WO2023272440A1 - 一种基于机器视觉和激光三角测距的测量定位系统 - Google Patents

一种基于机器视觉和激光三角测距的测量定位系统 Download PDF

Info

Publication number
WO2023272440A1
WO2023272440A1 PCT/CN2021/102781 CN2021102781W WO2023272440A1 WO 2023272440 A1 WO2023272440 A1 WO 2023272440A1 CN 2021102781 W CN2021102781 W CN 2021102781W WO 2023272440 A1 WO2023272440 A1 WO 2023272440A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
machine vision
imaging
measurement
standard
Prior art date
Application number
PCT/CN2021/102781
Other languages
English (en)
French (fr)
Inventor
方仲平
Original Assignee
元素光电智能科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元素光电智能科技(苏州)有限公司 filed Critical 元素光电智能科技(苏州)有限公司
Priority to EP21947404.6A priority Critical patent/EP4365538A1/en
Priority to PCT/CN2021/102781 priority patent/WO2023272440A1/zh
Priority to CN202180099940.9A priority patent/CN117716201A/zh
Publication of WO2023272440A1 publication Critical patent/WO2023272440A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Definitions

  • the invention relates to the fields of machine vision measurement and three-dimensional space positioning, in particular to a three-dimensional measurement and positioning system based on machine vision and laser triangulation ranging.
  • the robot realizes the recognition and tracking of objects through machine vision, so as to determine the spatial coordinate position of the working object corresponding to the robot, so as to perform various tasks such as grasping, placement or processing.
  • the robot visual positioning methods mainly include stereo vision method, structured light method and laser scanning method.
  • the stereo vision method imitates the distance estimation and 3D reconstruction of the human visual system to measure the 3D space. The measurement accuracy depends on the length of the measurement baseline. It is bulky and not suitable for mounting on a robotic hand.
  • the structured light measurement method is a three-dimensional measurement technology composed of a controllable light source and a camera.
  • the light source with a specific structure pattern is projected onto the surface of the object to be measured to generate light stripes, and the three-dimensional surface of the object is obtained according to the pattern deformation of the light stripes on the surface of the object captured by the camera. information. It is mainly suitable for obtaining the position of various structural objects on the surface of the object.
  • the laser triangulation sensor is a precision measurement sensor, but it is a one-dimensional measurement system that can only measure the height or distance of one point.
  • the laser flying point measurement method is also a one-dimensional measurement system, which measures the straight-line distance by measuring the laser flight time, and its measurement accuracy is low.
  • the technology of the present invention provides a measuring three-dimensional positioning system based on machine vision and laser triangulation ranging, which can realize rapid measurement and precise positioning of the three-dimensional coordinate positions of object points.
  • the technical solution adopted by the present invention to solve the technical problem is: a measurement and positioning system based on machine vision and laser triangulation distance measurement, including a machine vision system, a laser distance measurement system and a standard positioning target installed on the workpiece to be positioned ;
  • the laser ranging system is used to project laser light onto a standard positioning target
  • the machine vision system is used for shooting and imaging the positioning target and the laser image projected on the standard positioning target.
  • the machine vision system includes a detection camera and a first optical imaging lens connected to the detection camera, the first optical imaging lens is provided with an adjustable aperture, and the bottom of the detection camera is also provided with an illumination system.
  • the laser ranging system includes a laser projection assembly and a laser imaging assembly, the laser projection assembly is composed of a laser, a laser collimator lens and a beam splitter, and the laser imaging assembly is composed of a second imaging lens and an imaging camera ;
  • the beam splitter is arranged obliquely at 90 degrees below the detection camera, the laser is arranged on one side of the beam splitter, and the laser collimator lens is arranged between the laser and the beam splitter;
  • the imaging camera is arranged on one side of the detection camera, and the imaging camera is arranged at an angle to the optical axis directed to the surface of the standard positioning target;
  • the laser beam of the laser is deflected by 90 degrees by the laser collimation mirror and the mirror, and then vertically shoots to the surface of the standard positioning target, and the scattered light of the laser is imaged by the laser imaging component.
  • the standard positioning target is a two-dimensional or three-dimensional structure with a central figure.
  • the standard positioning target is a two-dimensional or three-dimensional structure with a central figure, and multiple three-dimensional figures are arranged around the standard positioning target.
  • the three-dimensional figure is a truncated cone, and is distributed around the standard positioning target in a circularly symmetrical manner.
  • the laser ranging system includes a laser and a laser collimating lens arranged at the front end of the laser, the laser is arranged on the side of the detection camera, and the imaging camera is arranged at an angle to the optical axis directed to the surface of the standard positioning target;
  • the laser light emitted by the laser passes through the laser collimating lens and is tilted towards the standard positioning target, which is imaged by the machine vision system.
  • the laser ranging system includes a laser projection assembly and a laser imaging assembly
  • the laser projection assembly includes a laser and a laser collimator lens arranged at the front end of the laser
  • the laser imaging assembly consists of a second imaging lens and an imaging Camera composition
  • the laser and the imaging camera are respectively arranged on both sides of the detection camera, and both the imaging camera and the laser are arranged at an angle to the optical axis directed to the surface of the standard positioning target;
  • the laser beam of the laser is deflected by 90 degrees by the laser collimation mirror and the mirror, and then vertically shoots to the surface of the standard positioning target, and the scattered light of the laser is imaged by the laser imaging component.
  • the beneficial effects of the present invention are: the structure can realize rapid measurement and precise positioning of the coordinate position of the object point through the design of the standard positioning target.
  • Figure 1 is a schematic diagram of the first positioning system based on machine vision and laser triangulation.
  • Fig. 2 is a schematic diagram of a standard positioning target and laser light projected on the standard positioning target.
