台起飞的步骤,包括:
在所述起降平台的推出作用下将垂直堆叠且处于停桨状态的无人机推出;
被推出的所述无人机起飞。
可选地,所述多个无人机从起降平台起飞的步骤,包括:
在所述起降平台的推出作用下,垂直堆叠的多个无人机推出所述起降平台;
所述多个无人机转桨至悬停状态;
处于悬停状态的所述多个无人机同时起飞。
可选地,所述多个无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
依次将所述无人机召回至所述起降平台的顶部并切换至悬停状态;
每确认一个所述无人机处于悬停状态后,则处于悬停状态的所述无人机降落并沿导轨垂直堆叠于所述起降平台。
可选地,所述多个无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
所述多个无人机同时召回至所述起降平台的顶部,并切换至悬停状态且在竖直方向垂直排列;
处于悬停状态的多个所述无人机依次降落并沿导轨垂直堆叠于所述起降平台。
本申请实施例中,通过在所述起降平台上设置支架,在所述多个无人机降落的情况下,所述多个无人机能够沿所述导轨垂直堆叠于所述支架,在所述多个无人机的起飞的情况下,所述多个无人机能够从所述支架上起飞,也即,所述起降平台可以用于实现多个无人机的起飞和降落。这样,就可以避免人工进行无人机起飞场地布置、准备和降落回收的操作,减少多个无人机进行协同作业时的人力投入和场地投入,不仅可以降低多个无人机协同作业 的成本,还可以提升多个无人机协同作业的效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本申请实施例的一种起降平台的结构示意图;
图2示意性地示出了应用了图1所示的起降平台的起降系统的结构示意图;
图3示意性地示出了图2所示的起降系统另一角度的结构示意图;
图4示意性地示出了图2所示的起降系统再一角度的结构示意图
图5示意性地示出了本申请实施例的一种第一支架的结构示意图;
图6示意性地示出了图5所示的第一支架的分解结构示意图;
图7示意性地示出了本申请实施例的一种第二支架的结构示意图;
图8示意性地示出了图7所示的第二支架的分解结构示意图;
图9示意性地示出了本申请实施例的一种导向载板12的结构示意图;
图10示意性地示出了本申请实施例的另一种起降平台的结构示意图;
图11示意性地示出了本申请实施例的再一种起降平台的结构示意图;
图12示意性地示出了图11所示的起降平台另一角度的结构示意图;
图13示意性地示出了本申请实施例的再一种起降平台的结构示意图之一;
图14示意性地示出了图13所示的起降平台的结构示意图之二;
图15示意性地示出了本申请实施例的一种无人机的结构示意图;
图16示意性地示出了图15所示的无人机另一角度的结构示意图;
图17示意性地示出了图15所示的无人机A-A截面的结构示意图;
图18示意性地示出了本申请实施例所述的一种收纳装置的结构示意图;
图19示意性地示出了图18所示的收纳装置另一角度的结构示意图;
图20示意性地示出了图18所示的收纳装置再一角度的结构示意图;
图21示意性地示出了本申请实施例的另一种收纳装置的结构示意图;
图22示意性地示出了图21所示的收纳装置另一角度的结构示意图
图23示意性地示出了本申请实施例所述的一种第一伸缩架的结构示意图;
图24示意性地示出了本申请实施例所述的一种起降控制方法的步骤流程图;
图25示意性地示出了本申请实施例所述的另一种起降控制方法的步骤流程图;
图26示意性地示出了本申请实施例所述的一种起降控制方法的步骤流程图;
图27示意性地示出了本申请实施例所述的另一种起降控制方法的步骤流程图;
图28示意性地示出了本申请实施例所述的另一种起降控制方法的步骤流程图;
附图标记说明:10-支架,101-导轨,102-第一支架,1021-第一倾斜面,103-第二支架,1031-第二倾斜面,104-壳体,105-封板,106-开口,11-第一充电模块,12-导向载板,121-下凹部,122-第一导向部,123-第一开口,124-第二开口,13-提升模块,131-驱动件,132-丝杠,133-滑块,134-支撑块,14-导流框架,141-导流口,142-导流板,143-支撑架,15-升降装置,151-升降机构,152-容纳仓,153-搭接机构,16-基座,17-辅助移动装置,18-气流发生装置,181-气流出口,100-无人机,20-机身,201-承接平台,21-机臂,22-凹陷结构,23-凸起结构,231-平面部,232-第二导向部,24-连接框架,241-第三开口,242-第四开口,25-螺旋桨,26-螺旋桨保护罩,30-收纳平台,301-第一伸缩架,3011-第一支架本体,3012-第一伸缩机构,302-第二伸缩架,31-起降平台。
详细描述
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特 征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
参照图1,示出了本申请实施例的一种起降平台的结构示意图,参如图2,示出了应用了图1所示的起降平台的起降系统的结构示意图,参照图3,示出了图2所示的起降系统另一角度的结构示意图,参照图4,示出了图2所示的起降系统再一角度的结构示意图,所述起降平台具体可以包括:
支架10,所述支架10设置有垂直的导轨101;
多个无人机100能够沿导轨101垂直堆叠于支架10,且能够从支架10上起飞。
本申请实施例中,通过在所述起降平台上设置支架10,在多个无人机100降落的情况下,多个无人机100能够沿导轨101垂直堆叠于支架10,在多个无人机100的起飞的情况下,多个无人机100能够从支架10上起飞,也即,所述起降平台可以用于实现多个无人机100的起飞和降落。这样,就可以避免人工进行无人机100起飞场地布置、 准备和降落回收的操作,减少多个无人机100进行协同作业时的人力投入和场地投入,不仅可以降低多个无人机100协同作业的成本,还可以提升多个无人机100协同作业的效率。
例如,在多个无人机100进行协同作业的场景为无人机表演时,多个无人机100可以堆叠收纳在所述起降平台上。在多个无人机100需要起飞的情况下,多个无人机100可以从所述起降平台上的支架10上起飞。这样,就可以避免人工进行起飞场地布置,并将多个无人机100一一摆放在起飞场地的操作。在表演完成之后,多个无人机100可以沿支架10上的导轨101垂直堆叠于支架10,避免了先将无人机100降落至起飞场地,并依靠人工将所述多个无人机100进行回收收纳的问题。一方面,可以降低无人机100表演需要的场地投入和人力投入,另一方面,还可以提高无人机100表演的效率。
可选地,在多个无人机100垂直堆叠于支架10的情况下,所述起降平台可以包括收纳状态和充电状态;其中,在所述收纳状态,所述起降平台用于收纳多个无人机100,在所述充电状态,所述起降平台可以用于给多个无人机100充电,以提高无人机100的续航能力。
在具体的应用中,在所述起降平台处于所述收纳状态时,所述起降平台上的多个无人机100可以尽量紧凑的布局,以减少多个无人机100所占的体积,便于减小所述起降平台和无人机100进行存储和转运时所需的空间。在所述起降平台处于所述充电状态时,应该合理控制无人机100之间的距离,以便于对多个无人机100进行充电,并提高充电安全。因此,所述多个无人机100在所述收纳状态时相对于支架10的位置与多个无人机100在所述充电状态时相对于支架10的位置不同。
本申请实施例中,所述起降平台还设置有:多个第一充电模块11,多个第一充电模块11垂直堆叠于支架10;在所述充电状态下,一个第一充电模块11能够与一个所述无人机100的第二充电模块电连接,以给充所述无人机100充电,提高无人机100的续航能力。
具体的,所述起降平台上还可以设置有控制模块,所述控制模块可以与多个第一充电模块11通信连接,以控制第一充电模块11给无人机100充电。
可选地,第一充电模块11可以包括充电插接件和信号传输插接件, 所述充电插接件可以用于给无人机100充电,所述信号传输插接件可以用于实现第一充电模块11与所述第二充电之间的数据交换。
具体的,在将第一充电模块11和第二充电模块插接连接的情况下,可以将所述充电插接件和所述信号传输插接件同时与所述第二充电模块插接连接。其中,所述充电插接件可以与所述无人机100上的充电接口电连接,以给无人机100进行充电,所述信号传输插接件可以与无人机100上的信号接口,以进行第一充电模块11与无人机100之间的数据交换。例如,下载无人机100的数据、对无人机100的固件进行更新、识别无人机100的编号或者输入航线等。
具体的,无人机100的机身高度为第一高度,两个相邻的第一充电模块11的垂直间隔为第一间隔,所述第一间隔大于所述第一高度,这样,可以便于将无人机100上的第二充电模块与所述起降平台上的第一充电模块11对齐。
在实际应用中,可以参照第一充电模块11之间的第一间隔来调节无人机100之间的间隔,以使得无人机100上的第二充电模块能够与所述起降平台上的第一充电模块11对齐。
本申请实施例中,支架10上设置有用于容纳所述多个无人机100的容纳空间。具体的,在多个无人机100堆叠于支架10的情况下,多个无人机100可以被收纳于所述容纳空间内。
在实际应用中,导轨101和第一充电模块11可以皆设置在所述容纳空间内,以便于导轨101对无人机100的堆叠进行导向,以及,便于第一充电模块11给无人机100进行充电。
如图2所示,支架10可以包括第一支架102和第二支架103,其中,第一支架102和第二支架103相对间隔设置,所述容纳空间形成于第一支架102和第二支架103之间。第一支架102和第二支架103皆设置有导轨101,以从无人机100的两侧进行导向,将无人机100导入所述容纳空间内,并从两侧支撑无人机100,提高无人机100的堆叠可靠性。
可选地,第一支架102和第二支架103的导轨101皆至少部分嵌设于多个无人机100,以对无人机100在所述容纳空间内的活动进行限位,避免无人机100在所述容纳空间内晃动,以提高无人机100在所述容纳空间内的堆叠可靠性。
在本申请的一些可选实施例中,支架10的数量为一个,所述容纳空间形成于支架10上。具体的,为了提高无人机100在支架10上的堆叠可靠性,所述容纳空间可以位于支架10的中心位置。
可选地,无人机100上设置有安装通孔,在多个无人机100垂直堆叠于支架10的情况下,无人机100的安装通孔可以套接在支架10上。具体的,所述安装通孔可以设置在无人机100中心区域,以提高无人机100在支架10上的堆叠可靠性。
在实际应用中,在无人机100需要降落的情况下,可以将无人机100上的安装通孔对准支架10,这样,然后,再进行无人机100的降落,以将无人机100上的安装通孔套接在支架10上,以实现无人机100在支架10上的堆叠。
可选地,支架10上的导轨101至少部分嵌设于多个无人机100,以对无人机100在所述容纳空间内的活动进行限位,避免无人机100在支架10上发生晃动。
在具体的应用中,可以在无人机100上设置有开口,在需要将多个无人机100进行垂直堆叠的情况下,可以将无人机100上的开口与支架10上的导轨101对齐,然后,再控制无人机100下降,以使得支架10上的导轨101嵌设于无人机100的开口内。
需要说明的是,本申请实施例的附图中,仅示出了支架10的数量为两个,且所述容纳空间形成于两个支架10之间的情况。而在实际应用中,支架10的数量可以根据实际情况进行选定。例如,支架10的数量可以为1个、2个、3个或者5个等,本申请实施例对于支架10的数量可以不做限定。在支架10的数量为多个的情况下,所述容纳空间可以形成于多个支架10之间。
在本申请的一些可选实施例中,所述起降平台还可以包括:导向载板12,导向载板12至少部分设置于所述容纳空间内,导向载板12用于承载无人机100。
具体的,导向载板12可以活动连接于支架10。在无人机100起飞的过程中,导向载板12可以往上移动,以提升无人机100。在无人机100降落的过程中,导向载板12可以往下移动,以使得无人机100垂直下落堆叠在支架10上。
参照图5,示出了本申请实施例的一种第一支架的结构示意图,参 照图6,示出了图5所示的第一支架的分解结构示意图,参照图7,示出了本申请实施例的一种第二支架的结构示意图,参照图8,示出了图7所示的第二支架的分解结构示意图。
如图5至图8所示,导向载板12可以连接于第一支架102和第二支架103上,第一充电模块11可以连接于第二支架103上。
参照图9,示出了本申请实施例的一种导向载板12的结构示意图,如图9所示,导向载板12可以包括下凹部121和第一导向部122,其中,下凹部121设置在导向载板12的中央区域,第一导向部122设置在导向载板12的边缘区域且环绕下凹部121设置;第一导向部122的一侧与下凹部121的边缘连接,第一导向部122的另一侧朝向远离下凹部121且倾斜向上的方向延伸。
