WO2023248540A1 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
WO2023248540A1
WO2023248540A1 PCT/JP2023/007726 JP2023007726W WO2023248540A1 WO 2023248540 A1 WO2023248540 A1 WO 2023248540A1 JP 2023007726 W JP2023007726 W JP 2023007726W WO 2023248540 A1 WO2023248540 A1 WO 2023248540A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
unit
frequencies
phases
Prior art date
Application number
PCT/JP2023/007726
Other languages
English (en)
French (fr)
Inventor
佑介 寺戸
大輔 高井
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2023248540A1 publication Critical patent/WO2023248540A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement

Definitions

  • the present invention relates to a distance measuring device.
  • phase acquisition unit that acquires a plurality of first phases when the other device receives the plurality of first signals transmitted to the other device at different timings and at three or more types of plural frequencies; a phase measuring unit that measures a plurality of second phases when the receiving unit receives the second signals at the plurality of frequencies of three or more types at different timings from the other device; a signal strength acquisition unit that acquires signal intensities for a plurality of signal pairs of signals having the same frequency with the plurality of second signals; an extraction unit that extracts N signal pairs corresponding to N signal intensities excluding a plurality of signal intensities (N is an integer of 2 or more) from the plurality of signal pairs; a round trip phase calculation unit that calculates a round trip phase that is the sum of the first phase and the second phase of the first signal and the second signal for the N signal pairs; and a distance measuring section that measures the distance to the other device based on the frequency.
  • FIG. 3 is a diagram showing round-trip phases (upper side) for frequencies f0 to fm and signal strengths (lower side) for frequencies f0 to fm obtained by performing first transmission processing and first reception processing during a plurality of continuous wave transmission periods.
  • . 9C is a diagram illustrating signal pairs extracted by the extraction unit 177 by summarizing the results of FIGS. 9A to 9C.
  • FIG. 7 is a diagram illustrating a speed correction process among the correction processes performed by the correction unit 178.
  • FIG. 7 is a diagram illustrating linear correction processing among the correction processing performed by the correction unit 178.
  • FIG. 7 is a diagram illustrating linear correction processing among the correction processing performed by the correction unit 178.
  • FIG. 7 is a diagram illustrating linear correction processing among the correction processing performed by the correction unit 178.
  • FIG. 3 is a flowchart illustrating an example of processing executed by the control device 170.
  • FIG. 3 is a flowchart illustrating an example of processing executed by the control device 1
  • the distance measurement device 100A of the vehicle 10 measures the distance and notifies the distance measurement result to the distance measurement device 100B of the smart key 20.
  • the distance measuring devices 100A and 100B have the same configuration, for example. Therefore, in the following, when the distance measuring devices 100A and 100B are not distinguished, they will simply be referred to as the distance measuring device 100.
  • the range finder 100A of the vehicle 10 and the range finder 100B of the smart key 20 the range finder 100B that does not measure distance is an example of another device.
  • the distance measuring device 100B of the vehicle 10 is an example of another device.
  • the distance measuring device 100A includes an antenna 101, a PA (Power Amplifier) 110, an LNA (Low Noise Amplifier) 120, an OM (Orthogonal Modulator) 130, and an ODM (Orthogonal DeMod).
  • ulator 140 Voltage Controlled Oscillator 150, PLL (Phase Locked) Loop) 155, a codec processing unit 160, and a control device 170.
  • the antenna 101 communicates with the antenna 101 of the ranging device 100B of the vehicle 10.
  • Antenna 101 is connected to PA 110 and LNA 120.
  • a changeover switch for switching the connection destination of the antenna 101 to either the PA 110 or the LNA 120 is omitted.
  • the antenna 101 of the range finder 100A transmits a first signal to the range finder 100B and receives a second signal from the range finder 100B.
  • the PA 110 is provided between the OM 130 and the antenna 101 and amplifies the modulated signal for transmission (first signal) input from the OM 130 and outputs the amplified signal to the antenna 101.
  • PA110 is a transmitting amplifier.
  • LNA 120 is provided between antenna 101 and ODM 140, amplifies the second signal received by antenna 101 with low noise, and outputs it to ODM 140.
  • LNA 120 is a receiving amplifier.
  • the VCO 150 oscillates at the frequency set by the PLL 155.
  • VCO 150 can oscillate at multiple frequencies set by PLL 155.
  • the PLL 155 sets the frequency at which the VCO 150 oscillates.
  • the PLL 155 can set multiple frequencies to the VCO 150.
  • the codec processing unit 160 includes an ADC (Analog to Digital Converter) and a DAC (Digital to Analog Converter), and performs codec processing.
  • the codec processing unit 160 detects BLE (registered trademark) packets, performs address determination processing, and the like. More specifically, the codec processing unit 160 digitally converts (ADC processing) the I/Q signal processed by the ODM 140 and converts it into BLE packet information.
  • the codec processing unit 160 generates an I/Q signal (divides it into an I signal and a Q signal) from the BLE packet (digital signal) input from the control device 170, converts it into analog by DAC processing, and sends a transmission signal. It is output to the OM 130 as an I/Q signal.
  • the signal of a predetermined frequency that the OM 130 of the range finder 100A transmits to the range finder 100B will be referred to as a transmission signal.
  • a signal transmitted as a transmission signal by the distance measuring device 100A and received by another device is referred to as a reception signal.
  • the control device 170 includes a main control section 170A, a transmission/reception control section 171, a switching section 172, a phase acquisition section 173, a phase measurement section 174, a signal strength acquisition section 175, a round trip phase calculation section 176, an extraction section 177, a correction section 178, and a measurement section 170. It has a distance part 179 and a memory 170M.
  • the memory 170M is an example of a storage section.
  • the control device 170 is realized by a microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an input/output interface, an internal bus, and the like.
  • the transmission/reception control unit 171 causes the OM 130 to repeatedly perform a transmission process of transmitting the first signal to the range finder 100B during a predetermined period, and causes the OM 130 to send three or more types of signals to the range finder 100B at different timings.
  • a first signal of a plurality of frequencies is transmitted.
  • the transmission/reception control unit 171 causes the ODM 140 to repeatedly perform a reception process of receiving the second signal from the distance measurement device 100B during a predetermined period, and causes the ODM 140 to receive three or more types of signals from the distance measurement device 100B at different timings.
  • a second signal of the frequency is received.
  • the predetermined period is a continuous wave transmission period in BLE (registered trademark), and is 2.5 milliseconds.
  • the distance measurement device 100A transmits a first signal to the distance measurement device 100B, and the distance measurement device 100B transmits a second signal to the distance measurement device 100A.
  • the transmission/reception control unit 171 causes the OM 130 to transmit the first signal twice for each of the plurality of frequencies f1 to fm, and causes the ODM 140 to receive the second signal twice for each of the plurality of frequencies.
  • the OM 130 transmits the first signal over two transmission processes, a first transmission process and a second transmission process, for each of the plurality of frequencies f1 to fm.
  • the ODM 140 receives the second signal through two reception processes, the first reception process and the second reception process, for each of the plurality of frequencies f1 to fm.
  • the time period in which the OM 130 performs the first transmission process on each of the plurality of frequencies f1 to fm and the time period in which the ODM 140 performs the first reception process on each of the plurality of frequencies f1 to fm overlap. That is, the first transmission process and the first reception process are performed during the same time period. Further, the time period in which the OM 130 performs the second transmission process on each of the plurality of frequencies f1 to fm overlaps with the time period in which the ODM 140 performs the second reception process on each of the plurality of frequencies f1 to fm. That is, the second transmission process and the second reception process are performed during the same time period.
  • the time slot in which the first transmission process and the first reception process are performed is different from the time slot in which the second transmission process and the second reception process are performed.
  • the phase acquisition unit 173 acquires the first phase when the range finder 100B receives the first signal of a predetermined frequency that the range finder 100A transmits in the first transmission process and the second transmission process at each of the frequencies f1 to fm. It is acquired from the distance measuring device 100B. Since the first signal is transmitted twice at each frequency, the phase acquisition unit 173 acquires two first phases at each frequency.
  • the phase acquisition unit 173 acquires data representing the first phase from the distance measuring device 100B through BLE packet communication of a frequency different from communication for distance measurement.
  • the phase data representing the first phase may be written in the payload of the BLE packet. Further, the phase data representing the first phase may be measured by the phase measurement unit 174 of the range finder 100B and transmitted to the range finder 100A.
  • the phase measurement unit 174 measures the second phase when the ODM 140 receives the second signal in the first reception process and the second reception process at each of the frequencies f1 to fm. That is, the phase measurement unit 174 measures a plurality of second phases when the ODM 140 of the distance measurement device 100A receives the second signals at three or more types of frequencies at different timings from the distance measurement device 100B. Since the second signal is transmitted twice from the distance measuring device 100B at each frequency, the phase measurement unit 174 acquires two second phases at each frequency. The second phase is measured for ranging.
  • the signal strength acquisition unit 175 acquires the second reception strength when the ODM 140 receives a plurality of second signals by repeatedly performing the first reception processing and the second reception processing at each of the frequencies f1 to fm. Further, the signal strength acquisition unit 175 acquires the first signal strength from the distance measurement device 100B when the distance measurement device 100B receives the plurality of first signals. The first signal strength that the signal strength acquisition unit 175 acquires from the distance measurement device 100B is measured by the signal strength acquisition unit 175 of the distance measurement device 100B, and is written as signal strength data in the payload of the BLE packet as the second signal. and is transmitted to the distance measuring device 100A.