  • Fig. 3 is a schematic diagram of a three-dimensional standard positioning target.
  • Fig. 4 is a schematic diagram of a standard positioning target installed on a measured positioning object.
  • Fig. 5 is a schematic diagram of the principle of the second positioning system based on machine vision and laser triangulation.
  • Fig. 6 is a schematic diagram of the geometric relationship of laser triangulation positioning in the second positioning system.
  • Figure 7 is a schematic diagram for the laser beam and the target center, the distance between which is used for height measurement.
  • Fig. 8 is a schematic diagram of the principle of the third positioning system based on machine vision and laser triangulation.
  • Machine vision system 100 detection camera 101, adjustable aperture 102, first optical imaging lens 103, lighting system 104;
  • Standard positioning target 200 central figure 201;
  • Laser ranging system 300 Laser ranging system 300, laser device 301, laser collimating lens 302, beam splitter 303, second imaging lens 304, imaging camera 305, imaging straight line 306;
  • the workpiece 501 is positioned.
  • the present invention discloses a measurement and positioning system based on machine vision and laser triangulation distance measurement, including a machine vision system 100, a laser distance measurement system 300 and a standard positioning target installed on a workpiece 501 to be positioned 200;
  • the laser ranging system 300 is used to project laser light onto the standard positioning target 200;
  • the machine vision system 100 is used for shooting and imaging the positioning target and the laser image projected on the standard positioning target 200 .
  • the center positioning is realized through the standard positioning target 200, and the machine vision system 100 is used to locate the XY axis coordinates, thereby realizing the determination of the XY axis position.
  • the laser ranging system 300 shoots the position on the standard positioning target 200 through the laser To realize the Z positioning of the vertical coordinate position, there are specifically the following three embodiments:
  • the machine vision system 100 includes a detection camera 101 and a first optical imaging lens 103 connected to the detection camera 101, the first optical imaging lens 103 is provided with an adjustable aperture 102, the detection camera A lighting system 104 is also provided at the bottom of 101 .
  • the laser ranging system 300 includes a laser projection assembly and a laser imaging assembly, the laser projection assembly is composed of a laser 301, a laser collimator lens 302 and a beam splitter 303, and the laser imaging assembly is composed of a second imaging lens 304 and an imaging camera 305 composition;
  • the beam splitter 303 is arranged obliquely at 90 degrees below the detection camera 101, the laser 301 is arranged on one side of the beam splitter 303, and the laser collimator lens 302 is arranged between the laser 301 and the beam splitter 303;
  • the imaging camera 305 is arranged on one side of the detection camera 101, and the imaging camera 305 is arranged at an angle to the optical axis directed to the surface of the standard positioning target 200;
  • the laser beam of the laser 301 is deflected by 90 degrees by the laser collimation mirror and the mirror, and then vertically shoots to the surface of the standard positioning target 200, and the scattered light of the laser is imaged by the laser imaging component.
  • the machine vision system 100 and the laser ranging system 300 can be integrated and installed on the robot arm,
  • the standard positioning target 200 is installed on the workpiece 501 to be positioned in advance, when the standard positioning target 200 installed on the object is illuminated by the lighting system 104, the standard positioning target 200 is imaged on the detection camera 101 by the first optical imaging lens 103 On the photoelectric sensor, it can be adjusted by adjusting the brightness of the adjustable aperture 102 and the system lighting during use, so as to ensure that the machine vision imaging system has sufficient brightness and depth of field;
  • the standard positioning target 200 is a two-dimensional or three-dimensional structure with a central graphic 201. As shown in FIG. 2, it is a two-dimensional plane standard positioning target 200, and the images on it are two concentric circles.
  • the standard positioning target 200 is imaged at the center of the detection camera 101, the coordinate positions X and Y of the standard positioning target 200 corresponding to the robot hand can be accurately calculated and determined.
  • its graphic can be an imaging straight line 306 or a point.
  • the height of the manipulator relative to the work object is realized by using the laser ranging system 300 .
  • the laser beam of the laser 301 passes through the laser collimating mirror or cylindrical mirror, and then passes through the semi-transparent and semi-reflective beam splitter 303.
  • the reflected light is deflected by 90 degrees and then vertically shoots to the surface of the standard positioning target 200.
  • the surface of the standard positioning target 200 is an optical For rough surfaces, the scattered light of the laser beam is imaged on the imaging camera 305 by the second imaging lens 304 .
  • the laser spot is also in the middle position of the imaging camera 305, the highest position of the standard positioning target 200 is P1, the lowest position is P2, and the height L between P1 and P2 is In the measurement positioning range of this positioning system, no matter whether the standard positioning target 200 is raised or lowered, the laser beam is always projected at the same position, but because the optical axis of the imaging camera 305 and the optical axis of the laser beam have an included angle, the laser beam is on the camera.
  • the standard positioning target 200 is a two-dimensional or three-dimensional structure with a central graphic 201, and multiple three-dimensional figures are arranged around the standard positioning target 200.
  • the central image can be concentric circles, concentric squares, concentric Triangle, etc.;
  • the three-dimensional figures can be various symmetrical three-dimensional geometric figures, such as cones, frustums of cones, cylinders, pyramids, frustums of pyramids, etc., because the use of this two-dimensional standard positioning target 200 for measurement and positioning cannot be determined
  • the verticality between the machine vision system 100 and the standard positioning target 200 may cause measurement positioning errors, as shown in FIG. 3 is a three-dimensional standard positioning target 400 .
  • the center of the standard positioning target 200 is a two-dimensional concentric circle, and its four corners are four three-dimensional conical frustums 401 .
  • the image of the three-dimensional standard positioning target 200 is asymmetrical, and the size of the eccentricity and the angular error can be processed and calculated through the image of the standard positioning target 200.