具体的,下凹部121可以位于所述容纳空间的中心位置,用于与无人机100的机身底部连接,支撑无人机100。第一导向部122可以用于将无人机100导入下凹部121。
可选地,下凹部121可以为平面结构,以与无人机100的机身底部充分接触,提高导向载板12对于无人机100的支撑可靠性。
可选地,第一导向部122为倾斜的平面结构或者曲面结构,这样,在无人机100降落的过程中,无人机100可以沿着倾斜的第一导向部122滑动至下凹部121内,以实现导向载板12对无人机100的可靠支撑。
可选地,在支架10包括第一支架102和第二支架103的情况下,第一导向部122可以设置有第一开口123和第二开口124,第一开口123套设于第一支架102的导轨101,第二开口124套设于第二支架103的导轨101,以对导向载板12在第一支架102和第二支架103上的活动进行限位。
在具体的应用中,通过在导向载板12的第一导向部122上设置第一开口123和第二开口124,并将第一开口123套设于第一支架102上的导轨101,将第二开口124套设于第二支架103上的导轨101,可以限位导向载板12只能沿着第一支架102和第二支架103上的导轨101滑动,避免了导向载板12在第一支架102和第二支架103上晃动。
参照图10,示出了本申请实施例的另一种起降平台的结构示意图,如图10所示,第一支架102的导轨101的顶部设置有第一倾斜面1021, 第二支架103的导轨101的顶部设置有第二倾斜面1031,第一倾斜面1021、第二倾斜面1031的形状与第一导向部122的形状适配;其中,在导向载板12活动至导轨101顶部的情况下,第一倾斜面1021、第二倾斜面1031能够与第一导向部122平齐,以形成完整的轮廓,更好的将无人机100导入导向载板12中央区域的下凹部121。
具体的,第一倾斜面1021、第二倾斜面1031的形状与所述第一导向部122适配具体可以为:第一倾斜面1021、第二倾斜面1031的截面形状与第一导向部122的截面形状相同。例如,在第一导向部122的截面形状为倾斜的平面的情况下,第一倾斜面1021和第二倾斜面1031的截面形状可以相应为倾斜的平面。又如,在第一导向部122的截面形状为倾斜的曲面的情况下,第一倾斜面1021和第二倾斜面1031的截面形状可以相应为倾斜的曲面。
可选地,支架10还设置有提升模块13,提升模块13可沿支架10滑动,且与导向载板12连接,提升模块13可以用于提升导向载板12。在实际应用中,通过提升模块13沿支架10的滑动,可以带动导向载板12沿支架10上下滑动,以将导向载板12上的无人机100提升至支架10的顶部,或者,将导向载板12上的无人机100下降至支架10的底部。
可选地,提升模块13可以包括:驱动件131、丝杠132和滑块133;其中,驱动件131的输出端与丝杠132连接,用于驱动丝杠132转动,丝杠132的轴向与导轨101的导向平行;滑块133内设置有螺纹孔,所述螺纹孔套接在丝杠132上且与丝杠132的螺纹连接,丝杠132的转动能够带动滑块133沿丝杠132的轴向滑动,滑块133可以用于与导向载板12连接,以带动导向载板12沿支架10滑动。
具体的,驱动件131可以为伺服电机,所述伺服电机可以连接在所述丝杠132的底部。所述伺服电机的输出端可以与丝杠132连接,在所述伺服电机转动的情况下,可以带动丝杠132相应转动,而且,丝杠132的转动方向可以与所述伺服电机的转动方向一致。
需要说明的是,在实际应用中,为了实现对于导向载板12的可靠提升,可以在第一支架102内和第二支架103内皆设置有提升模块13。
可选地,支架10还可以包括:可配合连接的壳体104和封板105,壳体104和封板105之间形成容纳腔;其中,导轨101设置在壳体104 上;驱动件131、丝杠132皆设置在所述容纳腔内,滑块133至少部外露延伸至导轨101外,以与导向载板12连接。
如图6所示,第一支架102可以由壳体104和封板105围合而成,如图8所示,第二支架103相应也可以由壳体104和封板105围合而成。
在具体的应用中,通过将驱动件131、丝杠132设置壳体104与封板105形成的容纳腔内,可以对驱动件131和丝杠132形成保护作用,避免外界的水和杂质进入驱动件131和丝杠132的内部,造成驱动件131的短路或者影响丝杠132的运动精度,进而,可以提高提升模块13的工作可靠性。
具体的,由于滑块133至少部分延伸至导轨101外并需要沿导轨101上下滑动,因此,在导轨101上可以设置有长条形的开口106,以便于滑块133沿开口106滑动,开口106的延伸方向可以与导轨101的延伸方向保持一致。
可选地,提升模块13上还可以包括支撑块134,支撑块134的一端可以固定在滑块133上,另一端可以延伸至导轨101外并与导向载板12的底部连接,以充分的支撑导向载板12,以提高提升模块13对于导向载板12的支撑可靠性。
可选地,所述起降平台还可以包括控制模块,所述控制模块与提升模块13电连接;其中,在多个无人机100降落情况下,所述控制模块可以控制提升模块13驱动导向载板12下降,以使多个无人机100能够沿导轨101垂直堆叠于支架10;在多个无人机100起飞的情况下,所述控制模块可以控制提升模块13驱动导向载板12上升,以使多个无人机100能够在支架10上起飞。
具体的,所述控制模块可以与提升模块13中的驱动件131电连接,以控制驱动件131正转或者反转来驱动导向载板12上升或者下降。进而,通过导向载板12的上升或者下降来带动无人机100上升或者下降。
示例地,所述控制模块可以设置于支架10内部的容纳腔内,也可以设置在支架10底部的基座16内,本申请实施例对于所述控制模块的位置可以不做限定。
可选地,所述起降平台还可以包括:弹性承接件,所述弹性承接件的至少部分设置于所述容纳空间内,所述弹性承接件可以用于承接 所述无人机100。
在实际应用中,在无人机100降落的过程中,无人机100可以先降落至所述弹性承接件上,由于所述弹性承接件至少部分设置于所述容纳空间内,通过所述弹性承接件的弹性压缩,不仅可以缓冲无人机100降落的冲击,还可以将无人机100导入所述容纳空间内。
可选地,所述弹性承接件的压缩方向可以与导轨101的延伸方向一致。这样,在无人机100降落的过程中,通过所述弹性承接件沿所述压缩方向的压缩,可以带动无人机100沿导轨101滑动,从而,可以提高多个无人机100的堆叠效率。
可选地,所述弹性承接件可以包括弹簧、弹片中的至少一种,本申请实施例对于所述弹性承接件的具体类型不做具体限定。
可选地,所述起降平台还可以包括:导向件,所述导向件连接于支架10,所述导向件可以用于将无人机100导入所述容纳空间,以使得无人机100可以快速的堆叠在支架10的容纳空间内。
具体的,所述导向件可以包括机械导向件、电动导向件或者气动导向件中的至少一种,本申请实施例对于所述导向件的具体类型可以不做限定。
参照图11,示出了本申请实施例的再一种起降平台的结构示意图,参照图12,示出了图11所示的起降平台另一角度的结构示意图。如图11、图12所示,所述导向件可以包括导流框架14,导流框架14设置在支架10的顶部,且环绕所述容纳空间设置,导流框架14能够利用无人机100产生的向下气流将无人机100推向所述容纳空间。
具体的,导流框架14可以环绕支架10的容纳空间设置,在无人机100降落的过程中,无人机100会产生向下的气流,在所述向下的气流作用在导流框架14上的情况下,在导流框架14的阻挡作用下,所述向下的气流会回弹,回弹的气流作用下无人机100上时,可以将无人机100推向所述容纳空间。
可选地,导流框架14可以设有导流口141,导流口141与所述容纳空间相对。具体的,导流框架14可以将无人机100推向导流口141,以便于无人机100通过导流口141进入与其相对的容纳空间内,实现无人机100在所述容纳空间内的堆叠。
可选地,导流框架14可以包括多个导流板142,多个导流板142 环绕导流口141的周向依次连接,导流板142的一侧靠近导流口141,另一侧朝向远离导流口141且倾斜向上的方向延伸。这样,通过将导流板142绕导流口141的倾斜设置,可以将所述无人机100推向导流口141。
具体的,多个导流板142可以呈圆环状绕接在导流口141的周向,也可以呈矩形、五边形或者六边形等形状绕接在导流口141的周向,本申请实施例对于多个导流板142的绕接形状不做具体限定。在实际应用中,相邻的两个导流板142之间可以采用卡接连接、紧固件连接等连接方式实现固定连接,本申请实施例对于导流板142之间的固定连接方式可以不做具体限定。
可选地,导流板142为倾斜的平板或者弧形板,本申请实施例对于导流板142的具体形状不做限定。
可选地,导流框架14还可以包括:支撑架143,支撑架143与导流板142连接,以支撑导流板142,支撑架143可以绕支架10设置。
在实际应用中,支撑架143可以与支架10一起固定在支架10底部的基座16上,也可以与支架10分离设置,本申请实施例对于支撑架143与支架10之间的连接方式可以不做具体限定。
可选地,导流框架14上还设置有缓冲垫,所述缓冲垫可以用于缓冲无人机100降落在导流框架14上的冲击力。
具体的,在无人机100的降落过程中,无人机100可能存在未能精确降落至导流口141而是降落至导流板142的位置。通过在导流框架14的导流板142上设置缓冲垫,可以减小无人机100与导流板142接触时的冲击,提高导流框架14的使用寿命。
可选地,所述缓冲垫可以包括:橡胶垫、泡棉垫中的至少一种,本申请实施例对于所述缓冲垫的具体内容可以不做限定。
可选地,所述导向件可以包括:气流发生装置18,气流发生装置18设置在第一支架102和第二支架103的顶部,且环绕所述容纳空间设置,多个气流装置18能够将无人机100推向所述容纳空间。
具体的,气流发生装置18可以产生气流,由于气流发生装置18环绕所述容纳空间设置,在无人机100降落的时候,气流装置发生装置18产生的气流可以将无人机100推向所述容纳空间,便于无人机100在所述容纳空间内的堆叠。
可选地,气流发生装置18可以包括:多个气流出口181,每个气流出口181皆可释放气流以推动无人机100。多个气流出口181可以环绕所述容纳空间设置,以从多个方向将无人机100推向所述容纳空间。这样,即使无人机100的降落位置较为复杂,通过所述多个气流出口的协同作用,仍可将无人机100的精确的推向所述容纳空间,提高气流发生装置18对于无人机100的导向精度。
需要说明的是,在实际应用中,多个气流出口181可以共用一个气流发生装置18,也可以每个气流出口对应一个独立的气流发生装置18,本申请实施例对此不做限定。
参照图13,示出了本申请实施例的再一种起降平台的结构示意图之一,参照图14,示出了图13所示的起降平台的结构示意图之二。如图13、图14所示,所述起降平台还可以包括:升降装置15,升降装置15的升降方向与支架10的延伸方向一致;其中,在无人机100堆叠于支架10的情况下,升降装置15能够运输无人机100上承载的目标物。
具体的,升降装置15可以用于与支架10配套使用,升降装置15与支架10延伸方向一致,可以进行垂直方向的上升或者下降。在多个无人机100堆叠于支架10的情况下,升降装置15能够将无人机100上承载的目标物运输至支架10以外的位置,或者,将所述目标物从支架10以外的外置运输至无人机100上,实现所述目标物的输入和输出。
示例的,所述目标物可以为乘客或者货物。例如,在无人机100为载人无人机100的情况下,所述目标物可以为乘客。又如,在无人机100为物流无人机100的情况下,所述目标物可以为货物。本申请实施例对于所述目标物的具体内容可以不做限定。
可选地,升降装置15具体可以包括升降机构151和容纳仓152,所述容纳仓152可以用于容纳所述目标物;容纳仓152连接于升降机构151,升降机构151能够驱动容纳仓152上升或者降落,以运输所述目标物。
具体的,升降机构151上可以设置有升降支架和升降驱动机构,所述升降驱动机构可以与容纳仓152连接,以驱动容纳仓152沿所述升降支架上升或者下降。
示例地,所述升降驱动机构可以包括电机、推杆等能够驱动所述 容纳仓152上升或者下降的驱动机构,本申请实施例对于所述升降驱动机构的具体内容可以不做限定。
具体的,容纳仓152可以包括用于容纳所述目标物的舱体和舱门,在所述舱门打开的情况下,可以便于所述目标物进出所述舱体,在所述舱门关闭的情况下,可以保护所述舱体内的目标物。
如图14所示,升降装置15还可以包括:搭接机构153,搭接机构153连接于容纳仓152,在容纳仓152与所述目标无人机对齐的情况下,搭接机构153能够连接在容纳仓152和所述目标无人机之间,以将所述目标无人机上的目标物转运至容纳仓152内,或将容纳仓152内的目标物转运至所述目标无人机上。