  • the signal strength acquisition unit 175 acquires the first signal strength from the signal strength data included in the plurality of second signals received by the ODM 140 repeatedly performing reception processing.
  • a pair of a first signal and a second signal having the same frequency is referred to as a signal pair.
  • the plurality of first signals transmitted in the first transmission process have mutually different frequencies f1 to fm.
  • the plurality of second signals received in the first reception process have mutually different frequencies f1 to fm.
  • the plurality of first signals transmitted in the second transmission process have mutually different frequencies f1 to fm.
  • the plurality of second signals received in the second reception process have mutually different frequencies f1 to fm.
  • a signal pair including a first signal transmitted in the first transmission process and a second signal received in the first reception process will be referred to as a first signal pair
  • a signal pair including the first signal transmitted in the first transmission process and the second signal received in the first reception process will be referred to as a first signal pair
  • a signal pair including the signal and the second signal received in the second reception process is referred to as a second signal pair.
  • the first signal pair and the second signal pair are particularly distinguished, they will simply be referred to as a signal pair.
  • the first signal pair refers to a first signal and a second signal (with the same frequency (f1 to fm) This is a signal pair of a plurality of first signals and a plurality of second signals (signals having the same frequency).
  • the second signal pair refers to a first signal and a second signal having the same frequency (f1 to fm) that are transmitted and received in the second transmission processing and second reception processing performed in the same time period (second time period). It is a signal pair of signals (signals having the same frequency among a plurality of first signals and a plurality of second signals).
  • first signal pairs there are a number of first signal pairs equal to the number of first signals and the number of second signals in the first transmission process and the first reception process.
  • second signal pairs there are a number of second signal pairs equal to the number of first signals and the number of second signals in the second transmission process and the second reception process. Further, the number of first signal pairs and the number of second signal pairs are equal.
  • the signal strength acquisition unit 175 determines the first signal strength when the distance measuring device 100B receives the plurality of first signals, or the first signal strength when the ODM 140 receives the plurality of first signals as the signal strength of the plurality of first signal pairs and the plurality of second signal pairs. By repeating the reception process, the second reception strength is obtained when a plurality of second signals are received.
  • the signal strength acquisition unit 175 obtains the first signal strength when the distance measuring device 100B receives a plurality of first signals by performing the first transmission processing and the first reception processing, or the first signal strength when the ODM 140 repeats the reception processing. By doing so, the second reception strength when a plurality of second signals are received is obtained.
  • the signal strength acquisition unit 175 obtains the first signal strength when the distance measuring device 100B receives the plurality of first signals by performing the second transmission processing and the second reception processing, or the first signal strength when the distance measuring device 100B receives the plurality of first signals, or the ODM 140 receives the first signal strength. By repeating this process, the second reception strength when a plurality of second signals are received is obtained.
  • the round trip phase calculation unit 176 sums the first phase and second phase of the first signal and second signal included in each first signal pair. Find the first reciprocating phase. Further, the round trip phase calculation unit 176 calculates the first phase and second phase of the first signal and second signal included in each second signal pair, for the plurality of second signal pairs acquired by the signal strength acquisition unit 175. The second reciprocating phase is obtained by summing the sum. Note that unless the first reciprocating phase and the second reciprocating phase are particularly distinguished, they are simply referred to as reciprocating phases.
  • the extraction unit 177 extracts signal intensities of a plurality of signal pairs obtained in the first transmission processing, second transmission processing, first reception processing, and second reception processing for frequencies f0 to fm that are less than a predetermined threshold.
  • N signal pairs corresponding to N (N is an integer of 2 or more) signal strengths excluding one or more signal strengths are extracted from the plurality of signal pairs.
  • N signal pairs are all signal pairs (plural signal pairs) whose signal strengths have been acquired by the signal strength acquisition unit 175, excluding one or more signal pairs whose signal strength is less than a predetermined threshold.
  • the threshold is a value that can exclude signal pairs whose signal strength has decreased due to multipath.
  • the extraction unit 177 extracts the N first signal pairs from the plurality of first signal pairs, excluding one or more signal pairs in which the signal strength of the first signal or the second signal is less than a predetermined threshold. Extract from one signal pair. Further, the extraction unit 177 extracts N second signal pairs excluding one or more signal pairs in which the signal strength of the first signal or the second signal is less than a predetermined threshold value from among the plurality of second signal pairs. is extracted from the signal pair. The extraction unit 177 extracts the first signal transmitted in the first transmission process and the second signal received in the first reception process in order to obtain two round trip phases from the first signal pair and the second signal pair. , if there is a signal whose signal strength is less than a predetermined threshold among the first signal transmitted in the second transmission process and the second signal received in the second reception process, the first signal pair is and the second signal pair are excluded without being extracted.
  • the correction unit 178 corrects a change in phase due to relative movement with the distance measuring device 100B for each of the N first reciprocating phases.
  • the correction unit 178 uses the difference between the first reciprocating phase and the second reciprocating phase at frequencies f1 to fm to correct the change in phase due to relative movement with the distance measuring device 100B. Further, the correction unit 178 calculates the relative speed with the distance measuring device 100B from the difference between the first reciprocating phase and the second reciprocating phase at frequencies f1 to fm, and calculates the relative speed of the distance measuring devices 100A and 100B and the plurality of reciprocating phases.
  • the N frequencies f1 to fm of the N first signal pairs corresponding to the N first reciprocating phases are linearly
  • the N reciprocating phases are corrected so that they have the following relationship.
  • the specific contents of correction by the correction unit 178 will be described later using FIGS. 11 to 13.
  • FIG. 3 is a diagram illustrating a communication method for distance measurement performed by the distance measurement devices 100A and 100B.
  • the transmission/reception control unit 171 of the range finder 100A reads data from the memory 170M and sets the frequency (predetermined frequency) and phase of the first signal to be transmitted from the range finder 100A to the range finder 100B. shall be.
  • the distance measuring device 100B transmits a second signal having the same frequency and phase as the frequency and phase of the received first signal to the distance measuring device 100A. It is assumed that the distance measuring devices 100A and 100B share data representing the frequency and phase of signals transmitted to each other before communicating for distance measurement.
  • the range finder 100A transmits a first signal at the frequency f1 to the range finder 100B, and the range finder 100B sends the first signal to the range finder 100A at the same frequency f1.
  • the second signal is then transmitted.
  • the phase acquisition unit 173 of the range finder 100A acquires from the range finder 100B the phase when the range finder 100B receives the first signal of frequency f1 transmitted by the range finder 100A.
  • the phase measurement unit 174 of the range finder 100A measures the phase when the range finder 100A receives the second signal of frequency f1 from the range finder 100B.
  • the range finder 100B transmits a second signal at the frequency f4 to the range finder 100A, and the range finder 100A transmits the first signal at the same frequency f4 to the range finder 100B.
  • the phase measurement unit 174 of the range finder 100A measures the phase when the range finder 100A receives the second signal of frequency f4 from the range finder 100B. Further, the phase acquisition unit 173 of the range finder 100A acquires from the range finder 100B the phase when the range finder 100B receives the first signal of frequency f4 transmitted by the range finder 100A.
  • the first communication (1) to the fourth communication (4) are repeatedly performed in a short period, and the distance between the distance measuring devices 100A and 100B is the same.
  • the phase when the distance measurement device 100B receives the first signal of frequency fm transmitted by the distance measurement device 100A is set to ⁇ AB, and the phase acquisition unit 173 of the distance measurement device 100A acquires the phase ⁇ AB. do.
  • the phase when the distance measuring device 100A receives the second signal of frequency fm from the distance measuring device 100B is ⁇ BA, and the phase measurement unit 174 of the distance measuring device 100A measures the phase ⁇ BA.
  • the frequency fm is, for example, one of the frequencies f1 to f4 described above.
  • ⁇ AB+ ⁇ BA is the total phase (round trip phase) when round trip communication is performed at frequency f between the distance measuring devices 100A and 100B.
  • the reciprocating phase at frequency fm is expressed as ⁇ 2w. 2w is an abbreviation for two-way.
  • the round-trip phase in the first communication (frequency f1) is ⁇ 1w1
  • the round-trip phase in the second communication (frequency f2) is ⁇ 2w2
  • the round-trip phase in the third communication is ⁇ 2w3
  • the round-trip phase in the fourth communication is ⁇ 2w3.
  • the round trip phase at frequency f4) is assumed to be ⁇ 2w4.
  • the wavelengths at frequencies f1 to f4 are assumed to be ⁇ 1 to ⁇ 4, respectively.
  • Such a reciprocating phase ⁇ 2w is calculated by the reciprocating phase calculating section 176.
  • the round trip phase decreases approximately linearly as the frequency increases, such as in the frequency bands from about 2436 MHz to about 2456 MHz and from about 2456 MHz to about 2476 MHz. Furthermore, since there is no multipath in the frequency band from about 2436 MHz to about 2456 MHz and from about 2456 MHz to about 2476 MHz, a good signal strength (RSSI) value of -40 or more is obtained.
  • RSSI signal strength
  • FIG. 7 is a diagram illustrating the relationship between the round trip phase and the frequency when the radio waves transmitted and received between the distance measuring devices 100A and 100B are affected by the Doppler effect. For example, when a user holding the smart key 20 including the distance measuring device 100B moves while operating the automatic parking support system mounted on the vehicle 10, the distance between the distance measuring devices 100A and 100B changes.
  • FIG. 8 is a diagram illustrating a method of detecting the moving speed v (m/s).