  • the optical axis of the machine vision system 100 passes through the center of the concentric circle and is perpendicular to the surface of the standard positioning target 200, the image of the large three-dimensional standard positioning target 400 obtained by the machine vision is symmetrical. The position of the spatial point, so as to ensure the accuracy of measurement and positioning.
  • the machine vision system 100 includes a detection camera 101 and a first optical imaging lens 103 connected to the detection camera 101, the first optical imaging lens 103 is provided with an adjustable aperture 102, the detection camera A lighting system 104 is also provided at the bottom of 101; the machine vision system 100 can be integrated with the laser ranging system 300 and installed on the robot hand.
  • the laser ranging system 300 includes a laser 301 and a laser collimating lens 302 arranged at the front end of the laser 301, the laser 301 is arranged on the detection camera 101 side, and the imaging camera 305 is aligned with the optical axis of the surface of the standard positioning target 200 set at an angle;
  • the laser light emitted by the laser 301 passes through the laser collimating lens 302 and then obliquely casts towards the standard target, and is imaged by the machine vision system 100.
  • the machine vision system 100 undertakes the dual functions of standard target imaging and laser projection imaging;
  • the standard positioning target 200 is installed on the workpiece 501 to be positioned in advance, and when the standard positioning target 200 installed on the object is illuminated by the lighting system 104, the standard positioning target 200 is imaged by the first optical imaging lens 103 on the On the photoelectric sensor of the detection camera 101, it can be adjusted through the adjustable aperture 102 and the brightness of the system lighting during use, so as to ensure that the machine vision imaging system has sufficient brightness and depth of field;
  • the laser beam of the laser 301 passes through the laser collimating lens 302, where a cylindrical mirror is used to cast it onto the standard positioning target 200, and when the cylindrical mirror is projected on the surface of the standard target, a laser beam is formed.
  • Figure 6 shows the geometric relationship between the laser beam and the height.
  • the image of the laser beam in Figure 7 corresponds to the positional relationship of the standard target.
  • the laser light is projected at the center position D0.
  • the laser light is imaged at the center of the detection camera 101.
  • the laser light is projected at the position D1
  • the distance from the standard target is A.
  • the laser light is also imaged on the camera, but deviates from the center of the camera, and is imaged on the left of the center of the camera, and the distance from the center of the camera is E.
  • the laser light is projected at the position D2.
  • the laser light is also imaged on the detection camera 101, but deviates from the center of the camera and is imaged on the right of the center of the camera.
  • changing the angle ⁇ between the laser projection system and the machine vision system 100 and the working distance can change the sensitivity of the measurement and positioning system and the working range of the measurement and positioning.
  • the offset of the laser beam to the center is linearly proportional to the height of the object position, and measurement calibration is required before the instrument is used. The height position of the object can then be measured by measuring the distance from the center of the laser beam.
  • the determination of the specific coordinate positions X and Y, and the selection of the standard positioning target 200 are the same as those described in the first embodiment above.
  • FIG. 8 it includes two independent optical systems of machine vision 100 and laser triangulation ranging 300 .
  • the function of the machine vision system has not changed, and it is still responsible for illuminating and imaging the standard target;
  • the machine vision system 100 includes a detection camera 101 and a first optical imaging lens 103 connected to the detection camera 101, the first optical imaging lens 103 is provided with an adjustable aperture 102, and the bottom of the detection camera 101 is also provided with an illumination
  • the system 104; the machine vision system 100 can be integrated with the laser ranging system 300, and installed on the robot hand.
  • the laser ranging system 300 includes a laser projection assembly and a laser imaging assembly, the laser projection assembly includes a laser 301 and a laser collimator lens 302 arranged at the front end of the laser 301, the laser imaging assembly consists of a second imaging lens 304 and Imaging camera 305 is formed;
  • the laser 301 and the laser collimator lens 302, the second imaging lens 304 and the imaging camera 305 are respectively arranged on both sides of the optical axis of the detection camera 101 located in the machine vision system 100, in symmetrical positions, and the installation relationship can also be other positions , and both the imaging camera 305 and the laser 301 are set at an angle to the optical axis directed to the surface of the standard positioning target 200;
  • the laser beam of the laser 301 is deflected by 90 degrees by the laser collimating mirror and the mirror, and then vertically shoots to the surface of the standard positioning target 200, and then the projection of the laser beam is imaged by the laser imaging component.
  • the standard positioning target 200 is installed on the workpiece 501 to be positioned in advance, and when the standard positioning target 200 installed on the object is illuminated by the lighting system 104, the standard positioning target 200 is imaged by the first optical imaging lens 103 on the On the photoelectric sensor of the detection camera 101, it can be adjusted through the adjustable aperture 102 and the brightness of the system lighting during use, so as to ensure that the machine vision imaging system has sufficient brightness and depth of field;
  • the laser beam of the laser 301 is projected to the standard positioning target 200 through the laser collimating lens 302 or the cylindrical mirror.
  • the cylindrical mirror is projected on the surface of the standard target to form a laser ray or a point
  • the projected laser light passes through the second imaging lens 304 is imaged on an imaging camera 305 .
  • the position of the laser beam on the camera changes in a non-linear relationship.
  • a test calibration is performed to obtain the nonlinear relationship, so that the calibrated nonlinear functional relationship can be used to measure the height of the standard positioning target 200, that is, the vertical coordinate position Z positioning.
  • the machine vision system 100 is placed in the middle position for measuring the plane coordinate positions X, Y of the standard target.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于机器视觉和激光三角测距的测量定位系统,包括机器视觉系统,激光测距系统和用于安装在被定位工件上的标准定位靶子;所述激光测距系统用于将激光投射到标准定位靶子上以便进行三维高度测量;所述机器视觉系统用于对定位靶子和投射在标准定位靶子上的激光图像进行拍摄成像和二维坐标位置测量。本发明测量系统通过安装在被定位物体上的标准定位靶子,可实现对于被定位物体空间位置进行快速三维测量和精密定位。