具体的,所述目标无人机可以为多个无人机100中需要进行目标物转运的无人机100。例如,在多个无人机100垂直堆叠于所述支架10时,如果是顶部的无人机100需要进行目标物的转运,则可以将顶部的无人机100作为目标无人机。
本申请实施例中,搭接机构153作为连接容纳仓152和所述目标无人机的桥梁,通过搭接机构153,可以将容纳仓152内的目标物转运至所述目标无人机,或者,将所述目标无人机内的目标物转运至容纳仓152内。
可选地,搭接机构153具体可以包括展开状态和收拢状态。如图14所示,在所述展开状态,搭接机构153能够搭接在容纳仓152和所述目标无人机之间,以实现所述目标物在容纳仓152和所述目标无人机之间的转运。如图13所示,在所述收拢状态,搭接机构153能够收拢至容纳仓152内,以实现搭接机构153的收纳。
示例地,在需要在容纳仓152和所述目标无人机之间进行目标物的转运时,可以将搭接机构153进行展开,以使得搭接机构153保持在所述展开状态,实现所述目标物在容纳仓152和所述目标无人机之间的转运。在需要进行容纳仓152的升降的情况下,可以将搭接机构153收拢至容纳仓152内,以避免搭接机构153影响容纳仓152的上升和下降。
可选地,所述起降平台还可以包括:基座16,所述支架10的一端固定在基座16上,支架10的另一端朝向远离基座16的方向延伸;基座16的底部还设置有辅助移动装置17,辅助移动装置17能够辅助所 述起降平台移动,以提高所述起降平台的移动便捷性。
可选地,辅助移动装置17可以包括滚轮、脚轮中的至少一种,本申请实施对于辅助移动装置17的具体内容可以不做限定。综上,本申请实施例所述的起降平台至少可以包括以下优点:
本申请实施例中,通过在所述起降平台上设置支架,在所述多个无人机降落的情况下,所述多个无人机能够沿所述导轨垂直堆叠于所述支架,在所述多个无人机的起飞的情况下,所述多个无人机能够从所述支架上起飞,也即,所述起降平台可以用于实现多个无人机的起飞和降落。这样,就可以避免人工进行无人机起飞场地布置、准备和降落回收的操作,减少多个无人机进行协同作业时的人力投入和场地投入,不仅可以降低多个无人机协同作业的成本,还可以提升多个无人机协同作业的效率。
本申请实施例还提供了一种无人机,所述无人机可以包括但不局限于载人无人机、物流无人机、航拍无人机、表演无人机、对战无人机以及农业植保无人机中的任意一种,本申请实施例对所述无人机的类型不做具体限定。
本申请实施例中,所述无人机的底部设置有凸起结构和凹陷结构中的其中之一,所述无人机顶部形成凸起结构和凹陷结构中的其中另一,所述凸起结构能够至少部分地嵌设于所述凹陷结构内,以便于多个所述无人机的垂直堆叠,以实现多个所述无人机在所述起降平台上的高密度存储。
具体的,可以在所述无人机的底部设置凸起结构,并在所述无人机的顶部设置凹陷结构,在多个所述无人机进行垂直堆叠的情况下,上下相邻的两个所述无人机中,上面的无人机底部的凸起结构可以至少部分嵌设于下面的无人机顶部的凹陷结构内。或者,也可以在所述无人机的底部设置凹陷结构,并在所述无人机的顶部设置凸起结构,在多个所述无人机进行垂直堆叠的情况下,上下相邻的两个所述无人机中,下面的无人机顶部的凸起结构可以至少部分嵌设于上面的无人机顶部的凹陷结构内。
需要说明的是,本申请实施例中,仅示出了在所述无人机的底部设置凸起结构,并在所述无人机的顶部设置凹陷结构的情况下,在所 述无人机的底部设置凹陷结构,并在所述无人机的顶部设置凸起结构的情况参照执行即可。
参照图15,示出了本申请实施例的一种无人机的结构示意图,参照图16,示出了图15所示的无人机另一角度的结构示意图,参照图17,示出了图15所示的无人机A-A截面的结构示意图。
本申请实施例中,所述无人机具体可以包括:机身20以及连接于机身20的多个机臂21;其中,凹陷结构22设置于机身20的顶部,凸起结构23设置于所述机身20的底部。
具体的,所述无人机的机身20可以作为所述无人机的结构主体,机臂21的一端可以连接在机身20上,另一端可以用于连接螺旋桨25。在实际应用中,机臂21可以为折叠式机臂,也可以为非折叠式机臂,本申请实施例对此不做限定。
本申请实施例中,由于机身20的顶部设置有凹陷结构22,机身20的底部设置有凸起结构23,在多个所述无人机进行垂直堆叠的情况下,上下相邻的两个所述无人机中,上面的无人机机身20底部的凸起结构23可以至少部分嵌设于下面的无人机机身20顶部的凹陷结构22内,以实现多个所述无人机的辅助定位与高密度存储。
可选地,凸起结构23可以包括:平面部231和环绕平面部231设置的第二导向部232,第二导向部232能够将凸起结构23导入另一个所述无人机的凹陷结构22,便于多个所述无人机的垂直堆叠。
具体的,平面部231可以为机身20的最底面,第二导向部232可以为倾斜的平面或者曲面结构。通过第二导向部232的导向作用,可以将平面部231导入另一个无人机顶部的凹陷结构22内,以使得所述无人机可以精确的降落至所述起降平台上并垂直堆叠,实现所述无人机的高密度存储。
可选地,机身20的顶部还设置有承接平台201,承接平台201位于多个机臂21之间,承接平台201可以用于与另一个所述无人机的平面部231配合。由于承接平台201与平面部231之间的接触面积较大,可以减小上下无人机之间的压强,从而,可以减少无人机堆叠时的磨损。
本申请实施例中,机臂21的一端固定在承接平台201上,另一端朝向远离承接平台201且倾斜向上的方向延伸,多个所述机臂21环绕 形成凹陷结构22。
在具体的应用中,所述无人机通常可以包括多个机臂21,多个机臂21可以环绕机身20顶部的承接平台201设置。从承接平台201至机身20外缘的方向,机臂21朝向性朝向倾斜向上的方向延伸,因此,多个倾斜环绕的机臂21可以围合形成一个环绕承接平台201设置的凹陷结构22。在所述无人机降落的过程中,无人机机身20底部的凸起结构23可以顺着机臂21滑动至承接平台201上,将所述无人机精确地降落至所述起降平台并垂直堆叠。
需要说明的是,本申请实施例的附图中,仅示出了所述无人机包括4个机臂21的情况,而在实际应用中,所述无人机的机臂21的数量可以根据实际情况进行设定,例如,机臂21的数量可以为3个、5个或者8个等,本申请实施例对于所述无人机上的机臂21的数量不做具体限定。
可选地,相邻的两个机臂21之间还可以设置有连接框架24,连接框架24的顶面形状与机臂21的顶面形状适配,连接框架24与机臂21共同形成凹陷结构22,以提高所述无人机顶部的凹陷结构22的完整性。这样,在所述无人机降落的过程中,上方的无人机无论是降落在下方无人机的机臂21上,还是机臂21之间的连接框架24上,都可以将上方降落的无人机导入至下方无人机的承接平台201内,进一步提高了所述无人机顶部的凹陷结构22对于无人机降落时的导向范围,提高所述无人机降落时的对位效率。
需要说明的是,为了降低所述无人机的整体重量,连接框架24可以选择镂空的设计。
可选地,连接框架24上设置有第三开口241和第四开口242,第三开口241和第四开口242可以用于避让起降平台上的导轨。在实际应用中,在所述无人机降落在所述起降平台的情况下,第三开口241可以套设在所述第一支架的导轨外,第四开口242可以套设在所述第二支架的导轨外。这样,一方面,在所述无人机降落的过程中,可以使得所述第一支架和第二支架上的导轨皆可对所述无人机的降落进行导向,有利于所述无人机实现垂直堆叠。另一方面,在所述多个无人机垂直堆叠于所述起降平台的情况下,通过将第一支架上的导轨嵌入第三开口241,并将所述第二支架上的导轨嵌入第四开口242,可以通 过所述导轨起到限位作用,防止所述无人机在所述起降平台内发生周向的晃动,进而,可以提高所述多个无人机在所述起降平台上的堆叠可靠性。
需要说明的是,本申请实施例中,仅示出了将所述无人机堆叠于包含有两个支架的起降平台的情况。在具体的应用中,连接框架24上的开口数量可以与所述起降平台上的支架数量对应。例如,在所述起降平台上仅包括一个支架的情况下,连接框架24上可以适应性的开设一个开口,在所述起降平台上包括4个支架的情况下,连接框架24上可以适应性地开设4个开口。本申请实施例对于连接框架24上的开口数量可以不做限定。
可选地,所述无人机还可以包括:螺旋桨25和螺旋桨保护罩26;其中,螺旋桨25固定在机臂21的另一端,螺旋桨保护罩26覆盖在螺旋桨25外,用于保护螺旋桨25;螺旋桨保护罩26靠近机臂21的一侧设置有导向部,所述导向部能够将另一个所述无人机的凸起结构23导入所述凹陷结构22内。
在具体的应用中,通过在螺旋桨保护罩26靠近机臂21的一侧设置有导向部,所述导向部可以作为凹陷结构22的外围结构,进一步增加凹陷结构22的面积。这样,在所述无人机降落的过程中,上方的无人机无论是降落在下方无人机的机臂21上,还是机臂21外围的螺旋桨保护罩26上,都可以将上方降落的无人机导入至下方无人机的承接平台201内,进一步提高了所述无人机顶部的凹陷结构22对于无人机降落时的导向范围,提高所述机无人机降落时的对位效率。综上,本申请实施例所述的无人机至少可以包括以下优点:
本申请实施例中,通过在无人机的底部设置有凸起结构和凹陷结构中的其中之一,所述无人机顶部形成凸起结构和凹陷结构中的其中另一,所述凸起结构能够至少部分地嵌设于所述凹陷结构内,以便于多个所述无人机的垂直堆叠。而且,在多个所述无人机进行垂直堆叠的情况下,上下相邻的两个所述无人机中,上面的无人机机身底部的凸起结构可以至少部分嵌设于下面的无人机机身顶部的凹陷结构内,以实现多个所述无人机的高密度存储。
本申请实施例还提供了一种如图2至图4所示的起降系统,所述 起降系统具体可以包括:上述任一实施例所述的起降平台,以及,上述任一实施例所述的无人机;其中,所述无人机的数量为多个;多个所述无人机能够垂直堆叠于所述起降平台,在所述多个无人机降落的情况下,所述多个无人机能够垂直堆叠于所述起降平台,在所述多个无人机的起飞的情况下,所述多个无人机能够从所述起降平台上起飞。
需要说明的是,本申请实施例中,所述起降平台的结构可以与上述各实施例中的起降平台的结构相同,其工作原理也类似,在此不做赘述。同理,所述无人机的具体结构也可以与上述各实施例中的无人机的结构相同,其工作原理也类似,在此不做赘述。
本申请实施例中,通过在所述起降平台上设置支架,在所述多个无人机降落的情况下,所述多个无人机能够沿所述导轨垂直堆叠于所述支架。在所述多个无人机的起飞的情况下,所述多个无人机能够从所述支架上起飞,也即,所述起降平台可以用于实现多个无人机的起飞和降落。这样,就可以避免人工进行无人机起飞场地布置、准备和降落回收的操作,减少多个无人机进行协同作业时的人力投入和场地投入,不仅可以降低多个无人机协同作业的成本,还可以提升多个无人机协同作业的效率。
本申请实施例还提供了一种收纳装置,用于收纳所述起降平台和无人机。
参照图18,示出了本申请实施例所述的一种收纳装置的结构示意图,参照图19,示出了图18所示的收纳装置另一角度的结构示意图,参照图20,示出了图18所示的收纳装置再一角度的结构示意图;
具体的,所述收纳装置具体可以包括:收纳平台30以及起降平台31,起降平台31的数量为多个,每个起降平台31上能够垂直堆叠多个无人机。
本申请实施例中,收纳平台30可以作为所述收纳装置的结构主体,支撑多个起降平台31。起降平台31能够垂直堆叠多个无人机,以充分利用垂直空间收纳所述多个无人机。在实际应用中,通过将多个无人机垂直堆叠于每个起降平台31上,并将多个起降平台31放置于收纳平台30上,可以实现所述无人机的高密度收纳。
在实际应用中,多个起降平台31可以沿水平方向放置于收纳平台 30上,而起降平台31上的多个无人机则可以垂直堆叠于起降平台31的支架上,以充分利用所述收纳装置的水平空间和垂直空间,实现对于所述无人机的高密度收纳,以便于所述无人机的收纳和转运。
参照图21,示出了本申请实施例的另一种收纳装置的结构示意图,参照图22,示出了图21所示的收纳装置另一角度的结构示意图。
如图21、图22所示,收纳平台30上设置有多个第一伸缩架301,第一伸缩架301的伸缩方向为第一方向;每个第一伸缩架301上连接有多个起降平台31,多个起降平台31沿所述第一方向活动连接于第一伸缩架301,以调节相邻的起降平台31之间的距离。
在具体的应用中,可以沿所述第一方向先展开第一伸缩架301,以便于将多个升降平台连接在第一伸缩架301上。在将多个升降平台连接于第一伸缩架301上之后,可以沿所述第一方向压缩第一伸缩架301,以使得所述第一方向上相邻的两个起降平台31之间的距离变短,以减少多个起降平台31在第一方向上占用的空间。
参照图23,示出了本申请实施例所述的一种第一伸缩架的结构示意图。如图23所示,第一伸缩架301可以包括:第一支架本体3011和第一伸缩机构3012,第一伸缩机构3012可伸缩地连接于第一支架本体3011上;多个起降平台31连接于第一支架本体3011,以通过第一伸缩机构3012的伸缩调节相邻的起降平台31之间的距离。