  • the range finder 100A transmits the first signals of three or more frequencies f1 to fm at different timings to the range finder 100B by performing transmission processing or reception processing once in each continuous wave transmission period. and receives second signals of three or more types of frequencies f1 to fm at different timings from the distance measuring device 100B.
  • FIGS. 9A, 9B, and 9C show the round-trip phase with respect to the frequency (upper side) obtained by performing the first transmission processing and the first reception processing in one continuous wave transmission period, and the signal strength with respect to the frequency (lower side).
  • FIG. The signal strength shown in FIGS. 9A, 9B, and 9C is the lower value of the RSSI of the first signal and the second signal.
  • the signal strength threshold TH at which the extraction unit 177 extracts the signal pair is, for example, a level that is 10 dBm lower than the signal strength RS1 when there is no multipath. Further, in the following, it is assumed that the plurality of frequencies are f0 to fm.
  • FIG. 9A shows round trip phases (upper side) for frequencies obtained by performing one first transmission process and one first reception process at frequencies f0, f1, and f2, and signal strengths for frequencies f0, f1, and f2. (lower side).
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 acquire the signal strength and round trip phase for frequency f0 at time t0, acquire the signal strength and round trip phase for frequency f1 at time t1, and acquire the signal strength and round trip phase for frequency f2 at time t2.
  • the signal strength and round trip phase are acquired, and at time t3, the signal strength and round trip phase for frequency f0 are acquired.
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 acquire the signal strength and round trip phase twice at times t0 and t3 for the frequency f0.
  • FIG. 9B shows round trip phases (upper side) for frequencies obtained by performing one first transmission process and one first reception process at frequencies f3, f4, and f5, and signal strengths for frequencies f3, f4, and f5. (lower side).
  • the signal strength acquisition section 175 and the round trip phase calculation section 176 acquire the signal strength and round trip phase for frequency f3 at time t4, acquire the signal strength and round trip phase for frequency f4 at time t5, and acquire the signal strength and round trip phase for frequency f5 at time t6.
  • the signal strength and round trip phase are acquired, and at time t7, the signal strength and round trip phase for frequency f6 are acquired.
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 acquire the signal strength and round trip phase twice at times t4 and t7 for the frequency f3.
  • FIG. 9C shows round trip phases (upper side) for frequencies obtained by performing one first transmission process and one first reception process at frequencies f6, f7, and f8, and signal strengths for frequencies f6, f7, and f8. (lower side).
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 acquire the signal strength and round trip phase for frequency f3 at time t8, acquire the signal strength and round trip phase for frequency f4 at time t9, and acquire the signal strength and round trip phase for frequency f5 at time t10.
  • the signal strength and round trip phase are acquired, and at time t11, the signal strength and round trip phase for frequency f6 are acquired.
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 acquire the signal strength and round trip phase twice at times t8 and t11 for the frequency f3.
  • the correction unit 178 calculates the difference ⁇ between the round-trip phases obtained twice for the same frequency.
  • the difference ⁇ is the difference ⁇ between the first reciprocating phase and the second reciprocating phase.
  • the correction unit 178 calculates a difference ⁇ s1 for the frequency f0 shown in FIG. 9A, a difference ⁇ s2 for the frequency f3 shown in FIG. 9B, and a difference ⁇ s3 for the frequency f6 shown in FIG. 9C.
  • straight lines that fit the reciprocating phases at frequencies f0, f1, and f2 are shown by broken lines.
  • straight lines that fit the reciprocating phases at frequencies f3, f4, and f5 are shown by broken lines.
  • straight lines that fit the reciprocating phases at frequencies f6, f7, and f8 are shown as broken lines.
  • the signal strength is greater than or equal to the threshold TH at frequencies f0 to f2, f3, f4, and f6 to f8, but at frequency f5, the signal strength is less than the threshold TH. .
  • the correction unit 178 corrects the reciprocating phases at frequencies f1 and f2 by equally allocating the difference ⁇ s1 about frequency f0 to the reciprocating phases at frequencies f1 and f2. . Since the difference ⁇ s1 between the round-trip phases obtained twice for the frequency f0 is an increase in the round-trip phase of the frequency f0 at time t3 with respect to the round-trip phase of the frequency f0 at time t0, the correction unit 178 adjusts the round-trip phase at the frequency f1. ( ⁇ s1)/2 is subtracted from ⁇ s1, and ⁇ s1 is subtracted from the round-trip phase at frequency f2.
  • the correction value for the reciprocating phase at frequency f1 is -( ⁇ s1)/2
  • the correction value for the reciprocating phase at frequency f2 is - ⁇ s1.
  • the correction unit 178 Subtract ( ⁇ s2)/2 from the round trip phase at . Since times t4 to t7 are at constant intervals, a value obtained by multiplying the difference ⁇ s2 by a ratio according to the elapsed time from time t4 is used as the correction value. That is, the correction value for the reciprocating phase at frequency f4 is -( ⁇ s2)/2.
  • the correction unit 178 ( ⁇ s3)/2 is subtracted from the reciprocating phase, and ⁇ s3 is subtracted from the reciprocating phase at frequency f8. Since times t8 to t11 are at constant intervals, a value obtained by multiplying the difference ⁇ s3 by a ratio according to the elapsed time from time t8 is used as the correction value. That is, the correction value for the reciprocating phase at frequency f7 is -( ⁇ s3)/2, and the correction value for the reciprocating phase at frequency f8 is - ⁇ s3.
  • FIGS. 12, 13, and 14 are diagrams illustrating linear correction processing among the correction processing performed by the correction unit 178.
  • the correction unit 178 calculates the slope S1 and intercept A1 of a straight line that fits the reciprocating phases of the frequencies f0, f1, and f2, as shown in FIG.
  • the correction unit 178 uses the calculated slope S and intercept A to make the reciprocating phases of frequencies f3 and f4 touch the straight line that fits the reciprocating phases of frequencies f0, f1, and f2, as shown in FIG. Then, the round-trip phase of frequencies f3 and f4 is offset.
  • the reciprocating phase ⁇ 3 at frequency f3 by subtracting ( ⁇ 3 ⁇ (f3 ⁇ S1+A1) from ⁇ 3, the reciprocating phase ⁇ 3 at frequency f3 is offset as shown in FIG. 13.
  • the reciprocating phase ⁇ 4 at frequency f4 ( ⁇ 3-(f3 ⁇ S1+A1)) from ⁇ 4, the round-trip phase ⁇ 4 of frequency f4 is offset as shown in FIG. ⁇ (f3 ⁇ S1+A1).
  • the correction unit 178 calculates the slope S2 and intercept A2 of a straight line that fits the reciprocating phase of the frequencies f0, f1, f2, f3, and f4.
  • the correction unit 178 uses the slope S2 and intercept A2 of the straight line that fit the reciprocating phases of frequencies f0, f1, f2, f3, and f4 to calculate the reciprocating phase of frequencies f6, f7, and f8, as shown in FIG.
  • the reciprocating phases of frequencies f6, f7, and f8 are offset so that the phases touch a straight line that fits the reciprocating phases of frequencies f0, f1, f2, f3, and f4.
  • N reciprocating phases and N signal pairs corresponding to the N reciprocating phases are obtained for the reciprocating phases of frequencies f0 to fm.
  • N reciprocating phases are corrected so that they have a linear relationship with the frequency. This is the linear correction process.
  • the distance measuring unit 179 calculates the linear relationship between the N round-trip phases obtained in this way and the N frequencies of the N signal pairs corresponding to the N round-trip phases (for example, in FIG. 14) is used to measure the distance of the distance measuring device 100B with respect to the distance measuring device 100A.
  • FIG. 15 is a flowchart illustrating an example of processing executed by the control device 170.
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 perform the first transmission processing, first reception processing, second transmission processing, and A second reception process is executed (step S1).
  • the signal strength acquisition section 175 and the round trip phase calculation section 176 perform the first transmission processing, the first reception processing, the second transmission processing, and the second reception processing in separate continuous wave transmission periods.
  • Step S1 in FIG. 15 shows partial processing 1, partial processing 2, and partial processing 3 as an example.
  • partial processing 1 as explained using FIG. 9A, one first transmission process and one first reception process are performed at frequencies f0, f1, and f2, and round-trip phases ⁇ 0(t0), ⁇ 1( t1), ⁇ 2 (t2), ⁇ 0 (t3), and signal strengths RSSI1, RSSI2, and RSSI3. Times t0 to t3 are times when the first signal regarding the round trip phase is transmitted.
  • partial processing 2 as explained using FIG.
  • one first transmission process and one first reception process are performed at frequencies f3, f4, and f5, and round-trip phases ⁇ 3(t4), ⁇ 4( t5), ⁇ 5 (t6), ⁇ 3 (t7), and signal strengths RSSI3, RSSI4, and RSSI5.
  • Times t4 to t7 are times when the first signal regarding the round trip phase is transmitted.
  • one first transmission process and one first reception process are performed at frequencies f6, f7, and f8, and round-trip phases ⁇ 6(t8), ⁇ 7( t9), ⁇ 8 (t10), ⁇ 6 (t11), and signal strengths RSSI6, RSSI7, and RSSI8.
  • Time t8 to t11 is the time when the first signal regarding the round trip phase is transmitted.
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 repeatedly perform similar processing up to the frequency fm.
  • the signal strength acquisition unit 175 and the round trip phase calculation unit 176 output the round trip phase and signal strength obtained in the first transmission process, first reception process, second transmission process, and second reception process executed in step S1. (Step S2). Further, in step S2, the correction unit 178 calculates the difference ⁇ between the round-trip phases obtained twice for the same frequency in each process.