Description

一种基于机器视觉和激光三角测距的测量定位系统 技术领域
本发明涉及机器视觉测量和三维空间定位领域,特别涉及一种基于机器视觉和激光三角测距的三维测量定位系统。
背景技术
机器人通过机器视觉实现对物体的识别与跟踪,从而确定工作对象相对应机器人的空间坐标位置,以便进行抓取,安放或者加工等各项工作。目前机器人视觉定位方法主要有立体视觉法,结构光法和激光扫描法等,立体视觉法模仿人类视觉系统的距离估计和三维重建进行三维空间测量,测量精度取决于测量基线长度。它体积大,并不适合安装在机器手上。结构光测量法是一种由可控光源和摄像机构成的三维测量技术,将特定结构模式的光源投射到被测物体表面产生光条纹,根据摄像机捕获的物体表面光条纹的模式变形来获取物体表面三维信息。它主要适用于获得物体表面各种结构物体的位置。激光三角测量传感器是一个精密测量传感器,但是它一维测量系统,只可以测量一个点的高度或者距离。激光飞点测量法也是一个一维测量系统,它通过测量激光飞行时间来测量直线距离,它的测量精度低。
发明内容
本发明的技术提供了一种基于机器视觉和激光三角测距的测量三维定位系统,其可实现对于物体点三维坐标位置进行快速测量和精密定位。
本发明解决其技术问题所采用的技术方案是:一种基于机器视觉和激光三角测距的测量定位系统,包括机器视觉系统,激光测距系统和用于安装在被定位工件上的标准定位靶子;
所述激光测距系统用于将激光投射到标准定位靶子上;
所述机器视觉系统用于对定位靶子和投射在标准定位靶子上的激光图像进行拍摄成像。
进一步的是:所述机器视觉系统包括检测相机和与检测相机连接的第一光学成像镜头,所述第一光学成像镜头上设置有可调光圈,所述检测相机底部还设置有照明系统。
进一步的是:所述激光测距系统包括激光投影组件和激光成像组件,所述激光投影组件由激光器、激光准直透镜和分光镜组成,所述激光成像组件由第二成像镜头和成像相机组成;
所述分光镜90度斜向设置在检测相机下方,所述激光器设置在分光镜一侧,所述激光准直透镜设置在激光器和分光镜之间;
所述成像相机设置在检测相机一侧,且成像相机与射向标准定位靶子表面的光轴成角度设置;
使得激光器的激光光束经激光准直镜和反光镜偏转90度后垂直射向标准定位靶子表面,激光的散射光由激光成像组件成像。
进一步的是:所述标准定位靶子为具有中心图形的二维或三维结构。
进一步的是:所述标准定位靶子为具有中心图形的二维或三维结构,所述标准定位靶子的四周设置有多个立体图形。
进一步的是:所述立体图形为圆锥台,且以圆对称方式分布于标准定位靶子的四周。
进一步的是:所述标准定位靶子至少有3个,且其中3个用于安装在被定位工件上不在一条线上的三个位置上。
进一步的是:所述激光测距系统包括激光器和设置在激光器前端的激光准直透镜,所述激光器设置在检测相机一侧,且成像相机与射向标准定位靶子表面的光轴成角度设置;
使得激光器发出的激光经激光准直透镜后倾斜投向标准定位靶子,由机器视觉系统成像。
进一步的是:所述激光测距系统包括激光投影组件和激光成像组件,所述激光投影组件包括激光器和和设置在激光器前端的激光准直透镜,所述激光成像组件由第二成像镜头和成像相机组成;
所述激光器和成像相机分别设置在检测相机两侧,且成像相机和激光器均与射向标准定位靶子表面的光轴成角度设置;
使得激光器的激光光束经激光准直镜和反光镜偏转90度后垂直射向标准定位靶子表面,激光的散射光由激光成像组件成像。
本发明的有益效果是:本结构通过标准定位靶子的设计可实现对于物体点坐标位置进行快速测量和精密定位。
附图说明
图1为第一种基于机器视觉和激光三角法定位系统原理示意图。
图2一种标准定位靶子和激光光线投影在标准定位靶子上的示意图。
图3为一种三维标准定位靶子示意图。
图4为标准定位靶子安装在被测量定位物体上的示意图。
图5为第二种基于机器视觉和激光三角法定位系统原理示意图。
图6为第二种定位系统中激光三角法定位几何关系示意图。
图7为用于激光光束和靶子靶子中心,其间距用于高度测量的原理图。
图8为第三种基于机器视觉和激光三角法定位系统原理示意图。
图中标记为:
机器视觉系统100、检测相机101、可调光圈102、第一光学成像镜头103、照明系统104;
标准定位靶子200、中心图形201;
激光测距系统300、激光器301、激光准直透镜302、分光镜303、第二成像镜头304、 成像相机305、成像直线306;
三维立体标准定位靶子400、立体圆锥台401;
被定位工件501。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,本发明公开了一种基于机器视觉和激光三角测距的测量定位系统,包括机器视觉系统100,激光测距系统300和用于安装在被定位工件501上的标准定位靶子200;
所述激光测距系统300用于将激光投射到标准定位靶子200上;