具体的,第一支架本体3011可以作为第一伸缩支架301上的结构主体,第一支架本体3011可以用于支撑起降平台31。第一伸缩机构3012可以活动连接于第一支架本体3011,多个起降平台31可以通过第一伸缩机构3012连接于第一支架本体3011,这样,通过第一伸缩机构3012沿所述第一方向的伸缩,可以调节所述第一方向上相邻的两个起降平台31之间的距离。
示例地,第一支架本体3011可以为沿所述第一方向延伸的支撑杆,第一伸缩机构3012可以为伸缩方向沿所述第一方向的弹簧、折叠铰链等,本申请实施例对于第一支架本体3011和所述第一伸缩机构3012的具体内容可以不做限定。
可选地,所述收纳装置还可以包括第二伸缩架302,第二伸缩架302的方向为第二方向,所述第二方向与所述第一方向垂直;多个第一伸缩架301沿第二方向依次间隔连接于第二伸缩架302,以调节相邻的 第一伸缩架301之间的距离。
本申请实施例中,所述第一方向和所述第二方向可以相互垂直。例如,可以在收纳平台30的水平面上建立二维坐标系。则所述第一方向可以为所述二维坐标系中的横轴方向,所述第二方向可以为所述二维坐标系中的纵轴坐标。或者,所述第一方向可以为所述二维坐标系中的纵轴方向,所述第二方向可以为所述二维坐标系中的横轴坐标。本申请实施例对此不做限定。
在具体的应用中,可以沿所述第二方向先展开所述第二伸缩架302,以便于将多个起降平台31连接在第二伸缩架301上。在将多个起降平台31连接于第二伸缩架301上之后,可以沿所述第二方向压缩第二伸缩架302,以使得所述第二方向上相邻的两个起降平台31之间的距离变短,以减少所述多个起降平台31在第二方向上占用的空间。
可选地,第二伸缩架301可以包括:第二支架本体和第二伸缩机构,所述第二伸缩机构可伸缩地连接于所述第二支架本体上;所述多个第一伸缩支架连接于所述第二支架本体,以通过所述第二伸缩机构的伸缩调节相邻的所述第二伸缩架之间的距离。
具体的,所述第二支架本体可以作为所述伸缩支架上的结构主体,所述第二支架本体可以用于支撑所述起降平台31。所述第二伸缩机构可以活动连接于所述第二支架本体,所述多个起降平台31可以通过所述第二伸缩机构连接于所述第二支架本体,这样,通过所述第二伸缩机构沿所述第二方向的伸缩,可以调节所述第二方向上相邻的两个所述起降平台31之间的距离。
示例地,所述第二支架本体可以为沿所述第二方向延伸的支撑杆,所述第二伸缩机构可以为伸缩方向沿所述第二方向的弹簧、折叠铰链等,本申请实施例对于所述第二支架本体和所述第二伸缩机构的具体内容可以不做限定。
具体的,所述第二伸缩架301的具体结构可以参照图23所述的第一伸缩架301即可,在此不做赘述。
需要说明的是,在具体的应用中,可以在所述升降平台的底部设置有脚轮或者滚轮的,以辅助所述升降平台在所述收纳平台30上的移动,实现所述升降平台之间的距离调节。
本申请实施例中,所述收纳装置不仅可以用于收纳所述无人机, 还可以用于多个无人机的起飞和降落。具体的,在需要收纳或者运输所述无人机的情况下,可以将第一伸缩架301和第二伸缩架302进行收缩,以缩短起降平台31之间的距离,减少起降平台31在收纳平台30上占用的空间,以在尽可能小的空间内收纳尽可能多的无人机。在需要使用起降平台31进行无人机的起飞和降落的情况下,可以将第一伸缩架301和第二伸缩架302进行展开,以增大起降平台31之间的距离,以便于起降平台31之间可以保持合理的距离,便于所述无人机的起飞或者降落。
可选地,所述无人机还可以与起降平台31的伸缩进行联动。例如,在起降平台31之间的距离变短时,起降平台31上的无人机可以进行自动折叠收纳,以避免起降平台31上的无人机之间发生干涉。又如,在起降平台31之间的距离变大时,可以将起降平台31上的无人机执行起飞操作,而且,相邻的两个起降平台31上的无人机可以不同时起飞,以提供所述无人机起飞时的所需的净空空间。
综上,本申请实施例的收纳装置至少可以包括以下优点:
本申请实施例中,所述收纳平台可以作为所述收纳装置的结构主体,支撑所述多个起降平台。所述起降平台能够垂直堆叠多个无人机,以充分利用垂直空间收纳所述多个无人机。在实际应用中,通过将多个无人机垂直堆叠于每个起降平台上,并将多个起降平台放置于所述收纳平台上,可以实现所述无人机的高密度收纳。
本申请实施例还提供了一种起降控制方法,应用于主控设备。
参照图24,示出了本申请实施例所述的一种起降控制方法的步骤流程图,所述起降控制方法具体可以包括以下步骤:
步骤S11:接收针对多个无人机的操作指令,所述操作指令包括起飞指令和召回指令。
本申请实施例中,所述主控设备可以为用于控制起降平台和所述无人机执行相关操作的设备,所述主控设备包括但不局限于计算机、控制台或者遥控器中的任意一种,本申请实施例对于所述主控设备的具体内容可以不做限定。
具体的,所述主控设备与所述起降平台之间可以通过有线连接或者无线连接的方式实现通讯连接,所述主控设备与所述无人机之间则 可以通过无线连接的方式实现通讯连接。基于所述主控设备与所述起降平台以及所述无人机之间的通讯连接,所述主控设备可以向所述起降平台和所述无人机发送控制指令,以控制所述起降平台或者所述无人机执行相关操作。在某些实施例中,所述主控设备集成在所述起降平台中。在某些实施例中,所述主控设备是多台无人机的其中一台。
本申请实施例中,所述主控设备上可以设置有指令接收设备,所述指令接收设备可以用于针对多个无人机的操作指令,所述指令接收设备可以包括但不限于触控屏、按钮或者声音识别模块中的至少一种。在具体的应用中,用户可以通过在触控屏上的触控操作、在按钮上的按压或者旋转操作、以及通过语音等方式下达针对所述无人机的操作指令。
具体的,所述操作指令可以包括起飞指令和召回指令,所述起飞指令可用于控制所述无人机从起降平台上起飞,所述召回指令可以用于召回所述无人机并将所述多个无人机垂直堆叠于所述起降平台的支架。
步骤S12:响应于所述起飞指令,控制垂直堆叠于起降平台的多个无人机从所述起降平台起飞。
本申请实施例中,所述主控设备在接收到针对所述无人机的起飞指令之后,可以响应于所述起飞指令,控制垂直堆叠于所述起降平台的多个无人机从所述起降平台起飞。在具体的应用中,在所述起降平台上垂直堆叠有多个无人机的情况下,所述主控设备可以按照从上到下的顺序控制所述多个无人机依次起飞。
具体的,所述起降平台上可以设有第一充电模块,所述第一充电模块与所述无人机上的第二充电模块电连接,以给所述无人机充电。在实际应用中,在控制所述无人机起飞之前,应该控制所述无人机解除与所述第一充电模块之间的电连接,以便于所述无人机执行起飞操作,从所述起降平台上起飞。
在本申请的一种可选实施例中,控制垂直堆叠于起降平台的多个无人机从所述起降平台起飞的方法具体可以包括以下子步骤:
首先,控制垂直堆叠于起降平台的多个无人机转桨至悬停状态。
本申请实施例中,在需要控制所述起降平台上的多个无人机起飞时,可以先控制垂直堆叠于所述起降平台上的多个无人机的桨叶开始 转动,提给所述无人机提供升力。具体的,在飞出所述起降平台之前,可以控制所述起降平台上的所有无人机转桨至悬停状态。在实际应用中,在所述无人机处于所述悬停状态的情况下,所述无人机处于可以起飞的状态。
具体的,所述悬停状态具体可以为:所述无人机上的桨叶转动产生的升力不足以使所述无人机完成完全的起飞动作,但是,可以使得所述无人机在有下方一点支撑的情况下,可以保持住自身的姿态稳定(所述姿态可以包括水平姿态和旋转方向的姿态)并可沿导向特征移动。
本申请实施例中,通过控制垂直堆叠于所述起降平台的所述多个无人机转桨至所述悬停状态,可以使得所述起降平台上的多个无人机处于可起飞的状态。
然后,控制所述起降平台将所述多个无人机依次推出所述起降平台,并控制被推出的所述无人机起飞。
本申请实施例中,在控制所述起降平台上的所述多个无人机转桨至所述悬停状态之后,所述主控设备可以基于所述主控设备与所述起降平台之间的通讯连接,控制所述起降平台将所述多个无人机依次推出所述起降平台,并基于所述主控设备与所述无人机之间的通讯连接,控制被推出的所述无人机起飞。
具体的,在控制所述起降平台上的所述多个无人机转桨至所述悬停状态之后,所述主控设备可以控制所述起降平台上的提升模块将所述多个无人机提升一个无人机的高度,以将最上面的无人机推出所述起降平台,再控制被推出的所述无人机起飞。然后,循环执行上述步骤,按照从上往下的顺序,依次所述起降平台上的无人机推出所述起降平台并执行起飞的操作,使得所述起降平台上的多个无人机鱼贯推出并起飞,实现连续的起飞,到达目的地。
本申请实施例中,通过控制垂直堆叠于起降平台的多个无人机转桨至悬停状态,再控制所述起降平台将所述多个无人机依次推出所述起降平台,并控制被推出的所述无人机起飞的方法。由于所述无人机在所述起降平台上已经处于可以起飞的悬停状态,在推出所述起降平台后,所述无人机可以快速的起飞,这样,就可以实现所述多个无人机的连续起飞,起飞效率较高。
在本申请的另一种可选实施例中,控制垂直堆叠于起降平台的多个无人机从所述起降平台起飞的方法具体可以包括以下子步骤:
首先,控制所述起降平台将垂直堆叠且处于停桨状态的无人机推出。
本申请实施例中,在需要控制所述起降平台上的多个无人机起飞时,可以先控制所述起降平台将垂直堆叠且处于停桨状态的无人机中最上面的无人机推出所述起降平台。
具体的,所述主控设备可以控制所述起降平台上的提升模块将所述无人机提升一个机身的高度,以将所述起降平台上最上面的所有无人机推出所述起降平台。
然后,控制被推出的所述无人机起飞。
本申请实施例中,在将所述起降平台上最上面的无人机推出所述起降平台后,所述主控设备可以控制被推出的无人机的桨叶转动并起飞。然后,循环执行上述步骤,直至将所述起降平台上的所有无人机按照从上至下的顺序起飞。
具体的,由于无人机推出所述起降平台后再控制所述无人机的桨叶转动,可以避免所述无人机在所述起降平台内转动桨叶的操作,以最大程度的避免所述无人机的桨叶与所述起降平台发生干涉,提高了所述无人机的起飞安全性。
在本申请的再一种可选实施例中,控制垂直堆叠于起降平台的多个无人机从所述起降平台起飞的方法具体可以包括以下子步骤:
首先,控制起降平台将垂直堆叠的多个无人机推出。
本申请实施例中,在需要控制所述起降平台上的多个无人机起飞时,所述主控设备可以先控制所述起降平台将垂直堆叠于所述起降平台上的所有无人机推出所述起降平台。
具体的,所述主控设备可以控制所述起降平台上的提升模块将所述多个无人机提升一个较大的高度,直到将所述起降平台上的所有无人机推出所述起降平台。
然后,控制所述多个无人机转桨至悬停状态。
本申请实施例中,在将所述起降平台上的所有无人机推出所述起降平台之后,所示主控设备可以控制所述多个无人机的桨叶转动,以使所述多个无人机转桨至悬停状态,也即,使得推出所述起降平台的 多个无人机处于可起飞的状态。
最后,控制处于悬停状态的所述多个无人机同时起飞。
本申请实施例中,在所述多个无人机都被推出所述起降平台,并且已转桨至悬停状态的情况下,所述主控设备可以控制处于所述悬停状态的多个无人机同时起飞并达到目标地点,起飞效果极高。
具体的,通过控制起降平台将垂直堆叠的多个无人机推出,并控制所述多个无人机转桨至悬停状态,最后再控制处于悬停状态的所述多个无人机同时起飞,既能够避免所述无人机在所述起降平台内转动桨叶的操作,以最大程度的避免所述无人机的桨叶与所述起降平台发生干涉,提高了所述无人机的起飞安全性,而且,还可以实现较高的起飞效率。
需要说明的是,在具体的应用中,本领域技术人员可以根据需要上述任一实施例所述的方法来控所垂直堆叠于所述起降平台上的多个无人机进行起飞,本申请实施例对于所述起降平台上的无人机的起飞方式不做具体限定。
步骤S13:响应于接收到的召回指令,控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台。
本申请实施例中,所述主控设备在接收针对所述无人机的召回指令之后,可以响应于所述召回指令,控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台。在具体的应用中,在召回所述多个无人机,最先召回的无人机可以堆叠在所述起降平台的最底部。
在本申请的一种可选实施例中,所述控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台的方法具体可以包括以下子步骤:
首先,依次将所述无人机召回至所述起降平台的顶部并切换至悬停状态。
本申请实施例中,在需要召回所述无人机时,所述主控设备可以控制第一个无人机通过精准降落的方式降落在所述起降平台的导向载板的范围内,并降低所述无人机的桨叶转速,使得所述无人机从飞行状态切换至悬停状态。
在实际应用中,可以在所述起降平台的导向载板上设置第一身份标识,所述无人机在降落的过程中,通过识别所述导向载板上的第一身份标识,可以精准降落在所述导向载板的范围内。所述第一身份标 识可以包括但不局限于二维码等图像标识,或者,凸起或者凹陷等外形轮廓特征,本申请实施例对于所述第一身份标识不做具体限定。