  • the main control unit 170A aggregates all the data obtained in step S2 (step S3).
  • the extraction unit 177 extracts the round trip phase calculated for the signal pair whose signal strength is equal to or higher than the threshold value TH (step S4).
  • step S4 N frequencies of N signal pairs corresponding to N round-trip phases are extracted.
  • the correction unit 178 executes speed correction processing (step S5).
  • the correction unit 178 uses three types of data obtained through a plurality of processes including partial processing 1, partial processing 2, and partial processing 3. Regarding the reciprocating phase of the frequency, the speed correction process described using FIG. 11 is performed.
  • the correction unit 178 executes linear correction processing (step S6).
  • the linear correction process is performed so that N reciprocating phases and N frequencies of N signal pairs corresponding to the N reciprocating phases are linearly corrected. This is a process of correcting N reciprocating phases so that they have a relationship.
  • a linear relationship between the frequency and the reciprocating phase can be obtained as shown in FIG. 14 as an example.
  • the round-trip phase is acquired twice for the lowest frequency in a plurality of partial processes including partial process 1, partial process 2, and partial process 3, and in step S2, the correction unit 178 acquires the same round-trip phase in each partial process.
  • the mode of calculating the difference ⁇ between the round-trip phases obtained twice for the frequency has been described.
  • the influence of the Doppler effect can be more accurately corrected according to fluctuations in the relative movement speed of the distance measuring devices 100A and 100B. Can be done.
  • round trip phases may be obtained twice for frequencies other than the lowest frequency.
  • the round-trip phase is determined for multiple signal pairs and the signal strength is obtained, and one or more signal strengths below a predetermined threshold are excluded from the signal strengths of the multiple signal pairs.
  • N is 2 N signal pairs corresponding to signal intensities (integer or more) are extracted from the plurality of signal pairs, and the distance to the distance measuring device 100B is measured based on the N round-trip phases and the plurality of frequencies. do. Therefore, the influence of multipath can be reduced.
  • N signal pairs are extracted from the plurality of signal pairs, excluding one or more signal pairs in which the signal strength of the first signal or the second signal is less than a predetermined threshold value, the It is possible to reliably reduce the effects of multipath, and more accurate distance measurement is possible.
  • the transmission/reception control unit 171 causes the OM 130 to repeatedly perform a transmission process of transmitting the first signal to the range finder 100B during a predetermined period, and causes the OM 130 to send three types of signals to the range finder 100B at different timings.
  • the ODM 140 receives the first signals from the range finder 100B at different timings.
  • a second signal having a plurality of frequencies of more than one type is received. Therefore, even when the period for performing transmission processing and reception processing is limited, the relationship between the frequency and the round trip phase can be reliably acquired, and distance measurement can be performed accurately.
  • phase acquisition unit 173 acquires a plurality of first phases from the phase data included in the plurality of second signals received by the ODM 140 repeatedly performing reception processing
  • the phase measurement unit 174 of the ranging device 100B The first phase of the measured first signal upon reception can be easily and reliably obtained. As a result, distance measurement can be performed accurately.
  • the signal strength acquisition unit 175 uses the first signal strength when the distance measuring device 100B receives the plurality of first signals as the signal strength for the plurality of signal pairs, or the first signal strength when the ODM 140 repeatedly performs the reception process. Obtain second reception strength when a plurality of second signals are received. Therefore, the round trip phase can be calculated using the phase at the time of signal reception, and distance measurement can be performed more accurately.
  • the signal strength acquisition unit 175 acquires the first signal strength from the signal strength data included in the plurality of second signals received by the ODM 140 repeatedly performing reception processing.
  • the first signal strength when the distance measuring device 100B receives the first signal can be acquired from the second signal, and the round trip phase can be calculated based on the first signal strength acquired from the second signal.
  • Distance measurement can be performed.
  • the distance measuring device 100B may include a signal strength acquisition unit 175, and the signal strength acquisition unit 175 of the distance measuring device 100B writes the second signal strength to the first signal transmitted by the distance measuring device 100A. Two signal strengths may be obtained.
  • the distance measuring section 179 further includes a correction section 178 that corrects a change in the reciprocating phase due to relative movement with the distance measuring device 100B.
