WO2023248705A1 - 複合装置 - Google Patents

複合装置 Download PDF

Info

Publication number
WO2023248705A1
WO2023248705A1 PCT/JP2023/019677 JP2023019677W WO2023248705A1 WO 2023248705 A1 WO2023248705 A1 WO 2023248705A1 JP 2023019677 W JP2023019677 W JP 2023019677W WO 2023248705 A1 WO2023248705 A1 WO 2023248705A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
circuit
switching elements
switching element
switching
Prior art date
Application number
PCT/JP2023/019677
Other languages
English (en)
French (fr)
Inventor
淳 齋藤
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023248705A1 publication Critical patent/WO2023248705A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a composite device having a refrigerant compression function and a heat medium heating function.
  • Patent Document 1 describes a vehicle air conditioner that can be applied to vehicles such as hybrid cars and electric cars.
  • the vehicle air conditioner described in Patent Document 1 includes an electric compressor that compresses refrigerant, a radiator that radiates heat from the refrigerant discharged from the electric compressor to heat air supplied into the vehicle interior, and a heat radiator that heats the air supplied into the vehicle interior.
  • the refrigerant circuit includes an expansion valve that expands the refrigerant under reduced pressure, and a heat exchanger that corresponds to an evaporator that exchanges heat between the refrigerant that has been expanded under reduced pressure and the outside air.
  • the vehicle air conditioner described in Patent Document 1 includes a heat medium heating electric heater that heats a heat medium and a heated heat medium that is supplied into the vehicle interior in order to assist heating of the vehicle interior by a radiator. and a heat medium-air heat exchanger that heats the air.
  • the vehicle air conditioner described in Patent Document 1 can compensate for the lack of heating capacity due to the radiator.
  • an electric compressor, a heat medium heating electric heater, and the like are individually provided. As a result, the overall size of the device has increased, and there is room for improvement in terms of installation space and other aspects.
  • the present invention provides a composite device that can contribute to miniaturization of vehicle air conditioners, etc., and also prevents damage to switching elements used for power supply in the composite device due to surge voltage while increasing switching loss.
  • the purpose is to suppress
  • a composite device having a refrigerant compression function and a heat medium heating function houses a compression mechanism that compresses a refrigerant and an electric motor that drives the compression mechanism, and also has a refrigerant inlet that allows the refrigerant to flow into the inside, and a refrigerant that allows the refrigerant compressed by the compression mechanism to flow out to the outside.
  • a compressor housing having an outlet, an electric heater for heating a heat medium housed therein, a heat medium inlet for causing the heat medium to flow into the inside, and a heat medium for causing the heat medium heated by the electric heater to flow out to the outside.
  • the present invention includes a heater housing having a medium outlet, and a circuit housing housing therein a circuit board on which an electronic circuit including a motor drive circuit that drives the electric motor and a heater control circuit that controls the electric heater is mounted.
  • the compressor housing, the heater housing and the circuit housing are integrally coupled.
  • the motor drive circuit and the heater control circuit each include a switching element. The switching frequency of the switching element of the heater control circuit is set lower than the switching frequency of the switching element of the motor drive circuit, and the switching speed of the switching element of the heater control circuit is set lower than the switching frequency of the switching element of the motor drive circuit.
  • the switching speed is set to be lower than the switching speed
  • the electronic circuit has a parasitic inductance of a wiring connected to a switching element of the motor drive circuit that is smaller than a parasitic inductance of a wiring connected to a switching element of the heater control circuit. It is formed like this.
  • the present invention it is possible to provide a composite device that can contribute to downsizing of vehicle air conditioners and the like. Further, according to the present invention, it is possible to prevent damage to switching elements used for power supply, etc. in a composite device due to surge voltage, and to suppress an increase in switching loss.
  • FIG. 1 is a front view of a multifunction device according to an embodiment.
  • FIG. 2 is a right side view of the multifunction device according to the embodiment.
  • FIG. 1 is a top view of a multifunction device according to an embodiment.
  • 3 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the AA sectional view of FIG. 2.
  • FIG. FIG. 2 is a diagram illustrating an example of a main part configuration of an electronic circuit including a motor drive circuit and a heater control circuit of the multifunction device according to the embodiment.
  • 4 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the BB sectional view of FIG. 3.
  • FIG. 1 is a block diagram showing a schematic configuration of a control system of a multifunction device according to an embodiment.
  • FIG. FIG. 3 is a diagram showing an example of a wiring pattern of a circuit board on which the electronic circuit is mounted.
  • FIG. 1 to 4 show a schematic configuration of a multifunction device 1 according to an embodiment of the present invention.
  • FIG. 1 is a front view of the multifunction device 1 according to the embodiment
  • FIG. 2 is a right side view of the multifunction device 1 according to the embodiment
  • FIG. 3 is a top view of the multifunction device 1 according to the embodiment.
  • 4 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the AA sectional view of FIG. 2.
  • the composite device 1 has a refrigerant compression function that compresses a refrigerant, and a heat medium heating function that heats a heat medium other than the refrigerant. That is, the composite device 1 has a configuration in which a refrigerant compressor and a heat medium heating device are integrated.
  • the composite device 1 can be applied to a vehicle air conditioner as described above. That is, the composite device 1 can be used by being incorporated into a refrigerant circuit in which a refrigerant circulates, and a heat medium circuit in which a heat medium is circulated by a pump section including an electric pump or the like.
  • the refrigerant compression function section of the composite device 1 is incorporated in the refrigerant circuit, compresses the refrigerant that has passed through the expansion valve and the evaporator (or a heat exchanger equivalent to this), and also compresses the compressed refrigerant.
  • the heat medium heating function section of the composite device 1 is incorporated in the heat medium circuit and heats the heat medium that has passed through the heat medium-air heat exchanger that heats the air supplied into the vehicle interior.
  • the heating medium may be configured to supply the heating medium to the heating medium-air heat exchanger.
  • the refrigerant and the heat medium may be selected arbitrarily, and for example, a gas refrigerant may be used as the refrigerant, and a liquid may be used as the heat medium.
  • water including water mixed with antifreeze or the like
  • the heat medium heating function may also be referred to as a water heating function (water heating device).
  • the composite device 1 has a housing 2. As shown in FIG.
  • the housing 2 of the composite device 1 includes a first housing 2A, a second housing 2B, a third housing 2C, a first cover 2D, a second cover 2E, and a third cover 2F, which are not shown. They are integrally connected (fastened) using fastening members such as bolts.
  • the first housing 2A is formed into a substantially cylindrical shape.
  • a compression mechanism 3 that compresses refrigerant and an electric motor 4 that drives the compression mechanism 3 are housed in the first housing 2A in series in the axial direction.
  • the compression mechanism 3 may be a scroll compression mechanism including a fixed scroll and a movable (orbiting) scroll.
  • the output shaft 4a of the electric motor 4 is connected to the compression mechanism 3 (for example, the movable (orbiting) scroll).
  • first housing 2A One of the two open ends of the first housing 2A (the lower open end in FIGS. 1 and 2), that is, the open end of the first housing 2A on the compression mechanism 3 side is connected to the first cover. occluded by 2D.
  • first housing 2A that houses the compression mechanism 3 that compresses refrigerant and the electric motor 4 that drives the same may also be referred to as a "compressor housing.”
  • the second housing 2B is arranged on the side of the first housing 2A.
  • the second housing 2B is formed into a substantially rectangular cylindrical shape.
  • An electric heater 5 that heats the heat medium is housed inside the second housing 2B.
  • the second housing 2B that houses the electric heater 5 that heats the heat medium may also be referred to as a "heater housing.”
  • the third housing 2C is formed into a box shape with an open top surface.
  • a motor drive circuit 20 that drives (controls) the electric motor 4 and a heater control circuit 30 that controls the electric heater 5 are housed inside the third housing 2C.
  • a circuit board 6 on which electronic circuits including a motor drive circuit 20 and a heater control circuit 30 are mounted is housed inside the third housing 2C.
  • the bottom wall 7 of the third housing 2C is connected to the other open end of the first housing 2A (the upper open end in FIGS. 1 and 2), that is, the open end of the first housing 2A on the electric motor 4 side, and the second The other open end (the upper open end in FIGS. 1 and 2) of the housing 2B is closed.
  • the inside of the first housing 2A and the inside of the third housing 2C are partitioned off, and the inside of the second housing 2B and the inside of the third housing 2C are partitioned off.
  • the bottom wall 7 of the third housing 2C has a first partition part 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C, and a first partition part 71 that partitions the inside of the second housing 2B and the inside of the third housing 2C. It has a second partition part 72 for partitioning.
  • the upper surface (opening end) of the third housing 2C is closed by the third cover 2F.
  • the third housing 2C that houses the motor drive circuit 20 and the heater control circuit 30 (specifically, the circuit board 6 on which the electronic circuit including these circuits is mounted) is also referred to as a "circuit housing” or a “board housing.” can be done.
  • the refrigerant compression function (electric compressor) is mainly realized by the compression mechanism 3, the electric motor 4, and the motor drive circuit 20, and the heat medium heating function is mainly realized by the electric heater 5 and the heater control circuit 30. (heat medium heating device) is realized.
  • a refrigerant inlet 8 for allowing the refrigerant circulating in the refrigerant circuit to flow into the first housing 2A is formed in the first housing 2A.
  • the refrigerant to be introduced is, for example, a refrigerant that has passed through an expansion valve and an evaporator (or a heat exchanger equivalent thereto), that is, a low-temperature, low-pressure refrigerant.
  • the refrigerant inlet 8 is located in a portion of the first housing 2A on the third housing 2C side, that is, in the vicinity of the first partition portion 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C. It is provided.
  • the refrigerant inlet 8 is configured to cause the refrigerant circulating in the refrigerant circuit to flow into the first housing 2A so that at least a portion of the refrigerant flows along the first partition portion 71.
  • the refrigerant sucked into the compression mechanism 3 is compressed by the compression mechanism 3, and is discharged from the compression mechanism 3 as a high-temperature, high-pressure refrigerant.
  • the discharged (high temperature and high pressure) refrigerant flows out from the refrigerant outlet 9 formed in the first housing 2A, and is supplied to, for example, the above-mentioned radiator (refrigerant-air heat exchanger).
  • the refrigerant outlet 9 is provided in a portion of the first housing 2A on the first cover 2D side, that is, at a position away from the refrigerant inlet 8 in the vertical direction in FIGS. 1 and 2. Therefore, in this embodiment, the refrigerant that has flowed into the first housing 2A from the refrigerant inlet 8 flows from the upper side to the lower side in FIGS. 1 and 2 within the first housing 2A.