然后,每确定一个所述无人机处于悬停状态后,则控制所述无人机降落并沿导轨垂直堆叠于所述起降平台。
本申请实施例中,在确定一个所述无人机降落至所述起降平台的导向载板的范围内并处于悬停状态之后,可以控制所述无人机进一步降落并沿所述导轨堆叠于所述起降平台。
在实际应用中,由于所述导向载板包括下凹部和的第一导向部,其中,所述下凹部设置在所述导向载板的中央区域,所述第一导向部设置在导向载板的边缘区域且环绕所述下凹部设置。当降落至所述导向载板上的无人机处于悬停状态的情况下,所述无人机的底部可以沿所述第一导向部滑动,直到将所述无人机降落至所述导向载板中央区域的下凹部上,完成所述无人机的降落。
本申请实施例中,在第一个无人机降落在所述起降平台的导向载板上之后,所述主控设备还可以控制所述导向载板下降一个无人机机身的高度,以将所述导向载板上的无人机回收至所述起降平台内。然后,再循环上述步骤,将第二个无人机召回至所述起降平台的范围内并控制所述无人机切换至所述悬停状态。
具体的,在第二个无人机在降落的过程中,可以参照所述已经降落在所述起降平台上的第一个无人机的位置进行精准降落。在实际应用中,每个无人机上皆可设置第二身份标识,通过识别所述无人机上的第二身份标识,可以控制另一个无人机精准降落在所述无人机的范围内。所述第二身份标识可以包括但不局限于二维码等图像标识,或者,凸起或者凹陷等外形轮廓特征,本申请实施例对于所述第二身份标识不做具体限定。
在实际应用中,由于所述无人机的底部设置凸起结构,所述无人机的顶部设置凹陷结构,因此,在第二个无人机的底部降落至所述第一个无人机的范围内并处于悬停状态的情况下,上面的无人机底部的凸起结构可以沿下面的无人机顶部的凹陷结构滑动,直至将上面的无人机降落至下面的无人机顶部的承接平台上,完成第二个无人机的降落。
本申请实施例中,在第二个无人机降落在所述起降平台内的导第 一个无人机上之后,所述主控设备还可以控制所述导向载板下降一个无人机机身的高度,以将第二个无人机回收至所述起降平台内。然后,继续循环第二个无人机的降落步骤,直至将所有的无人机召回并沿所述导轨垂直堆叠于所述起降平台上。
在本申请的另一种可选实施例中,所述控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台的方法具体可以包括以下子步骤:
首先,将所述多个无人机同时召回至所述起降平台的顶部,并切换至悬停状态且在竖直方向垂直排列。
本申请实施例中,在需要召回所述无人机时,所述主控设备可以同时召回所述多个无人机至所述起降平台的顶部,并按照从上往下的顺序将所述多个无人机垂直排列在竖直方向,并将所述多个无人机切换至所述悬停状态。
具体的,在实际应用中,排列在最下方的无人机可以通过精准降落的方式降落在所述起降平台的导向载板的范围内,具体实现方式可以参照前述实施例中的描述,在此不做赘述。从下往下数,第二个无人机可以参照第一个无人机的位置精准降落在第一个无人机的顶部,具体实现方式同样可以参照前述实施例中的描述,在此不做赘述。以此类推,直至将所述的无人机垂直排列在所述起降平台的顶部,并将所有的无人机切换至悬停状态。
本申请实施例中,排列在最下方的无人机可以降落在所述起降平台的导向载板上。由于所述导向载板包括下凹部和的第一导向部,所述下凹部设置在所述导向载板的中央区域,所述第一导向部设置在导向载板的边缘区域且环绕所述下凹部设置。当降落至所述导向载板上的无人机处于悬停状态的情况下,所述无人机的底部可以沿所述第一导向部滑动,直到将所述无人机降落至所述导向载板中央区域的下凹部上,完成所述无人机的降落。
而对于上下相邻的两个无人机来说,上面的无人机可以降落在下面的无人机的顶部。由于所述无人机的底部设置凸起结构,所述无人机的顶部设置凹陷结构,因此,在上面的无人机的底部降落至下面的无人机的范围内并处于悬停状态的情况下,上面的无人机底部的凸起结构可以沿下面的无人机顶部的凹陷结构滑动,直至将上面的无人机降落至下面的无人机顶部的承接平台上,完成上面的无人机的降落。 通过循环执行上述方法,将所述多个无人机垂直堆叠在所述起降平台的上方。
例如,在所述起降平台上需要垂直堆叠16个无人机的情况下,可以将这16个无人机同时召回至所述起降平台的顶部,这16个无人机可以在竖直方向垂直排列并可切换至悬停状态。
然后,控制处于悬停状态的多个所述无人机依次降落并沿导轨垂直堆叠于所述起降平台。
本申请实施例中,在所述主控设备控制所述多个无人机在竖直方向垂直排列并切换至所述悬停状态的情况下,所述主控设备可以控制所述起降平台的导向载板下降,以将所述多个无人机同时回收至所述起降平台内。
需要说明的是,在具体的应用中,本领域技术人员可以根据需要上述任一实施例所述的方法来召回多个无人机,并控制多个无人处垂直堆叠于所述起降平台上,本申请实施例对于所述无人机降落至所述起降平台的方式不做具体限定。
参照图25,示出了本申请实施例所述的另一种起降控制方法的步骤流程图,如图25所示,在步骤S13之后,所述起降控制方法还可以包括以下步骤:
步骤S14:响应于接收到的收纳指令,控制所述起降平台对垂直堆叠的所述多个无人机进行收纳。
本申请实施例中,所述操作指令还可以包括收纳指令。在将所述多个无人机垂直堆叠于所述起降平台时,所述主控设备在接收到所述收纳指令的情况下,可以响应所述收纳指令,控制所述起降平台对垂直堆叠的所述多个无人机进行收纳,以将所述多个无人机收纳进所述起降平台内,且使得所述多个无人机在所述起降平台上占用的空间最小。
具体的,所述主控设备可以控制所述起降平台上的导向载板下降至所述起降平台的最低点,实现对于所述多个无人机的收纳存储,并方便对所述起降平台和其上的多个无人机进行运输。
步骤S15:响应于接收到的充电指令,控制所述起降平台给所述多个无人机充电。
本申请实施例中,所述收纳指令还可以包括充电指令。在将所述 多个无人机垂直堆叠于所述起降平台时,所述主控设备在接收到所述充电指令的情况下,可以响应所述充电指令,控制所述起降平台对垂直堆叠的所述多个无人机进行充电,以提高所述起降平台上的多个无人机的续航能力。
具体的,所述起降平台上可以设置有第一充电模块,一个所述第一充电模块能够与一个所述无人机的第二充电模块电连接,以给充所述无人机充电。
本申请实施例中,所述无人机的机身高度为第一高度,两个相邻的所述第一充电模块的垂直间隔为第一间隔,所述第一间隔大于所述第一高度。因此,在需要对所述起降平台上的无人机进行充电的情况下,可以调节上下相邻的两个所述无人机之间的间隔,使得相邻的两个无人机之间的间隔等于所述第一间隔,以便于所述起降平台上的第一充电模块与所述无人机上的第二充电模块一一对齐,便于二者之间进行电连接。
综上,本申请实施例所述的起降控制方法具体可以包括以下优点:
本申请实施例中,所述主控设备可以接收针对多个无人机的操作指令,所述操作指令包括起飞指令和召回指令;响应于所述起飞指令,控制垂直堆叠于起降平台的多个无人机从所述起降平台起飞;响应于接收到的召回指令,控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台,以实现多个无人机在所述起降平台上的起飞和降落。这样,就可以避免人工进行无人机起飞场地布置、准备和降落回收的操作,减少多个无人机进行协同作业时的人力投入和场地投入,不仅可以降低多个无人机协同作业的成本,还可以提升多个无人机协同作业的效率。
本申请实施例还提供了一种起降控制方法,所述起降控制方法可以用于上述各实施例所述的起降平台,
参照图26,示出了本申请实施例所述的一种起降控制方法的步骤流程图,如图26所示,所述起降控制方法具体可以包括以下步骤:
步骤S21:响应于接收到的起飞指令,将垂直堆叠于起降平台的多个无人机从所述起降平台推出。
本申请实施例中,主控设备在接收到针对所述无人机的操作指令 之后,可以将所述操作指令发送给所述起降平台。具体的,所述操作指令可以包括起飞指令和召回指令,所述起飞指令可用于控制所述无人机从起降平台上起飞,所述召回指令可以用于召回所述无人机并将所述多个无人机垂直堆叠于所述起降平台的支架。
在实际应用中,所述起降平台在接收到所述主控设备发送的起飞指令之后,可以控制所述导向载板朝向上移动,以将垂直堆叠于所述起降平台的多个无人机从所述起降平台推出,以便于所述起降平台上的多个无人机起飞。
需要说明的是,所述起降平台推出所述无人机的速度需要根据所述无人机的起飞模式确定,具体可以参照前述实施例,本申请实施例对此不作赘述。
步骤S22:响应于接收到的召回指令,将降落的所述多个无人机沿导轨垂直堆叠于所述起降平台。
本申请实施例中,所述起降平台在接收到所述主控设备发送的召回指令之后,当所述多个无人机降落至所述导向载板后,可以控制所述导向载板朝下移动,以将所述多个无人机沿所述起降平台的导轨垂直堆叠于所述起降平台,将所述多个无人机降落至所述起降平台上。
需要说明的是,所述起降平台收回所述无人机的速度需要根据所述无人机的起召回模式确定,具体可以参照前述实施例,本申请实施例对此不作赘述。
参照图27,示出了本申请实施例所述的另一种起降控制方法的步骤流程图,如图27所示,在步骤22之后,所述起降控制方法还可以包括以下步骤:
步骤S23:响应于接收到的收纳指令,对垂直堆叠于所述起降平台的多个无人机进行收纳。
本申请实施例中,所述操作指令还可以包括收纳指令。在将所述多个无人机垂直堆叠于所述起降平台时,所述起降平台在接收到所述主控设备发送的收纳指令的情况下,可以响应所述收纳指令,控制垂直堆叠的所述多个无人机进行收纳,以将所述多个无人机收纳进所述起降平台内,且使得所述多个无人机在所述起降平台上占用的空间最小。
具体的,所述起降平台在接收到所述主控设备发送的收纳指令的 情况下,可以控制起降平台将垂直堆叠的所述多个无人机下降至收纳位置,以实现对于所述多个无人机的收纳存储,并方便对所述起降平台和其上的多个无人机进行运输。
示例地,所述收纳位置可以为所述导向载板下降至所述起降平台的最低点的位置。
步骤S24:响应于接收到的充电指令,对垂直堆叠于所述起降平台的多个无人机进行充电。
本申请实施例中,所述收纳指令还可以包括充电指令。在将所述多个无人机垂直堆叠于所述起降平台时,所述主控设备在接收到所述充电指令的情况下,可以响应所述充电指令,控制所述起降平台对垂直堆叠的所述多个无人机进行充电,以提高所述起降平台上的多个无人机的续航能力。
具体的,所述起降平台上可以设置有第一充电模块,一个所述第一充电模块能够与一个所述无人机的第二充电模块电连接,以给充所述无人机充电。
本申请实施例中,所述无人机的机身高度为第一高度,两个相邻的所述第一充电模块的垂直间隔为第一间隔,所述第一间隔大于所述第一高度。因此,在需要对所述起降平台上的无人机进行充电的情况下,可以调节上下相邻的两个所述无人机之间的间隔,使得相邻的两个无人机之间的间隔等于所述第一间隔,以便于所述起降平台上的第一充电模块与所述无人机上的第二充电模块一一对齐,便于二者之间进行电连接。
综上,本申请实施例所述的起降控制方法至少可以包括以下优点:
本申请实施例中,所述起降平台可以响应于接收到的起飞指令,将垂直堆叠于起降平台的多个无人机从所述起降平台推出;以及响应于接收到的召回指令,将降落的所述多个无人机沿导轨垂直堆叠于所述起降平台,以实现多个无人机在所述起降平台上的起飞和降落。这样,就可以避免人工进行无人机起飞场地布置、准备和降落回收的操作,减少多个无人机进行协同作业时的人力投入和场地投入,不仅可以降低多个无人机协同作业的成本,还可以提升多个无人机协同作业的效率。
本申请实施例还提供了一种起降控制方法,所述起降控制方法可以应用于上述各实施例中的无人机。
参照图28,示出了本申请实施例所述的一种起降控制方法的步骤流程图,如图28所述,所述起降控制方法具体可以包括以下步骤:
步骤S31:响应于接收到的起飞指令,所述多个无人机从起降平台起飞。
本申请实施例中,主控设备在接收到针对所述无人机的操作指令之后,可以将所述操作指令发送给所述无人机。具体的,所述操作指令可以包括起飞指令和召回指令,所述起飞指令可用于控制所述无人机从起降平台上起飞,所述召回指令可以用于召回所述无人机并将所述多个无人机垂直堆叠于所述起降平台的支架。
在实际应用中,所述无人机在接收到所述主控设备发送的起飞指令之后,从所述起降平台上起飞。
在本申请的一种可选实施例中,所述多个无人机从所述起降平台上起飞的方法可以包括以下子步骤:
首先:垂直堆叠于起降平台的多个无人机转桨至悬停状态。
本申请实施例中,在所述主控设备的控制下,垂直堆叠于所述起降平台上的多个无人机的桨叶可以开始转动,提给所述无人机提供升力。具体的,在飞出所述起降平台之前,所述起降平台上的所有的无人机可以转桨至悬停状态。在实际应用中,在所述无人机处于所述悬停状态的情况下,所述无人机处于可以起飞的状态。
然后,在所述起降平台的推出作用下,所述多个无人机依次推出所述起降平台,被推出的所述无人机起飞。