  • the distance to the distance measuring device 100B is measured based on the phase and a plurality of frequencies. The influence of the Doppler effect due to relative movement with the distance measuring device 100B can be corrected, and distance measurement can be performed more accurately.
  • the transmission/reception control unit 171 causes the OM 130 to transmit the first signal multiple times for each of the multiple frequencies, and causes the ODM 140 to receive the second signal multiple times for each of the multiple frequencies, and the round trip phase calculation unit 176
  • the correction section 178 calculates a plurality of round trip phases for each of the plurality of frequencies
  • the correction section 178 calculates the round trip phases of the plurality of frequencies for each of the N signal pairs by the round trip phase calculation section 176.
  • a change in the reciprocating phase due to relative movement with the distance measuring device 100B is corrected using a plurality of differences between the reciprocating phases obtained for each of the reciprocating phases. Based on the difference between the plurality of reciprocating phases, the influence of the Doppler effect can be corrected according to the change in relative movement speed with the distance measuring device 100B, and distance measurement can be performed more accurately.
  • the correction unit 178 calculates the relative velocity with respect to the distance measuring device 100B from the difference between the plurality of round trip phases obtained for each of the N signal pairs, and calculates the relative velocity with respect to the distance measuring device 100B based on the relative velocity and the time difference between when each signal pair is obtained.
  • the N round trip phases are corrected so that the N round trip phases and the N frequencies of the N signal pairs corresponding to the N round trip phases have a linear relationship. Therefore, N round-trip phases and N frequencies obtained in intermittent periods such as continuous wave transmission periods in BLE (registered trademark) can be arranged on a straight line, and N round-trip phases and N Accurate ranging can be performed even in situations where acquisition of different frequencies is divided into a plurality of intermittent periods.
  • the predetermined period is a continuous wave transmission period. Therefore, distance measurement can be performed accurately based on N round-trip phases and N frequencies obtained during a plurality of intermittent continuous wave transmission periods in BLE (registered trademark).
  • the continuous wave transmission period is 2.5 milliseconds. Therefore, it is possible to accurately measure distances based on N round-trip phases and N frequencies obtained in multiple intermittent very short periods of 2.5 milliseconds using BLE (registered trademark). can.
  • the predetermined threshold is a threshold that can exclude one or more signal pairs whose signal strength has decreased due to multipath. Therefore, it is possible to eliminate the effects of multipath and perform distance measurement accurately.
  • the present invention is not limited to the specifically disclosed embodiment, and may be modified in various ways without departing from the scope of the claims. It is possible to transform or change the .
  • Vehicle 20 Smart key 100A, 100B Range finder 100R Wireless device 110
  • PA 120 LNA 130
  • OM Example of transmitter
  • ODM Example of receiving section
  • VCOs 155
  • PLL Codec processing unit 170
  • Control device 170A Main control unit 171 Transmission/reception control unit 172
  • Switching unit 173 Phase acquisition unit 174
  • Phase measurement unit 175 Signal strength acquisition unit 176

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

マルチパスが存在する環境下でも正確に測距可能な測距装置を提供する。 測距装置は、他のデバイスに対して3種類以上の複数周波数で送信した複数の第1信号を他のデバイスが受信したときの複数の第1位相を取得し、他のデバイスから3種類以上の複数周波数で第2信号を受信したときの複数の第2位相を測定し、複数の第1信号及び第2信号の信号対の信号強度のうちの閾値未満の1又は複数の信号強度を除いたN(N≧2)個の信号強度に対応するN個の信号対を複数の信号対から抽出し、各信号対に含まれる第1信号及び第2信号についての第1位相及び第2位相を合計した往復位相をN個の信号対について求め、N個の往復位相と、複数の周波数とに基づいて、他のデバイスとの距離を測距する。

Description

測距装置
 本発明は、測距装置に関する。
 従来より、第1の搬送波周波数に対応する第1の既知信号及び第1の搬送波周波数とは異なる第2の搬送波周波数に対応する第2の既知信号を送信すると共に第1の搬送波周波数に対応する第3の既知信号及び第2の搬送波周波数に対応する第4の既知信号を受信する第1送受信器とを具備した第1装置と、第3の既知信号及び第4の既知信号を送信すると共に第1及び第2の既知信号を受信する第2送受信器とを具備した第2装置と、第1から第4の既知信号の位相に基づいて、第1装置と第2装置との間の距離を算出する算出部とを具備し、第1送受信器及び第2送受信器は、第1及び第3の既知信号の1回ずつの送受信と、第2及び第4の既知信号の1回ずつの送受信と合わせて4回の送受信を行う測距装置がある(例えば、特許文献1参照)。
特開2019-128341号公報
 ところで、測距を行う際に、第1乃至第4の既知信号のようなRF(Radio Frequency)信号にマルチパスが存在すると、途中で反射されて到来する電波の位相は、送信元のデバイスから直接的に到来する電波の位相とは異なり、測距を正確に行えなくなるおそれがある。途中で反射されて到来する電波の伝搬経路は、送信元のデバイスから直接的に到来する電波の伝搬経路とは異なるからである。
 そこで、マルチパスが存在する環境下でも正確に測距可能な測距装置を提供することを目的とする。
 本発明の実施形態の測距装置は、他のデバイスに第1信号を送信する送信部と、前記第1信号を受信した前記他のデバイスから第2信号を受信する受信部と、前記送信部が前記他のデバイスに対して異なるタイミングで3種類以上の複数の周波数で送信した複数の前記第1信号を前記他のデバイスが受信したときの複数の第1位相を取得する位相取得部と、前記他のデバイスから異なるタイミングで前記受信部が前記3種類以上の複数の周波数で前記第2信号を受信したときの複数の第2位相を測定する位相測定部と、複数の前記第1信号と複数の前記第2信号とで前記周波数が等しい信号同士の複数の信号対についての信号強度を取得する信号強度取得部と、前記複数の信号対の信号強度のうちの所定の閾値未満の1又は複数の信号強度を除いたN(Nは2以上の整数)個の信号強度に対応するN個の前記信号対を前記複数の信号対から抽出する抽出部と、各信号対に含まれる前記第1信号及び前記第2信号についての前記第1位相及び前記第2位相を合計した往復位相を前記N個の前記信号対について求める往復位相算出部と、前記N個の往復位相と、前記複数の周波数とに基づいて、前記他のデバイスとの距離を測距する測距部とを含む。
 マルチパスが存在する環境下でも正確に測距可能な測距装置を提供することができる。
