WO2022233044A1 - 传输策略的配置方法、装置、设备及存储介质 - Google Patents

传输策略的配置方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022233044A1
WO2022233044A1 PCT/CN2021/092194 CN2021092194W WO2022233044A1 WO 2022233044 A1 WO2022233044 A1 WO 2022233044A1 CN 2021092194 W CN2021092194 W CN 2021092194W WO 2022233044 A1 WO2022233044 A1 WO 2022233044A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signaling
strategy
dci
resource
Prior art date
Application number
PCT/CN2021/092194
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180001474.6A priority Critical patent/CN115606292A/zh
Priority to PCT/CN2021/092194 priority patent/WO2022233044A1/zh
Publication of WO2022233044A1 publication Critical patent/WO2022233044A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a method, apparatus, device, and storage medium for configuring a transmission policy.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • 5G NR New Radio, new air interface
  • a terminal device can perform repeated transmission of uplink channels for multiple TRPs of a base station.
  • the terminal equipment performs repeated transmission facing TRPs in different directions, it needs to switch the beam direction.
  • Embodiments of the present application provide a method, apparatus, device, and storage medium for configuring a transmission strategy, which can introduce beam switching time in uplink channel transmission.
  • the technical solution is as follows:
  • a method for configuring a transmission policy which is applied to a network device, and the method includes:
  • configuration signaling to the first terminal, where the configuration signaling includes the transmission strategy of the uplink channel
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • a method for configuring a transmission policy which is applied to a terminal device, and the method includes:
  • configuration signaling sent by the network device, where the configuration signaling includes a transmission strategy of an uplink channel
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • an apparatus for configuring a transmission policy comprising:
  • a sending module configured to send configuration signaling to the first terminal, where the configuration signaling includes a transmission strategy of an uplink channel
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • an apparatus for configuring a transmission policy comprising:
  • a receiving module configured to receive configuration signaling sent by the network device, where the configuration signaling includes the transmission strategy of the uplink channel;
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • a network device comprising: a processor and a transceiver connected to the processor; wherein,
  • the transceiver configured to send configuration signaling to the first terminal, where the configuration signaling includes a transmission strategy of an uplink channel;
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • a terminal device comprising: a processor and a transceiver connected to the processor; wherein,
  • the transceiver configured to receive configuration signaling sent by the network device, where the configuration signaling includes a transmission strategy of an uplink channel;
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • a computer-readable storage medium storing executable instructions in the readable storage medium, the executable instructions being loaded and executed by a processor to implement the transmission according to the above aspect How to configure the policy.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a computer device, it is used to implement the transmission strategy described in the above aspect configuration method.
  • a computer program product which, when running on a processor of a computer device, enables the computer device to execute the method for configuring a transmission policy described in the above aspect.
  • the two repeated transmissions use different transmission beams to send to different TRPs of the same base station.
  • Interval beam switching time fully considering that when terminal equipment uses different beam directions to transmit uplink channels to different TRPs, beam switching needs to be performed, and beam switching time is reserved for beam switching, which is convenient for terminal equipment to implement multiple TRPs for the same base station Repeated transmission of the upstream channel.
  • FIG. 1 is a schematic diagram of a system architecture provided by an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a method for configuring a transmission policy provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a method for configuring a transmission policy provided by an exemplary embodiment of the present application
  • FIG. 4 is a flowchart of a method for configuring a transmission policy provided by an exemplary embodiment of the present application
  • FIG. 5 is a flowchart of a method for configuring a transmission policy provided by an exemplary embodiment of the present application
  • FIG. 6 is a schematic diagram of repeated transmission of PUCCH between time slots in a method for configuring a transmission strategy provided by an exemplary embodiment of the present application;
  • FIG. 7 is a schematic diagram of repeated transmission of PUSCH between time slots in a method for configuring a transmission strategy provided by an exemplary embodiment of the present application;
  • FIG. 8 is a schematic diagram of repeated transmission of PUSCH between time slots in a method for configuring a transmission strategy provided by an exemplary embodiment of the present application;
  • FIG. 9 is a schematic diagram of repeated transmission of PUSCH between time slots in a method for configuring a transmission strategy provided by an exemplary embodiment of the present application.
  • FIG. 10 is a schematic diagram of repeated transmission of PUSCH between time slots in a method for configuring a transmission strategy provided by an exemplary embodiment of the present application;
  • FIG. 11 is a schematic diagram of repeated transmission of PUCCH based on frequency hopping resources in a time slot in a method for configuring a transmission strategy provided by an exemplary embodiment of the present application;
  • FIG. 12 is a schematic diagram of repeated transmission of PUCCH based on frequency hopping resources in a time slot in a method for configuring a transmission strategy provided by an exemplary embodiment of the present application;
  • FIG. 13 is a structural block diagram of an apparatus for configuring a transmission policy provided by an exemplary embodiment of the present application.
  • FIG. 14 is a structural block diagram of an apparatus for configuring a transmission policy provided by an exemplary embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information could also be referred to as second information, and similarly, second information could also be referred to as first information, without departing from the scope of the present disclosure.
  • word “if” as used herein can be interpreted as "at the time of” or “when” or "in response to determining.”
  • FIG. 1 shows a schematic diagram of a system architecture provided by an embodiment of the present application.
  • the system architecture may include: a terminal device 10 and a network device 20 .
  • the number of terminal devices 10 is usually multiple, and one or more terminal devices 10 may be distributed in a cell managed by each network device 20 .
  • the terminal device 10 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user equipment (UE), mobile stations (Mobile Station, MS) and so on.
  • UE user equipment
  • MS Mobile Station
  • the network device 20 is a device deployed in an access network to provide a wireless communication function for the terminal device 10 .
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with network device functions may be different, for example, in 5G NR systems, they are called gNodeBs or gNBs.
  • gNodeBs As communications technology evolves, the name "network equipment" may change.
  • network devices For convenience of description, in the embodiments of the present application, the above-mentioned apparatuses for providing a wireless communication function for the terminal device 10 are collectively referred to as network devices.
  • a network device 20 is deployed with multiple TRPs, for example, the network device 20 corresponds to TRP1, TRP2... TRPn.
  • the terminal device uses different sending beams to perform repeated transmission of the uplink channel for different TRPs, and the network device 20 receives the repeated transmission of the uplink channel sent by the terminal device through multiple TRPs.
  • the terminal equipment needs to use transmit beams in different beam directions to transmit beams to the TRPs in the corresponding directions to perform repeated transmission of the uplink channel.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • FIG. 2 shows a flowchart of a method for configuring a transmission policy provided by an embodiment of the present application, and the method can be applied to the system architecture shown in FIG. 1 .
  • the method includes the following steps.
  • Step 220 the network device sends configuration signaling to the first terminal, where the configuration signaling includes a transmission policy of the uplink channel.
  • the transmission strategy is used to determine the first transmission resource for performing two adjacent repeated transmissions when two adjacent repeated transmissions of the uplink channel are sent using different transmission beams to different transmission points TRPs of the same network device and the second transmission resource; there is a beam switching time for switching the beam direction between the first transmission resource and the second transmission resource; the first transmission resource and the previous transmission in the two adjacent transmission opportunities used for uplink channel transmission The timing corresponds to; the second transmission resource corresponds to the later transmission occasion among the two adjacent transmission occasions used for uplink channel transmission.
  • the configuration signaling is used to configure the first terminal to perform repeated transmission of the same data in the uplink channel.
  • the configuration signaling includes a transmission strategy, and the transmission strategy is used to determine the transmission resources used by two adjacent repeated transmissions that need to switch beam directions.
  • the first terminal determines, according to the transmission strategy in the configuration signaling, the first transmission resource and the second transmission resource used for the two adjacent repeated transmissions, and performs the same data in the uplink channel on the first transmission resource and the second transmission resource respectively. of two consecutive repeated transmissions.
  • the transmission policy is used to instruct the first terminal how to determine two transmission resources for two consecutive repeated transmissions, so that there is a beam switching time between the two transmission resources.
  • the first transmission resource corresponds to an earlier transmission opportunity among two adjacent transmission opportunities, and uses a beam oriented to one TRP direction for cooperative transmission to perform uplink channel transmission.
  • the second transmission resource corresponds to a later transmission occasion among two adjacent transmission occasions.
  • the first transmission resource corresponds to the i-th transmission opportunity
  • the second transmission resource corresponds to the i+1-th transmission opportunity, where i is a positive integer
  • the i-th transmission opportunity and the i+1-th transmission opportunity represent two of the sequence. transmission time.
  • Transmission opportunities include transmission resources in the time domain.
  • a transmission opportunity is at least one symbol in the time domain.
  • the transmission opportunity in step 220 refers to the actual transmission opportunity.
  • the actual transmission opportunity is the actual transmission opportunity used when the first terminal finally performs uplink channel transmission.
  • there is also a nominal transmission opportunity where the nominal transmission opportunity is a transmission opportunity configured by the network device for the first terminal for uplink channel transmission.
  • the first terminal finally determines the actual transmission timing for repeated transmission of the uplink channel according to the nominal transmission timing configured by the network device and the beam switching time required for switching the beam direction.
  • the first terminal determines the first transmission resource and the second transmission resource based on the resource configuration of the uplink channel.
  • the terminal determines the transmission resource, including deletion and delay.
  • Deletion means that at least one transmission resource among the first transmission resource and the second transmission resource is determined by using the deletion beam switching time.
  • the delay means that the second transmission resource is determined by delaying the beam switching time after the first transmission resource.
  • the repeated transmission of the same data by the uplink channel includes at least two repeated transmissions.
  • the two adjacent repeated transmissions in step 220 refer to two adjacent repeated transmissions in which beam direction switching needs to be performed in at least two repeated transmissions.
  • the first terminal needs to perform four repeated transmissions.
  • the first repeated transmission uses the first beam direction to send to the first TRP
  • the second repeated transmission uses the first beam direction to send to the first TRP
  • the third repeated transmission uses the first beam direction to send to the first TRP.
  • the second beam direction is sent to the second TRP
  • the fourth repeated transmission is sent to the third TRP using the third beam direction.
  • the two adjacent repeated transmissions in step 220 may be the second repeated transmission and the third repeated transmission, or, the two adjacent repeated transmissions may be the third repeated transmission and the fourth repeated transmission.
  • the first transmission resource corresponds to the first transmission opportunity
  • the second transmission resource corresponds to the second transmission opportunity
  • the data transmitted in the uplink channel may be uplink data or uplink signaling.
  • the beam switching time is the time reserved for the first terminal to switch the beam direction, and the beam switching time is configured or predefined by the network device.
  • the required beam switching time may vary according to different scenarios. For example, the switching time between beams on the same panel (antenna panel) of the first terminal and different panels may be different.
  • Step 240 the terminal device receives the configuration signaling sent by the network device, where the configuration signaling includes the transmission strategy of the uplink channel.
  • two transmission resources with beam switching time intervals are respectively configured for two adjacent repeated transmissions of the uplink channel, so that the two repeated transmissions use different sending beams respectively, and transmit the same transmission beam to the same
  • For the transmission of different TRPs by the base station by spacing the beam switching time between the two transmission resources, it is fully considered that when the terminal equipment uses different beam directions to transmit uplink channels to different TRPs, beam switching needs to be performed, and beam switching is reserved for beam switching. It is convenient for the terminal equipment to realize repeated transmission of uplink channels for multiple TRPs of the same base station.
  • the introduction and configuration of beam switching time in the transmission scheme is considered, so as to support the transmission strategy of configurable beam switching time for uplink transmission, thereby optimizing transmission under different specific transmissions Efficiency and reliability.
  • the signaling sent by the network device includes at least the following three situations:
  • the network device sends the first signaling, and the first signaling carries the transmission policy.
  • the network device sends the first signaling and the second signaling, the first signaling carries the transmission strategy, and the second signaling can dynamically update the transmission strategy.
  • the network device sends the first signaling and the second signaling, the first signaling carries multiple candidate transmission strategies, and the second signaling indicates the transmission strategy from the multiple candidate transmission strategies.
  • the network device sends the first signaling, and the first signaling carries the transmission policy.
  • FIG. 3 shows a flowchart of a method for configuring a transmission policy provided by an embodiment of the present application, and the method can be applied to the system architecture shown in FIG. 1 .
  • the method includes the following steps.
  • Step 221 The network device sends RRC (Radio Resource Control, Radio Resource Control) signaling to the first terminal, where the RRC signaling includes the transmission strategy of the uplink channel.
  • RRC Radio Resource Control, Radio Resource Control
  • the network device may carry the transmission strategy of the uplink channel in the RRC signaling, so that after receiving the RRC signaling, the first terminal determines the transmission resources used for repeated transmission according to the transmission strategy in the RRC signaling.
  • the network device can configure the RRC signaling to delay sending "delaying", or delete sending "dropping”.
  • the network device may also be configured with other transmission policies. The enumeration of transmission strategies will be described in detail in the following embodiments.
  • Step 241 the first terminal receives the RRC signaling sent by the network device, where the RRC signaling includes the transmission strategy of the uplink channel.
  • the network device configures the transmission strategy to the first terminal through the RRC signaling, so that the first terminal determines two consecutive repeated transmissions according to the transmission strategy.
  • the first transmission resource and the second transmission resource are used so that there is a beam switching time interval between the first transmission resource and the second transmission resource, which is convenient for the terminal device to realize repeated transmission of uplink channels oriented to multiple TRPs of the same base station.
  • the network device sends the first signaling and the second signaling, the first signaling carries the transmission strategy, and the second signaling can dynamically update the transmission strategy.
  • FIG. 4 shows a flowchart of a method for configuring a transmission policy provided by an embodiment of the present application, and the method can be applied to the system architecture shown in FIG. 1 .
  • the method includes the following steps.
  • Step 222 the network device sends the first signaling and the second signaling to the first terminal, where the first signaling includes the transmission strategy of the uplink channel, and the second signaling includes indication information, and the indication information is used to dynamically update the transmission strategy.
  • the first signaling is RRC signaling
  • the second signaling may be MAC-CE (Media Access Control-Control Element, Media Access Control-Control Element) signaling, DCI (Downlink Control Information, downlink control information) signaling. ) signaling and packet DCI signaling.
  • MAC-CE Media Access Control-Control Element, Media Access Control-Control Element
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes the first transmission strategy
  • the second signaling includes the second transmission strategy.
  • the first terminal receives the first signaling, and determines the first transmission resource and the second transmission resource according to the first transmission policy. After receiving the second signaling, the first terminal replaces the first transmission strategy with the second transmission strategy, and determines the first transmission resource and the second transmission resource according to the second transmission strategy.
  • the indication information is located on a newly defined DCI field in the DCI signaling; or, the indication information is located in an unused DCI bit in the DCI signaling or a DCI reserved code point ( DCI reserved codepoint).
  • a new DCI field is defined in the DCI signaling, which is used to carry the indication information, and the indication information includes the transmission strategy.
  • indication information is carried on unused DCI bits or reserved DCI code points, and the indication information includes a transmission strategy.
  • a DCI reserved codepoint may be a TPMI reserved codepoint.
  • the indication information is located on a newly defined DCI bit in the DCI domain corresponding to the first terminal in the grouped DCI signaling; or, the indication information is located in the grouped DCI signaling with On an unused DCI code point or a newly added DCI code point in the DCI domain corresponding to the first terminal.
  • the packet DCI signaling includes a DCI field corresponding to the first terminal and a DCI field corresponding to the second terminal, and DCI bits are newly defined in the DCI field corresponding to the first terminal for carrying the indication information.
  • an unused code point carries the indication information; or, in the DCI domain corresponding to the first terminal, a new DCI code point is added to carry the indication information.
  • Step 242 the first terminal receives the first signaling and the second signaling sent by the network device, the first signaling includes the transmission strategy of the uplink channel, and the second signaling includes indication information, and the indication information is used to dynamically update the transmission strategy.
  • the transmission strategy is carried in the first signaling, and the transmission strategy is dynamically updated in the second signaling, so that the first terminal can determine, according to the transmission strategy, the transmission strategy used for two consecutive repeated transmissions.
  • the first transmission resource and the second transmission resource are set, so that there is a beam switching time between the first transmission resource and the second transmission resource, which is convenient for the terminal device to realize repeated transmission of uplink channels facing multiple TRPs of the same base station.
  • the network device sends the first signaling and the second signaling, the first signaling carries multiple candidate transmission strategies, and the second signaling indicates the transmission strategy from the multiple candidate transmission strategies.
  • FIG. 5 shows a flowchart of a method for configuring a transmission policy provided by an embodiment of the present application, and the method can be applied to the system architecture shown in FIG. 1 .
  • the method includes the following steps.
  • Step 223 the network device sends the first signaling and the second signaling to the first terminal, the first signaling includes at least one candidate transmission strategy of the uplink channel, and the second signaling includes indication information, and the indication information is used for switching from the at least one candidate transmission strategy.
  • the first transmission strategy is activated in the transmission strategy.
  • the first signaling carries multiple candidate transmission strategies
  • the second signaling indicates the finally used transmission strategy from the multiple candidate transmission strategies.
  • the second signaling activates one of the transmission strategies from the multiple candidate transmission strategies as the first transmission strategy, so that the first terminal determines the transmission resources used for two consecutive repeated transmissions according to the first transmission strategy.
  • the indication information that the second signaling may also carry may also include a deactivation instruction to deactivate a certain transmission strategy.
  • the first signaling further includes a transmission strategy activated by default; the transmission strategy activated by default is one of at least one candidate transmission strategy.
  • the first terminal may directly adopt the default activated transmission strategy, and determine the transmission resources according to the transmission strategy.
  • the first signaling is RRC signaling
  • the second signaling may be at least one of MAC-CE signaling, DCI signaling, and packet DCI signaling.
  • the indication information is located on a newly defined DCI field in the DCI signaling; or, the indication information is located in an unused DCI bit in the DCI signaling or a DCI reserved code point ( DCI reserved codepoint).
  • a new DCI field is defined in the DCI signaling to carry indication information.
  • the indication information includes an activation command or a deactivation command.
  • the activation command is used to activate a candidate transmission strategy as the first transmission strategy, and the deactivation command is used to deactivate the Activate an already activated transport policy.
  • indication information is carried on unused DCI bits or reserved DCI code points.
  • a DCI reserved codepoint may be a TPMI reserved codepoint.
  • the indication information is located on a newly defined DCI bit in the DCI domain corresponding to the first terminal in the grouped DCI signaling; or, the indication information is located in the grouped DCI signaling with On an unused DCI code point or a newly added DCI code point in the DCI domain corresponding to the first terminal.
  • the packet DCI signaling includes a DCI field corresponding to the first terminal and a DCI field corresponding to the second terminal, and DCI bits are newly defined in the DCI field corresponding to the first terminal for carrying the indication information.
  • an unused code point carries the indication information; or, in the DCI domain corresponding to the first terminal, a new DCI code point is added to carry the indication information.
  • Step 243 the first terminal receives the first signaling and the second signaling sent by the network device, the first signaling includes at least one candidate transmission strategy of the uplink channel, and the second signaling includes indication information, and the indication information is used to transmit from the at least one The first transmission strategy is activated among the candidate transmission strategies.
  • the first signaling A terminal determines the first transmission resource and the second transmission resource used for two consecutive repeated transmissions according to the transmission strategy, so that there is a beam switching time between the first transmission resource and the second transmission resource, which is convenient for the terminal device to achieve the same orientation. Repeated transmission of uplink channels of multiple TRPs of the base station.
  • the uplink channel may be PUCCH (Physical Uplink Control Channel, physical uplink control channel) or PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the uplink channel enhancement scheme based on multiple TRPs is mainly based on the PUCCH/PUSCH repeated transmission scheme of R16 (Release 16).
  • the uplink transmission scheme of R16 is introduced, that is, PUCCH only supports repeated transmission between time slots, PUSCH supports repeated transmission type A mode between time slots, and repeated transmission type B mode that can transmit across time slots.
  • the network device configures the PUCCH format (PUCCH format) through the RRC (Radio Resource Control, Radio Resource Control) high-level signaling to configure the corresponding number of repeated transmissions supported, and the range of the indicated number of repeated transmissions is defined as ⁇ 1, 2, 4, 8 ⁇ , different PUCCH resources may correspond to different PUCCH formats.
  • PUCCH format PUCCH format
  • RRC Radio Resource Control, Radio Resource Control
  • the two modes of uplink PUSCH time-domain repetition transmission enhancement are: repetition type A transmission mode and repetition type B transmission mode introduced in R16.
  • the slot-level Slot Aggregation (aggregation) PUSCH transmission of R16 is suitable for some situations where the delay requirement is very low and the reliability requirement is high.
  • a PUSCH is transmitted in consecutive K time slots, that is, K transmission opportunities, starting from the S-th symbol in the initial time slot, and each transmission opportunity lasts for L symbols, and S+L is different than the time slot. boundary. For example, as shown in Figure 7, S equals 1 and L equals 4.
  • the first terminal performs the first repeated transmission from the first symbol to the fourth symbol of the first time slot, and performs the second repeated transmission from the first symbol to the fourth symbol of the second time slot.
  • R16 supports the PUSCH repeated transmission scheme in units of Mini-slot (mini-slot, also known as "sub-slot"), and allows PUSCH transmission across time slots to further reduce the delay.
  • mini-slot also known as "sub-slot”
  • a PUSCH starts transmission on the S-th symbol in the initial time slot, sends K transmission occasions (nominal repetitions) continuously, and each transmission occasion occupies L symbols continuously (back-to-back) , the transmission S+L can cross the slot boundary.
  • the first terminal when S is equal to 1 and L is equal to 4, the first terminal is configured to perform 2 repeated transmissions of the uplink channel.
  • the first terminal performs the first repeated transmission in the first symbol to the fourth symbol of the first time slot, and performs the second repeated transmission in the fifth symbol to the eighth symbol of the first time slot.
  • the transmission is re-segmented.
  • the first terminal when S is equal to 1 and L is equal to 4, the first terminal is configured to perform repeated transmission of the uplink channel for 4 times.
  • the first terminal performs the first repeated transmission in the first symbol to the fourth symbol of the first time slot, and performs the second repeated transmission in the fifth symbol to the eighth symbol of the first time slot. Since according to the configuration information, the 4 symbols of the third repeated transmission cross the time slot boundary of the time slot, the third repeated transmission is divided into two repeated transmissions.
  • the 10th symbol is repeatedly transmitted for the 3rd time, and the 4th repeated transmission is performed from the 1st symbol to the 2nd symbol in the second time slot.
  • the 5th repeated transmission is performed from the 3rd symbol to the 7th symbol of the second slot. That is, the first terminal actually performs 5 repeated transmissions, and the same data is sent in each repeated transmission.
  • the first terminal when S is equal to 1 and L is equal to 14, the first terminal is configured to perform 1 repeated transmission of the uplink channel. Since the length of a time slot is 10 symbols, and each transmission opportunity occupies 14 symbols, the 14 symbols of the first repeated transmission will cross the time slot boundary, dividing the first repeated transmission into two repeated transmissions , the 1st repeated transmission is performed from the 1st symbol to the 10th symbol of the first time slot, and the 2nd repeated transmission is performed from the 1st symbol to the 4th symbol of the second time slot. That is, the first terminal actually performs two repeated transmissions, and the same data is sent in each repeated transmission.
  • the time slot L*K represents the length of the time domain resource window for PUSCH transmission, and DL (Downlink, downlink channel) symbols are discarded and not used for PUSCH transmission.
  • the base station can configure SFI (Short Elementary File Identifier, short basic file identifier) semi-static Flexible (variable) symbols as dynamic UL (Uplink, uplink channel) symbols or dynamic DL symbols, so semi-static Flexible symbols may be available for PUSCH symbol, and possibly an unavailable symbol. Wherein, when there are unavailable symbols, the first terminal needs to discard the unavailable symbols, and then transmit on the remaining available symbols.
  • the base station may also configure an invalid symbol pattern that cannot be used by the UE (User Equipment, user equipment) through signaling, that is, on the invalid symbol indicated by the signaling, the UE does not transmit uplink data.
  • the enhanced transmission scheme based on coordinated multi-point transmission adopted by downlink PDSCH is mainly defined.
  • the application of multi-TRP/PANEL (panel) of the base station utilizes the cooperation between multiple TRPs or panels.
  • the transmission/reception of the channel with each beam can better overcome various occlusion/blocking effects and ensure the robustness of the link connection. It is suitable for URLLC (Ultra Reliable Low Latency Communication) services to improve transmission quality and meet reliability requirements.
  • R17 needs to continue to use multiple TRP technology to enhance uplink transmission, including uplink control channel PUCCH and uplink data channel PUSCH.
  • PUCCH/PUSCH supports cooperatively sending the same transport block (Transport Block, TB) to different TRP directions on different transmission occasions (TO, Transmission Occasion) under the above-defined transmission mode ) to further apply spatial multiplexing to improve transmission reliability.
  • Transport Block Transport Block
  • TO Transmission Occasion
  • TDM Time Division Multiplexing, time division multiplexing
  • multiple beam directions facing multiple TRPs are jointly transmitted in time division in one time slot.
  • the repeated transmission of the PUCCH is performed in a sub-slot unit within a time slot. For example, as shown in FIG. 11 , repeat transmission of the uplink channel twice in the time slot, on two physical resource blocks in the same frequency domain in the time slot, use the first beam 301 and the second beam 302 to transmit to different TRPs respectively. send the same data.
  • different symbol groups (or "material resource blocks") corresponding to two hops (hops) before and after the time slot correspond to different beam transmissions respectively. For example, as shown in FIG. 12 , repeat transmission of the uplink channel twice in the time slot, on two physical resource blocks in different frequency domains in the time slot, use the first beam 301 and the second beam 302 to transmit to different TRPs respectively. send the same data.
  • mapping schemes that can be considered for the mapping relationship between the beam transmission directions of the PUCCH/PUSCH sent by the first terminal for different TRPs and different transmission opportunities, and three typical schemes are exemplified below:
  • Scheme a Periodic mapping.
  • the two beam directions are cyclically mapped to the configured multiple transmission occasions in turn.
  • the beam direction mapping pattern can be #1#2#1#2, where #1 corresponds to the first beam direction , #2 corresponds to the second beam direction.
  • Scheme b Continuous mapping.
  • the two beam directions are continuously and cyclically mapped to the configured multiple transmission opportunities.
  • the beam direction mapping pattern can be #1#1#2#2; for more than 4 repeated transmissions, then The pattern is repeated, for example, for 8 repeated transmissions, the pattern of beam direction mapping may be #1#1#2#2#1#1#2#2.
  • Option c Mapping in half.
  • the two beam directions are continuously mapped to the configured multiple transmission occasions.
  • the beam direction mapping pattern may be #1#1#1#1#2#2#2#2.
  • the transmission strategy includes one of a strategy of deleting beam switching time and a strategy of delaying beam switching time.
  • the strategy for deleting the beam switching time refers to: at least one transmission resource among the first transmission resource and the second transmission resource is determined by deleting the beam switching time.
  • the strategy for delaying the beam switching time refers to: the second transmission resource is determined by delaying the beam switching time after the first transmission resource.
  • the deletion can be understood as determining the two transmission resources after deleting the beam switching time from the nominal transmission opportunity configured by the network device for the two repeated transmissions.
  • the delay can be understood as obtaining the actual transmission opportunity after the nominal transmission opportunity corresponding to the next repeated transmission is delayed by the beam switching time.
  • the transmission resource is determined by means of deletion.
  • the resource configuration of the uplink channel includes: two consecutive sub-slots configured for two adjacent repeated transmissions; the beam switching time is X symbol, the subslot includes M symbols, X and M are positive integers, and X is less than or equal to M.
  • the first terminal determines the M symbols of the first subslot in the two subslots as the first transmission resource; determines the last (M-X) symbols of the second subslot in the two subslots as the second transfer resources.
  • the transmission resources are determined by the method of deleting the beam switching time from the transmission resources of the two repeated transmissions and then equally allocated.
  • the resource configuration of the uplink channel includes: N symbols configured for the same PUCCH resource that are repeatedly transmitted twice in a row, and the beam switching time is X symbols , X is a positive integer, N is an integer greater than 1, and X is less than or equal to N.
  • the first terminal calculates (N-X)/2 to round down to obtain N1; calculates (N-X)/2 to round up to obtain N2; determines the first N1 symbols among the N symbols as the first transmission resource; The last N2 symbols are determined as the second transmission resource.
  • the transmission resource is determined by deleting the beam switching time from the transmission resource corresponding to the second repeated transmission.
  • the resource configuration of the uplink channel includes: N symbols configured for the same PUCCH resource that are repeatedly transmitted twice in a row, and the beam switching time is X symbols , X is a positive integer, N is an integer greater than 1, and X is less than N.
  • the first terminal calculates N/2 and rounds down to obtain N3; calculates N/2 and rounds up to obtain N4; determines the first N3 symbols among the N symbols as the first transmission resource; X) symbols are determined as the second transmission resource.
  • the transmission resources are determined by the method of deleting the beam switching time from the remaining available transmission resources in the time slot and then evenly assigning the transmission resources.
  • the resource configuration of the uplink channel includes: N symbols configured for the same PUCCH resource that are repeatedly transmitted twice, and the last of the N symbols There are Y symbols between the symbol and the first symbol of the next time slot; the beam switching time is X symbols, X and Y are positive integers, and N is an integer greater than 1.
  • the first terminal calculates (Y+N-X)/2 and rounds down to obtain N5; calculates (Y+N-X)/2 and rounds up to obtain N6; determines the first N5 symbols among the (N+Y) symbols as the first Transmission resource; determine the last N6 symbols in the (N+Y) symbols as the second transmission resource.
  • the transmission resources are determined by deleting the beam switching time from the transmission resources corresponding to the second repeated transmission from the remaining available transmission resources in the time slot.
  • the resource configuration of the uplink channel includes: N symbols configured for the same PUCCH resource that are repeatedly transmitted twice, and the last of the N symbols There are Y symbols between the symbol and the first symbol of the next time slot; the beam switching time is X symbols, X and Y are positive integers, and N is an integer greater than 1.
  • the first terminal calculates (Y+N)/2 and rounds down to obtain N7; calculates (Y+N)/2 and rounds up to obtain N8; determines the first N7 symbols among the (N+Y) symbols as the first Transmission resources; determine the last (N8-X) symbols in the (N+Y) symbols as the second transmission resources.
  • the transmission resources are determined by the method of deleting the beam switching time from the transmission resources of the two repeated transmissions and then equally allocated.
  • the resource configuration of the uplink channel includes: two consecutive nominal transmissions configured for two adjacent repeated transmissions Timing, each nominal transmission opportunity occupies time domain resources of A symbols, the beam switching time is X symbols, and X and A are positive integers.
  • the first terminal determines the A symbols of the preceding nominal transmission occasion among the two nominal transmission occasions as the first transmission resource; determines the last (A-X) symbols of the latter nominal transmission occasion of the two nominal transmission occasions as the first transmission resource; is the second transmission resource.
  • the transmission resource is determined by delaying one sub-slot.
  • the resource configuration of the uplink channel includes: two consecutive sub-slots are configured for two consecutive repeated transmissions; the beam switching time is X symbols, and the sub-slot includes M symbols, X and M are positive integers, and X is less than or equal to M; the start symbol configured for two adjacent repeated transmissions is the S-th symbol in the time slot, and S is a positive integer.
  • the first terminal will determine the first sub-slot starting from the S-th symbol as the first transmission resource; the second sub-slot starting from the (S+2M)-th symbol will be determined as the second transmission resource.
  • (S+2M) symbols are obtained by delaying the first transmission resource by one sub-slot.
  • the transmission resource is determined by delaying the beam switching time.
  • the resource configuration of the uplink channel includes: two consecutive sub-slots are configured for two consecutive repeated transmissions; the beam switching time is X symbols, and the sub-slot includes M symbols, X and M are positive integers, and X is less than or equal to M; the start symbol configured for two adjacent repeated transmissions is the S-th symbol in the time slot, and S is a positive integer.
  • the first terminal will determine the first sub-slot starting from the S-th symbol as the first transmission resource; and determine the second sub-slot starting from the (S+M+X)-th symbol as the second transmission resource , the (S+M+X)th symbol is obtained by delaying the first transmission resource by X symbols.
  • the first terminal determines the first (M-Z) symbols of the second subslot in response to the last Z symbols of the second subslot starting from the (S+M+X)th symbol exceeding the slot boundary of the slot is the second transmission opportunity, and Z is a positive integer less than M.
  • the transmission resource is determined by delaying the transmission resource corresponding to the second repeated transmission.
  • the resource configuration of the uplink channel includes: N symbols configured for the same PUCCH resource that are repeatedly transmitted twice, and the last of the N symbols There are Y symbols between the symbol and the first symbol of the next time slot; the beam switching time is X symbols, X, Y, and N are positive integers, and X is less than or equal to Y; it is configured for two consecutive repeated transmissions
  • the starting symbol of is the S-th symbol in the time slot, and S is a positive integer.
  • the first terminal calculates N/2 to round down to obtain N3; calculates N/2 to round up to obtain N4; N3 symbols starting from the S-th symbol are determined as the first transmission resource; from (S+N3 The N4 symbols starting from +X) symbols are determined as the second transmission resource, and the (S+N3+X)th symbol is obtained by delaying the first transmission resource by X symbols.
  • the transmission resource is determined by deleting the transmission resource beyond the time slot boundary after delaying the transmission resource corresponding to the second repeated transmission.
  • the resource configuration of the uplink channel includes: N symbols configured for the same PUCCH resource that are repeatedly transmitted twice, and the last of the N symbols There are Y symbols between the symbol and the first symbol of the next time slot; the beam switching time is X symbols, X, Y, and N are positive integers, and X is greater than or equal to Y; it is configured for two consecutive repeated transmissions
  • the starting symbol of is the S-th symbol in the time slot, and S is a positive integer.
  • the first terminal calculates N/2 to round down to obtain N3; calculates N/2 to round up to obtain N4; N3 symbols starting from the S-th symbol are determined as the first transmission resource; from (S+N3 (N4-(X-Y)) symbols starting from +X) symbols are determined as the second transmission resource, and the (S+N3+X)th symbol is obtained by delaying the first transmission resource by X symbols.
  • the transmission resource is determined by delaying the transmission resource corresponding to the second repeated transmission.
  • the resource configuration of the uplink channel includes: two consecutive nominal transmissions configured for two adjacent repeated transmissions Timing, each nominal transmission opportunity occupies time domain resources of A symbols, the beam switching time is X symbols, and X and A are positive integers; the starting symbol of two adjacent repeated transmissions is the S-th symbol in the time slot , S is a positive integer.
  • the first terminal will determine the A symbols starting from the S-th symbol as the first transmission resource; the A symbols starting from the (S+A+X)-th symbol will be determined as the second transmission resource, and the (S+A+X)-th symbol will be determined as the second transmission resource. +A+X) symbols are obtained by delaying the first transmission resource by X symbols.
  • the network device sends the resource configuration of the uplink channel to the first terminal.
  • the first transmission resource and the second transmission resource are determined based on the resource configuration.
  • the resource configuration includes configuring the beam switching time as an invalid symbol, the first transmission resource and the second transmission resource. is determined from the valid symbols indicated by the resource configuration.
  • the first terminal determines the first transmission resource and the second transmission resource based on the resource configuration of the uplink channel.
  • the network device may configure different transmission policies for the first terminal.
  • the network device in response to the number of symbols in the sub-slots used for one repeated transmission in the PUCCH being less than the threshold, sends the first configuration signaling to the first terminal, where the first configuration signaling includes the transmission strategy of the uplink channel, and the transmission strategy is a strategy for delaying beam switching time.
  • the transmission strategy is a strategy for delaying beam switching time.
  • the network device in response to the number of symbols in the sub-slots used for repeating transmission in the PUCCH being greater than the threshold, sends the second configuration signaling to the first terminal, where the second configuration signaling includes the transmission strategy of the uplink channel, and the transmission The strategy is to delete the beam switching time.
  • the number of symbols in the sub-slot is large, adopting the strategy of deleting transmission can reduce the delay of uplink transmission.
  • the network device in response to the delay requirement in the PUSCH being higher than the threshold, sends the second configuration signaling to the first terminal, where the second configuration signaling includes a transmission strategy for the uplink channel, and the transmission strategy is a strategy for deleting beam switching time.
  • the transmission strategy is a strategy for deleting beam switching time.
  • the network device in response to the delay requirement in the PUSCH being lower than the threshold, sends the first configuration signaling to the first terminal, where the first configuration signaling includes a transmission strategy for the uplink channel, and the transmission strategy is a strategy for delaying beam switching time.
  • the strategy of delayed transmission can improve the reliability of the uplink data transmission.
  • the network device may also configure different transmission policies for the first terminal based on other scenarios or requirements. For example, based on various scenarios such as the specific transmission method, time slot resource allocation, service delay requirements, channel performance requirements, and beam mapping methods, the network device can correspondingly configure a suitable transmission strategy for repeated transmission of the uplink channel.
  • the apparatus may be implemented as a network device, or may be implemented as a part of a network device, and the device includes:
  • a sending module 401 configured to send configuration signaling to a first terminal, where the configuration signaling includes a transmission strategy of an uplink channel;
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • the sending module 401 is configured to send radio resource control RRC signaling to the first terminal, where the RRC signaling includes the transmission policy of the uplink channel.
  • the sending module 401 is configured to send first signaling and second signaling to the first terminal, where the first signaling includes the transmission strategy of the uplink channel , the second signaling includes indication information, where the indication information is used to dynamically update the transmission policy.
  • the sending module 401 is configured to send first signaling and second signaling to the first terminal, where the first signaling includes at least one candidate transmission of the uplink channel strategy, the second signaling includes indication information for activating the first transmission strategy from the at least one candidate transmission strategy.
  • the first signaling further includes a transmission strategy activated by default; the transmission strategy activated by default is one of the at least one candidate transmission strategy.
  • the first signaling is RRC signaling;
  • the second signaling is medium access control-control element MAC-CE signaling, downlink control information DCI signaling, packet DCI signaling at least one of the orders.
  • the second signaling is DCI signaling
  • the indication information is located on a newly defined DCI field in the DCI signaling.
  • the second signaling is DCI signaling
  • the indication information is located on an unused DCI bit or a DCI reserved code point in the DCI signaling.
  • the second signaling is packet DCI signaling
  • the indication information is located on a newly defined DCI bit in the DCI field corresponding to the first terminal in the packet DCI signaling.
  • the second signaling is packet DCI signaling
  • the indication information is located in an unused DCI code point in the DCI domain corresponding to the first terminal in the packet DCI signaling or Added DCI code points.
  • the transmission strategy includes one of a strategy of deleting the beam switching time and a strategy of delaying the beam switching time.
  • FIG. 14 shows a structural block diagram of an apparatus for configuring a transmission policy provided by an exemplary embodiment of the present application.
  • the apparatus may be implemented as a terminal device, or may be implemented as a part of the terminal device, and the device includes:
  • a receiving module 402 configured to receive configuration signaling sent by a network device, where the configuration signaling includes a transmission strategy of an uplink channel;
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • the receiving module 402 is configured to receive radio resource control RRC signaling sent by the network device, where the RRC signaling includes the transmission policy of the uplink channel.
  • the receiving module 402 is configured to receive first signaling and second signaling sent by the network device, where the first signaling includes the transmission policy of the uplink channel , the second signaling includes indication information, where the indication information is used to dynamically update the transmission policy.
  • the receiving module 402 is configured to receive first signaling and second signaling sent by the network device, where the first signaling includes at least one candidate transmission of the uplink channel strategy, the second signaling includes indication information for activating the first transmission strategy from the at least one candidate transmission strategy.
  • the first signaling further includes a transmission strategy activated by default; the transmission strategy activated by default is one of the at least one candidate transmission strategy.
  • the first signaling is RRC signaling;
  • the second signaling is medium access control-control element MAC-CE signaling, downlink control information DCI signaling, packet DCI signaling at least one of the orders.
  • the second signaling is DCI signaling
  • the indication information is located on a newly defined DCI field in the DCI signaling.
  • the second signaling is DCI signaling
  • the indication information is located on an unused DCI bit or a DCI reserved code point in the DCI signaling.
  • the second signaling is packet DCI signaling
  • the indication information is located on a newly defined DCI bit in the DCI field corresponding to the first terminal in the packet DCI signaling.
  • the second signaling is packet DCI signaling
  • the indication information is located in an unused DCI code point in the DCI domain corresponding to the first terminal in the packet DCI signaling or Added DCI code points.
  • the transmission strategy includes one of a strategy of deleting the beam switching time and a strategy of delaying the beam switching time.
  • FIG. 15 shows a schematic structural diagram of a communication device (terminal device or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • the processor and transceiver in the communication device involved in the embodiments of the present application may perform the steps performed by the terminal device in any of the above methods, which will not be repeated here.
  • the communication device when the communication device is implemented as a terminal device,
  • the transceiver configured to receive configuration signaling sent by the network device, where the configuration signaling includes a transmission strategy of an uplink channel;
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • the processor and transceiver in the communication device involved in the embodiments of the present application may perform the steps performed by the network device in any of the above methods, which will not be repeated here.
  • the communication device when the communication device is implemented as a network device,
  • the transceiver configured to send configuration signaling to the first terminal, where the configuration signaling includes a transmission strategy of an uplink channel;
  • the transmission strategy is used to determine the transmission strategy for performing the two adjacent repetitions in the case that the two adjacent repeated transmissions of the uplink channel are sent to different transmission points TRPs of the same network device using different transmission beams.
  • the first transmission opportunity among the two adjacent transmission opportunities for channel transmission corresponds to the first transmission opportunity; the second transmission resource corresponds to the latter transmission opportunity among the two adjacent transmission opportunities for the uplink channel transmission.
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the method for configuring the transmission policy executed by the communication device provided by the above method embodiments.
  • a chip is also provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a computer device, is used to implement the transmission strategy described in the above aspects. configuration method.
  • a computer program product which, when running on a processor of a computer device, causes the computer device to execute the method for configuring a transmission policy described in the above aspects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输策略的配置方法、装置、设备及存储介质,涉及无线通信领域。该方法应用于终端设备中,该方法包括:向第一终端发送配置信令,配置信令包括上行信道的传输策略;其中,传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一网络设备的不同传输点TRP发送的情况下,确定用于进行相邻两次重复传输的第一传输资源和第二传输资源;第一传输资源和第二传输资源之间具有用于切换波束方向的波束切换时间;第一传输资源与用于上行信道发送的相邻两个传输时机中在前的传输时机对应;第二传输资源与用于上行信道发送的相邻两个传输时机中在后的传输时机对应。该方法可以在上行信道的传输中引入波束切换时间。

Description

传输策略的配置方法、装置、设备及存储介质 技术领域
本申请涉及无线通信领域,特别涉及一种传输策略的配置方法、装置、设备及存储介质。
背景技术
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)在5G NR(New Radio,新空口)系统中引入了基于多TRP(Transmit-Receive Point,传输接收点)的重复传输技术。
基于多TRP,终端设备可以面向一个基站的多个TRP进行上行信道的重复传输。终端设备在面向不同方向的TRP进行重复传输时,需要进行波束方向的切换。
发明内容
本申请实施例提供了一种传输策略的配置方法、装置、设备及存储介质,可以在上行信道的传输中引入波束切换时间。所述技术方案如下:
根据本申请的一个方面,提供了一种传输策略的配置方法,应用于网络设备中,所述方法包括:
向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
根据本申请的一个方面,提供了一种传输策略的配置方法,应用于终端设备中,所述方法包括:
接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
根据本申请的一个方面,提供了一种传输策略的配置装置,所述装置包括:
发送模块,用于向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在 后的传输时机对应。
根据本申请的一个方面,提供了一种传输策略的配置装置,所述装置包括:
接收模块,用于接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器和与所述处理器相连的收发器;其中,
所述收发器,用于向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
根据本申请的一个方面,提供了一种终端设备,所述终端设备包括:处理器和与所述处理器相连的收发器;其中,
所述收发器,用于接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如上述方面所述的传输策略的配置方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的传输策略的配置方法。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的传输策略的配置方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过为上行信道的相邻两次重复传输分别配置间隔有波束切换时间的两个传输资源,使两次重复传输分别使用不同的发送波束,向同一基站的不同TRP发送,通过在两个传输资源间间隔波束切换时间,充分考虑终端设备在使用不同波束方向向不同TRP进行上行信道的传输时,需要进行波束切换,为波束切换预留出波束切换时间,便于终端设备实现面向同一基站多个TRP的上行信道的重复传输。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的系统架构的示意图;
图2是本申请一个示例性实施例提供的传输策略的配置方法的流程图;
图3是本申请一个示例性实施例提供的传输策略的配置方法的流程图;
图4是本申请一个示例性实施例提供的传输策略的配置方法的流程图;
图5是本申请一个示例性实施例提供的传输策略的配置方法的流程图;
图6是本申请一个示例性实施例提供的传输策略的配置方法的PUCCH在时隙间重复传输的示意图;
图7是本申请一个示例性实施例提供的传输策略的配置方法的PUSCH在时隙间重复传输的示意图;
图8是本申请一个示例性实施例提供的传输策略的配置方法的PUSCH在时隙间重复传输的示意图;
图9是本申请一个示例性实施例提供的传输策略的配置方法的PUSCH在时隙间重复传输的示意图;
图10是本申请一个示例性实施例提供的传输策略的配置方法的PUSCH在时隙间重复传输的示意图;
图11是本申请一个示例性实施例提供的传输策略的配置方法的PUCCH在时隙内基于跳频资源进行重复传输的示意图;
图12是本申请一个示例性实施例提供的传输策略的配置方法的PUCCH在时隙内基于跳频资源进行重复传输的示意图;
图13是本申请一个示例性实施例提供的传输策略的配置装置的结构框图;
图14是本申请一个示例性实施例提供的传输策略的配置装置的结构框图;
图15是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公 开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本申请一个实施例提供的系统架构的示意图。该系统架构可以包括:终端设备10和网络设备20。
终端设备10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端设备10。终端设备10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。
网络设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为网络设备。
示例性的,一个网络设备20部署有多个TRP,例如,网络设备20对应有TRP1、TRP2……TRPn。终端设备使用不同的发送波束面向不同TRP进行上行信道的重复传输,网络设备20通过多个TRP接收终端设备发送的上行信道的重复传输。示例性的,由于不同TRP与终端设备的相对方位不同,终端设备需要使用不同波束方向的发送波束,向对应方向上的TRP发送波束,进行上行信道的重复传输。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
请参考图2,其示出了本申请一个实施例提供的传输策略的配置方法的流程图,该方法可以应用于图1所示的系统架构中。该方法包括如下步骤。
步骤220,网络设备向第一终端发送配置信令,配置信令包括上行信道的传输策略。
其中,传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一网络设备的不同传输点TRP发送的情况下,确定用于进行相邻两次重复传输的第一传输资源和第二传输资源;第一传输资源和第二传输资源之间具有用于切换波束方向的波束切换时间;第一传输资源与用于上行信道发送的相邻两个传输时机中在前的传输时机对应;第二传输资源与用于上行信道发送的相邻两个传输时机中在后的传输时机对应。
配置信令用于配置第一终端在上行信道中进行相同数据的重复传输。配置信令包括传输策略,传输策略用于确定需要切换波束方向的相邻两次重复传输所使用的传输资源。第一终端根据配置信令中的传输策略确定该相邻两次重复传输所使用的第一传输资源和第二传输资源,在第一传输资源和第二传输资源上分别进行上行信道中相同数据的相邻两次重复传输。
传输策略用于指示第一终端如何确定相邻两次重复传输的两个传输资源,以使两个传输资源之间间隔有波束切换时间。
第一传输资源对应相邻两个传输时机中在前的一个传输时机,并使用面向协作发送的一个TRP方向的波束进行上行信道发送。第二传输资源对应相邻两个传输时机中在后的一个传输时机。
示例性的,第一传输资源对应第i个传输时机,第二传输资源对应第i+1个传输时机,i 为正整数,第i个传输时机和第i+1个传输时机表示顺序的两个传输时机。
传输时机包括时域上的传输资源。传输时机为时域上的至少一个符号。示例性的,步骤220中的传输时机是指实际传输时机。实际传输时机为第一终端最终进行上行信道传输时所使用的实际的传输时机。示例性的,与实际传输时机相对的,还具有名义传输时机,名义传输时机为网络设备为第一终端配置的用于上行信道传输的传输时机。示例性的,第一终端根据网络设备配置的名义传输时机,结合切换波束方向所需的波束切换时间,最终确定出用于上行信道的重复传输的实际传输时机。
示例性的,第一终端基于上行信道的资源配置确定第一传输资源和第二传输资源。终端确定传输资源的方式包括删除和延迟两种。删除是指:第一传输资源和第二传输资源中的至少一个传输资源是采用删除波束切换时间确定的。延迟是指:第二传输资源是在第一传输资源后延迟波束切换时间确定的。
示例性的,上行信道对同一数据的重复传输包括至少两次重复传输。步骤220中的相邻两次重复传输是指至少两次重复传输中,需要进行波束方向切换的相邻的两次重复传输。
例如,第一终端需要进行四次重复传输,第一次重复传输使用第一波束方向向第一TRP发送,第二次重复传输使用第一波束方向向第一TRP发送,第三次重复传输使用第二波束方向向第二TRP发送,第四次重复传输使用第三波束方向向第三TRP发送。则步骤220中的相邻两次重复传输可以是第二次重复传输和第三次重复传输,或,相邻两次重复传输可以是第三次重复传输和第四次重复传输。
示例性的,第一传输资源对应第一传输时机,第二传输资源对应第二传输时机,第一传输时机结束的符号,与第二传输时机开始的符号之间存在时间间隔,时间间隔大于或等于用于切换波束方向的波束切换时间。
示例性的,上行信道中传输的数据可以是上行数据也可以是上行信令。
示例性的,波束切换时间是为第一终端进行波束方向的切换所预留的时间,波束切换时间为网络设备配置或预定义的。根据不同场景需要波束切换时间的大小也会不同,比如在第一终端的同一个panel(天线面板)和不同panel上的波束间切换时间可能并不相同。
步骤240,终端设备接收网络设备发送的配置信令,配置信令包括上行信道的传输策略。
综上所述,本实施例提供的方法,通过为上行信道的相邻两次重复传输分别配置间隔有波束切换时间的两个传输资源,使两次重复传输分别使用不同的发送波束,向同一基站的不同TRP发送,通过在两个传输资源间间隔波束切换时间,充分考虑终端设备在使用不同波束方向向不同TRP进行上行信道的传输时,需要进行波束切换,为波束切换预留出波束切换时间,便于终端设备实现面向同一基站多个TRP的上行信道的重复传输。
通过在基于多TRP的上行增强PUCCH/PUSCH传输方案中,考虑波束切换时间在传输方案中的引入配置方式,从而支持上行传输可配置的波束切换时间的传输策略,从而优化不同具体传输下的传输效率和可靠性。
示例性的,网络设备发送的信令至少包括以下三种情形:
(一)网络设备发送第一信令,第一信令中承载了传输策略。
(二)网络设备发送第一信令和第二信令,第一信令中承载了传输策略,第二信令可以动态更新传输策略。
(三)网络设备发送第一信令和第二信令,第一信令中承载了多个候选传输策略,第二信令从多个候选传输策略中指示传输策略。
基于以上三种情形,给出以下三个示例性实施例,该三个示例性实施例的排序不分先后。
(一)网络设备发送第一信令,第一信令中承载了传输策略。
请参考图3,其示出了本申请一个实施例提供的传输策略的配置方法的流程图,该方法可以应用于图1所示的系统架构中。该方法包括如下步骤。
步骤221,网络设备向第一终端发送RRC(Radio Resource Control,无线资源控制)信令,RRC信令包括上行信道的传输策略。
示例性的,网络设备可以在RRC信令中承载上行信道的传输策略,使第一终端在接收到RRC信令后,根据RRC信令中的传输策略确定重复传输所使用的传输资源。
例如,网络设备可以在RRC信令中配置延迟发送“delaying”,或者删除发送“dropping”。示例性的,网络设备还可以配置其他传输策略。对于传输策略的列举将在下面的实施例中详细说明。
步骤241,第一终端接收网络设备发送的RRC信令,RRC信令包括上行信道的传输策略。
综上所述,本实施例提供的方法,通过在RRC信令中承载传输策略,网络设备通过RRC信令向第一终端配置传输策略,使第一终端根据传输策略确定相邻两次重复传输所使用的第一传输资源和第二传输资源,以使第一传输资源和第二传输资源之间间隔有波束切换时间,便于终端设备实现面向同一基站多个TRP的上行信道的重复传输。
(二)网络设备发送第一信令和第二信令,第一信令中承载了传输策略,第二信令可以动态更新传输策略。
请参考图4,其示出了本申请一个实施例提供的传输策略的配置方法的流程图,该方法可以应用于图1所示的系统架构中。该方法包括如下步骤。
步骤222,网络设备向第一终端发送第一信令和第二信令,第一信令包括上行信道的传输策略,第二信令包括指示信息,指示信息用于动态更新传输策略。
示例性的,第一信令为RRC信令,第二信令可以是MAC-CE(Media Access Control-Control Element,媒体接入控制-控制单元)信令、DCI(Downlink Control Information,下行控制信息)信令、分组DCI信令中的至少一种。
例如,第一信令中包括第一传输策略,第二信令中包括第二传输策略。第一终端接收第一信令,根据第一传输策略确定第一传输资源和第二传输资源。第一终端接收第二信令,则用第二传输策略替换第一传输策略,根据第二传输策略确定第一传输资源和第二传输资源。
示例性的,当第二信令为DCI信令时,指示信息位于DCI信令中新定义的DCI域上;或,指示信息位于DCI信令中未使用的DCI比特或DCI预留码点(DCI reserved codepoint)上。
例如,在DCI信令中新定义一个DCI域,用于承载指示信息,指示信息包括传输策略。
再如,在DCI信令已有的DCI域中,未使用的DCI比特或预留的DCI码点上承载指示信息,指示信息包括传输策略。例如,DCI预留码点可以是TPMI reserved codepoint。
示例性的,当第二信令为分组DCI信令时,指示信息位于分组DCI信令中与第一终端对应的DCI域内新定义的DCI比特上;或,指示信息位于分组DCI信令中与第一终端对应的DCI域内未使用的DCI码点或新增的DCI码点上。
例如,分组DCI信令包括第一终端对应的DCI域、第二终端对应的DCI域,在第一终端对应的DCI域中新定义DCI比特,用于承载指示信息。
再如,在第一终端对应的DCI域中,未使用的码点上承载指示信息;或,在第一终端对应的DCI域中,新增DCI码点用于承载指示信息。
步骤242,第一终端接收网络设备发送的第一信令和第二信令,第一信令包括上行信道的传输策略,第二信令包括指示信息,指示信息用于动态更新传输策略。
综上所述,本实施例提供的方法,通过在第一信令中承载传输策略,在第二信令中动态更新传输策略,使第一终端根据传输策略确定相邻两次重复传输所使用的第一传输资源和第二传输资源,以使第一传输资源和第二传输资源之间间隔有波束切换时间,便于终端设备实现面向同一基站多个TRP的上行信道的重复传输。
(三)网络设备发送第一信令和第二信令,第一信令中承载了多个候选传输策略,第二信令从多个候选传输策略中指示传输策略。
请参考图5,其示出了本申请一个实施例提供的传输策略的配置方法的流程图,该方法可以应用于图1所示的系统架构中。该方法包括如下步骤。
步骤223,网络设备向第一终端发送第一信令和第二信令,第一信令包括上行信道的至少一个候选传输策略,第二信令包括指示信息,指示信息用于从至少一个候选传输策略中激活第一传输策略。
第一信令中承载了多个候选传输策略,第二信令从多个候选传输策略中指示最终使用的传输策略。示例性的,第二信令从多个候选传输策略中激活其中一个传输策略作为第一传输策略,使第一终端根据第一传输策略确定相邻两次重复传输所使用的传输资源。第二信令也可以承载的指示信息也可以包括去激活指令,去激活某个传输策略。
示例性的,第一信令还包括默认激活的传输策略;默认激活的传输策略为至少一个候选传输策略中的一个。
当第一终端未接收到第二信令,或,第二信令中指示信息所在的DCI域丢失,则第一终端可以直接采用默认激活的传输策略,根据该传输策略确定传输资源。
示例性的,第一信令为RRC信令,第二信令可以是MAC-CE信令、DCI信令、分组DCI信令中的至少一种。
示例性的,当第二信令为DCI信令时,指示信息位于DCI信令中新定义的DCI域上;或,指示信息位于DCI信令中未使用的DCI比特或DCI预留码点(DCI reserved codepoint)上。
例如,在DCI信令中新定义一个DCI域,用于承载指示信息,指示信息包括激活指令或去激活指令,激活指令用于激活一个候选传输策略作为第一传输策略,去激活指令用于去激活已经激活的传输策略。
再如,在DCI信令已有的DCI域中,未使用的DCI比特或预留的DCI码点上承载指示信息。例如,DCI预留码点可以是TPMI reserved codepoint。
示例性的,当第二信令为分组DCI信令时,指示信息位于分组DCI信令中与第一终端对应的DCI域内新定义的DCI比特上;或,指示信息位于分组DCI信令中与第一终端对应的DCI域内未使用的DCI码点或新增的DCI码点上。
例如,分组DCI信令包括第一终端对应的DCI域、第二终端对应的DCI域,在第一终端对应的DCI域中新定义DCI比特,用于承载指示信息。
再如,在第一终端对应的DCI域中,未使用的码点上承载指示信息;或,在第一终端对应的DCI域中,新增DCI码点用于承载指示信息。
步骤243,第一终端接收网络设备发送的第一信令和第二信令,第一信令包括上行信道的至少一个候选传输策略,第二信令包括指示信息,指示信息用于从至少一个候选传输策略中激活第一传输策略。
综上所述,本实施例提供的方法,通过在第一信令中承载多个候选传输策略,在第二信令中指示多个候选传输策略中的一个候选传输策略作为传输策略,使第一终端根据传输策略确定相邻两次重复传输所使用的第一传输资源和第二传输资源,以使第一传输资源和第二传输资源之间间隔有波束切换时间,便于终端设备实现面向同一基站多个TRP的上行信道的重复传输。
示例性的,上行信道可以是PUCCH(Physical Uplink Control Channel,物理上行控制信道)或PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
基于多TRP的上行信道增强方案,主要基于R16(Release 16)的PUCCH/PUSCH重复传输方案。首先介绍R16的上行传输方案,即PUCCH仅支持在时隙间的重复传输,PUSCH支持时隙间的重复传输类型A方式,以及可跨时隙传输的重复传输类型B方式。
一、PUCCH时隙内的重复传输。
在R15(Release 15)/16考虑上行覆盖问题,对PUCCH(对应PUCCH格式1/3/4)引入了在多个时隙(slot)中进行重复传输的机制,不同的PUCCH资源在每个slot的不同传输时机中按照相同的传输符号长度进行传输,如图6所示。一个PUCCH重复传输只能使用一个PUCCH资源,该PUCCH资源配置一个波束(beam)方向spatialRelationInfo(空间关系信息),并且应用于所有的传输时机上。网络设备通过RRC(Radio Resource Control,无线资源控制)高层信令为PUCCH格式(PUCCH format)配置支持的相应的重复传输次数,指示的重复传输次数的范围定义为{1,2,4,8},不同的PUCCH资源可能对应不同的PUCCH格式。
二、PUSCH时隙间重复传输。
上行PUSCH时域重复传输增强的两种方式分别是:R16引入的重复类型A传输方式和重复类型B传输方式。
1)PUSCH重复类型A传输方式。
R16的时隙级别的Slot Aggregation(聚合)PUSCH传输适用于某些时延要求很低可靠性要求很高的情况。一个PUSCH在连续的K个时隙中传输,即K个传输时机,从起始时隙中的第S个符号上开始传输,每个传输时机持续L个符号,同时S+L不同超过时隙边界。例如,如图7所示,S等于1,L等于4。第一终端在第一个时隙的第1个符号至第4个符号进行第1次重复传输,在第二个时隙的第1个符号至第4个符号进行第2次重复传输。
2)PUSCH重复类型B传输方式。
为了降低时延提高可靠性,R16支持以Mini-slot(迷你时隙,也可以称为“子时隙”)为单位的PUSCH重复传输方案,且允许PUSCH传输跨时隙可以进一步降低时延。在时域上,一个PUSCH在起始时隙中的第S个符号上开始传输,连续发送K个传输时机(nominal repetition),每个传输时机都连续(back-to-back)占用L个符号,传输S+L可以跨时隙边界。
如图8所示,当S等于1,L等于4,第一终端被配置为进行2次上行信道的重复传输。第一终端在第一个时隙的第1个符号至第4个符号进行第1次重复传输,在第一个时隙的第5个符号至第8个符号进行第2次重复传输。
在传输时机出现跨时隙边界的情况下,传输会被重新分割。
如图9所示,当S等于1,L等于4,第一终端被配置为进行4次上行信道的重复传输。 第一终端在第一个时隙的第1个符号至第4个符号进行第1次重复传输,在第一个时隙的第5个符号至第8个符号进行第2次重复传输。由于根据配置信息,第3次重复传输的4个符号跨过了时隙的时隙边界,则将第3次重复传输分割为两次重复传输,在第一个时隙的第9个符号至第10个符号进行第3次重复传输,在第二个时隙的第1个符号至第2个符号进行第4次重复传输。在第二个时隙的第3个符号至第7个符号进行第5次重复传输。即,第一终端实际进行了5次重复传输,每次重复传输发送相同的数据。
如图10所示,当S等于1,L等于14,第一终端被配置为进行1次上行信道的重复传输。由于一个时隙的长度为10个符号,每个传输时机却要占用14个符号,则第1次重复传输的14个符号会跨过时隙边界,将第1次重复传输分割为两次重复传输,在第一个时隙的第1个符号至第10个符号进行第1次重复传输,在第二个时隙的第1个符号至第4个符号进行第2次重复传输。即,第一终端实际进行了2次重复传输,每次重复传输发送相同的数据。
对于整个传输来讲,时隙L*K表示PUSCH传输的时域资源窗口长度,DL(Downlink,下行信道)符号被丢弃不用于PUSCH的传输。基站可以配置SFI(Short Elementary File Identifier,短基本文件标识符)半静态Flexible(可变的)符号为动态UL(Uplink,上行信道)符号或动态DL符号,因此半静态Flexible符号对PUSCH可能是可用符号,也可能是不可用符号。其中,当存在不可用符号时,第一终端需要丢弃不可用符号,之后在剩余的可用符号上传输。基站还可以通过信令配置UE(User Equipment,用户设备)不可使用的无效符号图样,即在信令指示的无效符号上,UE不传输上行数据。
在R16的标准化中,主要定义了下行PDSCH采用的基于多点协作传输的增强传输方案,基站多TRP/PANEL(面板)的应用利用多个TRP或面板之间的协作,从多个角度的多个波束进行信道的传输/接收,可以更好的克服各种遮挡/阻挡效应,保障链路连接的鲁棒性,适合URLLC(Ultra Reliable Low Latency Communication,超可靠低延迟通信)业务提升传输质量和满足可靠性要求。R17需要继续利用多TRP技术增强上行传输,其中包括上行控制信道PUCCH和上行数据信道PUSCH。在R17multi-TRP(多TRP)增强中,PUCCH/PUSCH支持在以上定义的传输方式下在不同的传输时机(TO,Transmission Occasion)上向不同的TRP方向上协作发送同一传输块(Transport Block,TB),以进一步应用空间复用传输提高传输可靠性。
对于PUCCH信道传输,R17增强的可能方案为:
一、PUCCH时隙间(inter-slot)的重复传输。
同R15/R16的TDM(Time Division Multiplexing,时分复用)重复传输方式,实现在面向多个TRP的多个波束方向上在多个时隙上分时协作发送。
二、PUCCH时隙内(intra-slot)的重复传输。
即面向多个TRP的多个波束方向上在一个时隙内分时联合传输。
1)基于时隙内sub-slot(子时隙)的传输方案:
即在时隙内以sub-slot为单位进行PUCCH的重复发送。例如,如图11所示,在时隙内进行两次上行信道的重复传输,在时隙内相同频域的两个物理资源块上,分别使用第1波束301、第2波束302向不同TRP发送相同数据。
2)基于时隙内跳频发送为基础的传输方案:
即在一个PUCCH资源内,时隙内前后两跳(hop)对应的不同符号组(或称“物力资源块”)上分别对应不同的beam发送。例如,如图12所示,在时隙内进行两次上行信道的重复传输,在时隙内不同频域的两个物理资源块上,分别使用第1波束301、第2波束302向 不同TRP发送相同数据。
其中,第一终端面向不同TRP发送的PUCCH/PUSCH的波束发送方向和不同的传输时机之间的映射关系有多种映射方案可以考虑,下面举例3种典型方案:
方案a:周期映射。两个波束方向依次循环映射到配置的多个传输时机上,例如,进行4次重复传输时,波束方向映射的图样可以是#1#2#1#2,其中,#1对应第一波束方向,#2对应第二波束方向。
方案b:连续映射。两个波束方向连续循环映射到配置的多个传输时机上,例如,进行4次重复传输时,波束方向映射的图样可以是#1#1#2#2;对于4次以上的重复传输,则重复该图样,如对于8次重复传输,则波束方向映射的图样可以是#1#1#2#2#1#1#2#2。
方案c:对半映射。两个波束方向连续映射到配置的多个传输时机上,例如,进行8次重复传输时,波束方向映射的图样可以是#1#1#1#1#2#2#2#2。
传输策略包括删除波束切换时间的策略、延迟波束切换时间的策略中一种。
示例性的,删除波束切换时间的策略是指:第一传输资源和第二传输资源中的至少一个传输资源是采用删除波束切换时间确定的。延迟波束切换时间的策略是指:第二传输资源是在第一传输资源后延迟波束切换时间确定的。
删除可以理解为从网络设备为两次重复传输配置的名义传输时机中删除波束切换时间后,确定两个传输资源。延迟可以理解为将在后一次重复传输对应的名义传输时机延迟波束切换时间之后,得到实际传输时机。
结合上述PUCCH在时隙内的重复传输方式,以及PUSCH的重复类型B传输方式,可以至少得到以下十二种传输策略:
(一)针对PUCCH在时隙内基于子时隙的重复传输,采用删除的方式确定传输资源。
其应用于时隙内的基于子时隙(sub-slot)的PUCCH重复传输;上行信道的资源配置包括:为相邻两次重复传输配置的连续的两个子时隙;波束切换时间为X个符号,子时隙包括M个符号,X、M为正整数,且X小于或等于M。
第一终端将两个子时隙中第一个子时隙的M个符号,确定为第一传输资源;将两个子时隙中第二个子时隙的最后(M-X)个符号,确定为第二传输资源。
(二)针对PUCCH在时隙内基于跳频资源的重复传输,采用从两次重复传输的传输资源中删除波束切换时间后平均分配的方式确定传输资源。
其应用于时隙内的基于同一个PUCCH资源内的PUCCH重复传输;上行信道的资源配置包括:为同一个PUCCH资源配置的相邻两次重复传输的N个符号,波束切换时间为X个符号,X为正整数,N为大于1的整数,且X小于等于N。
第一终端计算(N-X)/2向下取整得到N1;计算(N-X)/2向上取整得到N2;将N个符号中前N1个符号,确定为第一传输资源;将N个符号中最后N2个符号,确定为第二传输资源。
(三)针对PUCCH在时隙内基于跳频资源的重复传输,采用从第2次重复传输对应的传输资源中删除波束切换时间的方式确定传输资源。
其应用于时隙内的基于同一个PUCCH资源内的PUCCH重复传输;上行信道的资源配置包括:为同一个PUCCH资源配置的相邻两次重复传输的N个符号,波束切换时间为X个符号,X为正整数,N为大于1的整数,且X小于N。
第一终端计算N/2向下取整得到N3;计算N/2向上取整得到N4;将N个符号中前N3 个符号,确定为第一传输资源;将N个符号中最后(N4-X)个符号,确定为第二传输资源。
(四)针对PUCCH在时隙内基于跳频资源的重复传输,采用从时隙内剩余可用的传输资源中删除波束切换时间后平均分配的方式确定传输资源。
其应用于时隙内的基于同一个PUCCH资源内的PUCCH重复传输;上行信道的资源配置包括:为同一个PUCCH资源配置的相邻两次重复传输的N个符号,且N个符号的最后一个符号至下一个时隙的第一个符号之间存在Y个符号;波束切换时间为X个符号,X、Y为正整数,N为大于1的整数。
第一终端计算(Y+N-X)/2向下取整得到N5;计算(Y+N-X)/2向上取整得到N6;将(N+Y)个符号中前N5个符号,确定为第一传输资源;将(N+Y)个符号中最后N6个符号,确定为第二传输资源。
(五)针对PUCCH在时隙内基于跳频资源的重复传输,采用从时隙内剩余可用的传输资源中,第2次重复传输对应的传输资源中删除波束切换时间的方式确定传输资源。
其应用于时隙内的基于同一个PUCCH资源内的PUCCH重复传输;上行信道的资源配置包括:为同一个PUCCH资源配置的相邻两次重复传输的N个符号,且N个符号的最后一个符号至下一个时隙的第一个符号之间存在Y个符号;波束切换时间为X个符号,X、Y为正整数,N为大于1的整数。
第一终端计算(Y+N)/2向下取整得到N7;计算(Y+N)/2向上取整得到N8;将(N+Y)个符号中前N7个符号,确定为第一传输资源;将(N+Y)个符号中最后(N8-X)个符号,确定为第二传输资源。
(六)针对PUSCH在时隙间重复类型B的重复传输,采用从两次重复传输的传输资源中删除波束切换时间后平均分配的方式确定传输资源。
其应用于基于名义传输时机配置的可跨时隙传输(或称“跨实习传输”)的PUSCH重复传输;上行信道的资源配置包括:为相邻两次重复传输配置的连续的两个名义传输时机,每个名义传输时机占用A个符号的时域资源,波束切换时间为X个符号,X、A为正整数。
第一终端将两个名义传输时机中在前的名义传输时机的A个符号,确定为第一传输资源;将两个名义传输时机中在后的名义传输时机的最后(A-X)个符号,确定为第二传输资源。
(七)针对PUCCH在时隙内基于子时隙的重复传输,采用延迟一个子时隙的方式确定传输资源。
其应用于时隙内的基于子时隙的PUCCH重复传输;上行信道的资源配置包括:相邻两次重复传输配置有连续的两个子时隙;波束切换时间为X个符号,子时隙包括M个符号,X、M为正整数,且X小于等于M;为相邻两次重复传输配置的起始符号为时隙内的第S个符号,S为正整数。
第一终端将从第S个符号开始的第一子时隙,确定为第一传输资源;将从第(S+2M)个符号开始的第二子时隙,确定为第二传输资源,第(S+2M)个符号是对第一传输资源延迟一个子时隙得到的。
(八)针对PUCCH在时隙内基于子时隙的重复传输,采用延迟波束切换时间的方式确定传输资源。
其应用于时隙内的基于子时隙的PUCCH重复传输;上行信道的资源配置包括:相邻两次重复传输配置有连续的两个子时隙;波束切换时间为X个符号,子时隙包括M个符号,X、M为正整数,且X小于等于M;为相邻两次重复传输配置的起始符号为时隙内的第S个符号,S为正整数。
第一终端将从第S个符号开始的第一子时隙,确定为第一传输资源;将从第(S+M+X)个符号开始的第二子时隙,确定为第二传输资源,第(S+M+X)个符号是对第一传输资源延迟X个符号得到的。第一终端响应于从第(S+M+X)个符号开始的第二子时隙的最后Z个符号超出时隙的时隙边界,将第二子时隙的前(M-Z)个符号确定为第二传输时机,Z为小于M的正整数。
(九)针对PUCCH在时隙内基于跳频资源的重复传输,采用延迟第2次重复传输对应的传输资源的方式确定传输资源。
其应用于时隙内的基于同一个PUCCH资源内的PUCCH重复传输;上行信道的资源配置包括:为同一个PUCCH资源配置的相邻两次重复传输的N个符号,且N个符号的最后一个符号至下一个时隙的第一个符号之间存在Y个符号;波束切换时间为X个符号,X、Y、N为正整数,且X小于或等于Y;为相邻两次重复传输配置的起始符号为时隙内的第S个符号,S为正整数。
第一终端计算N/2向下取整得到N3;计算N/2向上取整得到N4;将从第S个符号开始的N3个符号,确定为第一传输资源;将从第(S+N3+X)个符号开始的N4个符号,确定为第二传输资源,第(S+N3+X)个符号是对第一传输资源延迟X个符号得到的。
(十)针对PUCCH在时隙内基于跳频资源的重复传输,采用延迟第2次重复传输对应的传输资源后,删除超出时隙边界的传输资源的方式确定传输资源。
其应用于时隙内的基于同一个PUCCH资源内的PUCCH重复传输;上行信道的资源配置包括:为同一个PUCCH资源配置的相邻两次重复传输的N个符号,且N个符号的最后一个符号至下一个时隙的第一个符号之间存在Y个符号;波束切换时间为X个符号,X、Y、N为正整数,且X大于或等于Y;为相邻两次重复传输配置的起始符号为时隙内的第S个符号,S为正整数。
第一终端计算N/2向下取整得到N3;计算N/2向上取整得到N4;将从第S个符号开始的N3个符号,确定为第一传输资源;将从第(S+N3+X)个符号开始的(N4-(X-Y))个符号,确定为第二传输资源,第(S+N3+X)个符号是对第一传输资源延迟X个符号得到的。
(十一)针对PUSCH在时隙间重复类型B的重复传输,采用延迟第2次重复传输对应的传输资源的方式确定传输资源。
其应用于基于名义传输时机配置的可跨时隙传输(或称“跨实习传输”)的PUSCH重复传输;上行信道的资源配置包括:为相邻两次重复传输配置的连续的两个名义传输时机,每个名义传输时机占用A个符号的时域资源,波束切换时间为X个符号,X、A为正整数;相邻两次重复传输的起始符号为时隙内的第S个符号,S为正整数。
第一终端将从第S个符号开始的A个符号,确定为第一传输资源;将从第(S+A+X)个符号开始的A个符号,确定为第二传输资源,第(S+A+X)个符号是对第一传输资源延迟X个符号得到的。
(十二)采用将波束切换时间配置为无效符号的方式确定传输资源。
网络设备向第一终端发送上行信道的资源配置,第一传输资源和第二传输资源是基于资源配置确定的,资源配置包括将波束切换时间配置为无效符号,第一传输资源和第二传输资源是从资源配置所指示的有效符号中确定的。第一终端基于上行信道的资源配置确定第一传输资源和第二传输资源。
上述十二种传输策略的排序不分先后。
示例性的,基于不同的应用场景,网络设备可以为第一终端配置不同的传输策略。
例如,响应于PUCCH中用于进行一次重复传输的子时隙的符号数小于阈值,网络设备向第一终端发送第一配置信令,第一配置信令包括上行信道的传输策略,该传输策略为延迟波束切换时间的策略。当子时隙内的符号数较少时,采用延迟发送的策略可以保证上行数据传输的可靠性。
再如,响应于PUCCH中用于进行一次重复传输的子时隙的符号数大于阈值,网络设备向第一终端发送第二配置信令,第二配置信令包括上行信道的传输策略,该传输策略为删除波束切换时间的策略。当子时隙内的符号数较多时,采用删除发送的策略可以降低上行传输的时延。
再如,响应于PUSCH中时延要求高于阈值,网络设备向第一终端发送第二配置信令,第二配置信令包括上行信道的传输策略,该传输策略为删除波束切换时间的策略。当上行传输对时延要求较高时,采用删除发送的策略可以降低上行传输的时延。
再如,响应于PUSCH中时延要求低于阈值,网络设备向第一终端发送第一配置信令,第一配置信令包括上行信道的传输策略,该传输策略为延迟波束切换时间的策略。当上行传输对时延要求较低时,采用延迟发送的策略可以提高上行数据传输的可靠性。
示例性的,网络设备还可以基于其他场景或需求,为第一终端配置不同的传输策略。例如,基于对传输的具体方式、时隙资源分配情况、业务的时延要求、信道性能要求、波束映射方式等多种场景,网络设备可以对应地配置适合的传输策略进行上行信道的重复传输。
图13示出了本申请一个示例性实施例提供的传输策略的配置装置的结构框图,该装置可以实现成为网络设备,或者,实现成为网络设备中的一部分,该装置包括:
发送模块401,用于向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
在一个可选的实施例中,所述发送模块401,用于向所述第一终端发送无线资源控制RRC信令,所述RRC信令包括所述上行信道的所述传输策略。
在一个可选的实施例中,所述发送模块401,用于向所述第一终端发送第一信令和第二信令,所述第一信令包括所述上行信道的所述传输策略,所述第二信令包括指示信息,所述指示信息用于动态更新所述传输策略。
在一个可选的实施例中,所述发送模块401,用于向所述第一终端发送第一信令和第二信令,所述第一信令包括所述上行信道的至少一个候选传输策略,所述第二信令包括指示信息,所述指示信息用于从所述至少一个候选传输策略中激活第一传输策略。
在一个可选的实施例中,所述第一信令还包括默认激活的传输策略;所述默认激活的传输策略为所述至少一个候选传输策略中的一个。
在一个可选的实施例中,所述第一信令为RRC信令;所述第二信令为媒体接入控制-控制单元MAC-CE信令、下行控制信息DCI信令、分组DCI信令中的至少一种。
在一个可选的实施例中,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中新定义的DCI域上。
在一个可选的实施例中,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中未使用的DCI比特或DCI预留码点上。
在一个可选的实施例中,所述第二信令为分组DCI信令,所述指示信息位于所述分组DCI信令中与所述第一终端对应的DCI域内新定义的DCI比特上。
在一个可选的实施例中,所述第二信令为分组DCI信令,所述指示信息位于所述分组DCI信令中与所述第一终端对应的DCI域内未使用的DCI码点或新增的DCI码点上。
在一个可选的实施例中,所述传输策略包括删除所述波束切换时间的策略、延迟所述波束切换时间的策略中一种。
图14示出了本申请一个示例性实施例提供的传输策略的配置装置的结构框图,该装置可以实现成为终端设备,或者,实现成为终端设备中的一部分,该装置包括:
接收模块402,用于接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
在一个可选的实施例中,所述接收模块402,用于接收所述网络设备发送的无线资源控制RRC信令,所述RRC信令包括所述上行信道的所述传输策略。
在一个可选的实施例中,所述接收模块402,用于接收所述网络设备发送的第一信令和第二信令,所述第一信令包括所述上行信道的所述传输策略,所述第二信令包括指示信息,所述指示信息用于动态更新所述传输策略。
在一个可选的实施例中,所述接收模块402,用于接收所述网络设备发送的第一信令和第二信令,所述第一信令包括所述上行信道的至少一个候选传输策略,所述第二信令包括指示信息,所述指示信息用于从所述至少一个候选传输策略中激活第一传输策略。
在一个可选的实施例中,所述第一信令还包括默认激活的传输策略;所述默认激活的传输策略为所述至少一个候选传输策略中的一个。
在一个可选的实施例中,所述第一信令为RRC信令;所述第二信令为媒体接入控制-控制单元MAC-CE信令、下行控制信息DCI信令、分组DCI信令中的至少一种。
在一个可选的实施例中,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中新定义的DCI域上。
在一个可选的实施例中,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中未使用的DCI比特或DCI预留码点上。
在一个可选的实施例中,所述第二信令为分组DCI信令,所述指示信息位于所述分组DCI信令中与所述第一终端对应的DCI域内新定义的DCI比特上。
在一个可选的实施例中,所述第二信令为分组DCI信令,所述指示信息位于所述分组DCI信令中与所述第一终端对应的DCI域内未使用的DCI码点或新增的DCI码点上。
在一个可选的实施例中,所述传输策略包括删除所述波束切换时间的策略、延迟所述波束切换时间的策略中一种。
图15示出了本申请一个示例性实施例提供的通信设备(终端设备或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,当通信设备实现为终端设备时,本申请实施例涉及的通信设备中的处理器和收发器,可以执行上述任一方法中,由终端设备执行的步骤,此处不再赘述。
在一种可能的实现方式中,当通信设备实现为终端设备时,
所述收发器,用于接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
其中,当通信设备实现为网络设备时,本申请实施例涉及的通信设备中的处理器和收发器,可以执行上述任一方法中,由网络设备执行的步骤,此处不再赘述。
在一种可能的实现方式中,当通信设备实现为网络设备时,
所述收发器,用于向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的传输策略的配置方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的传输策略的配置方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的传输策略的配置方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种传输策略的配置方法,其特征在于,应用于网络设备中,所述方法包括:
    向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
    其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
  2. 根据权利要求1所述的方法,其特征在于,所述向第一终端发送配置信令,包括:
    向所述第一终端发送无线资源控制RRC信令,所述RRC信令包括所述上行信道的所述传输策略。
  3. 根据权利要求1所述的方法,其特征在于,所述向第一终端发送配置信令,包括:
    向所述第一终端发送第一信令和第二信令,所述第一信令包括所述上行信道的所述传输策略,所述第二信令包括指示信息,所述指示信息用于动态更新所述传输策略。
  4. 根据权利要求1所述的方法,其特征在于,所述向第一终端发送配置信令,包括:
    向所述第一终端发送第一信令和第二信令,所述第一信令包括所述上行信道的至少一个候选传输策略,所述第二信令包括指示信息,所述指示信息用于从所述至少一个候选传输策略中激活第一传输策略。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信令还包括默认激活的传输策略;所述默认激活的传输策略为所述至少一个候选传输策略中的一个。
  6. 根据权利要求3至5任一所述的方法,其特征在于,所述第一信令为RRC信令;所述第二信令为媒体接入控制-控制单元MAC-CE信令、下行控制信息DCI信令、分组DCI信令中的至少一种。
  7. 根据权利要求6所述的方法,其特征在于,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中新定义的DCI域上。
  8. 根据权利要求6所述的方法,其特征在于,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中未使用的DCI比特或DCI预留码点上。
  9. 根据权利要求6所述的方法,其特征在于,所述第二信令为分组DCI信令,所述指示信息位于所述分组DCI信令中与所述第一终端对应的DCI域内新定义的DCI比特上。
  10. 根据权利要求6所述的方法,其特征在于,所述第二信令为分组DCI信令,所述指示 信息位于所述分组DCI信令中与所述第一终端对应的DCI域内未使用的DCI码点或新增的DCI码点上。
  11. 根据权利要求1至5任一所述的方法,其特征在于,所述传输策略包括删除所述波束切换时间的策略、延迟所述波束切换时间的策略中一种。
  12. 一种传输策略的配置方法,其特征在于,应用于第一终端中,所述方法包括:
    接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
    其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
  13. 根据权利要求12所述的方法,其特征在于,所述接收网络设备发送的配置信令,包括:
    接收所述网络设备发送的无线资源控制RRC信令,所述RRC信令包括所述上行信道的所述传输策略。
  14. 根据权利要求12所述的方法,其特征在于,所述接收网络设备发送的配置信令,包括:
    接收所述网络设备发送的第一信令和第二信令,所述第一信令包括所述上行信道的所述传输策略,所述第二信令包括指示信息,所述指示信息用于动态更新所述传输策略。
  15. 根据权利要求12所述的方法,其特征在于,所述接收网络设备发送的配置信令,包括:
    接收所述网络设备发送的第一信令和第二信令,所述第一信令包括所述上行信道的至少一个候选传输策略,所述第二信令包括指示信息,所述指示信息用于从所述至少一个候选传输策略中激活第一传输策略。
  16. 根据权利要求15所述的方法,其特征在于,所述第一信令还包括默认激活的传输策略;所述默认激活的传输策略为所述至少一个候选传输策略中的一个。
  17. 根据权利要求14至16任一所述的方法,其特征在于,所述第一信令为RRC信令;所述第二信令为媒体接入控制-控制单元MAC-CE信令、下行控制信息DCI信令、分组DCI信令中的至少一种。
  18. 根据权利要求17所述的方法,其特征在于,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中新定义的DCI域上。
  19. 根据权利要求17所述的方法,其特征在于,所述第二信令为DCI信令,所述指示信息位于所述DCI信令中未使用的DCI比特或DCI预留码点上。
  20. 根据权利要求17所述的方法,其特征在于,所述第二信令为分组DCI信令,所述指示信息位于所述分组DCI信令中与所述第一终端对应的DCI域内新定义的DCI比特上。
  21. 根据权利要求17所述的方法,其特征在于,所述第二信令为分组DCI信令,所述指示信息位于所述分组DCI信令中与所述第一终端对应的DCI域内未使用的DCI码点或新增的DCI码点上。
  22. 根据权利要求12至16任一所述的方法,其特征在于,所述传输策略包括删除所述波束切换时间的策略、延迟所述波束切换时间的策略中一种。
  23. 一种传输策略的配置装置,其特征在于,所述装置包括:
    发送模块,用于向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
    其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
  24. 一种传输策略的配置装置,其特征在于,所述装置包括:
    接收模块,用于接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
    其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
  25. 一种网络设备,其特征在于,所述网络设备包括:处理器和与所述处理器相连的收发器;其中,
    所述收发器,用于向第一终端发送配置信令,所述配置信令包括上行信道的传输策略;
    其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
  26. 一种终端设备,其特征在于,所述终端设备包括:处理器和与所述处理器相连的收发器;其中,
    所述收发器,用于接收网络设备发送的配置信令,所述配置信令包括上行信道的传输策略;
    其中,所述传输策略用于在上行信道的相邻两次重复传输使用不同的发送波束面向同一所述网络设备的不同传输点TRP发送的情况下,确定用于进行所述相邻两次重复传输的第一传输资源和第二传输资源;所述第一传输资源和所述第二传输资源之间具有用于切换波束方向的波束切换时间;所述第一传输资源与用于所述上行信道发送的相邻两个传输时机中在前的传输时机对应;所述第二传输资源与用于所述上行信道发送的所述相邻两个传输时机中在后的传输时机对应。
  27. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至22任一所述的传输策略的配置方法。
  28. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,所述芯片用于实现如权利要求1至22中任一所述的传输策略的配置方法。
PCT/CN2021/092194 2021-05-07 2021-05-07 传输策略的配置方法、装置、设备及存储介质 WO2022233044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001474.6A CN115606292A (zh) 2021-05-07 2021-05-07 传输策略的配置方法、装置、设备及存储介质
PCT/CN2021/092194 WO2022233044A1 (zh) 2021-05-07 2021-05-07 传输策略的配置方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092194 WO2022233044A1 (zh) 2021-05-07 2021-05-07 传输策略的配置方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022233044A1 true WO2022233044A1 (zh) 2022-11-10

Family

ID=83931941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092194 WO2022233044A1 (zh) 2021-05-07 2021-05-07 传输策略的配置方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115606292A (zh)
WO (1) WO2022233044A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180227886A1 (en) * 2017-01-15 2018-08-09 Chie-Ming Chou Two-stage downlink control information configurations for beam operation
CN111867094A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 数据接收和发送方法及装置
US20200351892A1 (en) * 2019-05-02 2020-11-05 Yunjung Yi Transmission Configuration Indication State Partitioning in Multi-Beam Scenarios
WO2021027185A1 (en) * 2019-08-13 2021-02-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for beam failure recovery
CN112511281A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 用于信息传输的配置方法、电子设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180227886A1 (en) * 2017-01-15 2018-08-09 Chie-Ming Chou Two-stage downlink control information configurations for beam operation
CN111867094A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 数据接收和发送方法及装置
US20200351892A1 (en) * 2019-05-02 2020-11-05 Yunjung Yi Transmission Configuration Indication State Partitioning in Multi-Beam Scenarios
WO2021027185A1 (en) * 2019-08-13 2021-02-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for beam failure recovery
CN112511281A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 用于信息传输的配置方法、电子设备和存储介质

Also Published As

Publication number Publication date
CN115606292A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2021043058A1 (zh) 数据传输方法、装置、传输接收节点、终端及介质
JP2023510448A (ja) 伝送方法、装置、第1の通信ノード、第2の通信ノード、および媒体
RU2701202C1 (ru) Конфигурация передачи нисходящего канала
WO2019158013A1 (zh) 信道传输方法和装置、网络设备及计算机可读存储介质
CN111294194B (zh) 一种无线传输中的方法和装置
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2021090297A1 (en) Method and apparatus for managing multiple sets of transmission configuration indicator states
TW201729630A (zh) 用於傳輸業務的方法、移動台和網絡設備
WO2021155756A1 (zh) 信息确定、接收方法、装置、通信节点及存储介质
WO2023004650A1 (zh) 资源确定方法、装置、设备及可读存储介质
CN111988857A (zh) 控制信息传输方法、装置、通信节点及存储介质
US11770808B2 (en) Resource indicating method, apparatus, access network device, terminal and system
JP6811869B2 (ja) Nr tddを用いる制御
WO2019137299A1 (zh) 通信的方法和通信设备
WO2018201919A1 (zh) 一种数据传输的方法和装置
CN111436129B (zh) 数据传输方法和通信装置
WO2022233044A1 (zh) 传输策略的配置方法、装置、设备及存储介质
WO2019214658A1 (zh) 数据传输的发送、接收方法及装置
JP2022540974A (ja) 通信方法、通信デバイス及びコンピュータプログラム
JP7486611B2 (ja) 上り信号伝送方法、装置、通信ノードおよび記憶媒体
WO2022057175A1 (zh) 一种通信方法和装置
WO2022233041A1 (zh) 上行信道传输方法、装置、设备及存储介质
CN113517959B (zh) 一种反馈信息的发送方法、装置及存储介质
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2023272518A1 (zh) 上行信道传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18558903

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939690

Country of ref document: EP

Kind code of ref document: A1