本申请实施例中,在所述起降平台上的所述多个无人机转桨至所述悬停状态之后,所述起降平台可以将所述多个无人机依次推出所述起降平台。在所述起降平台的推出作用下,所述多个无人机依次推出所述起降平台,被推出的所述无人机可以起飞。
具体的,在所述起降平台上的所述多个无人机转桨至所述悬停状态之后,所述起降平台上的提升模块可以将所述多个无人机提升一个无人机的高度,以将位于最上面的无人机推出所述起降平台。在无人机被推出所述起降平台之后即可执行起飞操作。然后,循环执行上述步骤,按照从上往下的顺序,依次所述起降平台上的无人机推出所述 起降平台并执行起飞的操作,使得所述起降平台上的多个无人机鱼贯推出并起飞,实现连续的起飞,到达目的地。
本申请实施例中,由于所述无人机在所述起降平台上已经处于可以起飞的悬停状态,在推出所述起降平台后,所述无人机可以快速的起飞,这样,就可以实现所述多个无人机的连续起飞,起飞效率较高。
在本申请的另一种可选实施例中,所述多个无人机从所述起降平台上起飞的方法可以包括以下子步骤:
首先,在所述起降平台的推出作用下将垂直堆叠且处于停桨状态的无人机推出。
本申请实施例中,所述起降平台可以用于将垂直堆叠且处于停桨状态的无人机中最上面的无人机推出所述起降平台。
具体的,所述起降平台上的提升模块可以将所述无人机提升一个机身的高度,以将所述起降平台上最上面的所有无人机推出所述起降平台。
然后,被推出的所述无人机起飞。
本申请实施例中,在将所述起降平台上最上面的无人机推出所述起降平台后,被推出的无人机的桨叶可以转动并起飞。然后,循环执行上述步骤,直至所述起降平台上的所有无人机按照从上至下的顺序依次起飞。
具体的,由于无人机推出所述起降平台后再控制所述无人机的桨叶转动,可以避免所述无人机在所述起降平台内转动桨叶的操作,以最大程度的避免所述无人机的桨叶与所述起降平台发生干涉,提高了所述无人机的起飞安全性。
在本申请的再一种可选实施例中,所述多个无人机从所述起降平台上起飞的方法可以包括以下子步骤:
首先,在所述起降平台的推出作用下,垂直堆叠的多个无人机推出所述起降平台。
本申请实施例中,所述起降平台将垂直堆叠于所述起降平台上的所有无人机推出所述起降平台。
具体的,所述起降平台上的提升模块可以将所述多个无人机提升一个较大的高度,直到将所述起降平台上的所有无人机推出所述起降平台。
然后,所述多个无人机转桨至悬停状态。
本申请实施例中,在将所述起降平台上的所有无人机推出所述起降平台之后,所述多个无人机的桨叶可以转动,以使所述多个无人机转桨至悬停状态,也即,使得推出所述起降平台的多个无人机处于可起飞的状态。
最后,处于悬停状态的所述多个无人机同时起飞。
本申请实施例中,在所述多个无人机都被推出所述起降平台,并且已转桨至悬停状态的情况下,所述多个无人机可以同时起飞并达到目标地点,起飞效果极高。
具体的,通过控制起降平台将垂直堆叠的多个无人机推出,并控制所述多个无人机转桨至悬停状态,最后再控制处于悬停状态的所述多个无人机同时起飞,既能够避免所述无人机在所述起降平台内转动桨叶的操作,以最大程度的避免所述无人机的桨叶与所述起降平台发生干涉,提高了所述无人机的起飞安全性,而且,还可以实现较高的起飞效率。
需要说明的是,所述无人机的起飞速度需要根据所述无人机的起飞模式确定,具体可以参照前述实施例,本申请实施例对此不作赘述。
步骤S32:响应于接收到的召回指令,所述多个无人机降落并沿导轨垂直堆叠于所述起降平台。
本申请实施例中,所述起无人机在接收到所述主控设备发送的召回指令之后,所述多个无人机降落至所述导向载板后,并沿所述起降平台的导轨垂直堆叠于所述起降平台,以降落至所述起降平台上。
在本申请的一种可选实施例中,所述多个无人机降落至所述起降平台的方法可以包括以下子步骤:
首先,依次将所述无人机召回至所述起降平台的顶部并切换至悬停状态。
本申请实施例中,在需要召回所述无人机时,所述主控设备可以控制第一个无人机通过精准降落的方式降落在所述起降平台的导向载板的范围内,并降低所述无人机的桨叶转速,使得所述无人机从飞行状态切换至悬停状态。
在实际应用中,可以在所述起降平台的导向载板上设置第一身份标识,所述无人机在降落的过程中,通过识别所述导向载板上的第一 身份标识,可以精准降落在所述导向载板的范围内。所述第一身份标识可以包括但不局限于二维码等图像标识,或者,凸起或者凹陷等外形轮廓特征,本申请实施例对于所述第一身份标识不做具体限定。
然后,每确认一个所述无人机处于悬停状态后,则处于悬停状态的所述无人机降落并沿导轨垂直堆叠于所述起降平台。
本申请实施例中,在确定一个所述无人机降落至所述起降平台的导向载板的范围内并处于悬停状态之后,可以控制所述无人机进一步降落并沿所述导轨堆叠于所述起降平台。
具体的,在第一个无人机降落在所述起降平台的导向载板上之后,所述主控设备还可以控制所述导向载板下降一个无人机机身的高度,以将所述导向载板上的无人机回收至所述起降平台内。然后,再循环上述步骤,将第二个无人机召回至所述起降平台的范围内并控制所述无人机切换至所述悬停状态。
具体的,在第二个无人机在降落的过程中,可以参照所述已经降落在所述起降平台上的第一个无人机的位置进行精准降落。在实际应用中,每个无人机上皆可设置第二身份标识,通过识别所述无人机上的第二身份标识,可以控制另一个无人机精准降落在所述无人机的范围内。所述第二身份标识可以包括但不局限于二维码等图像标识,或者,凸起或者凹陷等外形轮廓特征,本申请实施例对于所述第二身份标识不做具体限定。
在实际应用中,由于所述无人机的底部设置凸起结构,所述无人机的顶部设置凹陷结构,因此,在第二个无人机的底部降落至所述第一个无人机的范围内并处于悬停状态的情况下,上面的无人机底部的凸起结构可以沿下面的无人机顶部的凹陷结构滑动,直至将上面的无人机降落至下面的无人机顶部的承接平台上,完成第二个无人机的降落。
本申请实施例中,在第二个无人机降落在所述起降平台内的导第一个无人机上之后,所述主控设备还可以控制所述导向载板下降一个无人机机身的高度,以将第二个无人机回收至所述起降平台内。然后,继续循环第二个无人机的降落步骤,直至将所有的无人机召回并沿所述导轨垂直堆叠于所述起降平台上。
在本申请的又一种可选实施例中,所述多个无人机降落至所述起 降平台的方法可以包括以下子步骤:
首先,所述多个无人机同时召回至所述起降平台的顶部,并切换至悬停状态且在竖直方向垂直排列。
本申请实施例中,在需要召回所述无人机时,所述多个无人机可以同时被召回至所述起降平台的顶部,并按照从上往下的顺序垂直排列在竖直方向,之后,所述多个无人机可以切换至所述悬停状态。
具体的,在实际应用中,排列在最下方的无人机可以通过精准降落的方式降落在所述起降平台的导向载板的范围内,具体实现方式可以参照前述实施例中的描述,在此不做赘述。从下往下数,第二个无人机可以参照第一个无人机的位置精准降落在第一个无人机的顶部,具体实现方式同样可以参照前述实施例中的描述,在此不做赘述。以此类推,直至将所述的无人机垂直排列在所述起降平台的顶部,并将所有的无人机切换至悬停状态。
本申请实施例中,排列在最下方的无人机可以降落在所述起降平台的导向载板上。由于所述导向载板包括下凹部和的第一导向部,所述下凹部设置在所述导向载板的中央区域,所述第一导向部设置在导向载板的边缘区域且环绕所述下凹部设置。当降落至所述导向载板上的无人机处于悬停状态的情况下,所述无人机的底部可以沿所述第一导向部滑动,直到将所述无人机降落至所述导向载板中央区域的下凹部上,完成所述无人机的降落。
而对于上下相邻的两个无人机来说,上面的无人机可以降落在下面的无人机的顶部。由于所述无人机的底部设置凸起结构,所述无人机的顶部设置凹陷结构,因此,在上面的无人机的底部降落至下面的无人机的范围内并处于悬停状态的情况下,上面的无人机底部的凸起结构可以沿下面的无人机顶部的凹陷结构滑动,直至将上面的无人机降落至下面的无人机顶部的承接平台上,完成上面的无人机的降落。通过循环执行上述方法,将所述多个无人机垂直堆叠在所述起降平台的上方。
例如,在所述起降平台上需要垂直堆叠16个无人机的情况下,这16个无人机可以同时被召回至所述起降平台的顶部,这16个无人机可以在竖直方向垂直排列并可切换至悬停状态。
然后,处于悬停状态的多个所述无人机依次降落并沿导轨垂直堆 叠于所述起降平台。
本申请实施例中,在所述多个无人机在竖直方向垂直排列并切换至所述悬停状态的情况下,所述起降平台的导向载板可以下降,以将所述多个无人机同时回收至所述起降平台内。
需要说明的是,所述多个无人机的降落速度和时机需要根据所述无人机的起召回模式确定,具体可以参照前述实施例,本申请实施例对此不作赘述。
综上,本申请实施例所述的起降控制方法至少可以包括以下优点:
本申请实施例中,通过响应于接收到的起飞指令,所述多个无人机从起降平台起飞;响应于接收到的召回指令,所述多个无人机降落并沿导轨垂直堆叠于所述起降平台。这样,就可以避免人工进行无人机起飞场地布置、准备和降落回收的操作,减少多个无人机进行协同作业时的人力投入和场地投入,不仅可以降低多个无人机协同作业的成本,还可以提升多个无人机协同作业的效率。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。 本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (73)

  1. 一种用于多个无人机的起降平台,其特征在于,所述起降平台包括:
    支架,所述支架设置有垂直的导轨;
    所述多个无人机能够沿所述导轨垂直堆叠于所述支架,且能够从所述支架上起飞。
  2. 根据权利要求1所述的起降平台,其特征在于,在所述多个无人机垂直堆叠于所述支架的情况下,所述起降平台包括充电状态,在所述充电状态,所述起降平台用于给所述多个无人机充电。
  3. 根据权利要求2所述的起降平台,其特征在于,所述起降平台还设置有:多个第一充电模块,所述多个第一充电模块垂直堆叠于所述支架;
    在所述充电状态下,一个所述第一充电模块能够与一个所述无人机的第二充电模块电连接,以给充所述无人机充电。
  4. 根据权利要求3所述的起降平台,其特征在于,所述第一充电模块包括充电插接件和信号传输插接件,所述充电插接件用于给所述无人机充电,所述信号传输插接件用于实现所述第一充电模块与所述第二充电之间的数据交换。
  5. 根据权利要求4所述的起降平台,其特征在于,所述无人机的机身高度为第一高度,两个相邻的所述第一充电模块的垂直间隔为第一间隔,所述第一间隔大于所述第一高度。
  6. 根据权利要求2所述的起降平台,其特征在于,所述起降平台还包括收纳状态,所述多个无人机在所述收纳状态时相对于所述支架的位置与所述多个无人机在所述充电状态时相对于所述支架的位置不同。
  7. 根据权利要求1所述的起降平台,其特征在于,所述支架上设置有用于容纳所述多个无人机的容纳空间。
  8. 根据权利要求7所述的起降平台,其特征在于,所述支架包括第一支架和第二支架;
    所述第一支架和所述第二支架相对间隔设置,所述容纳空间形成于所述第一支架和所述第二支架之间。
  9. 根据权利要求8所述的起降平台,其特征在于,所述第一支架和所述第二支架的导轨皆至少部分嵌设于所述多个无人机,以对所述无人机在所述容纳空间内的活动进行限位。
  10. 根据权利要求7所述的起降平台,其特征在于,所述支架的数量为一个,所述容纳空间形成于所述支架上。
  11. 根据权利要求10所述的起降平台,其特征在于,所述无人机上设置有安装通孔,在所述多个无人机垂直堆叠于所述支架的情况下,所述无人机的安装通孔套接在所述支架上。
  12. 根据权利要求10所述的起降平台,其特征在于,所述支架上的导轨至少部分嵌设于所述多个无人机,以对所述无人机在所述容纳空间内的活动进行限位。
  13. 根据权利要求7所述的起降平台,其特征在于,所述起降平台还包括:导向载板,所述导向载板至少部分设置于所述容纳空间内,所述导向载板用于承载所述无人机。
  14. 根据权利要求13所述的起降平台,其特征在于,所述导向载板包括下凹部和第一导向部,其中,所述下凹部设置在所述导向载板的中央区域,所述第一导向部设置在导向载板的边缘区域且环绕所述下凹部设置;
    所述第一导向部的一侧与所述下凹部的边缘连接,所述第一导向部的另一侧朝向远离所述下凹部且倾斜向上的方向延伸。
  15. 根据权利要求14所述的起降平台,其特征在于,所述下凹部为平面结构。
  16. 根据权利要求14所述的起降平台,其特征在于,所述第一导向部为倾斜的平面结构或者曲面结构。
  17. 根据权利要求14所述的起降平台,其特征在于,在所述支架包括所述第一支架和所述第二支架的情况下,所述第一导向部设置有第一开口和第二开口,所述第一开口套设于所述第一支架的导轨,所述第二开口套设于所述第二支架的导轨,以对所述导向载板在所述第一支架和所述第二支架上的活动进行限位。
  18. 根据权利要求17所述的起降平台,其特征在于,所述第一支 架的导轨的顶部设置有第一倾斜面,所述第二支架的导轨的顶部设置有第二倾斜面,所述第一倾斜面、所述第二倾斜面的形状与所述第一导向部的形状适配;其中,