実施形態の測距装置100A及び100Bをそれぞれ実装した車両10及びスマートキー20を示す図である。 実施形態の測距装置100Aを示す図である。 測距装置100A及び100Bが実行する測距のための通信方法を説明する図である。 測距における周波数fmと位相φ2wmの関係を示す図である。 直接波の経路aとマルチパスの経路bとを説明する図である。 マルチパスが存在する場合の第1信号及び第2信号の周波数と往復位相の関係の一例を示す図である。 測距装置100A及び100Bの間で送受信する電波にドップラー効果の影響がある場合の周波数に対する往復位相の関係を説明する図である。 移動速度v(m/s)の検出方法を説明する図である。 複数の連続波送信期間に第1送信処理及び第1受信処理を行って得た周波数f0~fmに対する往復位相(上側)と、周波数f0~fmに対する信号強度(下側)とを示す図である。 複数の連続波送信期間に第1送信処理及び第1受信処理を行って得た周波数f0~fmに対する往復位相(上側)と、周波数f0~fmに対する信号強度(下側)とを示す図である。 複数の連続波送信期間に第1送信処理及び第1受信処理を行って得た周波数f0~fmに対する往復位相(上側)と、周波数f0~fmに対する信号強度(下側)とを示す図である。 図9A~図9Cの結果を纏め、抽出部177が抽出する信号対を示す図である。 補正部178の補正処理のうちの速度補正の処理を説明する図である。 補正部178が行う補正処理のうちの線形補正の処理を説明する図である。 補正部178が行う補正処理のうちの線形補正の処理を説明する図である。 補正部178が行う補正処理のうちの線形補正の処理を説明する図である。 制御装置170が実行する処理の一例を表すフローチャートである。
 以下、本発明の測距装置を適用した実施形態について説明する。
 図1は、実施形態の測距装置100A及び100Bをそれぞれ実装した車両10及びスマートキー20を示す図である。ここでは一例として、測距装置100Aは、車両10に搭載されるスマートエントリシステムに実装され、測距装置100Bは、車両10のスマートキー20に実装される形態について説明する。測距装置100A及び100Bは、一例としてBLE(Bluetooth Low Energy(登録商標))でパケット通信を行う。また、一例として、車両10には、自動駐車支援システムが搭載されており、測距装置100Aは、自動駐車支援システムに含まれる。自動駐車支援システムは、スマートキー20から無線通信で遠隔的に車両10に指令を送信することによって、車両10を自立的に駐車位置に駐車する、又は、車両10を自立的に駐車位置から出庫させるシステムである。
 車両10の測距装置100Aとスマートキー20の測距装置100Bとのうちの少なくともいずれか一方が車両10とスマートキー20との間の距離を測定し、車両10のドアやトランク等のロックは、測距装置100A又は100Bによって測距された距離が適切な距離である場合に解錠される。
 ここでは、一例として、車両10の測距装置100Aが測距を行い、測距の結果をスマートキー20の測距装置100Bに通知することとする。測距装置100A及び100Bは、一例として同一の構成を有する。このため、以下において測距装置100A及び100Bを区別しない場合には、単に測距装置100と称す。車両10の測距装置100Aとスマートキー20の測距装置100Bとのうち、測距を行わない測距装置100Bは、他のデバイスの一例である。ここでは一例として車両10の測距装置100Bが他のデバイスの一例になる。なお、測距装置100Aをマスターデバイス、測距装置100Bをスレーブデバイスとして取り扱うことや、これとは逆に、測距装置100Bをマスターデバイス、測距装置100Aをスレーブデバイスとして取り扱うことも可能であるが、ここではそのような取り扱いは行わずに説明する。
 <測距装置100Aの構成>
 図2は、実施形態の測距装置100Aを示す図である。上述のように、車両10の測距装置100Aと、スマートキー20の測距装置100Bとは、同一の構成を有する。ここでは、測距を行う測距装置100Aについて説明する。以下では、測距装置100Aがアンテナ101から測距装置100Bに送信する信号を第1信号と称し、測距装置100Bがアンテナ101から測距装置100Aに送信する信号を第2信号と称す。
 測距装置100Aは、アンテナ101、PA(Power Amplifier)110、LNA(Low Noise Amplifier)120、OM(Orthogonal Modulator)130、ODM(Orthogonal DeModulator)140、VCO(Voltage Controlled Oscillator)150、PLL(Phase Locked Loop)155、コーデック処理部160、及び制御装置170を含む。
 アンテナ101は、車両10の測距装置100Bのアンテナ101と通信を行う。アンテナ101は、PA110とLNA120に接続されている。ここでは、アンテナ101の接続先をPA110とLNA120とのいずれか一方に切り替える切替スイッチを省略する。測距装置100Aのアンテナ101は、第1信号を測距装置100Bに送信し、測距装置100Bから第2信号を受信する。
 PA110は、OM130とアンテナ101との間に設けられており、OM130から入力される送信用の変調信号(第1信号)を増幅してアンテナ101に出力する。PA110は送信用のアンプである。
 LNA120は、アンテナ101とODM140との間に設けられており、アンテナ101で受信された第2信号を低ノイズで増幅してODM140に出力する。LNA120は、受信用のアンプである。
 OM130は、送信部の一例であり、VCO150から入力される高周波信号を用いて、コーデック処理部160から入力されるI/Q信号を変調し、送信用の変調信号としてPA110に出力する。
 ODM140は、受信部の一例であり、VCO150から入力される高周波信号を用いて、LNA120から出力される信号を復調してI/Q信号を取得し、I/Q信号をコーデック処理部160に出力する。LNA120から出力される信号は、測距装置100Aが測距装置100Bから受信した信号である。
 VCO150は、PLL155が設定する周波数で発振する。VCO150は、PLL155によって設定される複数の周波数で発振可能である。
 PLL155は、VCO150が発振する周波数を設定する。PLL155は、複数の周波数をVCO150に設定可能である。
 コーデック処理部160は、ADC(Analog to Digital Converter)とDAC(Digital to Analog Converter)を含み、コーデック処理を行う。コーデック処理部160は、BLE(登録商標)のパケットの検出や、アドレス判定処理等を行う。より具体的には、コーデック処理部160は、ODM140で処理されたI/Q信号をデジタル変換(ADC処理)し、BLEのパケット情報に変換する。また、コーデック処理部160は、制御装置170から入力されるBLEのパケット(デジタル信号)からI/Q信号を生成(I信号、Q信号に分割)し、DAC処理でアナログ変換して、送信信号としてのI/Q信号としてOM130に出力する。
 以下では、測距装置100AのOM130が測距装置100Bに送信する所定周波数の信号を送信信号と称す。また、測距装置100Aによって送信信号として送信され、他のデバイスによって受信された信号を受信信号と称す。
 制御装置170は、主制御部170A、送受信制御部171、切替部172、位相取得部173、位相測定部174、信号強度取得部175、往復位相算出部176、抽出部177、補正部178、測距部179、及びメモリ170Mを有する。メモリ170Mは格納部の一例である。制御装置170は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、入出力インターフェース、及び内部バス等を含むマイクロコンピュータによって実現される。
 主制御部170A、送受信制御部171、切替部172、位相取得部173、位相測定部174、信号強度取得部175、往復位相算出部176、抽出部177、補正部178、測距部179は、制御装置170が実行するプログラムの機能(ファンクション)を機能ブロックとして示したものである。また、メモリ170Mは、制御装置170のメモリを機能的に表したものである。
 主制御部170Aは、制御装置170の処理を統括する処理部であり、送受信制御部171、切替部172、位相取得部173、位相測定部174、信号強度取得部175、往復位相算出部176、抽出部177、補正部178、測距部179が実行する処理以外の処理を実行する。主制御部170Aは、例えば、測距の結果を車両10の測距装置100Bに通知する。通知には、測距のための通信とは異なる周波数のBLEのパケット通信を利用する。通知においては、測距の結果等をBLEのパケットのペイロードに書き込めばよい。
 送受信制御部171は、測距装置100Aと測距装置100Bとの間における第1信号及び第2信号の送受信に関する制御を行う。具体的には、送受信制御部171は、測距装置100Aから測距装置100Bに送信する信号の周波数(所定周波数)と位相を設定する。また、測距装置100Bは、測距装置100Aに送信する信号と同一周波数の信号を測距装置100Aに送信するため、測距装置100Bの送受信制御部171は、測距装置100Bから測距装置100Aに送信する信号の周波数(所定周波数)と位相を設定する。なお、測距装置100A及び100Bが送信し合う信号の同一周波数については、測距装置100A及び100Bの間で予め取り決めておけばよく、BLEのパケット通信を利用して周波数を表すデータを共有してもよい。
 また、送受信制御部171は、所定の期間において測距装置100Bに対して第1信号を送信する送信処理をOM130に繰り返し行わせて、OM130に測距装置100Bに対して異なるタイミングで3種類以上の複数の周波数の第1信号を送信させる。また、送受信制御部171は、所定の期間において、第2信号を測距装置100Bから受信する受信処理をODM140に繰り返し行わせて、ODM140に測距装置100Bから異なるタイミングで3種類以上の複数の周波数の第2信号を受信させる。所定の期間は、BLE(登録商標)における連続波送信期間であり、2.5ミリ秒である。所定の期間に、測距装置100Aから測距装置100Bに第1信号を送信し、測距装置100Bから測距装置100Aに第2信号を送信する。
 また、送受信制御部171は、複数の周波数f1~fm(mは2以上の整数)の各々についてOM130に複数回にわたって第1信号を送信させるとともに、複数の周波数の各々についてODM140に複数回にわたって第2信号を受信させる。すなわち、OM130は、周波数f1~fmの各々について異なるタイミングで複数回にわたって第1信号を送信する。また、ODM140は、複数の周波数f1~fmの各々について複数回にわたって第2信号を受信する。各周波数において複数回にわたって第1信号の送信と第2信号の受信を行うのは、各周波数において複数の往復位相を得るためである。
 ここでは、一例として、送受信制御部171が、複数の周波数f1~fmの各々についてOM130に2回にわたって第1信号を送信させるとともに、複数の周波数の各々についてODM140に2回にわたって第2信号を受信させる形態について説明する。OM130は、複数の周波数f1~fmの各々について、第1送信処理及び第2送信処理の2回の送信処理にわたって第1信号を送信する。また、ODM140は、複数の周波数f1~fmの各々について、第1受信処理及び第2受信処理の2回の受信処理にわたって第2信号を受信する。
 このように、ここでは、送受信制御部171が、複数の周波数f1~fmの各々について、OM130に第1送信処理及び第2送信処理の2回の送信処理で2回にわたって第1信号を送信させるとともに、複数の周波数f1~fmの各々について、ODM140に第1受信処理及び第2受信処理の2回の受信処理で2回にわたって第2信号を受信させる形態について説明する。複数の周波数f1~fmの各々における送信処理の回数(第1信号を送信させる回数)と受信処理の回数(第2信号を受信させる回数)とは等しければよく、3回以上であってもよい。
 OM130が複数の周波数f1~fmの各々について第1送信処理を行う時間帯と、ODM140が複数の周波数f1~fmの各々について第1受信処理を行う時間帯とは重複する。すなわち、第1送信処理と第1受信処理とは同じ時間帯に行われる。また、OM130が複数の周波数f1~fmの各々について第2送信処理を行う時間帯と、ODM140が複数の周波数f1~fmの各々について第2受信処理を行う時間帯とは重複する。すなわち、第2送信処理と第2受信処理とは同じ時間帯に行われる。第1送信処理及び第1受信処理が行われる時間帯と、第2送信処理及び第2受信処理が行われる時間帯とは異なる。
 切替部172は、OM130が信号を送信する送信状態と、ODM140が信号を受信する受信状態とを切り替える。切替部172は、送信状態ではPA110が信号を増幅可能にし、受信状態ではLNAが信号を増幅可能にする。切替部172は、送信状態と受信状態とを切り替える際に、位相や周波数を安定させるための安定時間を設ける。