所述机器视觉系统100用于对定位靶子和投射在标准定位靶子200上的激光图像进行拍摄成像。
工作时,通过标准定位靶子200实现中心定位,通过机器视觉系统100机器视觉系统100定位XY轴坐标,从而实现XY轴位置的确定,激光测距系统300通过激光射在标准定位靶子200上的位置实现垂直坐标位置Z定位,具体有以下三种实施例:
实施例一:
如图1所示,所述机器视觉系统100包括检测相机101和与检测相机101连接的第一光学成像镜头103,所述第一光学成像镜头103上设置有可调光圈102,所述检测相机101底部还设置有照明系统104。
所述激光测距系统300包括激光投影组件和激光成像组件,所述激光投影组件由激光器301、激光准直透镜302和分光镜303组成,所述激光成像组件由第二成像镜头304和成像相机305组成;
所述分光镜303呈90度斜向设置在检测相机101下方,所述激光器301设置在分光镜303一侧,所述激光准直透镜302设置在激光器301和分光镜303之间;
所述成像相机305设置在检测相机101一侧,且成像相机305与射向标准定位靶子200 表面的光轴成角度设置;
使得激光器301的激光光束经激光准直镜和反光镜偏转90度后垂直射向标准定位靶子200表面,激光的散射光由激光成像组件成像。
在进行测量定位时,机器视觉系统100和激光测距系统300可集成为一体安装在机器手臂上,
标准定位靶子200事先安装在需要被定位工件501上,当安装在该物体上的标准定位靶子200被照明系统104照明后,由第一光学成像镜头103把该标准定位靶子200成像在检测相机101的光电传感器上,使用过程中可通过可调光圈102和系统照明的亮度配合来调整,以保证机器视觉成像系统有足够的亮度和景深;
具体的,所述标准定位靶子200为具有中心图形201的二维或三维结构,如图2所示是一种二维平面标准定位靶子200,它上面的图像是两个同心圆。当这个标准定位靶子200被成像在检测相机101中心后,这个标准定位靶子200相对应机器手的平面坐标位置X和Y就可以精确的计算确定了,激光投影的激光光束在标准定位靶子200的中心附近,其图形可以是一条成像直线306,也可以是一个点。
机器手相对应工作对象的高度是使用激光测距系统300来实现的。激光器301的激光光束经激光准直镜或柱面镜,然后经半透半反分光镜303,其反射光被偏转90度后垂直射向标准定位靶子200表面,标准定位靶子200表面是一个光学粗糙表面,激光光束的散射光由第二成像镜头304成像在成像相机305上。当标准定位靶子200的高度处于中间位置P0时,激光光斑也处于成像相机305的中间位置,标准定位靶子200的最高位置是P1,其最低位置是P2,且P1和P2之间的高度L是该定位系统的测量定位范围,无论标准定位靶子200升高或者降低,激光光束总是投影在同一位置,但是由于成像相机305的光轴和激光光束的光轴有一个夹角,激光光束在照相机上的位置变化呈一个非线性关系。在使用前会先进行测试标定得到该非线性关系,从而可以使用这个标定的非线性函数关系,进行标准定位靶子200的高度测量,即垂直坐标位置Z定位。
在上述基础上,所述标准定位靶子200为具有中心图形201的二维或三维结构,所述标准定位靶子200的四周设置有多个立体图形,该中心图像可以是同心圆,同心方形,同心三角形等;该立体图形可以是各种对称立体几何图形,例如圆锥体,圆锥台,圆柱体,棱锥体,棱锥台体等,由于使用这种二维标准定位靶子200进行测量定位并不可以确定机器视觉系统100与标准定位靶子200的垂直度,并且可能产生测量定位误差,如图3所示的是一个三维立体标准定位靶子400。该标准定位靶子200的中心是一个二维同心圆,在它的四个角是四个立体圆锥台401。当机器视觉系统100与标准定位靶子200有偏心和垂直度误差是,这个 三维标准定位靶子200的影像就是不对称的,偏心量大小和角度误差可以通过标准定位靶子200的图像处理和计算。当若机器视觉系统100的光轴通过这个同心圆中心且与标准定位靶子200表面垂直时,此时机器视觉所获得大三维立体标准定位靶子400的图像是对称的,此时才可得出准确的空间点位位置,从而保证测量和定位精度。
在上述基础上,所述标准定位靶子200至少有3个,且其中3个用于安装在被定位工件501上,且不在一条线上的三个位置上,由于对于一个物体,仅仅测量一个点的三维坐标位置是并不足够确定它的空间物体位置。为了确定已知物体的空间位置,需要测量至少不在一条直线上的三个点。如图4所示,三个标准定位靶子200被安装在被定位工件501的三了个不同的地方,并且进行三次定位测量,通过三个空间点得出其空间位置。
实施例二:
如图5所示,所述机器视觉系统100包括检测相机101和与检测相机101连接的第一光学成像镜头103,所述第一光学成像镜头103上设置有可调光圈102,所述检测相机101底部还设置有照明系统104;机器视觉系统100可以和激光测距系统300集成在一体,并且按安装在机器手上。
所述激光测距系统300包括激光器301和设置在激光器301前端的激光准直透镜302,所述激光器301设置在检测相机101一侧,且成像相机305与射向标准定位靶子200表面的光轴成角度设置;
使得激光器301发出的激光经激光准直透镜302后倾斜投向标准靶子,由机器视觉系统100成像,机器视觉系统100承担对于标准靶子成像和激光投影成像的双重功能;
检测时,标准定位靶子200事先安装在需要被定位工件501上,当安装在该物体上的标准定位靶子200被照明系统104照明后,由第一光学成像镜头103把该标准定位靶子200成像在检测相机101的光电传感器上,使用过程中可通过可调光圈102和系统照明的亮度配合来调整,以保证机器视觉成像系统有足够的亮度和景深;
工作时,激光器301的激光光束经激光准直透镜302,此处使用柱面镜投向标准定位靶子200,当柱面镜投影在标准靶子表面的形成一条激光光线。
图6展示了其中激光光束和高度的几何关系。图7图激光光束的影像相对应标准靶子的位置关系,当标准定位靶子200在测量范围的中间位置P0时,激光光线投影在中心位置D0,这时激光光线成像在检测相机101的中心,当被测量物体高度升高到P1位置时,激光光线投影在位置D1,其距离标准靶子的距离为A。这时激光光线同样成像在照相机上,但是偏离照相机的中心,成像在的中心左边,距离照相机中心的距离为E。同样的道理,当被 测量物体高度降低到P2位置时,激光光线投影在位置D2,这时激光光线同样成像在检测相机101上,但是偏离照相机的中心,成像在的中心右边。在该设计方案中,改变激光投影系统与机器视觉系统100的夹角α和工作距离,可以改变测量定位系统的灵敏度和测量定位的工作范围。激光光束对中心的偏移量的大小和物体位置的高度成线性比例关系,需要在在仪器使用之前进行测量标定。然后就可以通过测量激光光线偏离中心的距离来测量物体的高度位置。
具体的坐标位置X和Y的确定、标准定位靶子200的选取同上述实施例一中所述。
实施例三:
如图8所示,包含机器视觉100和激光三角测距300两套独立的光学系统。机器视觉系统的功能没有改变,仍然负责对于标准靶子进行照明和成像;
所述机器视觉系统100包括检测相机101和与检测相机101连接的第一光学成像镜头103,所述第一光学成像镜头103上设置有可调光圈102,所述检测相机101底部还设置有照明系统104;机器视觉系统100可以和激光测距系统300集成在一体,并且按安装在机器手上。
所述激光测距系统300包括激光投影组件和激光成像组件,所述激光投影组件包括激光器301和和设置在激光器301前端的激光准直透镜302,所述激光成像组件由第二成像镜头304和成像相机305组成;
所述激光器301和激光准直透镜302与第二成像镜头304和成像相机305分别设置在检测相机101位于机器视觉系统100的光轴两侧,呈对称位置,其设置也可为其他位置安装关系,且成像相机305和激光器301均与射向标准定位靶子200表面的光轴成角度设置;
使得激光器301的激光光束经激光准直镜和反光镜偏转90度后垂直射向标准定位靶子200表面,然后该激光光束投影被激光成像组件成像。
检测时,标准定位靶子200事先安装在需要被定位工件501上,当安装在该物体上的标准定位靶子200被照明系统104照明后,由第一光学成像镜头103把该标准定位靶子200成像在检测相机101的光电传感器上,使用过程中可通过可调光圈102和系统照明的亮度配合来调整,以保证机器视觉成像系统有足够的亮度和景深;
工作时,激光器301的激光光束经激光准直透镜302或柱面镜投向标准定位靶子200,当柱面镜投影在标准靶子表面的形成一条激光光线或一个点,投影的激光经第二成像镜头304成像在成像相机305上。但是由于成像相机305的光轴和激光光束的光轴有一个夹角,激光光束在照相机上的位置变化呈一个非线性关系。在使用前会先进行测试标定得到该非线性关 系,从而可以使用这个标定的非线性函数关系,进行标准定位靶子200的高度测量,即垂直坐标位置Z定位。和测量测量装置相同,机器视觉系统100安置在中间位置,用于测量标准靶子的平面坐标位置X,Y。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:包括机器视觉系统(100),激光测距系统(300)和用于安装在被定位工件上的标准定位靶子(200);
    所述激光测距系统(300)用于将激光投射到标准定位靶子(200)上;
    所述机器视觉系统(100)用于对定位靶子和投射在标准定位靶子(200)上的激光图像进行拍摄成像。