    在所述导向载板活动至所述导轨顶部的情况下,所述第一倾斜面、所述第二倾斜面能够与所述第一导向部平齐。
  19. 根据权利要求13所述的起降平台,其特征在于,所述支架还设置有提升模块,所述提升模块可沿所述支架滑动,且与所述导向载板连接,所述提升模块用于提升所述无人机。
  20. 根据权利要求19所述的起降平台,其特征在于,所述提升模块包括:驱动件、丝杠和滑块;其中,
    所述驱动件的输出端与所述丝杠连接,用于驱动所述丝杠转动,所述丝杠的轴向与所述导轨的导向平行;
    所述滑块内设置有螺纹孔,所述螺纹孔套接在所述丝杠上且与所述丝杠螺纹连接,所述丝杠的转动能够带动所述滑块沿所述丝杠的轴向滑动,所述滑块用于与所述导向载板连接,以带动所述导向载板沿所述支架滑动。
  21. 根据权利要求20所述的起降平台,其特征在于,所述驱动件为伺服电机,所述伺服电机连接在所述丝杠的底部。
  22. 根据权利要求20所述的起降平台,其特征在于,所述支架包括:可配合连接的壳体和封板,所述壳体和封板之间形成容纳腔;其中,
    所述导轨设置在所述壳体上;
    所述驱动件、所述丝杠皆设置在所述容纳腔内,所述滑块至少部外露延伸至导轨外,以与导向载板连接。
  23. 根据权利要求22所述的起降平台,其特征在于,所述提升模块上还包括支撑块,所述支撑块的一端固定在所述滑块上,另一端延伸至所述导轨外并与所述导向载板的底部连接。
  24. 根据权利要求19至23任一项所述的起降平台,其特征在于,所述起降平台还包括:控制模块,所述控制模块与所述提升模块电连接;其中,
    在所述多个无人机降落情况下,所述控制模块控制所述提升模块驱动所述导向载板下降,以使所述多个无人机能够沿所述导轨垂直堆 叠于所述支架;在所述多个无人机起飞的情况下,所述控制模块控制所述提升模块驱动所述导向载板上升,以使所述多个无人机能够在所述支架上起飞。
  25. 根据权利要求7所述的起降平台,其特征在于,所述起降平台还包括:弹性承接件,所述弹性承接件的至少部分设置于所述容纳空间内,所述弹性承接件用于承接所述无人机。
  26. 根据权利要求25所述的起降平台,其特征在于,所述弹性承接件的压缩方向与所述导轨的延伸方向一致。
  27. 根据权利要求25所述的起降平台,其特征在于,所述弹性承接件包括弹簧、弹片中的至少一种。
  28. 根据权利要求7所述的起降平台,其特征在于,所述起降平台还包括:导向件,所述导向件连接于所述支架,所述导向件用于将所述无人机导入所述容纳空间。
  29. 根据权利要求28所述的起降平台,其特征在于,所述导向件包括导流框架,所述导流框架设置在所述支架的顶部,且环绕所述容纳空间设置,所述导流框架能够利用所述无人机产生的向下气流将所述无人机推向所述容纳空间。
  30. 根据权利要求29所述的起降平台,其特征在于,所述导流框架设有导流口,所述导流口与所述容纳空间相对。
  31. 根据权利要求30所述的起降平台,其特征在于,所述导流框架包括多个导流板,所述多个导流板环绕所述导流口的周向依次连接,所述导流板的一侧靠近所述导流口,另一侧朝向远离所述导流口且倾斜向上的方向延伸。
  32. 根据权利要求31所述的起降平台,其特征在于,所述导流板为倾斜的平板或者弧形板。
  33. 根据权利要求31所述的起降平台,其特征在于,所述导流框架还包括:支撑架,所述支撑架与所述导流板连接,以支撑所述导流板。
  34. 根据权利要求29所述的起降平台,其特征在于,所述导流框架上还设置有缓冲垫。
  35. 根据权利要求34所述的起降平台,其特征在于,所述缓冲垫包括:橡胶垫、泡棉垫中的至少一种。
  36. 根据权利要求28所述的起降平台,其特征在于,所述导向件包括:气流发生装置,所述气流发生装置设置在所述第一支架和所述第二支架的顶部,且环绕所述容纳空间设置,所述多个气流装置能够将所述无人机推向所述容纳空间。
  37. 根据权利要求36所述的起降平台,其特征在于,所述气流发生装置包括:多个气流出口,所述多个气流出口环绕所述容纳空间设置。
  38. 根据权利要求1所述的起降平台,其特征在于,所述起降平台还包括:升降装置,所述升降装置的升降方向与所述支架的延伸方向一致;其中,
    在所述无人机堆叠于所述支架的情况下,所述升降装置能够运输所述无人机上承载的目标物。
  39. 根据权利要求38所述的起降平台,其特征在于,所述升降装置包括升降机构和容纳仓,所述容纳仓可以用于容纳所述目标物;
    所述容纳仓连接于所述升降机构,所述升降机构能够驱动所述容纳仓上升或者降落,以运输所述目标物。
  40. 根据权利要求39所述的起降平台,其特征在于,所述升降装置还包括:搭接机构,所述搭接机构连接于所述容纳仓,在所述容纳仓与目标无人机对齐的情况下,所述搭接机构能够连接在所述容纳仓和所述目标无人机之间,以将所述目标无人机上的目标物转运至所述容纳仓内,或将所述容纳仓内的目标物转运至所述目标无人机上。
  41. 根据权利要求40所述的起降平台,其特征在于,所述搭接机构包括展开状态和收拢状态;其中,
    在所述展开状态,所述搭接机构能够搭接在所述容纳仓和所述目标无人机之间,在所述收拢状态,所述搭接机构能够收拢至所述容纳仓内。
  42. 根据权利要求1所述的起降平台,其特征在于,所述起降平台还包括:基座,所述支架的一端固定在所述基座上,所述支架的另一端朝向远离所述基座的方向延伸;
    所述基座的底部还设置有辅助移动装置,所述辅助移动装置能够辅助所述起降平台移动。
  43. 根据权利要求42所述的起降平台,其特征在于,所述辅助移动装置包括滚轮、脚轮中的至少一种。
  44. 一种无人机,其特征在于,所述无人机的底部设置有凸起结构和凹陷结构中的其中之一,所述无人机顶部形成凸起结构和凹陷结构中的其中另一,所述凸起结构能够至少部分地嵌设于所述凹陷结构内,以便于多个所述无人机的垂直堆叠。
  45. 根据权利要求44所述的无人机,其特征在于,所述无人机包括:机身以及连接于所述机身的多个机臂;其中,
    所述凹陷结构设置于所述机身的顶部,所述凸起结构设置于所述机身的底部。
  46. 根据权利要求45所述的无人机,其特征在于,所述凸起结构包括:平面部和环绕所述平面部设置的第二导向部,所述第二导向部能够将所述凸起结构导入另一个所述无人机的所述凹陷结构。
  47. 根据权利要求46所述的无人机,其特征在于,所述机身的顶部还设置有承接平台,所述承接平台位于所述多个机臂之间,所述承接平台用于与另一个所述无人机的所述平面部配合。
  48. 根据权利要求47所述的无人机,其特征在于,所述机臂的一端固定在所述承接平台上,另一端朝向远离所述承接平台且倾斜向上的方向延伸,所述多个所述机臂环绕形成所述凹陷结构。
  49. 根据权利要求48所述的无人机,其特征在于,相邻的两个所述机臂之间还设置有连接框架,所述连接框架的顶面形状与所述机臂的顶面形状适配,所述连接框架与所述机臂共同形成所述凹陷结构。
  50. 根据权利要求49所述的无人机,其特征在于,所述连接框架上设置有第三开口和第四开口,所述第三开口和所述第四开口用于避让起降平台上的导轨。
  51. 根据权利要求48所述的无人机,其特征在于,所述无人机还包括:螺旋桨和螺旋桨保护罩;其中,
    所述螺旋桨固定在所述机臂的另一端,所述螺旋桨保护罩覆盖在所述螺旋桨外,用于保护所述螺旋桨;
    所述螺旋桨保护罩靠近所述机臂的一侧设置有导向部,所述导向部能够将另一个所述无人机的凸起结构导入所述凹陷结构内。
  52. 一种起降系统,其特征在于,包括:权利要求1至43任一项所述的起降平台,以及,权利要求44至51任一项所述的无人机;其中,
    所述无人机的数量为多个;
    多个所述无人机能够垂直堆叠于所述起降平台,在所述多个无人机降落的情况下,所述多个无人机能够垂直堆叠于所述起降平台,在所述多个无人机的起飞的情况下,所述多个无人机能够从所述起降平台上起飞。
  53. 一种收纳装置,其特征在于,包括:收纳平台以及权利要求1至43任一项所述的起降平台,所述起降平台的数量为多个,每个所述起降平台能够垂直堆叠多个无人机。
  54. 根据权利要求53所述的收纳装置,其特征在于,所述收纳平台上设置有多个第一伸缩架,所述第一伸缩架的伸缩方向为第一方向;
    每个所述第一伸缩架上连接有多个所述起降平台,所述多个起降平台沿所述第一方向活动连接于所述第一伸缩架,以调节相邻的所述起降平台之间的距离。
  55. 根据权利要求54所述的收纳装置,其特征在于,所述第一伸缩架包括:第一支架本体和第一伸缩机构,所述第一伸缩机构可伸缩地连接于所述第一支架本体上;
    所述多个起降平台连接于所述第一支架本体,以通过所述第一伸缩机构的伸缩调节相邻的所述起降平台之间的距离。
  56. 根据权利要求54所述的收纳装置,其特征在于,所述收纳装置还包括第二伸缩架,所述第二伸缩架的方向为第二方向,所述第二方向与所述第一方向垂直;
    所述多个第一伸缩架沿第二方向依次间隔连接于所述第二伸缩架,以调节相邻的所述第一伸缩支架之间的距离。
  57. 根据权利要求56所述的收纳装置,其特征在于,所述第二伸缩架包括:第二支架本体和第二伸缩机构,所述第二伸缩机构可伸缩地连接于所述第二支架本体上;
    所述多个第一伸缩支架连接于所述第二支架本体,以通过所述第 二伸缩机构的伸缩调节相邻的所述第二伸缩架之间的距离。
  58. 一种起降控制方法,应用于主控设备,其特征在于,所述起降控制方法包括:
    接收针对多个无人机的操作指令,所述操作指令包括起飞指令和召回指令;
    响应于接收到的起飞指令,控制垂直堆叠于起降平台的多个无人机从所述起降平台起飞;
    响应于接收到的召回指令,控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台。
  59. 根据权利要求58所述的起降控制方法,其特征在于,所述控制垂直堆叠于起降平台的多个无人机从所述起降平台上起飞的步骤,包括:
    控制垂直堆叠于起降平台的多个无人机转桨至悬停状态;
    控制所述起降平台将所述多个无人机依次推出所述起降平台,并控制被推出的所述无人机起飞。
  60. 根据权利要求58所述的起降控制方法,其特征在于,所述控制垂直堆叠于起降平台的多个无人机从所述起降平台上起飞的步骤,包括:
    控制所述起降平台将垂直堆叠且处于停桨状态的无人机推出;
    控制被推出的所述无人机起飞。
  61. 根据权利要求58所述的起降控制方法,其特征在于,所述控制垂直堆叠于起降平台的多个无人机从所述起降平台上起飞的步骤,包括:
    控制起降平台将垂直堆叠的多个无人机推出;
    控制所述多个无人机转桨至悬停状态;
    控制处于悬停状态的所述多个无人机同时起飞。
  62. 根据权利要求58所述的起降控制方法,其特征在于,所述控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
    依次将所述无人机召回至所述起降平台的顶部并切换至悬停状态;
    每确定一个所述无人机处于悬停状态后,则控制所述无人机降落并沿导轨垂直堆叠于所述起降平台。
  63. 根据权利要求58所述的起降控制方法,其特征在于,所述控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
    将所述多个无人机同时召回至所述起降平台的顶部,并切换至悬停状态且在竖直方向垂直排列;
    控制处于悬停状态的多个所述无人机依次降落并沿导轨垂直堆叠于所述起降平台。
  64. 根据权利要求58所述的起降控制方法,其特征在于,在控制多个所述无人机降落并沿导轨垂直堆叠于所述起降平台的步骤之后,还包括:
    响应于接收到的收纳指令,控制所述起降平台对垂直堆叠的所述多个无人机进行收纳;
    响应于接收到的充电指令,控制所述起降平台给所述多个无人机充电。
  65. 一种起降控制方法,起降平台,其特征在于,所述起降控制方法包括:
    响应于接收到的起飞指令,将垂直堆叠于起降平台的多个无人机从所述起降平台推出;
    响应于接收到的召回指令,将降落的所述多个无人机沿导轨垂直堆叠于所述起降平台。
  66. 根据权利要求65所述的控制方法,其特征在于,所述起降控制方法还包括:
    响应于接收到的收纳指令,对垂直堆叠于所述起降平台的多个无人机进行收纳;
    响应于接收到的充电指令,对垂直堆叠于所述起降平台的多个无人机进行充电。
  67. 根据权利要求64所述的起降控制方法,其特征在于,所述控制垂直堆叠于起降平台的多个无人机进行收纳的步骤,包括:
    控制起降平台将垂直堆叠的所述多个无人机下降至收纳位置。
  68. 一种起降控制方法,应用于无人机,其特征在于,所述起降控制方法包括:
    响应于接收到的起飞指令,多个所述无人机从起降平台起飞;
    响应于接收到的召回指令,多个所述无人机降落并沿导轨垂直堆叠于所述起降平台。
  69. 根据权利要求68所述的控制方法,其特征在于,所述多个无人机从起降平台起飞的步骤,包括:
    垂直堆叠于起降平台的多个无人机转桨至悬停状态;
    在所述起降平台的推出作用下,所述多个无人机依次推出所述起降平台,被推出的所述无人机起飞。
  70. 根据权利要求68所述的控制方法,其特征在于,所述多个无人机从起降平台起飞的步骤,包括:
    在所述起降平台的推出作用下将垂直堆叠且处于停桨状态的无人机推出;
    被推出的所述无人机起飞。
  71. 根据权利要求68所述的控制方法,其特征在于,所述多个无人机从起降平台起飞的步骤,包括:
    在所述起降平台的推出作用下,垂直堆叠的多个无人机推出所述起降平台;
    所述多个无人机转桨至悬停状态;
    处于悬停状态的所述多个无人机同时起飞。
  72. 根据权利要求68所述的控制方法,其特征在于,所述多个无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
    依次将所述无人机召回至所述起降平台的顶部并切换至悬停状态;
    每确认一个所述无人机处于悬停状态后,则处于悬停状态的所述无人机降落并沿导轨垂直堆叠于所述起降平台。
  73. 根据权利要求68所述的控制方法,其特征在于,所述多个无人机降落并沿导轨垂直堆叠于所述起降平台的步骤,包括:
    所述多个无人机同时召回至所述起降平台的顶部,并切换至悬停状态且在竖直方向垂直排列;
    处于悬停状态的多个所述无人机依次降落并沿导轨垂直堆叠于所 述起降平台。
PCT/CN2021/103660 2021-06-30 2021-06-30 起降平台、无人机、起降系统、收纳装置和起降控制方法 WO2023272600A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/103660 WO2023272600A1 (zh) 2021-06-30 2021-06-30 起降平台、无人机、起降系统、收纳装置和起降控制方法
CN202180078865.8A CN116490429A (zh) 2021-06-30 2021-06-30 起降平台、无人机、起降系统、收纳装置和起降控制方法
US18/395,107 US20240124169A1 (en) 2021-06-30 2023-12-22 Takeoff and landing platform, unmanned aerial vehicle, takeoff and landing system, storage device and takeoff and landing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103660 WO2023272600A1 (zh) 2021-06-30 2021-06-30 起降平台、无人机、起降系统、收纳装置和起降控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/395,107 Continuation US20240124169A1 (en) 2021-06-30 2023-12-22 Takeoff and landing platform, unmanned aerial vehicle, takeoff and landing system, storage device and takeoff and landing control method

Publications (1)

Publication Number Publication Date
WO2023272600A1 true WO2023272600A1 (zh) 2023-01-05

Family

ID=84692106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103660 WO2023272600A1 (zh) 2021-06-30 2021-06-30 起降平台、无人机、起降系统、收纳装置和起降控制方法

Country Status (3)

Country Link
US (1) US20240124169A1 (zh)
CN (1) CN116490429A (zh)
WO (1) WO2023272600A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977011A (zh) * 2020-09-04 2020-11-24 广东寻夏科技有限公司 用于多旋翼飞行器的投放装置及其控制方法
CN116923763A (zh) * 2023-09-13 2023-10-24 陕西德鑫智能科技有限公司 垂直起降无人机自动加放油系统
CN117682142A (zh) * 2024-02-01 2024-03-12 天津航天中为数据系统科技有限公司 一种双层无人机机舱系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150183326A1 (en) * 2014-01-02 2015-07-02 The Boeing Company Charging system for battery-powered unmanned aerial vehicles
GB2530626A (en) * 2014-09-15 2016-03-30 Gustavo Carriconde Unmanned aerial vehicle deployment system and method of control
CN105863353A (zh) * 2016-06-09 2016-08-17 徐洪军 一种小型无人机机群的起降补给机器人
CN108016606A (zh) * 2016-10-31 2018-05-11 比亚迪股份有限公司 无人机起落架及无人机
CN110413004A (zh) * 2019-08-23 2019-11-05 酷黑科技(北京)有限公司 一种无人机精准起降控制方法及系统
CN111452647A (zh) * 2020-05-06 2020-07-28 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种多无人机立体充电系统及充电位置指派方法
CN111806711A (zh) * 2020-06-30 2020-10-23 中国人民解放军军事科学院国防科技创新研究院 集群旋翼无人机释放收纳的系统及其控制方法
CN112061392A (zh) * 2019-06-11 2020-12-11 酷黑科技(北京)有限公司 一种储存箱及无人机集群作业系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150183326A1 (en) * 2014-01-02 2015-07-02 The Boeing Company Charging system for battery-powered unmanned aerial vehicles
GB2530626A (en) * 2014-09-15 2016-03-30 Gustavo Carriconde Unmanned aerial vehicle deployment system and method of control
CN105863353A (zh) * 2016-06-09 2016-08-17 徐洪军 一种小型无人机机群的起降补给机器人
CN108016606A (zh) * 2016-10-31 2018-05-11 比亚迪股份有限公司 无人机起落架及无人机
CN112061392A (zh) * 2019-06-11 2020-12-11 酷黑科技(北京)有限公司 一种储存箱及无人机集群作业系统
CN110413004A (zh) * 2019-08-23 2019-11-05 酷黑科技(北京)有限公司 一种无人机精准起降控制方法及系统
CN111452647A (zh) * 2020-05-06 2020-07-28 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种多无人机立体充电系统及充电位置指派方法
CN111806711A (zh) * 2020-06-30 2020-10-23 中国人民解放军军事科学院国防科技创新研究院 集群旋翼无人机释放收纳的系统及其控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977011A (zh) * 2020-09-04 2020-11-24 广东寻夏科技有限公司 用于多旋翼飞行器的投放装置及其控制方法
CN111977011B (zh) * 2020-09-04 2023-10-31 广东寻夏科技有限公司 用于多旋翼飞行器的投放装置及其控制方法
CN116923763A (zh) * 2023-09-13 2023-10-24 陕西德鑫智能科技有限公司 垂直起降无人机自动加放油系统
CN116923763B (zh) * 2023-09-13 2023-12-22 陕西德鑫智能科技有限公司 垂直起降无人机自动加放油系统
CN117682142A (zh) * 2024-02-01 2024-03-12 天津航天中为数据系统科技有限公司 一种双层无人机机舱系统

Also Published As

Publication number Publication date
US20240124169A1 (en) 2024-04-18
CN116490429A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2023272600A1 (zh) 起降平台、无人机、起降系统、收纳装置和起降控制方法
US11542036B2 (en) Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
US10392108B1 (en) In-flight reconfigurable hybrid unmanned aerial vehicle
KR101792555B1 (ko) 드론 자동 충전 및 격납 시스템
US20190176986A1 (en) Multi-craft uav carrier system and airframe
KR20190125130A (ko) 차량에서 자동으로 이륙과 착륙 및 충전하도록 구성된 드론 도킹 스테이션 차량
US20190016461A1 (en) Unmanned aerial vehicle and method using the same
US10745125B2 (en) Hovering vehicle
CN216970031U (zh) 起降平台、起降系统以及收纳装置
KR102524589B1 (ko) 무인 비행체들을 위한 시스템 및 수송 디바이스들
KR20170019684A (ko) 케이블 연결식의 무인 비행체 시스템
CN109677616A (zh) 一种用于物流配送的具有调节功能的无人飞行装置
CN113371182A (zh) 一种筒式发射的侦察攻击旋翼无人机
CN111615486A (zh) 用于无人机的可移动安装结构
CN112523575A (zh) 储存箱
CN108622397B (zh) 一种可折叠多旋翼无人机
KR101220990B1 (ko) 회전 전원공급선을 이용한 전기비행기의 전원공급장치
KR102486792B1 (ko) 멀티콥터
CN110406672B (zh) 多轴飞行器自动回坞充电系统和方法
CN217553786U (zh) 车顶机库
CN214690178U (zh) 带有可伸缩旋翼的无人机
CN204979241U (zh) 一种新型便捷式无人机装置
CN219524299U (zh) 一种无人机机场车载平台
TWI696570B (zh) 無人機、起降裝置及無人機系統
US20230135344A1 (en) Urban air mobility power supply system and method according thereto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078865.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE