WO2023272518A1 - 上行信道传输方法、装置、设备及存储介质 - Google Patents

上行信道传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023272518A1
WO2023272518A1 PCT/CN2021/103251 CN2021103251W WO2023272518A1 WO 2023272518 A1 WO2023272518 A1 WO 2023272518A1 CN 2021103251 W CN2021103251 W CN 2021103251W WO 2023272518 A1 WO2023272518 A1 WO 2023272518A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
time slots
resources
frequency
transmission
Prior art date
Application number
PCT/CN2021/103251
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/103251 priority Critical patent/WO2023272518A1/zh
Priority to CN202180002073.2A priority patent/CN115735342A/zh
Priority to EP21947475.6A priority patent/EP4366414A1/en
Publication of WO2023272518A1 publication Critical patent/WO2023272518A1/zh
Priority to US18/399,249 priority patent/US20240129915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling

Definitions

  • the present application relates to the field of wireless communication, and in particular to an uplink channel transmission method, device, equipment and storage medium.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • TRP Transmit-Receive Point, transmission receiving point
  • the intra-slot beam hopping scheme is based on the intra-slot frequency hopping scheme, and it is recommended to use different transmission beams for different frequency hopping resources. That is, for a time slot used for PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel) transmission, the terminal device performs PUSCH transmission on different TRPs of the same network device on different frequency hopping resources in the time slot.
  • PUSCH Physical Uplink Shared Channel
  • Physical Uplink Shared Channel Physical Uplink Shared Channel
  • the terminal device can obtain beam diversity gain in this time slot, and since the intra-slot beam hopping scheme is based on the intra-slot frequency hopping scheme, the complexity of implementing the intra-slot beam hopping scheme by the terminal equipment will be relatively large. Low.
  • the terminal device sends PUSCH to different TRPs of the network device through cooperation of different frequency hopping resources in the time slot, but does not perform PUSCH on multiple frequency hopping resources in the time slot Repeated transmission of PUSCH, so the transmission reliability of PUSCH is low, and it is difficult to resist the performance deterioration in the case of congestion and deep fading.
  • Embodiments of the present disclosure provide an uplink channel transmission method, device, device, and readable storage medium, which can improve the transmission reliability of PUSCH, effectively resist performance degradation in the case of congestion and deep fading, and achieve more flexible adaptation to different delays and performance business requirements. Described technical scheme is as follows:
  • an uplink channel transmission method which is applied to a terminal device, and the method includes:
  • the transmission instruction information is used to indicate a first repeated transmission scheme for sending PUSCH, and the first repeated transmission scheme is a combination of an inter-slot repeated transmission scheme and an intra-slot beam hopping scheme ;
  • the PUSCH is cooperatively sent to multiple TRPs of the network device.
  • an uplink channel transmission method which is applied to a network device, and the method includes:
  • Send transmission instruction information to the terminal device where the transmission instruction information is used to instruct the terminal device to send a first repeated transmission scheme of PUSCH, and the first repeated transmission scheme is a combination of an inter-slot repeated transmission scheme and an intra-slot beam hopping scheme ;
  • the PUSCH from the terminal device is received based on multiple TRPs of the network device.
  • an uplink channel transmission device which is set in a terminal device, and the device includes:
  • An indication information receiving module configured to receive transmission indication information from a network device, where the transmission indication information is used to indicate a first repeated transmission scheme for sending PUSCH, and the first repeated transmission scheme is a repeated transmission scheme between time slots and a time slot Combination of intra-slot beam hopping schemes;
  • An uplink channel sending module configured to cooperatively send the PUSCH to multiple TRPs of the network device according to the first repeated transmission scheme.
  • an uplink channel transmission device which is set in a network device, and the device includes:
  • An instruction information sending module configured to send transmission instruction information to a terminal device, where the transmission instruction information is used to instruct the terminal device to send a first repeated transmission scheme of PUSCH, and the first repeated transmission scheme is an inter-slot repeated transmission scheme Combination with intra-slot beam hopping scheme;
  • the uplink channel receiving module is configured to receive the PUSCH from the terminal device based on multiple TRPs of the network device.
  • a terminal device includes:
  • transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the above-mentioned uplink channel transmission method on the terminal device side.
  • a network device includes:
  • transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the above-mentioned uplink channel transmission method on the network device side.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the at least A program, the code set or the instruction set is loaded and executed by the processor to implement the above-mentioned uplink channel transmission method.
  • the terminal device When the network device instructs the terminal device to send the first repeated transmission scheme of PUSCH, the terminal device sends PUSCH cooperatively to multiple transmission points of the network device according to the first repeated transmission scheme, providing a multi-TRP-based uplink channel transfer method. Since the first repeated transmission scheme is a combination of the inter-slot repeated transmission scheme and the intra-slot beam hopping scheme, the terminal device can obtain beam diversity gain through the intra-slot beam hopping scheme, and can also use the inter-slot repeated transmission scheme Improving the transmission reliability of PUSCH can effectively resist the performance deterioration in the case of congestion and deep fading, and realize more flexible adaptation to different delay and performance service requirements.
  • FIG. 1 is a schematic diagram of repeated transmission provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of repeated transmission provided by another exemplary embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of repeated transmission provided by another exemplary embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of repeated transmission provided by yet another exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a beam hopping scheme between timeslots provided by an exemplary embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of an uplink channel transmission method provided by an exemplary embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of frequency and beam mapping provided by an exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of frequency and beam mapping provided by another exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of frequency and beam mapping provided by another exemplary embodiment of the present disclosure.
  • Fig. 11 is a schematic diagram of frequency and beam mapping provided by yet another exemplary embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of frequency and beam mapping provided by another exemplary embodiment of the present disclosure.
  • Fig. 13 is a structural block diagram of an uplink channel transmission device provided by an exemplary embodiment of the present disclosure.
  • Fig. 14 is a structural block diagram of an uplink channel transmission device provided by another exemplary embodiment of the present disclosure.
  • Fig. 15 is a structural block diagram of an uplink channel transmission device provided by another exemplary embodiment of the present disclosure.
  • Fig. 16 is a structural block diagram of an uplink channel transmission device provided by another exemplary embodiment of the present disclosure.
  • Fig. 17 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • word “if” as used herein could be interpreted as “at” or “when” or "in response to a determination”.
  • 3GPP has introduced a multi-TRP-based cooperative transmission technology in the 5G NR system.
  • the application of multiple TRP/Panel (antenna panels) on network equipment is mainly to improve the coverage at the edge of the cell, provide a more balanced service quality in the service area, and use different methods to cooperate and transmit data among multiple TRP/Panels. From the perspective of network form, network deployment with a large number of distributed access points and centralized baseband processing will be more conducive to providing a balanced user experience rate and significantly reducing the delay and signaling overhead caused by handover .
  • the channel is transmitted/received from multiple beams in multiple directions, which can better overcome various occlusion/blocking effects and ensure the robustness of link connections. It is suitable for URLLC (Ultra Reliable Low Latency Communication, ultra-high reliability and low-latency communication) business improves transmission quality and meets reliability requirements.
  • URLLC Ultra Reliable Low Latency Communication, ultra-high reliability and low-latency communication
  • the application of multi-TRP-based cooperative transmission technology mainly enhances the transmission of PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel). Since the data transmission includes the scheduling feedback of the uplink and downlink channels, in the research of URLLC, only enhancing the downlink data channel cannot guarantee the service performance. Therefore, the discussion in R17 continues to enhance PDCCH (Physical Downlink Control Channel, physical downlink control channel), PUCCH (Physical Uplink Control Channel, physical uplink control channel), and PUSCH.
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the uplink enhancement scheme based on multiple TRPs discussed in R17 is mainly based on the PUSCH repeated transmission scheme in R16.
  • For the scheduled PUSCH there are mainly two PUSCH time-domain repeated transmission enhancement methods, which are the repetition type A transmission method and the repetition type B transmission method introduced in R16.
  • R16's slot-level Slot Aggregation (slot aggregation) PUSCH transmission is suitable for certain situations with low latency requirements and high reliability requirements.
  • a PUSCH is transmitted in consecutive K (K is a positive integer) time slots, that is, K transmission occasions (Transmission Occasion, TO), starting from the S-th (S greater than or equal to 0) symbol in the starting time slot
  • K transmission occasions Transmission Occasion, TO
  • S-th S greater than or equal to 0
  • S+L cannot exceed the time slot boundary.
  • K is equal to 2
  • S is equal to 4
  • L is equal to 4.
  • the terminal device performs the first repeated transmission from the 4th symbol to the 7th symbol of the first time slot, and performs the second repeated transmission from the 4th symbol to the 7th symbol of the second time slot.
  • one time slot includes 14 symbols, which are respectively the 0th symbol to the 13th symbol.
  • R16 supports the PUSCH repeated transmission scheme with Mini-slot (sub-slot) as the unit, and allows PUSCH transmission to cross slots to further reduce delay.
  • a PUSCH starts to transmit on the S-th symbol in the initial slot, and sends K transmission opportunities continuously, and each transmission opportunity occupies L symbols continuously, and S+L can cross the time slot boundary.
  • the transmission is re-segmented.
  • L*K represents the time window length of PUSCH transmission, and DL (Downlink, downlink) symbols and other invalid symbols will be discarded and not used for PUSCH transmission.
  • K is equal to 2
  • S is equal to 4
  • L is equal to 4.
  • the terminal device performs the first repeated transmission from the 4th symbol to the 7th symbol of the first time slot, and performs the second repeated transmission from the 8th symbol to the 11th symbol of the first time slot.
  • one time slot includes 14 symbols, which are respectively the 0th symbol to the 13th symbol.
  • K is equal to 4
  • S is equal to 4
  • L is equal to 4.
  • the terminal device performs the first repeated transmission from the 4th symbol to the 7th symbol of the first time slot, and performs the second repeated transmission from the 8th symbol to the 11th symbol of the first time slot. Since according to the configuration information, the 4 symbols of the third repeated transmission cross the time slot boundary of the first time slot, the third repeated transmission is divided into two repeated transmissions, and the 12th repeated transmission of the first time slot The 3rd repeated transmission is performed from the 1st symbol to the 13th symbol, and the 4th repeated transmission is performed from the 1st symbol to the 2nd symbol of the second time slot.
  • the 5th repeated transmission is performed from the 3rd symbol to the 7th symbol of the second time slot. That is, the terminal device actually performs five repeated transmissions, and the same data is sent in each repeated transmission.
  • one time slot includes 14 symbols, which are respectively the 0th symbol to the 13th symbol.
  • K is equal to 1
  • S is equal to 4
  • L is equal to 14. Since the length of a time slot is 14 symbols, but the transmission starts from the fourth symbol of the initial time slot, and each transmission opportunity occupies 14 symbols, the 14 symbols of the first repeated transmission will span The slot boundary divides the first repeated transmission into two repeated transmissions. The first repeated transmission is performed from the 4th symbol to the 13th symbol of the first time slot, and the second repeated transmission is performed from the 1st symbol to the 4th symbol of the second time slot. That is, the terminal device actually performs two repeated transmissions, and the same data is sent in each repeated transmission.
  • one time slot includes 14 symbols, which are respectively the 0th symbol to the 13th symbol.
  • PUSCH supports sending the same transport block (Transport Block, TB) to different TRPs at different transmission opportunities in the transmission mode defined above, so as to further apply spatial multiplexing transmission to improve transmission reliability .
  • the currently discussed enhancement schemes mainly include: a multi-TRP scheme based on repetition type A, and a multi-TRP scheme based on repetition type B.
  • mapping schemes that can be considered for the mapping relationship between the beam transmission direction of the PUCCH/PUSCH sent by the terminal equipment for different TRPs and different transmission opportunities, and three typical schemes are given below.
  • Option a periodic mapping.
  • the two beam directions are sequentially and cyclically mapped to multiple configured transmission opportunities.
  • the beam direction mapping pattern may be #1#2#1#2. Wherein, #1 corresponds to the first beam direction, and #2 corresponds to the second beam direction.
  • Option b continuous mapping.
  • the two beam directions are continuously cyclically mapped to the configured multiple transmission opportunities.
  • the pattern of beam direction mapping can be #1#1#2#2; for more than 4 repeated transmissions, repeat this pattern, such as for 8 repeated transmissions, the pattern of beam direction mapping It could be #1#1#2#2#1#1#2#2. Wherein, #1 corresponds to the first beam direction, and #2 corresponds to the second beam direction.
  • Scheme c Bihalf mapping.
  • the two beam directions are mapped consecutively to the configured multiple transmission opportunities.
  • the beam direction mapping pattern may be #1#1#1#1#2#2#2#2. Wherein, #1 corresponds to the first beam direction, and #2 corresponds to the second beam direction.
  • the intra-slot beam hopping scheme is based on the intra-slot frequency hopping scheme, and it is recommended to use different transmission beams for different frequency hopping resources. That is, for the time slot used for PUSCH transmission, the terminal device performs PUSCH transmission on different frequency hopping resources in the time slot to different TRPs of the same network device.
  • the terminal device is configured with an intra-slot frequency hopping scheme.
  • the terminal device uses the intra-slot beam-hopping scheme for PUSCH transmission, that is, , the PUSCH transmission of the terminal device on the first frequency hopping resource is oriented to TRP1, and the PUSCH transmission on the second frequency hopping resource is oriented to TRP2.
  • the terminal equipment can obtain beam diversity gain in the time slot, and, since the intra-slot beam hopping scheme is based on the intra-slot frequency hopping scheme, the terminal equipment realizes the intra-slot beam hopping scheme The complexity is also lower.
  • the terminal device sends PUSCH to different TRPs of the network device through cooperation of different frequency hopping resources in the time slot, but does not perform PUSCH on multiple frequency hopping resources in the time slot Repeated transmission of PUSCH, so the transmission reliability of PUSCH is low, and it is difficult to resist the performance deterioration in the case of congestion and deep fading.
  • an embodiment of the present application provides an uplink channel transmission method, which can be used to improve the transmission reliability of the PUSCH.
  • the technical solution provided by the present application will be described through several embodiments.
  • FIG. 6 shows a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include: a terminal device 10 and a network device.
  • the terminal device 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (User Equipment, UE), mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • a network device is a device deployed in an access network to provide a wireless communication function for the terminal device 10 .
  • Network equipment may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with network device functions may be different.
  • they are called gNodeB or gNB.
  • the term "network equipment" may change as communications technology evolves.
  • the above-mentioned devices that provide the wireless communication function for the terminal device 10 are collectively referred to as network devices.
  • the network device and the terminal device 10 communicate with each other through a certain air interface technology, such as a Uu interface.
  • a network device may be deployed with multiple TRPs.
  • the network device corresponds to TRP1, TRP2...TRPn (TRPs are numbered 20 in FIG. 6 ).
  • the terminal device can use different sending beams to send uplink channels (such as PUSCH) to different TRPs, and the network device can receive the uplink channels (such as PUSCH) sent by the terminal device through multiple TRPs.
  • the terminal equipment needs to use transmission beams with different beam directions to transmit an uplink channel (such as PUSCH) to the TRP in the corresponding direction.
  • the "5G NR system" in the embodiments of the present disclosure may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solution described in the embodiments of the present disclosure can be applied to the 5G NR system, and can also be applied to the subsequent evolution system of the 5G NR system.
  • FIG. 7 shows a flow chart of an uplink channel transmission method provided by an embodiment of the present application, and the method can be applied to the communication system shown in FIG. 6 .
  • the method includes the following steps.
  • Step 710 the network device sends transmission instruction information to the terminal device, the transmission instruction information is used to indicate the first repeated transmission scheme for sending PUSCH, the first repeated transmission scheme is a combination of the inter-slot repeated transmission scheme and the intra-slot beam hopping scheme.
  • the network device indicates the PUSCH transmission scheme for the terminal device.
  • the terminal device can repeatedly send the PUSCH; in order to obtain beam diversity gain at the same time, the terminal device can send the PUSCH in a beam-hopping manner.
  • the network device instructs the terminal device to send the first repeated transmission scheme of PUSCH for the terminal equipment by transmitting the indication information
  • the first repeated transmission scheme is the repeated transmission scheme between timeslots and the beam hopping scheme within the timeslot combination.
  • the inter-slot repeated transmission scheme is the above-mentioned PUSCH repetition type A transmission manner. Therefore, in the case that repeated transmission of the PUSCH is required, the network device needs to indicate the intra-slot beam-hopping scheme to the terminal device, so that the terminal device can specify the first repeated transmission scheme.
  • the network device may directly indicate to the terminal device that the intra-slot transmission scheme is an intra-slot beam-hopping scheme, so that the transmission indication information includes: the intra-slot transmission scheme is an intra-slot beam-hopping scheme; optionally, the network The device may simultaneously indicate the frequency hopping scheme to the terminal device, so that the transmission of indication information further includes: an intra-slot frequency hopping scheme and/or an inter-slot frequency hopping scheme.
  • the network device may activate the first repeated transmission scheme through the configuration of the frequency hopping scheme, so that the transmission indication information includes: in the case of simultaneously configuring the intra-slot frequency hopping scheme and/or the inter-slot frequency hopping scheme, The transmission scheme of PUSCH is activated as the first repeated transmission scheme.
  • the first repeated transmission scheme includes: performing inter-slot repeated transmission within n time slots, and performing intra-slot beam hopping in each of the n time slots; n is greater than or equal to 1 an integer of .
  • the inter-slot repeated transmission scheme is the above-mentioned PUSCH repetition type A transmission mode, so that the terminal device performs inter-slot repeated transmission in n time slots includes: the terminal device transmits in each of the n time slots One PUSCH. That is, the number of transmission repetitions of the PUSCH is n.
  • the network device may configure or indicate n for the terminal device.
  • the network device may configure the number of transmission repetitions n for the terminal device, so that the above method further includes: the network device sends RRC (Radio Resource Control, radio resource control) signaling to the terminal device, and the RRC signaling is used to configure n.
  • the network device may more dynamically indicate the number n of transmission repetitions to the terminal device.
  • the network device may explicitly indicate n to the terminal device, so that the method further includes: the network device sends a MAC (Media Access Control, Media Access Control) CE (Control Element, control unit) to the terminal device, and the MAC CE is used to indicate n.
  • MAC Media Access Control, Media Access Control
  • CE Control Element, control unit
  • the network device may implicitly indicate n to the terminal device, so that the above method further includes: the network device sends DCI (Downlink Control Information, downlink control information) to the terminal device, and the DCI is used to indicate n.
  • DCI Downlink Control Information, downlink control information
  • the TDRA Time Domain Resource Allocation, Time Domain Resource Allocation
  • step 720 the terminal device cooperatively sends the PUSCH to multiple TRPs of the network device according to the first repeated transmission scheme.
  • the terminal device After receiving the transmission instruction information, the terminal device can send the PUSCH cooperatively to multiple transmission points (TRPs) of the network device according to the first repeated transmission scheme indicated by the transmission instruction information. Wherein, for different transmission points of the network device, the terminal device sends the PUSCH using sending beams in different directions. It should be understood that the transmission point described in the embodiment of the present application may also be called a transmission reception point.
  • the terminal device when the network device instructs the terminal device to send the first repeated transmission scheme of PUSCH, the terminal device sends multiple transmission points of the network device according to the first repeated transmission scheme.
  • Coordinated transmission of PUSCH provides a multi-TRP based uplink channel transmission method. Since the first repeated transmission scheme is a combination of the inter-slot repeated transmission scheme and the intra-slot beam hopping scheme, the terminal device can obtain beam diversity gain through the intra-slot beam hopping scheme, and can also use the inter-slot repeated transmission scheme Improving the transmission reliability of PUSCH can effectively resist the performance deterioration in the case of congestion and deep fading, and realize more flexible adaptation to different delay and performance service requirements.
  • the resource size occupied by the corresponding frequency hopping resources in each of the n time slots is the same, and the different frequency hopping resources in the same time slot in the n time slots
  • the resources occupied are the same or different in size.
  • the resource size occupied by the corresponding frequency hopping resources in each of the n time slots is the same, including: n
  • the resource size occupied by the first frequency hopping resource in each time slot in the time slots is the first resource size;
  • the resource size occupied by the second frequency hopping resource in each time slot in the n time slots is the second resource size.
  • the resource sizes occupied by different frequency hopping resources in the same time slot in the n time slots are the same or different, It includes: resource sizes occupied by the first frequency hopping resource and the second frequency hopping resource in the same time slot in the n time slots are the same or different.
  • the resource size occupied by the frequency hopping resources can usually be determined by the number of symbols occupied by the frequency hopping resources in the time domain. Therefore, The size of resources occupied by the corresponding frequency hopping resources in each of the above n time slots is the same, which can also be called that the corresponding frequency hopping resources in each of the n time slots occupy the same number of symbols in the time domain ; The resources occupied by different frequency hopping resources in the same time slot in n time slots are the same or different, which can also be called the number of symbols occupied by different frequency hopping resources in the same time slot in n time slots in the time domain same or different.
  • different frequency hopping resources do not overlap in the time domain; different frequency hopping resources may overlap in the frequency domain.
  • the frequency resources occupied by the corresponding frequency hopping resources in each of the n time slots are the same, and the frequency resources occupied by different frequency hopping resources in the same time slot in the n time slots are The same or different, and the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same.
  • the frequency resources occupied by the corresponding frequency hopping resources in each of the n time slots are the same, including: n
  • the frequency resources occupied by the first frequency hopping resources in each of the time slots are the first frequency resources; the frequency resources occupied by the second frequency hopping resources in each of the n time slots are all the second frequency resources.
  • the frequency resources occupied by different frequency hopping resources in the same time slot in the n time slots are the same or different, It includes: frequency resources occupied by the first frequency hopping resource and the second frequency hopping resource in the same time slot in the n time slots are the same or different.
  • each of the n time slots includes the first frequency hopping resource and the second frequency hopping resource; the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same, including: n time slots The first frequency hopping resources in each of the time slots are mapped to the transmission beam corresponding to the first transmission point; the second frequency hopping resources in each of the n time slots are mapped to the transmission beam corresponding to the second transmission point.
  • the same or different frequency resources can usually be determined by the frequency start position, if the frequency start position of different frequency hopping resources If they are the same, the frequency resources occupied by different frequency hopping resources are the same; if the frequency start positions of different frequency hopping resources are different, then the frequency resources occupied by different frequency hopping resources are different.
  • both time slot 1 and time slot 2 include a first frequency hopping resource and a second frequency hopping resource, and the frequency occupied by the first frequency hopping resource of time slot 1 and the first frequency hopping resource of time slot 2
  • the resources are the same, and the frequency resources occupied by the second frequency hopping resource of time slot 1 and the second frequency hopping resource of time slot 2 are also the same; and the frequency resources occupied by the first frequency hopping resource of time slot 1 and the second frequency hopping resource
  • the occupied frequency resources are different, and the frequency resources occupied by the first frequency hopping resource and the second frequency hopping resource of the time slot 2 are also different.
  • the spatial relationship information of the first frequency hopping resource of time slot 1 and the first frequency hopping resource of time slot 2 are the same, for example, they are both mapped to the transmission beam corresponding to TRP1; the second hopping resource of time slot 1
  • the spatial relation information of the frequency resource and the second frequency hopping resource of time slot 2 is also the same, for example, both are mapped to the transmit beam corresponding to TRP2.
  • the network device may configure that only beam flipping occurs in one or some time slots, that is, the above method further includes: the network device sends beam flipping mapping information to the terminal device, and the beam flipping
  • the mapping information is used to indicate that only beam mapping inversion occurs in k time slots among the n time slots, and k is a positive integer less than or equal to n.
  • the network device may indicate beam mapping inversion by multiplexing beam mapping (beam mapping) signaling, where the beam mapping signaling is used to indicate the mapping relationship between the beam sending direction of the PUSCH and different transmission opportunities.
  • only beam mapping inversion occurs in the k time slots of the n time slots, including: (n-k) time slots
  • the first frequency hopping resources in each time slot in the (n-k) time slots are mapped to the transmission beam corresponding to the first transmission point;
  • the second frequency hopping resources in each time slot in (n-k) time slots are mapped to the transmission beam corresponding to the second transmission point beam;
  • the first frequency hopping resources in each of the k time slots are mapped to the transmission beam corresponding to the second transmission point;
  • the second frequency hopping resources in each of the k time slots are mapped to the first transmission
  • the point corresponds to the transmit beam.
  • n is 2, and the terminal device repeatedly transmits the PUSCH in time slot 1 for the first time, and repeatedly transmits the PUSCH in time slot 2 for the second time.
  • the spatial relationship information of the first frequency hopping resource and the second frequency hopping resource of time slot 1 is different.
  • the first frequency hopping resource of time slot 1 is mapped to the transmission beam corresponding to TRP1, and the time slot 1
  • the second frequency hopping resource of is mapped to the transmit beam corresponding to TRP2.
  • the network device configures the terminal device to perform beam mapping flip in time slot 2, so that as shown in Figure 9, the space between the first frequency hopping resource of time slot 2 and the second frequency hopping resource of time slot 1
  • the relationship information is the same, such as mapping to the transmission beam corresponding to TRP2; the spatial relationship information of the second frequency hopping resource of time slot 2 and the first frequency hopping resource of time slot 1 is the same, such as mapping to the transmission beam corresponding to TRP1 .
  • the network device may configure certain or some time slots to only undergo frequency mapping flipping, that is, the above method further includes: the network device sending the frequency flipping mapping to the terminal device Information, the frequency flipping mapping information is used to indicate that only frequency mapping flipping occurs in i slots among the n time slots, and i is a positive integer less than or equal to n.
  • the network device may indicate frequency mapping inversion by multiplexing beam mapping (beam mapping) signaling, where the beam mapping signaling is used to indicate the mapping relationship between the beam sending direction of the PUSCH and different transmission opportunities.
  • the first frequency hopping resource and the second frequency hopping resource are included in each time slot in the n time slots; only the frequency mapping flip occurs in the i time slots in the n time slots, including: each of the (n-i) time slots
  • the frequency resources occupied by the first frequency hopping resources in the time slots are all first frequency resources; the frequency resources occupied by the second frequency hopping resources in each time slot in the (n-i) time slots are all second frequency resources;
  • the frequency resources occupied by the first frequency hopping resources in each time slot in the i time slots are all second frequency resources; the frequency resources occupied by the second frequency hopping resources in each time slot in the i time slots are all the first frequency resources.
  • n is 2, and the terminal device repeatedly transmits the PUSCH in time slot 1 for the first time, and repeatedly transmits the PUSCH in time slot 2 for the second time.
  • the spatial relationship information of the first frequency hopping resource of time slot 1 and the first frequency hopping resource of time slot 2 are the same, for example, both are mapped to the corresponding transmission beam of TRP1; the second hopping resource of time slot 1
  • the spatial relationship information of the frequency resource and the second frequency hopping resource of time slot 2 is also the same, for example, both are mapped to the transmit beam corresponding to TRP2.
  • the frequency resources occupied by the first frequency hopping resource and the second frequency hopping resource of time slot 1 are different.
  • the frequency resource occupied by the first frequency hopping resource of time slot 1 is the first frequency resource
  • the frequency resource occupied by the second frequency hopping resource of time slot 1 is the second frequency resource.
  • the network device configures frequency mapping flipping in time slot 2 for the terminal device, so that as shown in Figure 10, the first frequency hopping resource in time slot 2 and the second hopping resource in time slot 1
  • the frequency resources occupied by the frequency resources are the same, for example, the occupied frequency resources are all the second frequency resources; the frequency resources occupied by the second frequency hopping resource of time slot 2 and the first frequency hopping resource of time slot 1 are the same , if the occupied frequency resources are all the first frequency resources.
  • the frequency resources occupied by corresponding frequency hopping resources in adjacent time slots in the n time slots are different, and the frequency resources occupied by different frequency hopping resources in the same time slot in the n time slots are The frequency resources are the same or different, and the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same.
  • the frequency resources occupied by the corresponding frequency hopping resources in adjacent time slots in the n time slots are different, including: The frequency resources occupied by the first frequency hopping resources in adjacent time slots in the n time slots are different; the frequency resources occupied by the second frequency hopping resources in adjacent time slots in the n time slots are also different.
  • the frequency resources occupied by different frequency hopping resources in the same time slot in the n time slots are the same or different, It includes: frequency resources occupied by the first frequency hopping resource and the second frequency hopping resource in the same time slot in the n time slots are the same or different.
  • the corresponding frequency hopping resources in each of the n time slots have the same beam mapping, including: n The first frequency hopping resources in each of the time slots are mapped to the transmission beam corresponding to the first transmission point; the second frequency hopping resources in each of the n time slots are mapped to the transmission beam corresponding to the second transmission point beam.
  • the same or different frequency resources can usually be determined by the frequency start position, if the frequency start position of different frequency hopping resources If they are the same, the frequency resources occupied by different frequency hopping resources are the same; if the frequency start positions of different frequency hopping resources are different, then the frequency resources occupied by different frequency hopping resources are different.
  • n is 2, and the terminal device repeatedly transmits the PUSCH in time slot 1 for the first time, and repeatedly transmits the PUSCH in time slot 2 for the second time.
  • both time slot 1 and time slot 2 include a first frequency hopping resource and a second frequency hopping resource, and the frequency resources occupied by the first frequency hopping resource and the second frequency hopping resource of time slot 1 are the same , the frequency resources occupied by the first frequency hopping resource and the second frequency hopping resource of time slot 2 are also the same; and the frequency resources occupied by the first frequency hopping resource of time slot 1 and the first frequency hopping resource of time slot 2 are different, and the frequency resources occupied by the second frequency hopping resource of time slot 1 and the second frequency hopping resource of time slot 2 are also different.
  • the spatial relationship information of the first frequency hopping resource of time slot 1 and the first frequency hopping resource of time slot 2 are the same, for example, both are mapped to the corresponding transmission beam of TRP1; the second hopping resource of time slot 1
  • the spatial relationship information of the frequency resource and the second frequency hopping resource of time slot 2 is also the same, for example, both are mapped to the transmit beam corresponding to TRP2.
  • the network device may configure that only beam flipping flips occur in one or some time slots, so that the above method further includes: the network device sends beam flipping mapping information to the terminal device, and the beam flipping mapping information It is used to indicate that only beam mapping inversion occurs in k slots in n slots, and k is a positive integer less than or equal to n.
  • the network device may indicate beam mapping inversion by multiplexing beam mapping (beam mapping) signaling, where the beam mapping signaling is used to indicate the mapping relationship between the beam sending direction of the PUSCH and different transmission opportunities.
  • only beam mapping inversion occurs in the k time slots of the n time slots, including: (n-k) time slots
  • the first frequency hopping resources in each time slot in the (n-k) time slots are mapped to the transmission beam corresponding to the first transmission point;
  • the second frequency hopping resources in each time slot in (n-k) time slots are mapped to the transmission beam corresponding to the second transmission point beam;
  • the first frequency hopping resources in each of the k time slots are mapped to the transmission beam corresponding to the second transmission point;
  • the second frequency hopping resources in each of the k time slots are mapped to the first transmission
  • the point corresponds to the transmit beam.
  • n 2
  • the terminal device repeatedly transmits the PUSCH in time slot 1 for the first time, and repeatedly transmits the PUSCH in time slot 2 for the second time.
  • the spatial relationship information of the first frequency hopping resource and the second frequency hopping resource of time slot 1 is different.
  • the first frequency hopping resource of time slot 1 is mapped to the transmission beam corresponding to TRP1
  • the The second frequency hopping resource of is mapped to the transmit beam corresponding to TRP2.
  • the network device configures the beam mapping flip for the terminal device in time slot 2, so that as shown in Figure 12, the space between the first frequency hopping resource of time slot 2 and the second frequency hopping resource of time slot 1
  • the relationship information is the same, such as mapping to the transmission beam corresponding to TRP2; the spatial relationship information of the second frequency hopping resource of time slot 2 and the first frequency hopping resource of time slot 1 is the same, such as mapping to the transmission beam corresponding to TRP1 .
  • the technical solution provided by the embodiment of the present application realizes the intra-slot beam hopping scheme on the basis of the frequency hopping scheme, which reduces the complexity of implementing the intra-slot beam hopping scheme for terminal equipment, and realizes flexible timing.
  • the network device can configure frequency mapping inversion for the terminal device, so that the same beam can obtain frequency diversity gain; the network device can also configure beam mapping inversion for the terminal device, so that the number of beam switching can be reduced.
  • the uplink channel transmission method provided in the embodiments of the present application is described from the perspective of interaction between the terminal device and the network device.
  • the steps performed by the relevant terminal equipment can be separately implemented as an uplink channel transmission method on the terminal equipment side; the steps performed by the relevant network equipment can be separately implemented as an uplink channel transmission method on the network equipment side.
  • Fig. 13 is a structural block diagram of an uplink channel transmission device provided by an exemplary embodiment of the present disclosure. As shown in Fig. 13, the device is used for a terminal device, and the device 1300 includes:
  • the indication information receiving module 1310 is configured to receive transmission indication information from the network device, the transmission indication information is used to indicate the first repeated transmission scheme for sending PUSCH, and the first repeated transmission scheme is the inter-slot repeated transmission scheme and Combination of intra-slot beam-hopping schemes;
  • the uplink channel sending module 1320 is configured to cooperatively send the PUSCH to multiple TRPs of the network device according to the first repeated transmission scheme.
  • the transmission indication information includes: the intra-slot transmission scheme is the intra-slot beam hopping scheme; or, the transmission indication information includes: simultaneously configuring the intra-slot frequency hopping scheme and/or the inter-slot frequency hopping scheme In the case of a frequency hopping scheme, the transmission scheme of the PUSCH is activated as the first repeated transmission scheme.
  • the first repeated transmission scheme includes: performing inter-slot repeated transmission within n time slots, and performing intra-slot beam hopping in each of the n time slots; n is an integer greater than or equal to 1.
  • the apparatus 1300 further includes: a times information receiving module 1330, configured to: receive RRC signaling from the network device, the RRC signaling is used to configure the n or, receiving MAC CE or DCI from the network device, where the MAC CE or the DCI is used to indicate the n.
  • a times information receiving module 1330 configured to: receive RRC signaling from the network device, the RRC signaling is used to configure the n or, receiving MAC CE or DCI from the network device, where the MAC CE or the DCI is used to indicate the n.
  • the size of resources occupied by corresponding frequency hopping resources in each of the n time slots is the same, and the resource sizes occupied by different frequency hopping resources in the same time slot among the n time slots are same or different.
  • the frequency resources occupied by the corresponding frequency hopping resources in each of the n time slots are the same, and the frequency resources occupied by different frequency hopping resources in the same time slot among the n time slots are The same or different, and the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same , including: the first frequency hopping resources in each of the n time slots are mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each of the n time slots are mapped to to the transmit beam corresponding to the second TRP.
  • the apparatus 1300 further includes: a beam flipping information receiving module 1340, configured to receive beam flipping mapping information from the network device, and the beam flipping mapping information is used to indicate the Only beam mapping inversion occurs in k of the n time slots, and the k is a positive integer less than or equal to the n.
  • a beam flipping information receiving module 1340 configured to receive beam flipping mapping information from the network device, and the beam flipping mapping information is used to indicate the Only beam mapping inversion occurs in k of the n time slots, and the k is a positive integer less than or equal to the n.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; only beam mapping inversion occurs in k of the n time slots, including: The first frequency hopping resources in each time slot in (n-k) time slots are all mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each time slot in (n-k) time slots are all mapped to the second The transmission beam corresponding to the TRP; the first frequency hopping resources in each of the k time slots are mapped to the transmission beam corresponding to the second TRP; the second frequency hopping in each of the k time slots The resources are all mapped to the transmit beam corresponding to the first TRP.
  • the apparatus 1300 further includes: a frequency inversion information receiving module 1350, configured to receive frequency inversion mapping information from the network device, and the frequency inversion mapping information is used to indicate the Only frequency mapping inversion occurs in i time slots among the n time slots, and the i is a positive integer less than or equal to the n.
  • a frequency inversion information receiving module 1350 configured to receive frequency inversion mapping information from the network device, and the frequency inversion mapping information is used to indicate the Only frequency mapping inversion occurs in i time slots among the n time slots, and the i is a positive integer less than or equal to the n.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; only frequency mapping inversion occurs in i time slots of the n time slots, including: The frequency resource occupied by the first frequency hopping resource in each time slot in (n-i) time slots is the first frequency resource; the frequency occupied by the second frequency hopping resource in each time slot in (n-i) time slots The resources are all second frequency resources; the frequency resources occupied by the first frequency hopping resources in each time slot in the i time slots are all second frequency resources; the first frequency resources in each time slot in the i time slots The frequency resources occupied by the second frequency hopping resources are all the first frequency resources.
  • the frequency resources occupied by corresponding frequency hopping resources in adjacent time slots among the n time slots are different, and the frequency resources occupied by different frequency hopping resources in the same time slot among the n time slots are
  • the resources are the same or different, and the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same , including: the first frequency hopping resources in each of the n time slots are mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each of the n time slots are mapped to to the transmit beam corresponding to the second TRP.
  • the apparatus 1300 further includes: a beam flipping information receiving module 1340, configured to receive beam flipping mapping information from the network device, and the beam flipping mapping information is used to indicate the Only beam mapping inversion occurs in k of the n time slots, and the k is a positive integer less than or equal to the n.
  • a beam flipping information receiving module 1340 configured to receive beam flipping mapping information from the network device, and the beam flipping mapping information is used to indicate the Only beam mapping inversion occurs in k of the n time slots, and the k is a positive integer less than or equal to the n.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; only beam mapping inversion occurs in k of the n time slots, including: The first frequency hopping resources in each time slot in (n-k) time slots are all mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each time slot in (n-k) time slots are all mapped to the second The transmission beam corresponding to the TRP; the first frequency hopping resources in each of the k time slots are mapped to the transmission beam corresponding to the second TRP; the second frequency hopping in each of the k time slots The resources are all mapped to the transmit beam corresponding to the first TRP.
  • Fig. 15 is a structural block diagram of an uplink channel transmission device provided by an exemplary embodiment of the present disclosure. As shown in Fig. 15, the device is used for network equipment, and the device 1500 includes:
  • the instruction information sending module 1510 is configured to send transmission instruction information to the terminal device, where the transmission instruction information is used to instruct the terminal device to send a first repeated transmission scheme of PUSCH, and the first repeated transmission scheme is repeated transmission between time slots The combination of the scheme and the intra-slot beam hopping scheme;
  • the uplink channel receiving module 1520 is configured to receive the PUSCH from the terminal device based on multiple TRPs of the network device.
  • the transmission indication information includes: the intra-slot transmission scheme is the intra-slot beam hopping scheme; or, the transmission indication information includes: simultaneously configuring the intra-slot frequency hopping scheme and/or the inter-slot frequency hopping scheme In the case of a frequency hopping scheme, the transmission scheme of the PUSCH is activated as the first repeated transmission scheme.
  • the first repeated transmission scheme includes: performing inter-slot repeated transmission within n time slots, and performing intra-slot beam hopping in each of the n time slots; n is an integer greater than or equal to 1.
  • the apparatus 1500 further includes: a times information sending module 1530, configured to: send RRC signaling to the terminal device, where the RRC signaling is used to configure the n; or , sending a MAC CE or DCI to the terminal device, where the MAC CE or the DCI is used to indicate the n.
  • a times information sending module 1530 configured to: send RRC signaling to the terminal device, where the RRC signaling is used to configure the n; or , sending a MAC CE or DCI to the terminal device, where the MAC CE or the DCI is used to indicate the n.
  • the size of resources occupied by corresponding frequency hopping resources in each of the n time slots is the same, and the resource sizes occupied by different frequency hopping resources in the same time slot among the n time slots are same or different.
  • the frequency resources occupied by the corresponding frequency hopping resources in each of the n time slots are the same, and the frequency resources occupied by different frequency hopping resources in the same time slot among the n time slots are The same or different, and the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same , including: the first frequency hopping resources in each of the n time slots are mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each of the n time slots are mapped to to the transmit beam corresponding to the second TRP.
  • the apparatus 1500 further includes: a beam flipping information sending module 1540, configured to send beam flipping mapping information to the terminal device, and the beam flipping mapping information is used to indicate the n Only beam mapping inversion occurs in k time slots in the time slots, and the k is a positive integer less than or equal to the n.
  • a beam flipping information sending module 1540 configured to send beam flipping mapping information to the terminal device, and the beam flipping mapping information is used to indicate the n Only beam mapping inversion occurs in k time slots in the time slots, and the k is a positive integer less than or equal to the n.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; only beam mapping inversion occurs in k of the n time slots, including: The first frequency hopping resources in each time slot in (n-k) time slots are all mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each time slot in (n-k) time slots are all mapped to the second The transmission beam corresponding to the TRP; the first frequency hopping resources in each of the k time slots are mapped to the transmission beam corresponding to the second TRP; the second frequency hopping in each of the k time slots The resources are all mapped to the transmit beam corresponding to the first TRP.
  • the apparatus 1500 further includes: a frequency inversion information sending module 1550, configured to send frequency inversion mapping information to the terminal device, and the frequency inversion mapping information is used to indicate the n Only frequency mapping inversion occurs in i time slots in the time slots, where i is a positive integer less than or equal to the n.
  • a frequency inversion information sending module 1550 configured to send frequency inversion mapping information to the terminal device, and the frequency inversion mapping information is used to indicate the n Only frequency mapping inversion occurs in i time slots in the time slots, where i is a positive integer less than or equal to the n.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; only frequency mapping inversion occurs in i time slots of the n time slots, including: The frequency resource occupied by the first frequency hopping resource in each time slot in (n-i) time slots is the first frequency resource; the frequency occupied by the second frequency hopping resource in each time slot in (n-i) time slots The resources are all second frequency resources; the frequency resources occupied by the first frequency hopping resources in each time slot in the i time slots are all second frequency resources; the first frequency resources in each time slot in the i time slots The frequency resources occupied by the second frequency hopping resources are all the first frequency resources.
  • the frequency resources occupied by corresponding frequency hopping resources in adjacent time slots among the n time slots are different, and the frequency resources occupied by different frequency hopping resources in the same time slot among the n time slots are
  • the resources are the same or different, and the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; the beam mapping of the corresponding frequency hopping resources in each of the n time slots is the same , including: the first frequency hopping resources in each of the n time slots are mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each of the n time slots are mapped to to the transmit beam corresponding to the second TRP.
  • the apparatus 1500 further includes: a beam flipping information sending module 1540, configured to send beam flipping mapping information to the terminal device, and the beam flipping mapping information is used to indicate the n Only beam mapping inversion occurs in k time slots in the time slots, and the k is a positive integer less than or equal to the n.
  • a beam flipping information sending module 1540 configured to send beam flipping mapping information to the terminal device, and the beam flipping mapping information is used to indicate the n Only beam mapping inversion occurs in k time slots in the time slots, and the k is a positive integer less than or equal to the n.
  • each of the n time slots includes a first frequency hopping resource and a second frequency hopping resource; only beam mapping inversion occurs in k of the n time slots, including: The first frequency hopping resources in each time slot in (n-k) time slots are all mapped to the transmission beam corresponding to the first TRP; the second frequency hopping resources in each time slot in (n-k) time slots are all mapped to the second The transmission beam corresponding to the TRP; the first frequency hopping resources in each of the k time slots are mapped to the transmission beam corresponding to the second TRP; the second frequency hopping in each of the k time slots The resources are all mapped to the transmit beam corresponding to the first TRP.
  • Fig. 17 shows a schematic structural diagram of a communication device 1700 (terminal device or network device) provided by an exemplary embodiment of the present disclosure.
  • the communication device 1700 includes: a processor 1701, a receiver 1702, a transmitter 1703, a memory 1704 and a bus 1705.
  • the processor 1701 includes one or more processing cores, and the processor 1701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1702 and the transmitter 1703 can be realized as a communication component, and the communication component can be a communication chip.
  • the memory 1704 is connected to the processor 1701 through a bus 1705 .
  • the memory 1704 may be used to store at least one instruction, and the processor 1701 may be used to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • volatile or non-volatile storage devices include but not limited to: magnetic or optical disks, electrically erasable and programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (Erasable Programmable Read Only Memory, EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • An exemplary embodiment of the present disclosure also provides an uplink transmission system, the system includes: a terminal device and a network device; the terminal device includes the uplink channel transmission device provided in the embodiment shown in Figure 13 and Figure 14; The above network equipment includes the uplink channel transmission device provided in the embodiments shown in FIG. 15 and FIG. 16 .
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium, the computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the steps performed by the terminal device in the uplink channel transmission method provided by the above method embodiments.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium, the computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the At least one section of program, the code set or instruction set is loaded and executed by the processor to implement the steps performed by the network device in the uplink channel transmission method provided by the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种上行信道传输方法、装置、设备及可读存储介质,涉及无线通信领域。该方法包括:网络设备向终端设备发送传输指示信息,传输指示信息用于指示发送PUSCH的第一重复传输方案,第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;终端设备按照第一重复传输方案,向网络设备的多个TRP协作发送PUSCH。本申请实施例中,终端设备在通过时隙内跳波束方案获得波束分集增益的同时,也可以通过时隙间重复传输方案提高PUSCH的传输可靠性,能够有效对抗堵塞和深衰情况下的性能恶化,实现了更加灵活地适应不同时延和性能的业务要求。

Description

上行信道传输方法、装置、设备及存储介质 技术领域
本申请涉及无线通信领域,特别涉及一种上行信道传输方法、装置、设备及存储介质。
背景技术
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)在5G(5th-Generation Mobile Communication Technology,第五代移动通信技术)NR(New Radio,新空口)系统中引入了基于多TRP(Transmit-Receive Point,传输接收点)的协作传输技术。
在R17(Release 17,第17版本)的讨论中,有一种基于多TRP的协作传输技术具有一定的实现优势,即时隙内跳波束(intra-slot beam hopping)方案。时隙内跳波束方案是在时隙内跳频方案(intra-slot frequency hopping)的基础上,建议针对不同的跳频资源使用不同的发送波束。也即,针对用于PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输的时隙,终端设备在时隙内不同的跳频资源上面向同一网络设备的不同TRP进行PUSCH的传输。从而,终端设备可以在该时隙内获得波束分集增益,并且,由于时隙内跳波束方案是以时隙内跳频方案为基础,终端设备实现时隙内跳波束方案的复杂度也会较低。
然而,由于在上述时隙内跳波束方案中,终端设备是通过时隙内不同的跳频资源协作向网络设备的不同TRP发送PUSCH,而并没有在时隙内多个跳频资源上进行PUSCH的重复传输,从而PUSCH的传输可靠性较低,难以对抗堵塞和深衰情况下的性能恶化。
发明内容
本公开实施例提供了一种上行信道传输方法、装置、设备及可读存储介质,能够提高PUSCH的传输可靠性,有效对抗堵塞和深衰情况下的性能恶化,实现更加灵活地适应不同时延和性能的业务要求。所述技术方案如下:
根据本公开的一方面,提供了一种上行信道传输方法,应用于终端设备, 所述方法包括:
接收来自于网络设备的传输指示信息,所述传输指示信息用于指示发送PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
按照所述第一重复传输方案,向所述网络设备的多个TRP协作发送所述PUSCH。
根据本公开的一方面,提供了一种上行信道传输方法,应用于网络设备,所述方法包括:
向终端设备发送传输指示信息,所述传输指示信息用于指示终端设备发送PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
基于所述网络设备的多个TRP,接收来自于所述终端设备的所述PUSCH。
根据本公开的一方面,提供了一种上行信道传输装置,设置在终端设备,所述装置包括:
指示信息接收模块,用于接收来自于网络设备的传输指示信息,所述传输指示信息用于指示发送PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
上行信道发送模块,用于按照所述第一重复传输方案,向所述网络设备的多个TRP协作发送所述PUSCH。
根据本公开的一方面,提供了一种上行信道传输装置,设置在网络设备,所述装置包括:
指示信息发送模块,用于向终端设备发送传输指示信息,所述传输指示信息用于指示所述终端设备发送PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
上行信道接收模块,用于基于所述网络设备的多个TRP,接收来自于所述终端设备的所述PUSCH。
根据本公开的一方面,提供了一种终端设备,所述终端设备包括:
处理器;
与所述处理器相连的收发器;
其中,所述处理器被配置为加载并执行可执行指令以实现如上述终端设备 侧的上行信道传输方法。
根据本公开的一方面,提供了一种网络设备,所述网络设备包括:
处理器;
与所述处理器相连的收发器;
其中,所述处理器被配置为加载并执行可执行指令以实现如上述网络设备侧的上行信道传输方法。
根据本公开的一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或所述指令集由处理器加载并执行以实现如上述上行信道传输方法。
本公开实施例提供的技术方案带来的有益效果至少包括:
通过在网络设备为终端设备指示发送PUSCH的第一重复传输方案的情况下,终端设备按照第一重复传输方案向网络设备的多个传输点协作发送PUSCH,提供了一种基于多TRP的上行信道传输方法。由于第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合,从而终端设备在通过时隙内跳波束方案获得波束分集增益的同时,也可以通过时隙间重复传输方案提高PUSCH的传输可靠性,能够有效对抗堵塞和深衰情况下的性能恶化,实现了更加灵活地适应不同时延和性能的业务要求。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的重复传输的示意图;
图2是本公开另一个示例性实施例提供的重复传输的示意图;
图3是本公开再一个示例性实施例提供的重复传输的示意图;
图4是本公开又一个示例性实施例提供的重复传输的示意图;
图5是本公开一个示例性实施例提供的时隙间跳波束方案的示意图;
图6是本公开一个示例性实施例提供的通信系统的示意图;
图7是本公开一个示例性实施例提供的上行信道传输方法的示意图;
图8是本公开一个示例性实施例提供的频率和波束映射的示意图;
图9是本公开另一个示例性实施例提供的频率和波束映射的示意图;
图10是本公开再一个示例性实施例提供的频率和波束映射的示意图;
图11是本公开又一个示例性实施例提供的频率和波束映射的示意图;
图12是本公开还一个示例性实施例提供的频率和波束映射的示意图;
图13是本公开一个示例性实施例提供的上行信道传输装置的结构框图;
图14是本公开另一个示例性实施例提供的上行信道传输装置的结构框图;
图15是本公开再一个示例性实施例提供的上行信道传输装置的结构框图;
图16是本公开又一个示例性实施例提供的上行信道传输装置的结构框图;
图17是本公开一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的 词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
3GPP在5G NR系统中引入了基于多TRP的协作传输技术。网络设备多TRP/Panel(天线面板)的应用主要为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,用不同的方式在多个TRP/Panel间协作传输数据。从网络形态角度考虑,以大量的分布式接入点加基带集中处理的方式进行网络部署将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。利用多TRP/Panel之间的协作,从多个方向的多个波束进行信道的传输/接收,可以更好地克服各种遮挡/阻挡效应,保障链路连接的鲁棒性,适合URLLC(Ultra Reliable Low Latency Communication,超高可靠性与低时延通信)业务提升传输质量和满足可靠性要求。
在R16(Release 16,第16版本)研究阶段,基于多TRP的协作传输技术的应用,主要对PDSCH(Physical Downlink Shared Channel,物理下行共享信道)进行了传输增强。由于数据传输包括上下行信道的调度反馈,因此在URLLC的研究中,只对下行数据信道增强不能保证业务性能。因此,在R17的讨论继续对PDCCH(Physical Downlink Control Channel,物理下行控制信道)以及PUCCH(Physical Uplink Control Channel,物理上行控制信道)、PUSCH进行增强。
R17讨论的基于多TRP的上行增强方案,主要是基于R16的PUSCH重复传输方案。对于调度的PUSCH,主要有两种PUSCH时域重复传输增强方式,分别是R16引入的重复类型A传输方式和重复类型B传输方式。
1、PUSCH重复类型A传输方式。
R16的时隙级别的Slot Aggregation(时隙聚合)PUSCH传输适用于某些时延要求很低、可靠性要求很高的情况。一个PUSCH在连续的K(K为正整数)个时隙中传输,即K个传输时机(Transmission Occasion,TO),从起始时隙中的第S(S大于或等于0)个符号上开始传输,每个传输时机持续L(L为正整数)个符号,同时S+L不能超过时隙边界。
示例性地,如图1所示,K等于2,S等于4,L等于4。终端设备在第一个时隙的第4个符号至第7个符号进行第1次重复传输,在第二个时隙的第4个符号至第7个符号进行第2次重复传输。可选地,一个时隙包括14个符号,分别为第0个符号至第13个符号。
2、PUSCH重复类型B传输方式。
为了降低时延、提高可靠性,R16支持以Mini-slot(子时隙)为单位的PUSCH重复传输方案,且允许PUSCH传输可以跨时隙以进一步降低时延。在时域上,一个PUSCH在起始时隙中的第S个符号上开始传输,连续发送K个传输时机,每个传输时机都连续占用L个符号,同时S+L可以跨时隙边界。在传输时机出现跨时隙边界的情况下,传输会被重新分割。对于整个传输来讲,L*K表示PUSCH传输的时间窗口长度,DL(Downlink,下行)符号和其他无效符号会被丢弃而不用于PUSCH的传输。
示例性地,如图2所示,K等于2,S等于4,L等于4。终端设备在第一个时隙的第4个符号至第7个符号进行第1次重复传输,在第一个时隙的第8个符号至第11个符号进行第2次重复传输。可选地,一个时隙包括14个符号,分别为第0个符号至第13个符号。
示例性地,如图3所示,K等于4,S等于4,L等于4。终端设备在第一个时隙的第4个符号至第7个符号进行第1次重复传输,在第一个时隙的第8个符号至第11个符号进行第2次重复传输。由于根据配置信息,第3次重复传输的4个符号跨过了第一个时隙的时隙边界,则将第3次重复传输分割为两次重复传输,在第一个时隙的第12个符号至第13个符号进行第3次重复传输,在第二个时隙的第1个符号至第2个符号进行第4次重复传输。在第二个时隙的第3个符号至第7个符号进行第5次重复传输。也即,终端设备实际进行了5次重复传输,每次重复传输发送相同的数据。可选地,一个时隙包括14个符号,分别为第0个符号至第13个符号。
示例性地,如图4所示,K等于1,S等于4,L等于14。由于一个时隙的长度为14个符号,传输却是从起始时隙的第4个符号开始传输,且每个传输时机占用14个符号,则第1次重复传输的14个符号会跨过时隙边界,将第1次重复传输分割为两次重复传输。在第一个时隙的第4个符号至第13个符号进行第1次重复传输,在第二个时隙的第1个符号至第4个符号进行第2次重复传输。也即,终端设备实际进行了2次重复传输,每次重复传输发送相同的数据。可选地,一个时隙包括14个符号,分别为第0个符号至第13个符号。
在R17multi-TRP增强中,PUSCH支持在以上定义的传输方式下,在不同的传输时机上向不同的TRP协作发送同一传输块(Transport Block,TB),以进 一步应用空间复用传输提高传输可靠性。目前讨论的增强方案主要有:基于重复类型A的multi-TRP方案、基于重复类型B的multi-TRP方案。
其中,终端设备面向不同TRP发送的PUCCH/PUSCH的波束发送方向和不同的传输时机之间的映射关系有多种映射方案可以考虑,下面举例3种典型方案。
方案a:周期映射。两个波束方向依次循环映射到配置的多个传输时机上。例如,进行4次重复传输时,波束方向映射的图样可以是#1#2#1#2。其中,#1对应第一波束方向,#2对应第二波束方向。
方案b:连续映射。两个波束方向连续循环映射到配置的多个传输时机上。例如,进行4次重复传输时,波束方向映射的图样可以是#1#1#2#2;对于4次以上的重复传输,则重复该图样,如对于8次重复传输,波束方向映射的图样可以是#1#1#2#2#1#1#2#2。其中,#1对应第一波束方向,#2对应第二波束方向。
方案c:对半映射。两个波束方向连续映射到配置的多个传输时机上。例如,进行8次重复传输时,波束方向映射的图样可以是#1#1#1#1#2#2#2#2。其中,#1对应第一波束方向,#2对应第二波束方向。
在R17的讨论中,有一种基于多TRP的协作传输技术具有一定的实现优势,即时隙内跳波束方案。时隙内跳波束方案是在时隙内跳频方案的基础上,建议针对不同的跳频资源使用不同的发送波束。也即,针对用于PUSCH传输的时隙,终端设备在时隙内不同的跳频资源上面向同一网络设备的不同TRP进行PUSCH的传输。
示例性地,如图5所示,终端设备被配置了时隙内跳频方案,在该时隙内跳频方案的基础上,终端设备采用时隙内跳波束方案进行PUSCH的传输,也即,终端设备在第一跳频资源上的PUSCH传输面向TRP1,在第二跳频资源上的PUSCH传输面向TRP2。
通过采用时隙内跳波束方案,终端设备可以在时隙内获得波束分集增益,并且,由于时隙内跳波束方案是以时隙内跳频方案为基础,终端设备实现时隙内跳波束方案的复杂度也会较低。然而,由于在上述时隙内跳波束方案中,终端设备是通过时隙内不同的跳频资源协作向网络设备的不同TRP发送PUSCH,而并没有在时隙内多个跳频资源上进行PUSCH的重复传输,从而PUSCH的传输可靠性较低,难以对抗堵塞和深衰情况下的性能恶化。
基于此,本申请实施例提供了一种上行信道传输方法,可用于提高PUSCH的传输可靠性。下面,通过几个实施例对本申请提供的技术方案进行介绍说明。
请参考图6,其示出了本申请一个实施例提供的通信系统的示意图。该通信系统可以包括:终端设备10和网络设备。
终端设备10的数量通常为多个,每一个网络设备所管理的小区内可以分布一个或多个终端设备10。终端设备10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。
网络设备是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。为了方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为网络设备。在一个示例中,网络设备与终端设备10之间通过某种空口技术互相通信,如Uu接口。
在一个示例中,一个网络设备可以部署有多个TRP,示例性地,如图6所示,网络设备对应有TRP1、TRP2……TRPn(TRP在图6中标号为20)。终端设备可以使用不同的发送波束面向不同TRP发送上行信道(如PUSCH),网络设备可以通过多个TRP接收终端设备发送的上行信道(如PUSCH)。示例性地,由于不同TRP与终端设备的相对方位不同,终端设备需要使用不同波束方向的发送波束,向对应方向上的TRP发送上行信道(如PUSCH)。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
请参考图7,其示出了本申请一个实施例提供的上行信道传输方法的流程图,该方法可以应用于图6所示的通信系统中。该方法包括如下步骤。
步骤710,网络设备向终端设备发送传输指示信息,传输指示信息用于指示 发送PUSCH的第一重复传输方案,第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合。
本申请实施例中,由网络设备为终端设备指示PUSCH的传输方案。为了提高PUSCH的传输可靠性,终端设备可以重复发送PUSCH;为了同时获得波束分集增益,终端设备可以采用跳波束的方式发送PUSCH。
基于此,本申请实施例中,网络设备通过传输指示信息为终端设备指示终端设备发送PUSCH的第一重复传输方案,该第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合。可选地,该时隙间重复传输方案为上述PUSCH重复类型A传输方式。因此,在需求重复传输PUSCH的情况下,网络设备需要向终端设备指示时隙内跳波束方案,以使得终端设备明确第一重复传输方案。
本申请实施例对网络设备指示第一重复传输方案的具体方式不作限定。在一个示例中,网络设备可以直接向终端设备指示时隙内传输方案为时隙内跳波束方案,从而传输指示信息包括:时隙内传输方案为时隙内跳波束方案;可选地,网络设备可以同时向终端设备指示跳频方案,从而传输指示信息还包括:时隙内跳频方案和/或时隙间跳频方案。在另一个示例中,网络设备可以通过跳频方案的配置来激活第一重复传输方案,从而传输指示信息包括:同时配置时隙内跳频方案和/或时隙间跳频方案的情况下,PUSCH的传输方案激活为第一重复传输方案。
在一个示例中,第一重复传输方案包括:在n个时隙内进行时隙间重复传输,且在n个时隙中各个时隙内分别进行时隙内跳波束;n为大于或等于1的整数。可选地,时隙间重复传输方案为上述PUSCH重复类型A传输方式,从而终端设备在n个时隙内进行时隙间重复传输包括:终端设备在n个时隙中各个时隙内均发送一次PUSCH。也即,PUSCH的传输重复次数为n。
为使得终端设备明确传输重复次数,网络设备可以为终端设备配置或指示n。在一个示例中,网络设备可以为终端设备配置传输重复次数n,从而上述方法还包括:网络设备向终端设备发送RRC(Radio Resource Control,无线资源控制)信令,RRC信令用于配置n。在另一个示例中,网络设备可以更加动态地向终端设备指示传输重复次数n。可选地,网络设备可以显式地向终端设备指示n,从而上述方法还包括:网络设备向终端设备发送MAC(Media Access Control, 媒体接入控制)CE(Control Element,控制单元),该MAC CE用于指示n。可选地,网络设备可以隐式地向终端设备指示n,从而上述方法还包括:网络设备向终端设备发送DCI(Downlink Control Information,下行控制信息),该DCI用于指示n。例如,DCI中的TDRA(Time Domain Resource Allocation,时域资源分配)字段隐式地指示n。
有关第一重复传输方案的其它介绍说明,请参见下述实施例,此处不多赘述。
步骤720,终端设备按照第一重复传输方案,向网络设备的多个TRP协作发送PUSCH。
终端设备在接收到传输指示信息的情况下,即可按照传输指示信息所指示的第一重复传输方案,向网络设备的多个传输点(TRP)协作发送PUSCH。其中,面向网络设备不同的传输点,终端设备使用不同方向的发送波束发送PUSCH。应理解,本申请实施例中所述的传输点,又可以称为传输接收点。
综上所述,本申请实施例提供的技术方案,通过在网络设备为终端设备指示发送PUSCH的第一重复传输方案的情况下,终端设备按照第一重复传输方案向网络设备的多个传输点协作发送PUSCH,提供了一种基于多TRP的上行信道传输方法。由于第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合,从而终端设备在通过时隙内跳波束方案获得波束分集增益的同时,也可以通过时隙间重复传输方案提高PUSCH的传输可靠性,能够有效对抗堵塞和深衰情况下的性能恶化,实现了更加灵活地适应不同时延和性能的业务要求。
下面,针对第一重复传输方案中跳频资源所占用的频率资源,以及跳频资源的波束映射情况进行介绍说明。
首先,需要说明的一点是,本申请实施例中,n个时隙中各个时隙内对应的跳频资源所占用的资源大小相同,且n个时隙中同一时隙内不同的跳频资源所占用的资源大小相同或者不同。以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时隙中各个时隙内对应的跳频资源所占用的资源大小相同,包括:n个时隙中各个时隙内的第一跳频资源所占用的资源大小均为第一资源大小;n个时隙中各个时隙内的第二跳频资源所占用的资源大小均为第二资源大小。同样以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为 例,n个时隙中同一时隙内不同的跳频资源所占用的资源大小相同或者不同,包括:n个时隙中同一时隙内的第一跳频资源和第二跳频资源所占用的资源大小相同或者不同。
可选地,由于同一时隙内不同的跳频资源所占用的带宽是相同的,所以跳频资源所占用的资源大小通常可以由跳频资源在时域上占用的符号数量来确定,因此,上述n个时隙中各个时隙内对应的跳频资源所占用的资源大小相同,又可以称为n个时隙中各个时隙内对应的跳频资源在时域上所占用的符号数量相同;n个时隙中同一时隙内不同的跳频资源所占用的资源大小相同或者不同,又可以称为n个时隙中同一时隙内不同的跳频资源在时域上占用的符号数量相同或者不同。可选地,不同的跳频资源在时域上没有重叠;不同的跳频资源在频域上可以有重叠。
在一种可能的实施方式中,n个时隙中各个时隙内对应的跳频资源所占用的频率资源相同,且n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或者不同,且n个时隙中各个时隙内对应的跳频资源的波束映射相同。
以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时隙中各个时隙内对应的跳频资源所占用的频率资源相同,包括:n个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第一频率资源;n个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第二频率资源。
同样以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或者不同,包括:n个时隙中同一时隙内的第一跳频资源和第二跳频资源所占用的频率资源相同或者不同。
同样以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:n个时隙中各个时隙内的第一跳频资源均映射至第一传输点对应的发送波束;n个时隙中各个时隙内的第二跳频资源均映射至第二传输点对应的发送波束。
可选地,由于同一时隙内不同的跳频资源所占用的带宽是相同的,所以频率资源的相同或者不同通常可以由频率起始位置来确定,若不同的跳频资源的频率起始位置相同,则不同的跳频资源所占用的频率资源相同;若不同的跳频资源的频率起始位置不同,则不同的跳频资源所占用的频率资源不同。
示例性地,如图8所示,n为2,终端设备在时隙1第一次重复传输PUSCH,在时隙2第二次重复传输PUSCH。如图8所示,时隙1和时隙2均包括第一跳频资源和第二跳频资源,时隙1的第一跳频资源和时隙2的第一跳频资源所占用的频率资源是相同的,时隙1的第二跳频资源和时隙2的第二跳频资源所占用的频率资源也是相同的;而时隙1的第一跳频资源和第二跳频资源所占用的频率资源是不相同的,时隙2的第一跳频资源和第二跳频资源所占用的频率资源也是不同的。如图8所示,时隙1的第一跳频资源和时隙2的第一跳频资源的空间关系信息是相同的,如均映射至TRP1对应的发送波束;时隙1的第二跳频资源和时隙2的第二跳频资源的空间关系信息也是相同的,如均映射至TRP2对应的发送波束。
通过n个时隙中各个时隙内对应的跳频资源的波束映射相同,且各个时隙内均进行时隙内跳波束,从而在相邻两个时隙之间,终端设备均需要切换发送波束。在一个示例中,为了减少波束切换次数,网络设备可以配置某个或某些时隙内仅发生波束映射翻转,也即,上述方法还包括:网络设备向终端设备发送波束翻转映射信息,波束翻转映射信息用于指示n个时隙中k个时隙内仅发生波束映射翻转,k为小于或等于n的正整数。可选地,网络设备可以通过复用波束映射(beam mapping)信令来指示波束映射翻转,该波束映射信令用于指示PUSCH的波束发送方向和不同的传输时机之间的映射关系。
以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时隙中k个时隙内仅发生波束映射翻转,包括:(n-k)个时隙中各个时隙内的第一跳频资源均映射至第一传输点对应的发送波束;(n-k)个时隙中各个时隙内的第二跳频资源均映射至第二传输点对应的发送波束;k个时隙中各个时隙内的第一跳频资源均映射至第二传输点对应的发送波束;k个时隙中各个时隙内的第二跳频资源均映射至第一传输点对应的发送波束。
示例性地,如图9所示,n为2,终端设备在时隙1第一次重复传输PUSCH,在时隙2第二次重复传输PUSCH。如图9所示,时隙1的第一跳频资源和第二跳频资源的空间关系信息是不同的,如时隙1的第一跳频资源映射至TRP1对应的发送波束,时隙1的第二跳频资源映射至TRP2对应的发送波束。为了减少波束切换次数,网络设备为终端设备配置了在时隙2进行波束映射翻转,从而如图9所示,时隙2的第一跳频资源和时隙1的第二跳频资源的空间关系信息是 相同的,如映射至TRP2对应的发送波束;时隙2的第二跳频资源和时隙1的第一跳频资源的空间关系信息是相同的,如映射至TRP1对应的发送波束。
在一个示例中,为了进一步获得同一波束上的频率分集增益,网络设备可以配置某个或某些时隙仅发生频率映射翻转,也即,上述方法还包括:网络设备向终端设备发送频率翻转映射信息,频率翻转映射信息用于指示n个时隙中i个时隙内仅发生频率映射翻转,i为小于或等于n的正整数。可选地,网络设备可以通过复用波束映射(beam mapping)信令来指示频率映射翻转,该波束映射信令用于指示PUSCH的波束发送方向和不同的传输时机之间的映射关系。
以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;n个时隙中i个时隙内仅发生频率映射翻转,包括:(n-i)个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第一频率资源;(n-i)个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第二频率资源;i个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第二频率资源;i个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第一频率资源。
示例性地,如图10所示,n为2,终端设备在时隙1第一次重复传输PUSCH,在时隙2第二次重复传输PUSCH。如图10所示,时隙1的第一跳频资源和时隙2的第一跳频资源的空间关系信息是相同的,如均映射至TRP1对应的发送波束;时隙1的第二跳频资源和时隙2的第二跳频资源的空间关系信息也是相同的,如均映射至TRP2对应的发送波束。如图10所示,时隙1的第一跳频资源和第二跳频资源所占用的频率资源是不同的,如时隙1的第一跳频资源所占用的频率资源为第一频率资源,时隙1的第二跳频资源所占用的频率资源为第二频率资源。为了获得同一波束上的频率分集增益,网络设备为终端设备配置了在时隙2进行频率映射翻转,从而如图10所示,时隙2的第一跳频资源和时隙1的第二跳频资源所占用的频率资源是相同的,如所占用的频率资源均为第二频率资源;时隙2的第二跳频资源和时隙1的第一跳频资源所占用的频率资源是相同的,如所占用的频率资源均为第一频率资源。
在另一种可能的实施方式中,n个时隙中相邻时隙内对应的跳频资源所占用的频率资源不同,且n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或不同,且n个时隙中各个时隙内对应的跳频资源的波束映射相同。
以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时 隙中相邻时隙内对应的跳频资源所占用的频率资源不同,包括:n个时隙中相邻时隙内的第一跳频资源所占用的频率资源不同;n个时隙中相邻时隙内的第二跳频资源所占用的频率资源也不同。
同样以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或者不同,包括:n个时隙中同一时隙内的第一跳频资源和第二跳频资源所占用的频率资源相同或者不同。
同样以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:n个时隙中各个时隙内的第一跳频资源均映射至第一传输点对应的发送波束;n个时隙中各个时隙内的第二跳频资源均映射至第二传输点对应的发送波束。
可选地,由于同一时隙内不同的跳频资源所占用的带宽是相同的,所以频率资源的相同或者不同通常可以由频率起始位置来确定,若不同的跳频资源的频率起始位置相同,则不同的跳频资源所占用的频率资源相同;若不同的跳频资源的频率起始位置不同,则不同的跳频资源所占用的频率资源不同。
示例性地,如图11所示,n为2,终端设备在时隙1第一次重复传输PUSCH,在时隙2第二次重复传输PUSCH。如图11所示,时隙1和时隙2均包括第一跳频资源和第二跳频资源,时隙1的第一跳频资源和第二跳频资源所占用的频率资源是相同的,时隙2的第一跳频资源和第二跳频资源所占用的频率资源也是相同的;而时隙1的第一跳频资源和时隙2的第一跳频资源所占用的频率资源是不同的,时隙1的第二跳频资源和时隙2的第二跳频资源所占用的频率资源也是不同的。如图11所示,时隙1的第一跳频资源和时隙2的第一跳频资源的空间关系信息是相同的,如均映射至TRP1对应的发送波束;时隙1的第二跳频资源和时隙2的第二跳频资源的空间关系信息也是相同的,如均映射至TRP2对应的发送波束。
在一个示例中,为了减少波束切换次数,网络设备可以配置某个或某些时隙内仅发生波束映射翻转,从而上述方法还包括:网络设备向终端设备发送波束翻转映射信息,波束翻转映射信息用于指示n个时隙中k个时隙内仅发生波束映射翻转,k为小于或等于n的正整数。可选地,网络设备可以通过复用波束 映射(beam mapping)信令来指示波束映射翻转,该波束映射信令用于指示PUSCH的波束发送方向和不同的传输时机之间的映射关系。
以n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源为例,n个时隙中k个时隙内仅发生波束映射翻转,包括:(n-k)个时隙中各个时隙内的第一跳频资源均映射至第一传输点对应的发送波束;(n-k)个时隙中各个时隙内的第二跳频资源均映射至第二传输点对应的发送波束;k个时隙中各个时隙内的第一跳频资源均映射至第二传输点对应的发送波束;k个时隙中各个时隙内的第二跳频资源均映射至第一传输点对应的发送波束。
示例性地,如图12所示,n为2,终端设备在时隙1第一次重复传输PUSCH,在时隙2第二次重复传输PUSCH。如图12所示,时隙1的第一跳频资源和第二跳频资源的空间关系信息是不同的,如时隙1的第一跳频资源映射至TRP1对应的发送波束,时隙1的第二跳频资源映射至TRP2对应的发送波束。为了减少波束切换次数,网络设备为终端设备配置了在时隙2进行波束映射翻转,从而如图12所示,时隙2的第一跳频资源和时隙1的第二跳频资源的空间关系信息是相同的,如映射至TRP2对应的发送波束;时隙2的第二跳频资源和时隙1的第一跳频资源的空间关系信息是相同的,如映射至TRP1对应的发送波束。
综上所述,本申请实施例提供的技术方案,通过在跳频方案的基础上实现时隙内跳波束方案,降低了终端设备实现时隙内跳波束方案的复杂度,实现了灵活进行时隙内跳波束和时隙内跳频/时隙间跳频的组合。并且,本申请实施例中,网络设备可以为终端设备配置频率映射翻转,从而同一波束可以获得频率分集增益;网络设备还可以为终端设备配置波束映射翻转,从而可以减少波束切换次数。
需要说明的一点是,在上述实施例中,以终端设备和网络设备之间交互的角度,对本申请实施例提供的上行信道传输方法进行了介绍说明。在上述实施例中,有关终端设备所执行的步骤,可以单独实现为终端设备侧的上行信道传输方法;有关网络设备所执行的步骤,可以单独实现为网络设备侧的上行信道传输方法。
图13是本公开一个示例性实施例提供的上行信道传输装置的结构框图,如 图13所示,以该装置用于终端设备,所述装置1300包括:
指示信息接收模块1310,用于接收来自于网络设备的传输指示信息,所述传输指示信息用于指示发送PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
上行信道发送模块1320,用于按照所述第一重复传输方案,向所述网络设备的多个TRP协作发送所述PUSCH。
在一个示例中,所述传输指示信息包括:时隙内传输方案为所述时隙内跳波束方案;或者,所述传输指示信息包括:同时配置时隙内跳频方案和/或时隙间跳频方案的情况下,所述PUSCH的传输方案激活为所述第一重复传输方案。
在一个示例中,所述第一重复传输方案包括:在n个时隙内进行时隙间重复传输,且在所述n个时隙中各个时隙内分别进行时隙内跳波束;所述n为大于或等于1的整数。
在一个示例中,如图14所示,所述装置1300还包括:次数信息接收模块1330,用于:接收来自于所述网络设备的RRC信令,所述RRC信令用于配置所述n;或者,接收来自于所述网络设备的MAC CE或DCI,所述MAC CE或所述DCI用于指示所述n。
在一个示例中,所述n个时隙中各个时隙内对应的跳频资源所占用的资源大小相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的资源大小相同或者不同。
在一个示例中,所述n个时隙中各个时隙内对应的跳频资源所占用的频率资源相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或者不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
在一个示例中,如图14所示,所述装置1300还包括:波束翻转信息接收模块1340,用于接收来自于所述网络设备的波束翻转映射信息,所述波束翻转映射信息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:(n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;(n-k)个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
在一个示例中,如图14所示,所述装置1300还包括:频率翻转信息接收模块1350,用于接收来自于所述网络设备的频率翻转映射信息,所述频率翻转映射信息用于指示所述n个时隙中i个时隙内仅发生频率映射翻转,所述i为小于或等于所述n的正整数。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中i个时隙内仅发生频率映射翻转,包括:(n-i)个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第一频率资源;(n-i)个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第二频率资源;所述i个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第二频率资源;所述i个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第一频率资源。
在一个示例中,所述n个时隙中相邻时隙内对应的跳频资源所占用的频率资源不同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
在一个示例中,如图14所示,所述装置1300还包括:波束翻转信息接收模块1340,用于接收来自于所述网络设备的波束翻转映射信息,所述波束翻转映射信息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:(n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;(n-k)个时 隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
图15是本公开一个示例性实施例提供的上行信道传输装置的结构框图,如图15所示,以该装置用于网络设备,所述装置1500包括:
指示信息发送模块1510,用于向终端设备发送传输指示信息,所述传输指示信息用于指示所述终端设备发送PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
上行信道接收模块1520,用于基于所述网络设备的多个TRP,接收来自于所述终端设备的所述PUSCH。
在一个示例中,所述传输指示信息包括:时隙内传输方案为所述时隙内跳波束方案;或者,所述传输指示信息包括:同时配置时隙内跳频方案和/或时隙间跳频方案的情况下,所述PUSCH的传输方案激活为所述第一重复传输方案。
在一个示例中,所述第一重复传输方案包括:在n个时隙内进行时隙间重复传输,且在所述n个时隙中各个时隙内分别进行时隙内跳波束;所述n为大于或等于1的整数。
在一个示例中,如图16所示,所述装置1500还包括:次数信息发送模块1530,用于:向所述终端设备发送RRC信令,所述RRC信令用于配置所述n;或者,向所述终端设备发送MAC CE或DCI,所述MAC CE或所述DCI用于指示所述n。
在一个示例中,所述n个时隙中各个时隙内对应的跳频资源所占用的资源大小相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的资源大小相同或者不同。
在一个示例中,所述n个时隙中各个时隙内对应的跳频资源所占用的频率资源相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或者不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束; 所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
在一个示例中,如图16所示,所述装置1500还包括:波束翻转信息发送模块1540,用于向所述终端设备发送波束翻转映射信息,所述波束翻转映射信息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:(n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;(n-k)个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
在一个示例中,如图16所示,所述装置1500还包括:频率翻转信息发送模块1550,用于向所述终端设备发送频率翻转映射信息,所述频率翻转映射信息用于指示所述n个时隙中i个时隙内仅发生频率映射翻转,所述i为小于或等于所述n的正整数。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中i个时隙内仅发生频率映射翻转,包括:(n-i)个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第一频率资源;(n-i)个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第二频率资源;所述i个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第二频率资源;所述i个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第一频率资源。
在一个示例中,所述n个时隙中相邻时隙内对应的跳频资源所占用的频率资源不同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
在一个示例中,如图16所示,所述装置1500还包括:波束翻转信息发送模块1540,用于向所述终端设备发送波束翻转映射信息,所述波束翻转映射信 息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
在一个示例中,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:(n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;(n-k)个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送波束;所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
图17示出了本公开一个示例性实施例提供的通信设备1700(终端设备或网络设备)的结构示意图,该通信设备1700包括:处理器1701、接收器1702、发射器1703、存储器1704和总线1705。
处理器1701包括一个或者一个以上处理核心,处理器1701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1702和发射器1703可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1704通过总线1705与处理器1701相连。
存储器1704可用于存储至少一个指令,处理器1701用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本公开一示例性实施例还提供了一种上行传输系统,所述系统包括:终端设备和网络设备;所述终端设备包括如图13和图14所示实施例提供的上行信道传输装置;所述网络设备包括如图15和图16所示实施例提供的上行信道传 输装置。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的上行信道传输方法中由终端设备执行的步骤。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的上行信道传输方法中由网络设备执行的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (35)

  1. 一种上行信道传输方法,其特征在于,应用于终端设备中,所述方法包括:
    接收来自于网络设备的传输指示信息,所述传输指示信息用于指示发送物理上行共享信道PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
    按照所述第一重复传输方案,向所述网络设备的多个传输点TRP协作发送所述PUSCH。
  2. 根据权利要求1所述的方法,其特征在于,
    所述传输指示信息包括:时隙内传输方案为所述时隙内跳波束方案;
    或者,
    所述传输指示信息包括:同时配置时隙内跳频方案和/或时隙间跳频方案的情况下,所述PUSCH的传输方案激活为所述第一重复传输方案。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一重复传输方案包括:在n个时隙内进行时隙间重复传输,且在所述n个时隙中各个时隙内分别进行时隙内跳波束;所述n为大于或等于1的整数。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收来自于所述网络设备的无线资源控制RRC信令,所述RRC信令用于配置所述n;
    或者,
    接收来自于所述网络设备的媒体接入控制控制单元(MAC CE)或下行控制信息DCI,所述MAC CE或所述DCI用于指示所述n。
  5. 根据权利要求3或4所述的方法,其特征在于,所述n个时隙中各个时隙内对应的跳频资源所占用的资源大小相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的资源大小相同或者不同。
  6. 根据权利要求3至5任一项所述的方法,其特征在于,所述n个时隙中各个时隙内对应的跳频资源所占用的频率资源相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或者不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
  7. 根据权利要求6所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:
    所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    接收来自于所述网络设备的波束翻转映射信息,所述波束翻转映射信息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:
    (n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    (n-k)个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;
    所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送波束;
    所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
  10. 根据权利要求6至9任一项所述的方法,其特征在于,所述方法还包括:
    接收来自于所述网络设备的频率翻转映射信息,所述频率翻转映射信息用于指示所述n个时隙中i个时隙内仅发生频率映射翻转,所述i为小于或等于所述n的正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中i个时隙内仅发生频率映射翻转,包括:
    (n-i)个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第一频率资源;
    (n-i)个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第二频率资源;
    所述i个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第二频率资源;
    所述i个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第一频率资源。
  12. 根据权利要求3至5任一项所述的方法,其特征在于,所述n个时隙中相邻时隙内对应的跳频资源所占用的频率资源不同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
  13. 根据权利要求12所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:
    所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    接收来自于所述网络设备的波束翻转映射信息,所述波束翻转映射信息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:
    (n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    (n-k)个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;
    所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送波束;
    所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
  16. 一种上行信道传输方法,其特征在于,应用于网络设备中,所述方法包括:
    向终端设备发送传输指示信息,所述传输指示信息用于指示所述终端设备发送物理上行共享信道PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
    基于所述网络设备的多个传输点TRP,接收来自于所述终端设备的所述PUSCH。
  17. 根据权利要求16所述的方法,其特征在于,
    所述传输指示信息包括:时隙内传输方案为所述时隙内跳波束方案;
    或者,
    所述传输指示信息包括:同时配置时隙内跳频方案和/或时隙间跳频方案的情况下,所述PUSCH的传输方案激活为所述第一重复传输方案。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一重复传输方案包括:在n个时隙内进行时隙间重复传输,且在所述n个时隙中各个时隙内分别进行时隙内跳波束;所述n为大于或等于1的整数。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送无线资源控制RRC信令,所述RRC信令用于配置所述n;
    或者,
    向所述终端设备发送媒体接入控制控制单元(MAC CE)或下行控制信息DCI,所述MAC CE或所述DCI用于指示所述n。
  20. 根据权利要求18或19所述的方法,其特征在于,所述n个时隙中各个时隙内对应的跳频资源所占用的资源大小相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的资源大小相同或者不同。
  21. 根据权利要求18至20任一项所述的方法,其特征在于,所述n个时隙中各个时隙内对应的跳频资源所占用的频率资源相同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或者不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
  22. 根据权利要求21所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:
    所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送波束翻转映射信息,所述波束翻转映射信息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:
    (n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    (n-k)个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;
    所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送波束;
    所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
  25. 根据权利要求21至24任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送频率翻转映射信息,所述频率翻转映射信息用于指示所述n个时隙中i个时隙内仅发生频率映射翻转,所述i为小于或等于所述n的正整数。
  26. 根据权利要求25所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中i个时隙内仅发生频率映射翻转,包括:
    (n-i)个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第一频率资源;
    (n-i)个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第二频率资源;
    所述i个时隙中各个时隙内的第一跳频资源所占用的频率资源均为第二频 率资源;
    所述i个时隙中各个时隙内的第二跳频资源所占用的频率资源均为第一频率资源。
  27. 根据权利要求18至20任一项所述的方法,其特征在于,所述n个时隙中相邻时隙内对应的跳频资源所占用的频率资源不同,且所述n个时隙中同一时隙内不同的跳频资源所占用的频率资源相同或不同,且所述n个时隙中各个时隙内对应的跳频资源的波束映射相同。
  28. 根据权利要求27所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中各个时隙内对应的跳频资源的波束映射相同,包括:
    所述n个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    所述n个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束。
  29. 根据权利要求27或28所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送波束翻转映射信息,所述波束翻转映射信息用于指示所述n个时隙中k个时隙内仅发生波束映射翻转,所述k为小于或等于所述n的正整数。
  30. 根据权利要求29所述的方法,其特征在于,所述n个时隙中各个时隙内均包括第一跳频资源和第二跳频资源;所述n个时隙中k个时隙内仅发生波束映射翻转,包括:
    (n-k)个时隙中各个时隙内的第一跳频资源均映射至第一TRP对应的发送波束;
    (n-k)个时隙中各个时隙内的第二跳频资源均映射至第二TRP对应的发送波束;
    所述k个时隙中各个时隙内的第一跳频资源均映射至第二TRP对应的发送 波束;
    所述k个时隙中各个时隙内的第二跳频资源均映射至第一TRP对应的发送波束。
  31. 一种上行信道传输装置,其特征在于,设置在终端设备中,所述装置包括:
    指示信息接收模块,用于接收来自于网络设备的传输指示信息,所述传输指示信息用于指示发送物理上行共享信道PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
    上行信道发送模块,用于按照所述第一重复传输方案,向所述网络设备的多个传输点TRP协作发送所述PUSCH。
  32. 一种上行信道传输装置,其特征在于,设置在网络设备中,所述装置包括:
    指示信息发送模块,用于向终端设备发送传输指示信息,所述传输指示信息用于指示所述终端设备发送物理上行共享信道PUSCH的第一重复传输方案,所述第一重复传输方案为时隙间重复传输方案与时隙内跳波束方案的结合;
    上行信道接收模块,用于基于所述网络设备的多个传输点TRP,接收来自于所述终端设备的所述PUSCH。
  33. 一种终端设备,其特征在于,所述终端设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至15任一所述的上行信道传输方法。
  34. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求16至 30任一所述的上行信道传输方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或所述指令集由处理器加载并执行以实现如权利要求1至30任一所述的上行信道传输方法。
PCT/CN2021/103251 2021-06-29 2021-06-29 上行信道传输方法、装置、设备及存储介质 WO2023272518A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/103251 WO2023272518A1 (zh) 2021-06-29 2021-06-29 上行信道传输方法、装置、设备及存储介质
CN202180002073.2A CN115735342A (zh) 2021-06-29 2021-06-29 上行信道传输方法、装置、设备及存储介质
EP21947475.6A EP4366414A1 (en) 2021-06-29 2021-06-29 Uplink channel transmission method and apparatus, device, and storage medium
US18/399,249 US20240129915A1 (en) 2021-06-29 2023-12-28 Method for uplink channel transmission, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103251 WO2023272518A1 (zh) 2021-06-29 2021-06-29 上行信道传输方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,249 Continuation US20240129915A1 (en) 2021-06-29 2023-12-28 Method for uplink channel transmission, and device

Publications (1)

Publication Number Publication Date
WO2023272518A1 true WO2023272518A1 (zh) 2023-01-05

Family

ID=84690158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103251 WO2023272518A1 (zh) 2021-06-29 2021-06-29 上行信道传输方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20240129915A1 (zh)
EP (1) EP4366414A1 (zh)
CN (1) CN115735342A (zh)
WO (1) WO2023272518A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200145998A1 (en) * 2018-11-02 2020-05-07 Apple Inc. Beam sweeping with slot aggregation
CN111935835A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 一种配置方法、装置、通信节点及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200145998A1 (en) * 2018-11-02 2020-05-07 Apple Inc. Beam sweeping with slot aggregation
CN111935835A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 一种配置方法、装置、通信节点及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MODERATOR (NOKIA, NOKIA SHANGHAI BELL): "Summary of AI:8.1.2.1 Enhancements for Multi-TRP URLLC for PUCCH and PUSCH", 3GPP DRAFT; R1-2007182, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 25 August 2020 (2020-08-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051921452 *
MODERATOR (NOKIA, NOKIA SHANGHAI BELL): "Summary of Multi-TRP URLLC for PUCCH and PUSCH", 3GPP DRAFT; R1-2009480, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 3 November 2020 (2020-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051950302 *
SAMSUNG: "Further Enhancements on MIMO for NR", 3GPP DRAFT; RP-201469, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20200914 - 20200918, 7 September 2020 (2020-09-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051931202 *

Also Published As

Publication number Publication date
CN115735342A (zh) 2023-03-03
EP4366414A1 (en) 2024-05-08
US20240129915A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2021089043A1 (zh) 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质
WO2018171605A1 (zh) 接收信息的方法及其装置和发送信息的方法及其装置
US20210219278A1 (en) Communication method, apparatus, device, and system, and storage medium
CN102281593A (zh) 上行控制信息发送及接收方法、系统和设备
WO2019166014A1 (zh) 上行控制信息的发送、接收方法和装置
WO2023004650A1 (zh) 资源确定方法、装置、设备及可读存储介质
TW202215867A (zh) 用於進行車聯網通訊的傳輸終端和接收終端、以及在車聯網通訊系統中進行通訊的方法
CN114885431A (zh) 一种通信方法及装置
WO2021035576A1 (zh) 无线信号的传输方法、装置和存储介质
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
JP2023517980A (ja) 通信方法および装置
WO2023272518A1 (zh) 上行信道传输方法、装置、设备及存储介质
WO2022057175A1 (zh) 一种通信方法和装置
WO2022027509A1 (zh) 上行数据的发送方法、装置和系统
WO2020063837A1 (zh) 通信方法、装置、设备、系统及存储介质
WO2022233044A1 (zh) 传输策略的配置方法、装置、设备及存储介质
WO2023272514A1 (zh) 上行传输方法、装置、设备及可读存储介质
WO2023130993A1 (zh) 通信方法及终端设备
WO2023168643A1 (en) Inter-carrier association configuration and association scheduling
WO2024109120A1 (en) Pusch retransmissions
WO2022233041A1 (zh) 上行信道传输方法、装置、设备及存储介质
WO2022206459A1 (zh) 一种信号传输方法及通信装置
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031357A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023272598A1 (zh) 参考信号的配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947475

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947475

Country of ref document: EP

Effective date: 20240129