  • the first partition portion 71 may be cooled by a (low-temperature, low-pressure) refrigerant that flows into the first housing 2A through the refrigerant inlet 8.
  • the electric motor 4 can be cooled by the refrigerant flowing inside the first housing 2A.
  • the refrigerant inlet 8, the inside of the first housing 2A, and the refrigerant outlet 9 constitute a part of the refrigerant circuit.
  • a heat medium inlet 10 is formed in the second housing 2B for allowing the heat medium circulating in the heat medium circuit to flow into the second housing 2B.
  • the heat medium to be introduced is, for example, a heat medium that has passed through the above-described heat medium-air heat exchanger, that is, a low-temperature heat medium.
  • the heat medium inlet 10 is located at a portion of the second housing 2B on the third housing 2C side, that is, near the second partition portion 72 that partitions the inside of the second housing 2B and the inside of the third housing 2C. and is provided on the back side in FIG. 1 (on the right side in FIG. 2).
  • the heat medium inlet 10 is configured to cause the heat medium circulating in the heat medium circuit to flow into the second housing 2B so that at least a portion of the heat medium flows along the second partition portion 72. has been done.
  • the heated heat medium flows out from the heat medium outlet 11 formed in the second housing 2B, and is supplied to, for example, the above-mentioned heat medium-air heat exchanger.
  • the heat medium outlet 11 is located near the second partition part 72 that partitions the inside of the second housing 2B and the inside of the third housing 2C, and on the near side in FIG. 1 (left side in FIG. 2). It is set in. Therefore, in the present embodiment, the heat medium flowing into the second housing 2B from the heat medium inlet 10 flows inside the second housing 2B from the right side in FIGS. 2 and 4 along the second partition part 72. flows towards the left. That is, in the composite device 1, the flow direction of the heat medium is substantially perpendicular to the flow direction of the refrigerant.
  • the second partition portion 72 may be cooled by the (low-temperature) heat medium flowing into the second housing 2B through the heat medium inlet 10. Further, the heat medium inlet 10, the inside of the second housing 2B, and the heat medium outlet 11 constitute a part of the heat medium circuit.
  • the power supply line from the motor drive circuit 20 to the electric motor 4 and the power supply line from the heater control circuit 30 to the electric heater 5 are connected to the third housing in an airtight and liquidtight state, respectively. It extends through the bottom wall 7 of 2C.
  • FIG. 5 is a diagram showing an example of the main part configuration of the electronic circuit including the motor drive circuit 20 and the heater control circuit 30.
  • the motor drive circuit 20 drives the electric motor 4 by converting a DC voltage from a high voltage power source HV such as a high voltage battery mounted on a vehicle into a three-phase AC voltage and supplying the voltage to the electric motor 4. It is configured to drive (control). Further, the heater control circuit 30 is configured to control the temperature of the electric heater 5 by controlling the application of the high voltage power supply HV to the electric heater 5 (the energization between the high voltage power supply HV and the electric heater 5). has been done. Furthermore, in this embodiment, the electronic circuit includes a smoothing capacitor SC that smoothes the DC voltage from the high voltage power supply HV.
  • the smoothing capacitor SC is connected between the power line (HV+) of the high voltage power supply HV and the ground line (HVGND). Smoothing capacitor SC smoothes the DC voltage supplied from high voltage power supply HV to motor drive circuit 20 and heater control circuit 30.
  • the motor drive circuit 20 includes a first power module 21 and a first driver 22. Note that the state including the smoothing capacitor SC is sometimes referred to as the motor drive circuit 20.
  • the first power module 21 includes six power switching elements (hereinafter simply referred to as "first switching elements") Q1 to Q6 and six diodes D1 to D6.
  • first switching elements Q1 to Q6 may be IGBTs (insulated gate bipolar transistors).
  • the first power module 21 converts the DC voltage from the high voltage power supply HV into a three-phase AC voltage and supplies it to the electric motor 4 by subjecting the first switching elements Q1 to Q6 to PWM control.
  • the first power module 21 has a U-phase arm, a V-phase arm, and a W-phase arm that are provided in parallel with each other between the power line of the high-voltage power supply HV and the ground line.
  • Two first switching elements Q1 and Q2 are connected in series to the U-phase arm, and diodes D1 and D2 are connected in antiparallel to each of the first switching elements Q1 and Q2, respectively.
  • Two first switching elements Q3 and Q4 are connected in series to the V-phase arm, and diodes D3 and D4 are connected in antiparallel to each of the first switching elements Q3 and Q4, respectively.
  • Two first switching elements Q5 and Q6 are connected in series to the W-phase arm, and diodes D5 and D6 are connected in antiparallel to each of the first switching elements Q5 and Q6, respectively.
  • each of the U, V, and W phase arms are connected to the other ends of the U, V, and W phase coils of the electric motor 4, which are star-connected at one end of each. That is, the midpoint between the first switching elements Q1 and Q2 of the U-phase arm is connected to the U-phase coil, the midpoint of the first switching elements Q3 and Q4 of the V-phase arm is connected to the V-phase coil, and the W-phase A midpoint between the first switching elements Q5 and Q6 of the arm is connected to the W-phase coil.
  • the first power module 21 has a ratio of the ON period of the first switching elements Q1, Q3, Q5 on the power line side of each phase arm to the ON period of the first switching elements Q2, Q4, Q6 on the ground line side. is controlled (PWM controlled), the DC voltage from the high voltage power supply HV smoothed by the smoothing capacitor SC can be converted into a three-phase AC voltage and supplied to the electric motor 4. Accordingly, the electric motor 4 and the compression mechanism 3 can be driven.
  • the first driver 22 turns ON/OFF (switches) the first switching elements Q1 to Q6 (gates thereof) based on a control signal (PWM signal) from the control unit 15, which will be described later.
  • the operation of the motor drive circuit 20 switching operation of the first switching elements Q1 to Q6
  • the operation of the electric motor 4 and the compression mechanism 3 that is, the refrigerant compression function
  • the heater control circuit 30 includes a second power module 31 and a second driver 32.
  • the second power module 31 includes two switching elements (hereinafter referred to as "second switching elements") Q7 and Q8 that control the application of the high voltage power supply HV to the electric heater 5.
  • the second switching elements Q7 and Q8 may be IGBTs like the first switching elements Q1 to Q6 of the motor drive circuit 20.
  • one of the two second switching elements Q7 and Q8 is provided on the output side (voltage side) of the high voltage power supply HV than the electric heater 5, and the other second switching element Q7 is provided on the output side (voltage side) of the high voltage power supply HV than the electric heater 5.
  • the switching element Q8 is provided closer to the ground side of the high voltage power supply HV than the electric heater 5 is.
  • the second power module 31 turns ON/OFF the current between the high voltage power supply HV and the electric heater 5 by controlling the second switching elements Q7 and Q8 (PWM control). , and further the temperature of the heat medium heated by the electric heater 5.
  • the second driver 32 turns ON/OFF (switching) the second switching elements Q7 and Q8 (gates thereof) based on a control signal (PWM signal) from the control unit 15. )do.
  • the operation of the heater control circuit 30 (second switching elements Q7, Q8) and, by extension, the operation of the electric heater 5 (thermal medium heating function) are controlled by the control unit 15. .
  • FIG. 6 is a partial schematic sectional view of the composite device 1 (corresponding to the BB sectional view in FIG. 3).
  • the electronic circuit including the motor drive circuit 20 and the heater control circuit 30 (and the smoothing capacitor SC) is mounted on the circuit board 6 and housed in the third housing space S3.
  • the circuit board 6 is attached to, for example, a plurality of board attachment portions 12 provided within the third housing space S3.
  • each of the plurality of board attachment parts 12 is formed in the shape of a boss that protrudes upward from the bottom wall 7 of the third housing 2C (in the direction away from the first housing 2A and the second housing 2B).
  • a circuit board 6 is attached to the upper surface of the board attachment part 12 with screws 13.
  • the smoothing capacitor SC, the first switching elements Q1 to Q6 of the motor drive circuit 20, and the second switching elements Q7 and Q8 of the heater control circuit 30 flow into the first housing 2A from the refrigerant inlet 8. It is placed in a position where it can be cooled by a refrigerant.
  • the smoothing capacitor SC, the first switching elements Q1 to Q6 of the motor drive circuit 20, and the second switching elements Q7 and Q8 of the heater control circuit 30 are connected to the bottom surface ( It is mounted on the bottom wall 7 side surface of the third housing 2C, and is arranged so as to be in thermal contact with a first partition part 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C.
  • "to be in thermal contact with the first partition part 71” means to be in a state where heat can be exchanged with the first partition part 71, and to be in direct contact with the first partition part 71. This includes being close enough to the first partition part 71 to allow heat exchange, and indirectly contacting the first partition part 71 via a heat exchange member having high thermal conductivity. .
  • FIG. 7 is a block diagram showing a schematic configuration of the control system of the multifunction device 1 according to the embodiment.
  • the control unit 15 of the composite device 1 receives an operation request (activation (including request and stop request), operation request for the heat medium heating function (including start request and stop request), etc.
  • the control unit 15 also includes a first temperature detection unit 51 that detects the temperatures of the first switching elements Q1 to Q6 or their correlation values, and a second temperature detection unit 51 that detects the temperatures of the second switching elements Q7 and Q8 or their correlation values. Detection results from various detection units such as the detection unit 52 are also input.
  • control unit 15 supplies the first driver 22 and/or the second driver 32 with a control signal according to the input operation request from the upper control device and/or the detection results of the various detection units, This controls the operation of the first switching elements Q1 to Q6 (that is, the operation of the motor drive circuit 20) and/or controls the second switching elements Q7 and Q8 (that is, the operation of the heater control circuit 30). It is configured as follows.
  • the wiring of the electronic circuit that is, the wiring pattern on the circuit board 6 has parasitic inductance.
  • the parasitic inductance of wiring tends to increase as the length of the wiring increases.
  • the parasitic inductance of the wiring between the smoothing capacitor SC and each of the first switching elements Q1 to Q6 of the motor drive circuit 20 and the second switching elements Q7 and Q8 of the heater control circuit 30 is defined as L.
  • di/dt is the slope of the current flowing through the switching element, and depends on the switching (turn-off) speed of the switching element.
  • the switching speed of a plurality of switching elements used in the same circuit is usually limited by the parasitic inductance of the wiring related to the switching element located farthest from the smoothing capacitor (having the longest wiring length). That is, the switching speeds of the switching elements other than the switching element located farthest from the smoothing capacitor are set to be slow in the same way as for the switching element located farthest from the smoothing capacitor. Therefore, overall switching loss increases more than necessary.
  • the multifunction device 1 employs the following configuration, thereby addressing the above problem.
  • the drive frequency (switching frequency) of the second switching elements Q7 and Q8 of the heater control circuit 30 is lower than the drive frequency (switching frequency) of the first switching elements Q1 to Q6 of the motor drive circuit 20.
  • the motor drive circuit 20 (the first switching elements Q1 to Q6) converts the DC voltage from the high voltage power supply HV into a three-phase AC voltage, and when the switching frequency of the first switching elements Q1 to Q6 becomes low, There is a possibility that distortion etc. may occur in the output waveform. If distortion or the like occurs in the output waveform, stable operation of the electric motor 4 cannot be obtained. For this reason, the switching frequency of the first switching elements Q1 to Q6 of the motor drive circuit 20 has to be increased to some extent. For example, the switching frequency of the first switching elements Q1 to Q6 needs to be on the order of kHz or higher.
  • the heater control circuit 30 (second switching elements Q7, Q8) turns on/off the current between the high voltage power supply HV and the electric heater 5, the switching of the second switching elements Q7, Q8
  • the frequency does not need to be that high.
  • a switching frequency of the second switching elements Q7 and Q8 on the order of Hz is sufficient.
  • the switching frequencies of the second switching elements Q7 and Q8 are set lower than the switching frequencies of the first switching elements Q1 to Q6.
  • the switching speed of the second switching elements Q7 and Q8 of the heater control circuit 30 is slower than the switching speed of the first switching elements Q1 to Q6 of the motor drive circuit 20.
  • the switching frequency of the second switching elements Q7 and Q8 of the heater control circuit 30 is the same as that of the first switching elements Q1 to Q6 of the motor drive circuit 20. It is set lower than the switching frequency. In other words, the second switching elements Q7 and Q8 have a smaller switching frequency than the first switching elements Q1 to Q6. This means that even if the switching speed of the second switching elements Q7 and Q8 is slowed down, the increase in switching loss is smaller than when the switching speed of the first switching elements Q1 to Q6 is slowed down. This means that an increase in switching loss as a whole can be suppressed.
  • the switching speeds of the second switching elements Q7 and Q8 are set to be slower than the switching speeds of the first switching elements Q1 to Q6.
  • the gate resistances (not shown) of the second switching elements Q7 and Q8 have a higher resistance value than the gate resistances (not shown) of the first switching elements Q1 to Q6 of the motor drive circuit 20.
  • the switching speed of the second switching elements Q7 and Q8 is slower than the switching speed of the first switching elements Q1 to Q6.
  • the parasitic inductance of the wiring related to the first switching elements Q1 to Q6 of the motor drive circuit 20 is smaller than the parasitic inductance of the wiring related to the second switching elements Q7 and Q8 of the heater control circuit 30. ing.
  • the parasitic inductance of the wiring related to the first switching elements Q1 to Q6 of the motor drive circuit 20 is equal to the parasitic inductance of the wiring related to the second switching elements Q7 and Q8 of the heater control circuit 30. It is formed to be smaller than.
  • the parasitic inductance of wiring becomes smaller as the length of the wiring becomes shorter. Therefore, in the electronic circuit of this embodiment, the smoothing capacitor SC is placed closer to the first switching elements Q1 to Q6 of the motor drive circuit 20 than the second switching elements Q7 and Q8 of the heater control circuit 30 (see FIG. 5), as a result, the length of the wiring related to the first switching elements Q1 to Q6 (specifically, the wiring between the smoothing capacitor SC and the first switching elements Q1 to Q6) is reduced to that of the second switching elements Q7, Q8. (specifically, the wiring between the smoothing capacitor SC and the second switching elements Q7 and Q8).
  • the parasitic inductance of the wiring becomes smaller as the width of the wiring becomes wider (the thicker the wiring becomes). Therefore, in the electronic circuit of the present embodiment, the wiring for the first switching elements Q1 to Q6 is formed wider (thicker) than the wiring for the second switching elements Q7 and Q8. However, in this embodiment, the wiring for the second switching elements Q7 and Q8 includes a common portion with the wiring for the first switching elements Q1 to Q6. Therefore, in this embodiment, the wiring between the smoothing capacitor SC and the first switching elements Q1 to Q6 (the wiring surrounded by broken lines in FIG. 5) is the wiring between the smoothing capacitor SC and the second switching elements Q7 and Q8. Wider ( thick).
  • the smoothing capacitor SC connects the second switching elements Q7 and Q8 of the heater control circuit 30. It is arranged (mounted) closer to the first switching elements Q1 to Q6 of the motor drive circuit 20 than the first switching elements Q1 to Q6 of the motor drive circuit 20. Furthermore, on the upper surface of the circuit board 6 (the surface on the third cover 2F side), the lengths of the wiring patterns P1a and P1b between the smoothing capacitor SC and the first switching elements Q1 to Q6 are the same as the lengths of the wiring patterns P1a and P1b between the smoothing capacitor SC and the second switching elements Q1 to Q6.
  • the lengths are shorter than the lengths of the wiring patterns P1a+P2a and P1b+P2b between the elements Q7 and Q8.
  • the wiring patterns P1a and P1b between the smoothing capacitor SC and the first switching elements Q1 to Q6 are different from other wiring patterns on the circuit board 6, for example, the first switching elements Q1 to Q6 and the second switching element Q7, It is formed wider than the second wiring patterns P2a, P2b between the electrical heaters Q8 and the third wiring patterns P3a, P3b extending from the second switching elements Q7, Q8 toward the electric heater 5.
  • the composite device 1 houses therein a compression mechanism 3 that compresses refrigerant and an electric motor 4 that drives the compression mechanism 3, and has a first housing (compressor) having a refrigerant inlet 8 and a refrigerant outlet 9. a second housing (heater housing) 2B that accommodates therein an electric heater 5 that heats a heat medium and has a heat medium inlet 10 and a heat medium outlet 11; and a motor that drives the electric motor 4.
  • the first housing (compressor housing) includes a third housing (circuit housing) 2C that houses therein a circuit board 6 on which an electronic circuit including a heater control circuit 30 that controls the drive circuit 20 and the electric heater 5 is mounted.
  • 2A, a second housing 2B (heater housing), and a third housing (circuit housing) 2C are integrally coupled.
  • Such a composite device 1 can function as a refrigerant compressor (electric compressor) that compresses a refrigerant and a heat medium heating device that heats a heat medium, and can heat the heat medium while compressing the refrigerant. Can be done. Therefore, the composite device 1 can be applied to a vehicle air conditioner as described above. By applying the composite device 1 to a vehicle air conditioner, it is possible to downsize the vehicle air conditioner compared to a conventional configuration that separately includes an electric compressor and a heat medium heating device. It is.
  • a refrigerant compressor electric compressor
  • the motor drive circuit 20 includes first switching elements Q1 to Q6 that convert a DC voltage into a three-phase AC voltage, and the heater control circuit 30 includes a second switching element that turns ON/OFF energization to the electric heater 5. It includes switching elements Q7 and Q8.
  • the switching frequency (driving frequency) of the second switching elements Q7, Q8 is set lower than the switching frequency (driving frequency) of the first switching elements Q1 to Q6, and the switching speed of the second switching elements Q7, Q8 is
  • the switching speed of the first switching elements Q1 to Q6 is set lower than the switching speed of the first switching elements Q1 to Q6, and the electronic circuit has a parasitic inductance of wiring related to the first switching elements Q1 to Q6 that is lower than a parasitic inductance of wiring related to the second switching elements Q7 and Q8. It is also designed to be smaller.
  • the smoothing capacitor SC is located closer to the first switching elements Q1 to Q6 of the motor drive circuit 20 than the second switching elements Q7 and Q8 of the heater control circuit 30,
  • the lengths of the wiring patterns P1a and P1b between the smoothing capacitor SC and the first switching elements Q1 to Q6 are shorter than the lengths of the wiring patterns P1a+P2a and P1b+P2b between the smoothing capacitor SC and the second switching elements Q7 and Q8. It has become.
  • wiring patterns P1a and P1b between the smoothing capacitor SC and the first switching elements Q1 to Q6 include wiring patterns P2a and P2b between the first switching elements Q1 to Q6 and the second switching elements Q7 and Q8. It is formed wider than other wiring patterns on the circuit board 6.
  • the first switching elements Q1 to Q6 and the second switching elements Q7 and Q8 are prevented from being damaged by surge voltage without impairing the refrigerant compression function and the heat medium heating function. It is possible to suppress an increase in switching loss due to the two switching elements Q7 and Q8. Specifically, for the first switching elements Q1 to Q6, by reducing the parasitic inductance of the wiring related to these elements, damage due to surge voltage is prevented without slowing down the switching speed (increasing switching loss). On the other hand, with respect to the second switching elements Q7 and Q8, damage due to surge voltage is prevented by reducing the switching speed, and increase in switching loss is suppressed by reducing the switching frequency.
  • the refrigerant inlet 8 of the first housing (compressor housing) 2A is a first housing that partitions the inside of the first housing (compressor housing) 2A and the inside of the third housing (circuit housing) 2C.
  • the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7 and Q8 are provided near the partition part 71, and in the third housing (circuit housing) 2C, the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7 and Q8 are provided in the vicinity of the first partition part 71. are placed so that they are in contact with each other.
  • the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7, Q8 are connected to the first partition part 71 that can be cooled by the refrigerant flowing into the first housing (compressor housing). It can be effectively cooled by heat exchange. That is, high cooling performance (heat dissipation performance) for the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7 and Q8 is ensured, and as a result, stable operation of the composite device 1 can be realized.
  • the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7 and Q8 are arranged so as to be in thermal contact with the first partition portion 71.
  • the heat medium inlet 10 of the second housing (heater housing) 2B is a second partition part that partitions the inside of the second housing 2B (heater housing) 2B and the inside of the third housing (circuit housing) 2C. 72, and the second partition part 72 can be cooled by the heat medium flowing into the second housing 2B. Therefore, the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7 and Q8 may be arranged so as to be in thermal contact with the second partition part 72.
  • some of the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7 and Q8 are arranged so as to be in thermal contact with the first partition part 71, and the rest are placed in thermal contact with the second partition part 72. may be placed so that they are in contact with each other. Even in this manner, cooling performance (heat dissipation performance) for the smoothing capacitor SC, the first switching elements Q1 to Q6, and the second switching elements Q7 and Q8 can be ensured.
  • the composite device 1 is mainly applied to a vehicle air conditioner. However, it is not limited to this.
  • the composite device 1 can be applied to various devices and systems that utilize an electric compressor that compresses a refrigerant and a heat medium heating device that heats a heat medium.
  • SYMBOLS 1 Compound device, 2... Housing, 2A... First housing (compressor housing), 2B... Second housing (heater housing), 2C... Third housing (circuit housing), 3... Compression mechanism, 4... Electric motor, 5... Electric heater, 6... Circuit board, 8... Refrigerant inlet, 9... Refrigerant outlet, 10... Heat medium inlet, 11... Heat medium outlet, 15... Control unit, 20... Motor drive circuit, 30... Heater Control circuit, Q1 to Q6...first switching element (switching element of motor drive circuit), Q7, Q8...second switching element (switching element of heater control circuit), SC...smoothing capacitor

Abstract

【課題】車両用空気調和装置等の小型化に資することができる複合装置を提供すると共に複合装置において電力の供給等に用いられるスイッチング素子のサージ電圧による損傷を防止しつつスイッチング損失の増加を抑制する。 【解決手段】冷媒圧縮機能及び熱媒体加熱機能を有する複合装置において、熱媒体加熱用の電気ヒータを制御するヒータ制御回路の第2スイッチング素子Q7、Q8のスイッチング周波数は、圧縮機構駆動用の電動モータを駆動するモータ駆動回路の第1スイッチング素子Q1~Q6のスイッチング周波数よりも低く、第2スイッチング素子Q7、Q8のスイッチング速度は第1スイッチング素子Q1~Q6のスイッチング速度よりも遅く、第1スイッチング素子Q1~Q6に関する配線の寄生インダクタンスは、第2スイッチング素子Q7、Q8に関する配線に寄生インダクタンスよりも小さい。

Description

複合装置
 本発明は、冷媒圧縮機能と熱媒体加熱機能とを有する複合装置に関する。
 特許文献1には、ハイブリッド自動車や電気自動車などの車両に適用可能な車両用空気調和装置が記載されている。特許文献1に記載された車両用空気調和装置は、冷媒を圧縮する電動圧縮機と、電動圧縮機から吐出された冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、放熱された冷媒を減圧膨張させる膨張弁と、減圧膨張された冷媒と外気との間で熱交換を行わせる蒸発器に相当する熱交換器を含む冷媒回路を有している。また、特許文献1に記載された車両用空気調和装置は、放熱器による車室内の暖房を補助するため、熱媒体を加熱する熱媒体加熱電気ヒータと、加熱された熱媒体で車室内に供給される空気を加熱する熱媒体-空気熱交換器と、を有している。
特開2014-213765号公報
 特許文献1に記載された車両用空気調和装置は、放熱器による暖房能力の不足を補完することが可能である。しかし、特許文献1に記載された車両用空気調和装置では、電動圧縮機や熱媒体加熱電気ヒータなどが個別に設けられている。このため、装置全体が大型化し、設置スペースなどの面で改良の余地があった。
 本発明は、車両用空気調和装置等の小型化に資することができる複合装置を提供すると共に、複合装置において電力の供給等に用いられるスイッチング素子のサージ電圧による損傷を防止しつつスイッチング損失の増加を抑制することを目的とする。
 本発明の一側面によると、冷媒圧縮機能及び熱媒体加熱機能を有する複合装置が提供される。複合装置は、冷媒を圧縮する圧縮機構及び前記圧縮機構を駆動する電動モータを内部に収容すると共に、冷媒を内部に流入させる冷媒流入口及び前記圧縮機構で圧縮された冷媒を外部に流出させる冷媒流出口を有する圧縮機ハウジングと、熱媒体を加熱する電気ヒータを内部に収容すると共に、熱媒体を内部に流入させる熱媒体流入口及び前記電気ヒータで加熱された熱媒体を外部に流出させる熱媒体流出口を有するヒータハウジングと、前記電動モータを駆動するモータ駆動回路及び前記電気ヒータを制御するヒータ制御回路を含む電子回路が実装された回路基板を内部に収容する回路ハウジングとを含む。前記圧縮機ハウジング、前記ヒータハウジング及び前記回路ハウジングは、一体的に結合されている。また、前記モータ駆動回路及び前記ヒータ制御回路は、それぞれスイッチング素子を含む。そして、前記ヒータ制御回路のスイッチング素子のスイッチング周波数は、前記モータ駆動回路のスイッチング素子のスイッチング周波数よりも低く設定され、前記ヒータ制御回路のスイッチング素子のスイッチング速度は、前記モータ駆動回路のスイッチング素子のスイッチング速度よりも遅く設定され、及び、前記電子回路は、前記モータ駆動回路のスイッチング素子に接続される配線の寄生インダクタンスが前記ヒータ制御回路のスイッチング素子に接続される配線の寄生インダクタンスよりも小さくなるように形成されている。
 本発明によれば、車両用空気調和装置等の小型化に資することができる複合装置を提供することができる。また、本発明によれば、複合装置において電力の供給等に用いられるスイッチング素子のサージ電圧による損傷を防止しつつスイッチング損失の増加を抑制することができる。
実施形態に係る複合装置の正面図である。 実施形態に係る複合装置の右側面図である。 実施形態に係る複合装置の上面図である。 実施形態に係る複合装置の部分概略断面図であり、図2のA-A断面図に相当する図である。 実施形態に係る複合装置のモータ駆動回路及びヒータ制御回路を含む電子回路の要部構成例を示す図である。 実施形態に係る複合装置の部分概略断面図であり、図3のB-B断面図に相当する図である。 実施形態に係る複合装置の制御系の概略構成を示すブロック図である。 前記電子回路が実装された回路基板の配線パターン例を示す図である。
 以下、本発明の実施の形態を添付図面に基づいて説明する。
 図1~図4は、本発明の実施形態に係る複合装置1の概略構成を示している。図1は、実施形態に係る複合装置1の正面図であり、図2は、実施形態に係る複合装置1の右側面図であり、図3は、実施形態に係る複合装置1の上面図であり、図4は、実施形態に係る複合装置の部分概略断面図であり、図2のA-A断面図に相当する図である。
 実施形態に係る複合装置1は、冷媒を圧縮する冷媒圧縮機能と、冷媒とは別の熱媒体を加熱する熱媒体加熱機能とを有している。つまり、複合装置1は、冷媒圧縮機と熱媒体加熱装置とが一体化された構成を有する。
 複合装置1は、上述したような車両用空気調和装置に適用され得る。すなわち、複合装置1は、冷媒が循環する冷媒回路と、電動ポンプなどで構成されるポンプ部によって熱媒体が循環する熱媒体回路とに組み込まれて使用され得る。例えば、複合装置1の冷媒圧縮機能部は、前記冷媒回路に組み込まれ、膨張弁と、蒸発器(又はこれに相当する熱交換器)とを通過した冷媒を圧縮すると共に、圧縮された冷媒を、車室内に供給される空気を加熱する放熱器(冷媒-空気熱交換器)に供給するように構成され得る。また、複合装置1の熱媒体加熱機能部は、前記熱媒体回路に組み込まれ、車室内に供給される空気を加熱する熱媒体-空気熱交換器を通過した熱媒体を加熱すると共に、加熱された熱媒体を前記熱媒体-空気熱交換器に供給するように構成され得る。なお、冷媒及び熱媒体は、それぞれ任意に選択され得るが、例えば、冷媒としては気体冷媒が用いられ、熱媒体としては液体が用いられ得る。また、特に限定されないが、熱媒体には、通常、水(不凍液などが混入されたものを含む)が用いられる。したがって、熱媒体加熱機能(熱媒体加熱装置)は、水加熱機能(水加熱装置)とも称され得る。
 図1~図4を参照すると、複合装置1は、ハウジング2を有する。複合装置1のハウジング2は、第1ハウジング2Aと、第2ハウジング2Bと、第3ハウジング2Cと、第1カバー2Dと、第2カバー2Eと、第3カバー2Fとを含み、これらが図示省略のボルトなどの締結部材によって一体的に結合(締結)されて構成されている。
 第1ハウジング2Aは、略円筒状に形成されている。第1ハウジング2Aの内部には、冷媒を圧縮する圧縮機構3と、圧縮機構3を駆動する電動モータ4とが軸方向に直列に収容されている。特に限定されないが、圧縮機構3は、固定スクロールと可動(旋回)スクロールとを含むスクロール圧縮機構であり得る。また、電動モータ4の出力軸4aは、圧縮機構3(例えば、前記可動(旋回)スクロール)に連結されている。
 第1ハウジング2Aの2つの開口端のうちの一方の開口端(図1、図2における下側のの開口端)、すなわち、第1ハウジング2Aの圧縮機構3側の開口端は、第1カバー2Dによって閉塞されている。なお、冷媒を圧縮する圧縮機構3及びこれを駆動する電動モータ4を収容する第1ハウジング2Aは「圧縮機ハウジング」とも称され得る。
 第2ハウジング2Bは、第1ハウジング2Aの側方に配置されている。第2ハウジング2Bは、略矩形筒状に形成されている。第2ハウジング2Bの内部には、熱媒体を加熱する電気ヒータ5が収容されている。
 第2ハウジング2Bの2つの開口端のうちの一方の開口端(図1、図2における下側のの開口端)は、第2カバー2Eによって閉塞されている。なお、熱媒体を加熱する電気ヒータ5を収容する第2ハウジング2Bは、「ヒータハウジング」とも称され得る。
 第3ハウジング2Cは、上面が開放された箱型に形成されている。第3ハウジング2Cの内部には、電動モータ4を駆動(制御)するモータ駆動回路20及び電気ヒータ5を制御するヒータ制御回路30が収容されている。具体的には、本実施形態においては、モータ駆動回路20及びヒータ制御回路30を含む電子回路が実装された回路基板6が第3ハウジング2Cの内部に収容されている。
 第3ハウジング2Cの底壁7は、第1ハウジング2Aの他方の開口端(図1、図2における上側の開口端)、すなわち、第1ハウジング2Aの電動モータ4側の開口端と、第2ハウジング2Bの他方の開口端(図1、図2における上側の開口端)とを閉塞している。これにより、第1ハウジング2Aの内部と第3ハウジング2Cの内部とが仕切られ、第2ハウジング2Bの内部と第3ハウジング2Cの内部とが仕切られている。つまり、第3ハウジング2Cの底壁7は、第1ハウジング2Aの内部と第3ハウジング2Cの内部とを仕切る第1仕切部71と、第2ハウジング2Bの内部と第3ハウジング2Cの内部とを仕切る第2仕切部72を有する。
 第3ハウジング2Cの上面(開口端)は、第3カバー2Fによって閉塞されている。なお、モータ駆動回路20及びヒータ制御回路30(具体的にはこれらを含む前記電子回路が実装された回路基板6)を収容する第3ハウジング2Cは、「回路ハウジング」又は「基板ハウジング」とも称され得る。
 そして、複合装置1においては、主に圧縮機構3、電動モータ4及びモータ駆動回路20によって冷媒圧縮機能(電動圧縮機)が実現され、主に電気ヒータ5及びヒータ制御回路30によって熱媒体加熱機能(熱媒体加熱装置)が実現される。
 第1ハウジング2Aには、前記冷媒回路を循環する冷媒を内部に流入させるための冷媒流入口8が形成されている。流入させる冷媒は、例えば、膨張弁と蒸発器(またはこれに相当する熱交換器)とを通過した冷媒、すなわち、低温低圧の冷媒である。本実施形態において、冷媒流入口8は、第1ハウジング2Aの第3ハウジング2C側の部位、つまり、第1ハウジング2Aの内部と第3ハウジング2Cの内部とを仕切る第1仕切部71の近傍に設けられている。好ましくは、冷媒流入口8は、冷媒の少なくとも一部が第1仕切部71に沿って流れるように、前記冷媒回路を循環する冷媒を第1ハウジング2A内に流入させるように構成されている。
 冷媒流入口8を介して第1ハウジング2Aの内部に流入した(低温低圧の)冷媒は、第1ハウジング2Aの内部を流れて圧縮機構3に吸入される。圧縮機構3に吸入された冷媒は、圧縮機構3によって圧縮され、高温高圧の冷媒となって圧縮機構3から吐出される。吐出された(高温高圧の)冷媒は、第1ハウジング2Aに形成された冷媒流出口9から流出し、例えば、上述の放熱器(冷媒-空気熱交換器)に供給される。
 本実施形態において、冷媒流出口9は、第1ハウジング2Aの第1カバー2D側の部位に、すなわち、冷媒流入口8から図1、図2における上下方向に離れた位置に設けられている。このため、本実施形態において、冷媒流入口8から第1ハウジング2A内に流入した冷媒は、第1ハウジング2A内を図1、図2における上側から下側に向かって流れる。
 なお、第1仕切部71は、冷媒流入口8を介して第1ハウジング2A内に流入する(低温低圧の)冷媒によって冷却され得る。また、電動モータ4は、第1ハウジング2Aの内部を流れる冷媒によって冷却され得る。さらに、冷媒流入口8、第1ハウジング2Aの内部及び冷媒流出口9は、前記冷媒回路の一部を構成する。
 第2ハウジング2Bには、前記熱媒体回路を循環する熱媒体を内部に流入させるための熱媒体流入口10が形成されている。流入させる熱媒体は、例えば、上述の熱媒体-空気熱交換器を通過した熱媒体、すなわち、低温の熱媒体である。本実施形態において、熱媒体流入口10は、第2ハウジング2Bの第3ハウジング2C側の部位、つまり、第2ハウジング2Bの内部と第3ハウジング2Cの内部とを仕切る第2仕切部72の近傍であって且つ図1における奥側(図2における右側)に設けられている。好ましくは、熱媒体流入口10は、熱媒体の少なくとも一部が第2仕切部72に沿って流れるように、前記熱媒体回路を循環する熱媒体を第2ハウジング2B内に流入させるように構成されている。
 熱媒体流入口10を介して第2ハウジング2Bの内部に流入した(低温の)熱媒体は、第2ハウジング2Bの内部を流れ、その際、電気ヒータ5によって加熱されて昇温する。加熱された熱媒体は、第2ハウジング2Bに形成された熱媒体流出口11から流出し、例えば、上述の熱媒体-空気熱交換器に供給される。
 本実施形態において、熱媒体流出口11は、第2ハウジング2Bの内部と第3ハウジング2Cの内部とを仕切る第2仕切部72の近傍であって且つ図1における手前側(図2における左側)に設けられている。このため、本実施形態において、熱媒体流入口10から第2ハウジング2B内に流入した熱媒体は、第2ハウジング2B内を、第2仕切部72に沿って、図2、図4における右側から左側に向かって流れる。つまり、複合装置1において、熱媒体の流れ方向は、冷媒の流れ方向に略直交している。
 なお、第2仕切部72は、熱媒体流入口10を介して第2ハウジング2B内に流入する(低温の)熱媒体によって冷却され得る。また、熱媒体流入口10、第2ハウジング2Bの内部及び熱媒体流出口11は、前記熱媒体回路の一部を構成する。
 ここで、図には示されていないが、モータ駆動回路20から電動モータ4への給電線及びヒータ制御回路30から電気ヒータ5への給電線は、それぞれ気密及び液密な状態で第3ハウジング2Cの底壁7を貫通して延びている。
 次に、電動モータ4を駆動するモータ駆動回路20及び電気ヒータ5を制御するヒータ制御回路30について説明する。図5は、モータ駆動回路20及びヒータ制御回路30を含む前記電子回路の要部構成例を示す図である。
 本実施形態において、モータ駆動回路20は、車両に搭載された高電圧バッテリなどの高電圧電源HVからの直流電圧を三相交流電圧に変換して電動モータ4に供給することで電動モータ4を駆動(制御)するように構成されている。また、ヒータ制御回路30は、高電圧電源HVの電気ヒータ5への印加(高電圧電源HVと電気ヒータ5との間の通電)を制御することで電気ヒータ5の温度を制御するように構成されている。さらに、本実施形態において、前記電子回路は、高電圧電源HVからの直流電圧を平滑化する平滑コンデンサSCを含んでいる。
 図5に示されるように、前記電子回路において、平滑コンデンサSCは、高電圧電源HVの電源ライン(HV+)と接地ライン(HVGND)との間に接続されている。平滑コンデンサSCは、高電圧電源HVからモータ駆動回路20及びヒータ制御回路30に供給される直流電圧を平滑化する。
 モータ駆動回路20は、第1パワーモジュール21と、第1ドライバ22とを有する。なお、平滑コンデンサSCを含んだ状態をモータ駆動回路20ということもある。
 第1パワーモジュール21は、6つのパワースイッチング素子(以下単に「第1スイッチング素子」という)Q1~Q6と、6つのダイオードD1~D6とを含む。特に限定されないが、第1スイッチング素子Q1~Q6は、IGBT(絶縁ゲート型バイポーラトランジスタ)であり得る。第1パワーモジュール21は、第1スイッチング素子Q1~Q6がPWM制御されることにより、高電圧電源HVからの直流電圧を三相交流電圧に変換して電動モータ4に供給する。
 具体的には、第1パワーモジュール21は、高電圧電源HVの電源ラインと接地ラインとの間に、互いに並列に設けられたU相アーム、V相アーム及びW相アームを有する。
 U相アームには、2つの第1スイッチング素子Q1、Q2が直列に接続されており、各第1スイッチング素子Q1、Q2にはダイオードD1、D2がそれぞれ逆並列に接続されている。
 V相アームには、2つの第1スイッチング素子Q3、Q4が直列に接続されており、各第1スイッチング素子Q3、Q4にはダイオードD3、D4がそれぞれ逆並列に接続されている。
 W相アームには、2つの第1スイッチング素子Q5、Q6が直列に接続されており、各第1スイッチング素子Q5、Q6にはダイオードD5、D6がそれぞれ逆並列に接続されている。
 また、U、V、W相アームのそれぞれの中間点は、それぞれの一端においてスター結線された電動モータ4のU、V、W相コイルの他端に接続されている。つまり、U相アームの第1スイッチング素子Q1、Q2の中間点がU相コイルに接続され、V相アームの第1スイッチング素子Q3、Q4の中間点がV相コイルに接続され、及び、W相アームの第1スイッチング素子Q5、Q6の中間点がW相コイルに接続されている。
 したがって、第1パワーモジュール21は、各相アームの電源ライン側の第1スイッチング素子Q1,Q3,Q5のON期間と、接地ライン側の第1スイッチング素子Q2,Q4,Q6のON期間との比率が制御される(PWM制御される)ことにより、平滑コンデンサSCによって平滑化された、高電圧電源HVからの直流電圧を三相交流電圧に変換して電動モータ4に供給することができ、これにより、電動モータ4を駆動し、及び圧縮機構3を駆動することができる。
 第1ドライバ22は、後述する制御ユニット15からの制御信号(PWM信号)に基づき、第1スイッチング素子Q1~Q6(のゲート)をON/OFF駆動(スイッチング)する。
 つまり、本実施形態において、モータ駆動回路20の動作(第1スイッチング素子Q1~Q6のスイッチング動作)、ひいては、電動モータ4及び圧縮機構3(すなわち、冷媒圧縮機能)の動作は、制御ユニット15によって制御されるようになっている。
 ヒータ制御回路30は、第2パワーモジュール31と、第2ドライバ32とを有する。
 第2パワーモジュール31は、高電圧電源HVの電気ヒータ5への印加を制御する2つのスイッチング素子(以下「第2スイッチング素子」という)Q7、Q8を含む。第2スイッチング素子Q7、Q8は、モータ駆動回路20の第1スイッチング素子Q1~Q6と同様、IGBTであり得る。本実施形態において、2つの第2スイッチング素子Q7、Q8のうちの一方の第2スイッチング素子Q7は、電気ヒータ5よりも高電圧電源HVの出力側(電圧側)に設けられ、他方の第2スイッチング素子Q8は、電気ヒータ5よりも高電圧電源HVの接地側に設けられている。
 第2パワーモジュール31は、第2スイッチング素子Q7、Q8が制御(PWM制御)されることにより、高電圧電源HVと電気ヒータ5との間の通電をON/OFFし、これによって、電気ヒータ5の温度、さらには、電気ヒータ5によって加熱される熱媒体の温度を制御する。
 第2ドライバ32は、モータ駆動回路20の第1ドライバ22と同様、制御ユニット15からの制御信号(PWM信号)に基づき、第2スイッチング素子Q7、Q8(のゲート)をON/OFF駆動(スイッチング)する。
 つまり、本実施形態において、ヒータ制御回路30(第2スイッチング素子Q7、Q8)の動作、ひいては、電気ヒータ5(熱媒体加熱機能)の動作は、制御ユニット15によって制御されるようになっている。
 ここで、図6を参照して、平滑コンデンサSC、モータ駆動回路20の第1スイッチング素子Q1~Q6及びヒータ制御回路30の第2スイッチング素子Q7、Q8の配置構造について説明する。図6は、複合装置1の部分概略断面図(図3のB-B断面図に相当する)である。
 上述のように、モータ駆動回路20及びヒータ制御回路30(さらには平滑コンデンサSC)を含む前記電子回路は、回路基板6に実装されて第3収容空間S3に収容されている。回路基板6は、図6に示されるように、例えば、第3収容空間S3内に設けられた複数の基板取付部12に取り付けられている。本実施形態において、複数の基板取付部12のそれぞれは、第3ハウジング2Cの底壁7から上側に(第1ハウジング2A及び第2ハウジング2Bから離れる方向に)突出するボス状に形成され、複数の基板取付部12の上面に回路基板6がねじ13によって取り付けられている。
 本実施形態において、平滑コンデンサSC、モータ駆動回路20の第1スイッチング素子Q1~Q6及びヒータ制御回路30の第2スイッチング素子Q7、Q8は、冷媒流入口8から第1ハウジング2Aの内部に流入した冷媒によって冷却され得る位置に配置されている。
 具体的には、平滑コンデンサSC、モータ駆動回路20の第1スイッチング素子Q1~Q6及びヒータ制御回路30の第2スイッチング素子Q7、Q8は、基板取付部12に取り付けられた回路基板6の下面(第3ハウジング2Cの底壁7側の面)に実装され、第1ハウジング2Aの内部と第3ハウジング2Cの内部とを仕切る第1仕切部71に熱的に接触するように配置されている。ここで、「第1仕切部71に熱的に接触する」とは、第1仕切部71との間で熱交換可能な状態にあることをいい、第1仕切部71に直接接触していること、第1仕切部71に熱交換可能な程度に近接していること、及び、熱伝導率が高い熱交換部材などを介して第1仕切部71に間接的に接触することなどが含まれる。
 図7は、実施形態に係る複合装置1の制御系の概略構成を示すブロック図である。図7に示されるように、本実施形態において、複合装置1の制御ユニット15には、上位の制御装置(例えば、上述の車両用空調装置の制御装置)から、冷媒圧縮機能の動作要求(起動要求、停止要求を含む)や熱媒体加熱機能の動作要求(起動要求、停止要求を含む)などが入力される。
 また、制御ユニット15には、第1スイッチング素子Q1~Q6の温度又はその相関値を検出する第1温度検出部51や第2スイッチング素子Q7、Q8の温度又はその相関値を検出する第2温度検出部52などの各種検出部の検出結果も入力されている。
 そして、制御ユニット15は、入力された前記上位の制御装置からの動作要求及び/又は前記各種検出部の検出結果に応じた制御信号を第1ドライバ22及び/又は第2ドライバ32に供給し、これによって、第1スイッチング素子Q1~Q6の動作(すなわち、モータ駆動回路20の動作)を制御し、及び/又は、第2スイッチング素子Q7、Q8(すなわち、ヒータ制御回路30の動作)を制御するように構成されている。
 ところで、前記電子回路の配線、すなわち、回路基板6上の配線パターンは、寄生インダクタンスを有している。配線の寄生インダクタンスは、配線の長さが長いほど大きくなる傾向がある。また、前記電子回路において、平滑コンデンサSCと、モータ駆動回路20の第1スイッチング素子Q1~Q6及びヒータ制御回路30の第2スイッチング素子Q7,Q8のそれぞれとの間の配線の寄生インダクタンスをLとすると、各スイッチング素子のスイッチング(ターンオフ)時に発生するサージ電圧ΔVは、ΔV=L×di/dtとなる。ここで、「di/dt」は、スイッチング素子に流れる電流の傾きであり、スイッチング素子のスイッチング(ターンオフ)速度に依存する。
 スイッチング素子を効率的に動作させるためには、スイッチング素子のスイッチング速度を速くした方がよい。但し、スイッチング速度を速くすると、「di/dt」が増加してサージ電圧ΔVも上昇する。サージ電圧ΔVがスイッチング素子の耐圧電圧を超えてしまうと、スイッチング素子の損傷を招く。そのため、同一の回路に用いられた複数のスイッチング素子のスイッチング速度は、通常、平滑コンデンサから最も離れた位置にある(配線長が最も長い)スイッチング素子に関する配線の寄生インダクタンスに制約される。すなわち、平滑コンデンサから最も離れた位置にあるスイッチング素子以外のスイッチング素子についても、平滑コンデンサから最も離れた位置にあるスイッチング素子と同じように、スイッチング速度が遅く設定される。このため、全体としてスイッチング損失が必要以上に増加してしまうことになる。
 つまり、全てのスイッチング素子を効率的に動作させつつ、サージ電圧による各スイッチング素子の損傷を防止することは難しいという問題がある。
 実施形態に係る複合装置1は、以下のような構成を採用し、これによって、上記問題に対処するようにしている。
(1)まず、ヒータ制御回路30の第2スイッチング素子Q7、Q8の駆動周波数(スイッチング周波数)は、モータ駆動回路20の第1スイッチング素子Q1~Q6の駆動周波数(スイッチング周波数)よりも低い。
 モータ駆動回路20(の第1スイッチング素子Q1~Q6)は、高電圧電源HVからの直流電圧を三相交流電圧に変換するものであり、第1スイッチング素子Q1~Q6のスイッチング周波数が低くなると、出力波形に歪み等が生じるおそれがある。出力波形に歪み等が生じると、電動モータ4の安定した動作が得られない。このため、モータ駆動回路20の第1スイッチング素子Q1~Q6のスイッチング周波数は、ある程度高くせざるを得ない。例えば、第1スイッチング素子Q1~Q6のスイッチング周波数は、kHzオーダー以上の周波数である必要がある。
 他方、ヒータ制御回路30(の第2スイッチング素子Q7、Q8)は、高電圧電源HVと電気ヒータ5との間の通電をON/OFFするものであるので、第2スイッチング素子Q7、Q8のスイッチング周波数は、それほど高くする必要はない。例えば、第2スイッチング素子Q7、Q8のスイッチング周波数は、Hzオーダーの周波数で十分である。
 そこで、本実施形態では、第2スイッチング素子Q7、Q8のスイッチング周波数が、第1スイッチング素子Q1~Q6のスイッチング周波数よりも低く設定されている。
(2)次に、ヒータ制御回路30の第2スイッチング素子Q7、Q8のスイッチング速度は、モータ駆動回路20の第1スイッチング素子Q1~Q6のスイッチング速度よりも遅い。
 スイッチング素子のスイッチング速度を遅くすると、「di/dt」が小さくなる。そのため、スイッチング素子がスイッチング(ターンオフ)したときに発生するサージ電圧ΔVが低下する。したがって、スイッチング素子のスイッチング速度を遅くすることで、スイッチング(ターンオフ)時に発生するサージ電圧ΔVがスイッチング素子の耐圧電圧を超えること、つまり、サージ電圧によってスイッチング素子が損傷することが防止され得る。但し、スイッチング素子のスイッチング速度が遅くなると、スイッチング損失が増加することになる(効率が低下する)。
 ここで、上記(1)に記載されているように、本実施形態において、ヒータ制御回路30の第2スイッチング素子Q7、Q8のスイッチング周波数は、モータ駆動回路20の第1スイッチング素子Q1~Q6のスイッチング周波数よりも低く設定されている。つまり、第2スイッチング素子Q7、Q8は、第1スイッチング素子Q1~Q6と比べて、スイッチング回数が少ない。このことは、第2スイッチング素子Q7、Q8のスイッチング速度を遅くしても、第1スイッチング素子Q1~Q6のスイッチング速度を遅くした場合に比べて、スイッチング損失の増加が少なくて済むこと、すなわち、全体としてのスイッチング損失の増加が抑制され得ることを意味している。
 そこで、本実施形態では、第2スイッチング素子Q7、Q8のスイッチング速度が、第1スイッチング素子Q1~Q6のスイッチング速度よりも遅く設定されている。特に限定されないが、本実施形態においては、第2スイッチング素子Q7、Q8のゲート抵抗(図示省略)が、モータ駆動回路20の第1スイッチング素子Q1~Q6のゲート抵抗(図示省略)より高い抵抗値を有しており、これによって、第2スイッチング素子Q7、Q8のスイッチング速度が第1スイッチング素子Q1~Q6のスイッチング速度よりも遅くなっている。
(3)そして、前記電子回路において、モータ駆動回路20の第1スイッチング素子Q1~Q6に関する配線の寄生インダクタンスは、ヒータ制御回路30の第2スイッチング素子Q7、Q8に関する配線の寄生インダクタンスよりも小さくなっている。
 上記(2)に記載されたように、本実施形態において、第2スイッチング素子Q7、Q8のスイッチング速度は、第1スイッチング素子Q1~Q6のスイッチング速度よりも遅く設定されている。したがって、第2スイッチング素子Q7、Q8における「di/dt」は、第1スイッチング素子Q1~Q6における「di/dt」よりも小さい。このことは、サージ電圧ΔV(=L×di/dt)を考慮したとき、第2スイッチング素子Q7、Q8に関する配線の寄生インダクタンスが、第1スイッチング素子Q1~Q6に関する配線の寄生インダクタンスよりも大きくてもよいことを意味している。つまり、第2スイッチング素子Q7、Q8に関する配線の寄生インダクタンスが、第1スイッチング素子Q1~Q6に関する配線の寄生インダクタンスよりも大きくなっても、第2スイッチング素子Q7、Q8のスイッチング(ターンオフ)時に発生するサージ電圧ΔVが第2スイッチング素子Q7、Q8の耐圧電圧を超えないようにすることが可能である。
 そこで、本実施形態において、前記電子回路は、モータ駆動回路20の第1スイッチング素子Q1~Q6に関する配線の寄生インダクタンスが、ヒータ制御回路30の第2スイッチング素子Q7、Q8に関する配線の寄生インダンクタンスよりも小さくなるように、形成されている。
 配線の寄生インダクタンスは、配線の長さが短いほど小さくなる。そのため、本実施形態の前記電子回路において、平滑コンデンサSCは、ヒータ制御回路30の第2スイッチング素子Q7、Q8よりもモータ駆動回路20の第1スイッチング素子Q1~Q6に近い位置に配置され(図5参照)、これによって、第1スイッチング素子Q1~Q6に関する配線(具体的には平滑コンデンサSCと第1スイッチング素子Q1~Q6との間の配線)の長さが、第2スイッチング素子Q7、Q8に関する配線(具体的には平滑コンデンサSCと第2スイッチング素子Q7、Q8との間の配線)の長さよりも短くなっている。
 また、配線の寄生インダクタンスは、配線の幅が広い(配線が太い)ほど小さくなる。そのため、本実施形態の前記電子回路において、第1スイッチング素子Q1~Q6に関する配線は、第2スイッチング素子Q7、Q8に関する配線よりも幅広に(太く)形成されている。但し、本実施形態において、第2スイッチング素子Q7、Q8に関する配線は、第1スイッチング素子Q1~Q6に関する配線との共用部を含んでいる。したがって、本実施形態においては、平滑コンデンサSCと第1スイッチング素子Q1~Q6との間の配線(図5において破線で囲まれた配線)が、平滑コンデンサSCと第2スイッチング素子Q7、Q8との間の配線における前記共用部以外の部分、すなわち、第1スイッチング素子Q1~Q6と第2スイッチング素子Q7、Q8との間の配線(図5において一点鎖線で囲まれた配線)よりも幅広に(太く)形成されている。
 具体的には、図8に示されるように、回路基板6の下面(第3ハウジング2Cの底壁7側の面)において、平滑コンデンサSCは、ヒータ制御回路30の第2スイッチング素子Q7、Q8よりもモータ駆動回路20の第1スイッチング素子Q1~Q6に近い位置に配置(実装)されている。また、回路基板6の上面(第3カバー2F側の面)において、平滑コンデンサSCと第1スイッチング素子Q1~Q6との間の配線パターンP1a、P1bの長さは、平滑コンデンサSCと第2スイッチング素子Q7、Q8との間の配線パターンP1a+P2a、P1b+P2bの長さよりも短くなっている。さらに、平滑コンデンサSCと第1スイッチング素子Q1~Q6との間の配線パターンP1a、P1bは、回路基板6上の他の配線パターン、例えば、第1スイッチング素子Q1~Q6と第2スイッチング素子Q7、Q8との間の第2配線パターンP2a、P2bや第2スイッチング素子Q7、Q8から電気ヒータ5に向かって延びる第3配線パターンP3a、P3bよりも幅広に形成されている。
 実施形態に係る複合装置1によれば以下の効果が得られる。
 実施形態に係る複合装置1は、冷媒を圧縮する圧縮機構3及び圧縮機構3を駆動する電動モータ4を内部に収容すると共に、冷媒流入口8及び冷媒流出口9を有する第1ハウジング(圧縮機ハウジング)2Aと、熱媒体を加熱する電気ヒータ5を内部に収容すると共に、熱媒体流入口10及び熱媒体流出口11を有する第2ハウジング(ヒータハウジング)2Bと、電動モータ4を駆動するモータ駆動回路20及び電気ヒータ5を制御するヒータ制御回路30を含む電子回路が実装された回路基板6を内部に収容する第3ハウジング(回路ハウジング)2Cとを含み、これら第1ハウジング(圧縮機ハウジング)2A、第2ハウジング2B(ヒータハウジング)及び第3ハウジング(回路ハウジング)2Cが一体的に結合されている。
 このような複合装置1は、冷媒を圧縮する冷媒圧縮機(電動圧縮機)及び熱媒体を加熱する熱媒体加熱装置として機能し得るものであり、冷媒を圧縮しながら、熱媒体を加熱することができる。このため、複合装置1は、上述したような車両用空気調和装置に適用され得る。そして、複合装置1が車両用空気調和装置に適用されることにより、電動圧縮機及び熱媒体加熱装置を別個に有する従来の構成に比べて、車両用空気調和装置の小型化を図ることが可能である。
 複合装置1において、モータ駆動回路20は、直流電圧を三相交流電圧に変換する第1スイッチング素子Q1~Q6を含み、ヒータ制御回路30は、電気ヒータ5への通電をON/OFFする第2スイッチング素子Q7、Q8を含む。また、第2スイッチング素子Q7、Q8のスイッチング周波数(駆動周波数)は、第1スイッチング素子Q1~Q6のスイッチング周波数(駆動周波数)よりも低く設定され、第2スイッチング素子Q7、Q8のスイッチング速度は、第1スイッチング素子Q1~Q6のスイッチング速度よりも遅く設定され、及び、前記電子回路は、第1スイッチング素子Q1~Q6に関する配線の寄生インダクタンスが、第2スイッチング素子Q7、Q8に関する配線の寄生インダクタンスよりも小さくなるように形成されている。
 具体的には、回路基板6において、平滑コンデンサSCは、ヒータ制御回路30の第2スイッチング素子Q7、Q8よりもモータ駆動回路20の第1スイッチング素子Q1~Q6に近い位置に配置されており、平滑コンデンサSCと第1スイッチング素子Q1~Q6との間の配線パターンP1a,P1bの長さが、平滑コンデンサSCと第2スイッチング素子Q7、Q8との間の配線パターンP1a+P2a,P1b+P2bの長さよりも短くなっている。また、平滑コンデンサSCと第1スイッチング素子Q1~Q6との間の配線パターンP1a,P1bは、第1スイッチング素子Q1~Q6と第2スイッチング素子Q7、Q8との間の配線パターンP2a,P2bを含む回路基板6上の他の配線パターンよりも幅広に形成されている。
 このため、冷媒圧縮機能及び熱媒体加熱機能を損なうことなく、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8のサージ電圧による損傷を防止しつつ、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8によるスイッチング損失の増加を抑制することができる。具体的には、第1スイッチング素子Q1~Q6については、これらに関する配線の寄生インダクタンスを小さくすることにより、スイッチング速度を遅くする(スイッチング損失を増加させる)ことなく、サージ電圧による損傷を防止する。他方、第2スイッチング素子Q7、Q8については、スイッチング速度を遅くすることでサージ電圧による損傷を防止すると共に、スイッチング周波数を低くすることでスイッチング損失の増加を抑制する。そして、これらにより、複合装置1において、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8のサージ電圧による損傷の防止と、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8によるスイッチング損失の増加の抑制とを両立させることを可能としている。
 また、複合装置1において、第1ハウジング(圧縮機ハウジング)2Aの冷媒流入口8は、第1ハウジング(圧縮機ハウジング)2Aの内部と第3ハウジング(回路ハウジング)2Cの内部とを仕切る第1仕切部71の近傍に設けられており、第3ハウジング(回路ハウジング)2C内において、平滑コンデンサSC、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8は、第1仕切部71に熱的に接触するように配置されている。
 このため、平滑コンデンサSC、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8が、第1ハウジング(圧縮機ハウジング)内に流入する冷媒によって冷却され得る第1仕切部71との間の熱交換によって効果的に冷却され得る。つまり、平滑コンデンサSC、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8に対する高い冷却性(放熱性)が確保され、その結果、複合装置1の安定した動作が実現され得る。
 なお、上述の実施形態において、平滑コンデンサSC、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8は、第1仕切部71に熱的に接触するように配置されている。しかし、これに限られるものではない。複合装置1において、第2ハウジング(ヒータハウジング)2Bの熱媒体流入口10は、第2ハウジング2B(ヒータハウジング)2Bの内部と第3ハウジング(回路ハウジング)2Cの内部とを仕切る第2仕切部72の近傍に設けられており、第2仕切部72は、第2ハウジング2B内に流入する熱媒体によって冷却され得る。したがって、平滑コンデンサSC、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8は、第2仕切部72に熱的に接触するように配置されてもよい。あるいは、平滑コンデンサSC、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8の一部が第1仕切部71に熱的に接触するように配置され、残りが第2仕切部72に熱的に接触するように配置されてもよい。このようにしても平滑コンデンサSC、第1スイッチング素子Q1~Q6及び第2スイッチング素子Q7、Q8に対する冷却性(放熱性)が確保され得る。
 また、上記では、主に複合装置1が車両用空気調和装置に適用される場合について説明されている。しかし、これに限られるものではない。複合装置1は、冷媒を圧縮する電動圧縮機及び熱媒体を加熱する熱媒体加熱装置を利用する種々の装置やシステムに適用することが可能である。
 以上、本発明の実施形態について説明したが、本発明は、上述の実施形態に制限されるものではなく、本発明の技術的思想に基づいて変形及び変更が可能であることはもちろんである。
 1…複合装置、2…ハウジング、2A…第1ハウジング(圧縮機ハウジング)、2B…第2ハウジング(ヒータハウジング)、2C…第3ハウジング(回路ハウジング)、3…圧縮機構、4…電動モータ、5…電気ヒータ、6…回路基板、8…冷媒流入口、9…冷媒流出口、10…熱媒体流入口、11…熱媒体流出口、15…制御ユニット、20…モータ駆動回路、30…ヒータ制御回路、Q1~Q6…第1スイッチング素子(モータ駆動回路のスイッチング素子)、Q7,Q8…第2スイッチング素子(ヒータ制御回路のスイッチング素子)、SC…平滑コンデンサ