  2. 如权利要求1所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:所述机器视觉系统(100)包括检测相机(101)和与检测相机(101)连接的第一光学成像镜头(103),所述第一光学成像镜头(103)上设置有可调光圈(102),所述检测相机(101)底部还设置有照明系统(104)。
  3. 如权利要求2所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:所述激光测距系统(300)包括激光投影组件和激光成像组件,所述激光投影组件由激光器(301)、激光准直透镜(302)和分光镜(303)组成,所述激光成像组件由第二成像镜头(304)和成像相机(305)组成;
    所述分光镜(303)90度斜向设置在检测相机(101)下方,所述激光器(301)设置在分光镜(303)一侧,所述激光准直透镜(302)设置在激光器(301)和分光镜(303)之间;
    所述成像相机(305)设置在检测相机(101)一侧,且成像相机(305)与射向标准定位靶子(200)表面的光轴成角度设置;
    使得激光器(301)的激光光束经激光准直镜和反光镜偏转90度后垂直射向标准定位靶子(200)表面,激光的散射光由激光成像组件成像。
  4. 如权利要求2所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:所述标准定位靶子(200)为具有中心图形(201)的二维或三维结构。
  5. 如权利要求2所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:所述标准定位靶子(200)为具有中心图形(201)的二维或三维结构,所述标准定位靶子(200)的四周设置有多个立体图形。
  6. 如权利要求5所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:所述立体图形为圆锥台,且以圆对称方式分布于标准靶子的四周。
  7. 如权利要求1所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:所述标准定位靶子(200)至少有3个,且其中3个用于安装在被定位工件上不在一条线上的三个位置上。
  8. 如权利要求1所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:所述激光测距系统(300)包括激光器(301)和设置在激光器(301)前端的激光准直透镜(302), 所述激光器(301)设置在检测相机(101)一侧,且成像相机(305)与射向标准定位靶子(200)表面的光轴成角度设置;
    使得激光器(301)发出的激光经激光准直透镜(302)后倾斜投向标准靶子,由机器视觉系统(100)成像。
  9. 如权利要求1所述的一种基于机器视觉和激光三角测距的测量定位系统,其特征在于:
    激光测距系统(300)包括激光投影组件和激光成像组件,所述激光投影组件包括激光器(301)和和设置在激光器(301)前端的激光准直透镜(302),所述激光成像组件由第二成像镜头(304)和成像相机(305)组成;
    所述激光器(301)和激光准直透镜(302)与第二成像镜头(304)和成像相机(305)分别设置在检测相机(101)位于机器视觉系统(100)的光轴两侧,呈对称位置;使得当激光器(301)和激光准直透镜(302)将激光光束投影在标准靶子上后;第二成像镜头(304)和成像相机(305)对激光投影的光束进行成像。
PCT/CN2021/102781 2021-06-28 2021-06-28 一种基于机器视觉和激光三角测距的测量定位系统 WO2023272440A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21947404.6A EP4365538A1 (en) 2021-06-28 2021-06-28 Measurement and positioning system based on machine vision and laser triangulation
PCT/CN2021/102781 WO2023272440A1 (zh) 2021-06-28 2021-06-28 一种基于机器视觉和激光三角测距的测量定位系统
CN202180099940.9A CN117716201A (zh) 2021-06-28 2021-06-28 一种基于机器视觉和激光三角测距的测量定位系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102781 WO2023272440A1 (zh) 2021-06-28 2021-06-28 一种基于机器视觉和激光三角测距的测量定位系统

Publications (1)

Publication Number Publication Date
WO2023272440A1 true WO2023272440A1 (zh) 2023-01-05

Family

ID=84692387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102781 WO2023272440A1 (zh) 2021-06-28 2021-06-28 一种基于机器视觉和激光三角测距的测量定位系统

Country Status (3)

Country Link
EP (1) EP4365538A1 (zh)
CN (1) CN117716201A (zh)
WO (1) WO2023272440A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616920A (zh) * 2003-11-14 2005-05-18 北京理工大学 一种基于双目视觉和激光测距的主动实时三维定位系统
DE102004026090A1 (de) * 2004-05-25 2005-12-22 Daimlerchrysler Ag Messsystem zur dreidimensionalen Bilderfassung
CN203405574U (zh) * 2013-08-22 2014-01-22 刘学文 激光二维三角法测距仪
CN206724901U (zh) * 2017-05-19 2017-12-08 武汉大学 一种单目三维实时在线跟踪与定位系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616920A (zh) * 2003-11-14 2005-05-18 北京理工大学 一种基于双目视觉和激光测距的主动实时三维定位系统
DE102004026090A1 (de) * 2004-05-25 2005-12-22 Daimlerchrysler Ag Messsystem zur dreidimensionalen Bilderfassung
CN203405574U (zh) * 2013-08-22 2014-01-22 刘学文 激光二维三角法测距仪
CN206724901U (zh) * 2017-05-19 2017-12-08 武汉大学 一种单目三维实时在线跟踪与定位系统

Also Published As

Publication number Publication date
CN117716201A (zh) 2024-03-15
EP4365538A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
US5973788A (en) System for point-by-point measuring of spatial coordinates
US6067165A (en) Position calibrating method for optical measuring apparatus
US7372581B2 (en) Three-dimensional coordinate measuring device
JP6256995B2 (ja) 座標測定システムおよび方法
EP2010941B1 (en) Camera based six degree-of-freedom target measuring and target tracking device with rotatable mirror
NO174025B (no) System for punktvis maaling av romlige koordinater
JP2003240522A (ja) 車両の特徴的姿勢パラメータの測定装置及びシステム
US4744664A (en) Method and apparatus for determining the position of a feature of an object
KR20070098697A (ko) 부품 배치 유닛 및 이를 포함하는 부품 배치 장치
CN108458692B (zh) 一种近距离三维姿态测量方法
US20200408914A1 (en) Static six degree-of-freedom probe
WO2023272440A1 (zh) 一种基于机器视觉和激光三角测距的测量定位系统
CN110873558B (zh) 一种距离和姿态角的测量装置及测量方法
US5831735A (en) Non-contact optical measurement probe
CN109579778B (zh) 一种基于双波长分光自准直三维角度测量装置与方法
CN211824261U (zh) 一种飞机装配中机器人与工装的相对位姿测量及装配系统
US20200348123A1 (en) Measuring device
JP2015099049A (ja) 標準ゲージ、三次元測定装置、及び、三次元測定装置のキャリブレーション方法
CN112902847A (zh) 一种3d视觉扫描检测装置及其工作方法
JPH03167404A (ja) 大型対象物の寸法計測方法
JP2015099048A (ja) 標準ゲージ、三次元測定装置、及び、三次元測定装置のキャリブレーション方法
US11644303B2 (en) Three-dimensional coordinate measuring instrument coupled to a camera having a diffractive optical element
CN219245763U (zh) 一种基于单色激光线扫描及三角法量测的高速激光位移传感器
CN213021466U (zh) 一种3d成像检测系统
EP4272906A1 (en) Method for operating a manufacturing robot and manufacturing robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099940.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021947404

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947404

Country of ref document: EP

Effective date: 20240129

WWE Wipo information: entry into national phase

Ref document number: 11202400535Y

Country of ref document: SG