 位相取得部173は、測距装置100Aが周波数f1~fmの各々における第1送信処理及び第2送信処理で送信した所定周波数の第1信号を測距装置100Bが受信したときの第1位相を測距装置100Bから取得する。各周波数において、第1信号は2回送信されるため、位相取得部173は、各周波数において2つの第1位相を取得する。位相取得部173は、測距のための通信とは異なる周波数のBLEのパケット通信で第1位相を表すデータを測距装置100Bから取得する。第1位相を表す位相データは、BLEのパケットのペイロードに書き込めばよい。また、第1位相を表す位相データは、測距装置100Bの位相測定部174が測定して、測距装置100Aに送信すればよい。
 位相測定部174は、周波数f1~fmの各々における第1受信処理及び第2受信処理で、ODM140が第2信号を受信したときの第2位相を測定する。すなわち、位相測定部174は、測距装置100Bから異なるタイミングで測距装置100AのODM140が3種類以上の複数の周波数で第2信号を受信したときの複数の第2位相を測定する。各周波数において、第2信号は測距装置100Bから2回送信されるため、位相測定部174は、各周波数において2つの第2位相を取得する。第2位相は、測距用に測定される。
 信号強度取得部175は、周波数f1~fmの各々においてODM140が第1受信処理及び第2受信処理を繰り返し行うことによって複数の第2信号を受信したときの第2受信強度を取得する。また、信号強度取得部175は、複数の第1信号を測距装置100Bが受信したときの第1信号強度を測距装置100Bから取得する。信号強度取得部175が測距装置100Bから取得する第1信号強度は、測距装置100Bの信号強度取得部175によって測定され、第2信号としてのBLEのパケットのペイロードに信号強度データとして書き込まれて測距装置100Aに送信される。
 このように、信号強度取得部175は、ODM140が受信処理を繰り返し行うことによって受信した複数の第2信号に含まれる信号強度データから第1信号強度を取得する。
 ここで、周波数が互いに等しい第1信号及び第2信号の対(ペア)を信号対と称す。第1送信処理で送信された複数の第1信号は、互いに異なる周波数f1~fmを有する。また、第1受信処理で受信された複数の第2信号は、互いに異なる周波数f1~fmを有する。同様に、第2送信処理で送信された複数の第1信号は、互いに異なる周波数f1~fmを有する。また、第2受信処理で受信された複数の第2信号は、互いに異なる周波数f1~fmを有する。
 以下では、第1送信処理で送信された第1信号と、第1受信処理で受信された第2信号とを含む信号対を第1信号対と称し、第2送信処理で送信された第1信号と、第2受信処理で受信された第2信号とを含む信号対を第2信号対と称す。以下では、第1信号対と第2信号対を特に区別しない場合には、単に信号対と称す。
 第1信号対とは、同じ時間帯(第1時間帯)に行われる第1送信処理及び第1受信処理において送受信される、互いに周波数(f1~fm)が等しい第1信号及び第2信号(複数の第1信号と複数の第2信号とで周波数が等しい信号同士)の信号対である。また、第2信号対とは、同じ時間帯(第2時間帯)に行われる第2送信処理及び第2受信処理において送受信される、互いに周波数(f1~fm)が等しい第1信号及び第2信号(複数の第1信号と複数の第2信号とで周波数が等しい信号同士)の信号対である。
 第1信号の数と第2信号の数とは等しいため、第1信号対は、第1送信処理及び第1受信処理における第1信号の数及び第2信号の数と等しい数だけ存在する。同様に、第2信号対は、第2送信処理及び第2受信処理における第1信号の数及び第2信号の数と等しい数だけ存在する。また、第1信号対の数と、第2信号対の数とは等しい。
 信号強度取得部175は、複数の第1信号対及び複数の第2信号対についての信号強度として、複数の第1信号を測距装置100Bが受信したときの第1信号強度、又は、ODM140が受信処理を繰り返し行うことによって複数の第2信号を受信したときの第2受信強度を取得する。信号強度取得部175は、第1送信処理及び第1受信処理が行われることによって、複数の第1信号を測距装置100Bが受信したときの第1信号強度、又は、ODM140が受信処理を繰り返し行うことによって複数の第2信号を受信したときの第2受信強度を取得する。また、信号強度取得部175は、第2送信処理及び第2受信処理が行われることによって、複数の第1信号を測距装置100Bが受信したときの第1信号強度、又は、ODM140が受信処理を繰り返し行うことによって複数の第2信号を受信したときの第2受信強度を取得する。
 信号強度取得部175は、複数の第1信号と複数の第2信号とで周波数が等しい信号同士の複数の第1信号対についての信号強度を取得するとともに、複数の第1信号と複数の第2信号とで周波数が等しい信号同士の複数の第2信号対についての信号強度を取得する。
 往復位相算出部176は、信号強度取得部175によって取得された複数の第1信号対について、各第1信号対に含まれる第1信号及び第2信号についての第1位相及び第2位相を合計した第1往復位相を求める。また、往復位相算出部176は、信号強度取得部175によって取得された複数の第2信号対について、各第2信号対に含まれる第1信号及び第2信号についての第1位相及び第2位相を合計した第2往復位相を求める。なお、第1往復位相と第2往復位相を特に区別しない場合には、単に往復位相と称す。
 抽出部177は、周波数f0~fmについての第1送信処理、第2送信処理、第1受信処理、及び、第2受信処理において得られる複数の信号対の信号強度のうちの所定の閾値未満の1又は複数の信号強度を除いたN(Nは2以上の整数)個の信号強度に対応するN個の信号対を複数の信号対から抽出する。N個の信号対とは、信号強度取得部175によって信号強度が取得されたすべての信号対(複数の信号対)の中から、信号強度が所定の閾値未満の1又は複数の信号対を除いたN個の信号対である。閾値は、マルチパスによって信号強度が低下した信号対を除外可能な値である。
 抽出部177は、複数の第1信号対のうちの第1信号又は第2信号の信号強度が所定の閾値未満の1又は複数の信号対を除いたN個の第1信号対を複数の第1信号対から抽出する。また、抽出部177は、複数の第2信号対のうちの第1信号又は第2信号の信号強度が所定の閾値未満の1又は複数の信号対を除いたN個の第2信号対を複数の信号対から抽出する。抽出部177は、第1信号対と第2信号対とから2つの往復位相を得るために、第1送信処理で送信された第1信号と、第1受信処理で受信された第2信号と、第2送信処理で送信された第1信号と、第2受信処理で受信された第2信号とのうちの1つでも信号強度が所定の閾値未満の信号があれば、その第1信号対と第2信号対を抽出せずに除外する。
 補正部178は、N個の第1往復位相の各々について、測距装置100Bとの相対移動による位相の変化分を補正する。補正部178は、周波数f1~fmにおける第1往復位相と第2往復位相との差分を用いて、測距装置100Bとの相対移動による位相の変化分を補正する。また、補正部178は、周波数f1~fmにおける第1往復位相と第2往復位相との差分から測距装置100Bとの相対速度を求め、測距装置100A及び100Bの相対速度と、複数の第1信号対と複数の第2信号対とが得られた時間差とに基づいて、N個の第1往復位相に対応するN個の第1信号対のN個の周波数f1~fmとが、線形的な関係を有するようにN個の往復位相を補正する。補正部178の具体的な補正内容については図11乃至図13を用いて後述する。
 測距部179は、補正部178によって補正されたN個の第1往復位相と、複数の周波数とに基づいて、測距装置100Bとの距離を測距する。
 メモリ170Mは、制御装置170の主制御部170A、送受信制御部171、切替部172、位相取得部173、位相測定部174、信号強度取得部175、往復位相算出部176、抽出部177、補正部178、測距部179が上述の処理を行うために必要なプログラムやデータ等を格納する。メモリ170Mは、測距装置100A及び100Bの間で送信し合う信号の所定周波数及び位相を設定したデータ等を格納する。
 <測距装置100A及び100Bが実行する測距のための通信方法>
 ここでは、まず、マルチパスの影響が生じない場合の通信方法と測距方法について説明する。
 図3は、測距装置100A及び100Bが実行する測距のための通信方法を説明する図である。ここでは、一例として、測距装置100Aの送受信制御部171がメモリ170Mからデータを読み出して測距装置100Aから測距装置100Bに送信する第1信号の周波数(所定周波数)と位相を設定することとする。また、測距装置100Bは、受信した第1信号の周波数及び位相と等しい周波数及び位相の第2信号を測距装置100Aに送信することとする。測距装置100A及び100Bは、測距のための通信を行う前に、互いに送信する信号の周波数と位相を表すデータを共有していることとする。
 測距装置100A及び100Bは、測距のための通信では、同一の周波数で互いに送信を行う。より具体的には、測距のための通信では、測距装置100A及び100Bのいずれか一方がある周波数で信号(第1信号又は第2信号)を送信すると、いずれか他方が同一の周波数で信号(第1信号又は第2信号)を送信する。このように互いに送信することが、測距のための通信における1回の通信になる。
 図3では、一例として、1回目の通信(1)では、測距装置100Aが測距装置100Bに周波数f1で第1信号を送信し、測距装置100Bが測距装置100Aに同一の周波数f1で第2信号を送信する。測距装置100Aの位相取得部173は、測距装置100Aが送信した周波数f1の第1信号を測距装置100Bが受信したときの位相を測距装置100Bから取得する。また、測距装置100Aの位相測定部174は、測距装置100Aが測距装置100Bから周波数f1の第2信号を受信したときの位相を測定する。
 2回目の通信(2)では、測距装置100Bが測距装置100Aに周波数f2で第2信号を送信し、測距装置100Aが測距装置100Bに同一の周波数f2で第1信号を送信する。測距装置100Aの位相測定部174は、測距装置100Aが測距装置100Bから周波数f2の第2信号を受信したときの位相を測定する。また、測距装置100Aの位相取得部173は、測距装置100Aが送信した周波数f2の第1信号を測距装置100Bが受信したときの位相を測距装置100Bから取得する。
 3回目の通信(3)では、測距装置100Aが測距装置100Bに周波数f3で第1信号を送信し、測距装置100Bが測距装置100Aに同一の周波数f3で第2信号を送信する。測距装置100Aの位相取得部173は、測距装置100Aが送信した周波数f3の第1信号を測距装置100Bが受信したときの位相を測距装置100Bから取得する。また、測距装置100Aの位相測定部174は、測距装置100Aが測距装置100Bから周波数f3の第2信号を受信したときの位相を測定する。
 4回目の通信(4)では、測距装置100Bが測距装置100Aに周波数f4で第2信号を送信し、測距装置100Aが測距装置100Bに同一の周波数f4で第1信号を送信する。測距装置100Aの位相測定部174は、測距装置100Aが測距装置100Bから周波数f4の第2信号を受信したときの位相を測定する。また、測距装置100Aの位相取得部173は、測距装置100Aが送信した周波数f4の第1信号を測距装置100Bが受信したときの位相を測距装置100Bから取得する。
 測距装置100A及び100Bは、測距を行っている間は、図3に示すような通信を行い続け、測距装置100Aの位相測定部174は、測距装置100Aが測距装置100Bから第2信号を受信したときの位相を測定し、測距装置100Aの位相取得部173は、測距装置100Aが送信した第1信号を測距装置100Bが受信したときの位相を測距装置100Bから取得する。
 ここでは、1回目の通信(1)から4回目の通信(4)は、短い周期で繰り返し行っていて、測距装置100A及び100Bの間の距離は同一であることとする。この場合に、測距装置100Aが送信した周波数fmの第1信号を測距装置100Bが受信したときの位相をφABとし、測距装置100Aの位相取得部173が、位相φABを取得することとする。また、測距装置100Aが測距装置100Bから周波数fmの第2信号を受信したときの位相をφBAとし、測距装置100Aの位相測定部174が位相φBAを測定することとする。周波数fmは、例えば上述の周波数f1~f4のいずれかである。
 φAB+φBAは、測距装置100A及び100Bの間で周波数fで往復の通信を行った場合の合計の位相(往復位相)である。周波数fmでの往復位相をφ2wと表す。2wはtwo-way(双方向)の略である。1回目の通信(周波数f1)における往復の位相をφ1w1、2回目の通信(周波数f2)における往復の位相をφ2w2、3回目の通信(周波数f3)における往復の位相をφ2w3、4回目の通信(周波数f4)における往復の位相をφ2w4とする。また、周波数f1~f4における波長をそれぞれλ1~λ4とする。このような往復位相φ2wは、往復位相算出部176によって算出される。