Claims (6)

  1.  冷媒圧縮機能及び熱媒体加熱機能を有する複合装置であって、
     冷媒を圧縮する圧縮機構及び前記圧縮機構を駆動する電動モータを内部に収容すると共に、冷媒を内部に流入させる冷媒流入口及び前記圧縮機構で圧縮された冷媒を外部に流出させる冷媒流出口を有する圧縮機ハウジングと、
     熱媒体を加熱する電気ヒータを内部に収容すると共に、熱媒体を内部に流入させる熱媒体流入口及び前記電気ヒータで加熱された熱媒体を外部に流出させる熱媒体流出口を有するヒータハウジングと、
     前記電動モータを駆動するモータ駆動回路及び前記電気ヒータを制御するヒータ制御回路を含む電子回路が実装された回路基板を収容する回路ハウジングと、
     を含み、
     前記圧縮機ハウジング、前記ヒータハウジング及び前記回路ハウジングは、一体的に結合されており、
     前記モータ駆動回路及び前記ヒータ制御回路は、それぞれスイッチング素子を含み、
     前記ヒータ制御回路のスイッチング素子のスイッチング周波数は、前記モータ駆動回路のスイッチング素子のスイッチング周波数よりも低く設定され、
     前記ヒータ制御回路のスイッチング素子のスイッチング速度は、前記モータ駆動回路のスイッチング素子のスイッチング速度よりも遅く設定され、
     前記電子回路は、前記モータ駆動回路のスイッチング素子に関する配線の寄生インダクタンスが前記ヒータ制御回路のスイッチング素子に関する配線の寄生インダクタンスよりも小さくなるように形成されている、
     複合装置。
  2.  前記モータ駆動回路のスイッチング素子は、電源からの直流電圧を交流電圧に変換するように構成され、
     前記ヒータ制御回路のスイッチング素子は、前記電源と前記電気ヒータとの間の通電をON/OFFするように構成され、
     前記電子回路は、前記電源からの直流電圧を平滑化する平滑コンデンサをさらに含み、
     前記回路基板において、前記平滑コンデンサは、前記ヒータ制御回路のスイッチング素子よりも前記モータ駆動回路のスイッチング素子に近い位置に配置されている、
     請求項1に記載の複合装置。
  3.  前記回路基板において、前記平滑コンデンサと前記モータ駆動回路のスイッチング素子との間の配線パターンの長さが前記平滑コンデンサと前記ヒータ制御回路のスイッチング素子との間の配線パターンの長さよりも短い、請求項2に記載の複合装置。
  4.  前記回路基板において、前記平滑コンデンサと前記モータ駆動回路のスイッチング素子との間の配線パターンが他の配線パターンよりも幅広に形成されている、請求項2に記載の複合装置。
  5.  前記圧縮機ハウジングの内部と前記回路ハウジングの内部とが第1仕切部で仕切られていると共に、前記圧縮機ハウジングの前記冷媒流入口が前記第1仕切部の近傍に設けられており、
     前記回路ハウジング内において、前記平滑コンデンサ、前記モータ駆動回路のスイッチング素子及び前記ヒータ制御回路のスイッチング素子は、前記第1仕切部に熱的に接触するように配置されている、
     請求項2~4のいずれか一つに記載の複合装置。
  6.  前記ヒータハウジングの内部と前記回路ハウジングの内部とが第2仕切部で仕切られていると共に、前記ヒータハウジングの前記熱媒体流入口が前記第2仕切部の近傍に設けられており、
     前記回路ハウジング内において、前記平滑コンデンサ、前記モータ駆動回路のスイッチング素子及び前記ヒータ制御回路のスイッチング素子は、前記第2仕切部に熱的に接触するように配置されている、
     請求項2~4のいずれか一つに記載の複合装置。
PCT/JP2023/019677 2022-06-24 2023-05-26 複合装置 WO2023248705A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101523A JP2024002373A (ja) 2022-06-24 2022-06-24 複合装置
JP2022-101523 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248705A1 true WO2023248705A1 (ja) 2023-12-28

Family

ID=89379761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019677 WO2023248705A1 (ja) 2022-06-24 2023-05-26 複合装置

Country Status (2)

Country Link
JP (1) JP2024002373A (ja)
WO (1) WO2023248705A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11115467A (ja) * 1997-10-13 1999-04-27 Toyota Autom Loom Works Ltd 自動車用空調装置
JP2012127328A (ja) * 2010-12-17 2012-07-05 Denso Corp 圧縮機
JP2016096680A (ja) * 2014-11-14 2016-05-26 古河電気工業株式会社 電力制御装置および電力制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11115467A (ja) * 1997-10-13 1999-04-27 Toyota Autom Loom Works Ltd 自動車用空調装置
JP2012127328A (ja) * 2010-12-17 2012-07-05 Denso Corp 圧縮機
JP2016096680A (ja) * 2014-11-14 2016-05-26 古河電気工業株式会社 電力制御装置および電力制御方法

Also Published As

Publication number Publication date
JP2024002373A (ja) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2014103482A1 (ja) インバータ一体型電動圧縮機
JP4144465B2 (ja) 車両用インバータ一体型電動コンプレッサ
US8820105B2 (en) Medium voltage power controller
KR20080074981A (ko) 스위치드 릴럭턴스 모션 컨트롤 시스템의 응용
KR101972434B1 (ko) 전동 압축기
WO2015098617A1 (ja) 冷凍装置
JP2001289549A (ja) 冷蔵庫制御装置
US8544290B2 (en) Medium voltage variable speed drive for a chiller unit
WO2023248705A1 (ja) 複合装置
JP2016050726A (ja) 冷凍装置
WO2023223770A1 (ja) 複合装置
WO2023203940A1 (ja) 複合装置
WO2023248708A1 (ja) 複合装置
WO2023228644A1 (ja) 複合装置
WO2023228643A1 (ja) 複合装置
WO2023119493A1 (ja) 複合装置
WO2023120019A1 (ja) 複合装置
WO2023120020A1 (ja) 複合装置
JP2000264046A (ja) 車両用空気調和装置
EP2191991A1 (en) Electric compressor integrated with inverter
WO2024042981A1 (ja) 複合装置
JP7175404B2 (ja) 熱源側ユニット
JPH0422185Y2 (ja)
KR0184804B1 (ko) 전기자동차용 냉각장치
JP2021169788A (ja) 電動圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826893

Country of ref document: EP

Kind code of ref document: A1