 上述のように、1回目の通信(1)から4回目の通信(4)を短い周期で繰り返し行えば、往復の通信を行う間における測距装置100A及び100Bの間の距離は同一であると考えられるため、1回目の通信(1)から4回目の通信(4)における測距装置100A及び100Bの間の距離をLとすると、次式(1)~(4)が成り立つ。2Lは往復の距離である。nは1以上の整数である。
2L=(n+φ2w1)×λ1   (1)
2L=(n+φ2w2)×λ2   (2)
2L=(n+φ2w3)×λ3   (3)
2L=(n+φ2w4)×λ4   (4)
 式(1)、(2)からnを消去すると、次式(5A)が求まり、さらに式(5B)~(5D)のように変形すると、距離Lが求まる。cは光速である。
2L/λ1-φ2w1=2L/λ2-φ2w2   (5A)
2L(1/λ2-1/λ1)=φ2w2-φ2w1   (5B)
2L(f2-f1)/c=φ2w2-φ2w1   (5C)
L/c=(1/2)×(φ2w2-φ2w1)/(f2-f1) (5D)
 同様に、式(1)、(3)からnを消去すると、式(6)のように変形できる。
L/c=(1/2)×(φ2w3-φ2w1)/(f3-f1) (6)
 同様に、式(1)、(4)からnを消去すると、同様に式(7)のように変形できる。
L/c=(1/2)×(φ2w4-φ2w1)/(f4-f1) (7)
 式(5D)、(6)、(7)は、2つの往復位相φ2wm(ここではmは1~4)の位相差と、2つの周波数fmの周波数差との比が、距離Lと光速cの比に相当することを示している。
 このため、2つの往復位相φ2wmの位相差をΔφ、2つの周波数fmの周波数差をΔfとすると、式(5D)、(6)、(7)は、次式(8)のように表すことができる。
L/c=(1/2)×Δφ/Δf   (8)
 図4は、測距における周波数fmと位相φ2wmの関係を示す図である。式(5D)、(6)、(7)で得られる距離Lと光速cの比を傾きA、B、Cとすると、傾きA、B、Cを図4に示すように表すことができる。具体的には、傾きAはA=(1/2)×Δφ/Δf=(φ2w2-φ2w1)/(f2-f1)である。傾きBはB=(1/2)×Δφ/Δf=(φ2w3-φ2w1)/(f3-f1)である。傾きCはC=(1/2)×Δφ/Δf=(φ2w4-φ2w1)/(f4-f1)である。なお、2つの周波数f1、f2から求まる傾きA、2つの周波数f1、f3から求まる傾きB、2つの周波数f1、f4から求まる傾きCのうちのいずれか1つだけを求めてもよい。また、ここでは、2つの周波数(f1とf2、f1とf3、f1とf4)から傾きA、B、Cを求める形態について説明するが、3つ以上の周波数を用いて、周波数fmと位相φ2wmで与えられる3つ以上の点について、最小二乗法による直線近似で直線を求め、求めた直線の傾きをL/cとして求めてもよい。
 傾きAに光速cを乗じれば、周波数f1とf2の組み合わせから得られる距離Lを求めることができ、傾きBに光速cを乗じれば、周波数f1とf3の組み合わせから得られる距離Lを求めることができ、傾きCに光速cを乗じれば、周波数f1とf4の組み合わせから得られる距離Lを求めることができる。距離Lは、測距部179によって求められる。
 <マルチパス>
 マルチパスが存在すると、途中で反射されて到来する電波の位相は、送信元のデバイスから直接的に到来する電波の位相とは異なり、測距を正確に行えなくなるおそれがある。途中で反射されて到来する電波の伝搬経路は、送信元のデバイスから直接的に到来する電波の伝搬経路とは異なるからである。
 図5は、直接波の経路aとマルチパスの経路bとを説明する図である。直接波の経路aは、測距装置100Bから測距装置100Aに電波が直接伝搬する経路である。マルチパスの経路bは、測距装置100Bから測距装置100Aに電波が伝搬する際に、地面や建造物の壁等の反射面で反射されて伝搬する経路である。直接波の経路aに比べると、マルチパスの経路bは長い。
 図6は、マルチパスが存在する場合の第1信号及び第2信号の周波数と往復位相の関係の一例を示す図である。図6において、横軸は測距装置100A及び100Bの間で送信される第1信号及び第2信号の周波数(MHz)を表す。左側の縦軸は往復位相を表し、右側の縦軸は信号強度(RSSI)を表す。図6には、位相の特性を破線で示し、信号強度(RSSI)の特性を実線で示す。
 マルチパスが存在しない場合には、周波数が約2436MHzから約2456MHzや約2456MHzから約2476MHzの帯域のように、周波数の増大に伴って往復位相が略線形的に減少する。また、周波数が約2436MHzから約2456MHzや約2456MHzから約2476MHzの帯域ではマルチパスが存在しないため、信号強度(RSSI)は-40以上の良好な値が得られている。
 これに対して、マルチパスが存在する場合には、周波数が約2416MHzから約2436MHzの帯域のように、周波数の増大に伴って往復位相が急激に変化(ここでは低下)している帯域(約2424MHzの前後の帯域)があり、その帯域では信号強度(RSSI)が急激に低下している。往復位相が急激に低下している帯域では、マルチフェージングが生じることで、信号強度(RSSI)が低下している。このように往復位相が非線形的に変化すると、その周波数帯では適切な値の往復位相が得られず、適切に測距を行えなくなる。また、往復位相の非線形的な変化は、信号強度(RSSI)によって検出が可能である。
 このため、測距装置100Aは、このように信号強度(RSSI)が低くなる周波数帯を検出し、そのような周波数帯における往復位相を測距用のデータから除外することとする。マルチパスが存在する環境下でも正確に測距可能にするためである。
 <ドップラー効果>
 図7は、測距装置100A及び100Bの間で送受信する電波にドップラー効果の影響がある場合の周波数に対する往復位相の関係を説明する図である。例えば、測距装置100Bを含むスマートキー20を保持した利用者が、車両10に搭載された自動駐車支援システムを操作しながら移動すると、測距装置100A及び100Bの間の距離が変化する。
 ここで、車両10とスマートキー20の距離が一定である場合には、図7において破線で示すような周波数f0~fmと往復位相θ0~θmとの関係が得られたとする。ここで、周波数f0~fmは、一例として、等間隔であり、f0からfmにかけて順番に1MHzずつ増大するとする。
 このような場合に、車両10が停止した状態で、スマートキー20を保持した利用者が一定の移動速度v(m/s)で車両10から遠ざかると、ドップラー効果によって、周波数f0~fmと往復位相θ0~θmとの関係は、実線で示すようにシフトする。時間tを用いると、θmは、ドップラー効果によって次式(1)で表されるようにシフトする。式(9)で表されるように、周波数fmが高くなるほど、ドップラー効果による往復位相θmのシフト分は大きくなる。
Figure JPOXMLDOC01-appb-M000001
 利用者の移動速度v(m/s)が分かれば、図7における実線の特性を破線の特性のように補正することができるため、測距装置100Aは、次のようにして利用者の移動速度v(m/s)を検出する。なお、スマートキー20を保持した利用者と車両10との両方が移動してもよく、この場合には相対移動速度を検出すればよい。
 図8は、移動速度v(m/s)の検出方法を説明する図である。周波数f0~fmの各々において第1送信処理及び第1受信処理を行うことで周波数f0~fmにおける第1往復位相θ0~θmを求めるとともに、周波数f0~fmの各々において第2送信処理及び第2受信処理を行うことで周波数f0~fmにおける第2往復位相θa0~θamを求めている。
 利用者が移動しているときに、第1時間帯に周波数f0~fmの各々において第1送信処理及び第1受信処理を行ってから、第1時間帯の後の第2時間帯に周波数f0~fmの各々において第2送信処理及び第2受信処理を行えば、図8に示すように、周波数f0~fmの各々における第1往復位相θ0~θmと、第2往復位相θa0~θamとの差分Δθ0~Δθmは、一定値になる。この場合の第1往復位相θk(k=0~m)を用いると、第2往復位相θakは、次式(10)で表される。第1往復位相θk及び第2往復位相θakの周波数をfkとする。
Figure JPOXMLDOC01-appb-M000002
 式(10)に基づいて差分Δθk(k=0~m)を求めれば、第1時間帯と第2時間帯との時間差を時間tとして用いることで、移動速度vを求めることができる。このような移動速度vの算出は、補正部178が行う。
 具体的には、例えば、第1時間帯の終点時刻tAでの往復位相をθA、第2時間帯の終点時刻tBでの往復位相をθBとし、時間t(=tB-tA)、往復位相の変化量Δθ(=θB-θA)、及び移動速度vを用いると、ドップラー効果について次式(11)が成り立つ。
Figure JPOXMLDOC01-appb-M000003
 往復位相算出部176が第1時間帯の終点時刻tAで往復位相θAを算出するとともに第2時間帯の終点時刻tBで往復位相θBを算出し、補正部178が時間t(=tB-tA)における往復位相の変化量Δθ(=θB-θA)を式(11)に代入すれば、移動速度vを求めることができる。
 <送信処理と受信処理のタイミング>
 上述のように、送受信制御部171は、BLE(登録商標)における1つの連続波送信期間(2.5ミリ秒)に一度の第1送信処理を行い、別の1つの連続波送信期間に一度の第1受信処理を行い、さらに別の1つの連続波送信期間に一度の第2送信処理を行い、さらに別の1つの連続波送信期間に一度の第2受信処理を行う。
 測距装置100Aは、このように、各連続波送信期間に一度の送信処理又は受信処理を行うことで、測距装置100Bに対して異なるタイミングで3種類以上の周波数f1~fmの第1信号を送信し、測距装置100Bから異なるタイミングで3種類以上の周波数f1~fmの第2信号を受信する。
 連続波送信期間は2.5ミリ秒と非常に短いため、一度の送信処理又は受信処理を行い、複数の連続波送信期間において送信処理又は受信処理を繰り返し行うことによって、測距を行う。
 BLE(登録商標)のパケット通信は、測距以外の他の用途(例えばAudio信号の伝送)にも使用されるため、測距に使用可能な時間が非常に限られている。このため、できるだけ短時間に高精度の測位を実現することが求められており、測距装置100Aは、各連続波送信期間に一度の送信処理又は受信処理を行うこととしている。また、断続的な複数の連続波送信期間に一度の送信処理又は受信処理を行って得る結果を合算することで、周波数f1~fmに対する往復位相の関係を求め、測距を行う。
 <信号対の抽出方法>
 図9A、図9B、及び図9Cは、1つの連続波送信期間に第1送信処理及び第1受信処理を行って得た周波数に対する往復位相(上側)と、周波数に対する信号強度(下側)とを示す図である。図9A、図9B、及び図9Cに示す信号強度は、第1信号及び第2信号のRSSIのうちの低い方の値である。ここでは、図9A、図9B、及び図9Cを用いて信号対の抽出方法の一例について説明する。抽出部177が信号対を抽出する信号強度の閾値THは、一例として、マルチパスがない場合の信号強度RS1から10dBm低下したレベルとする。また、以下では複数の周波数はf0~fmであることとする。
 ここでは、連続波送信期間毎に第1送信処理及び第1受信処理を行って得た周波数に対する往復位相(上側)と、周波数に対する信号強度(下側)とを示すが、連続波送信期間毎に第2送信処理及び第2受信処理を行って得た周波数に対する往復位相と、周波数に対する信号強度とについても同様である。なお、図9Aに示す時刻t0~t2は、一定間隔であり、図9Bに示す時刻t3~t5は、一定間隔であり、図9Cに示す時刻t6~t8は、一定間隔である。時刻t0~t2、t3~t5、t6~t8の間隔は、すべて等しい。
 図9Aには、周波数f0、f1、f2で1回の第1送信処理及び1回の第1受信処理を行って得た周波数に対する往復位相(上側)と、周波数f0、f1、f2に対する信号強度(下側)とを示す。信号強度取得部175及び往復位相算出部176は、時刻t0で周波数f0に対する信号強度及び往復位相を取得し、時刻t1で周波数f1に対する信号強度及び往復位相を取得し、時刻t2で周波数f2に対する信号強度及び往復位相を取得し、時刻t3で周波数f0に対する信号強度及び往復位相を取得する。信号強度取得部175及び往復位相算出部176は、周波数f0については、時刻t0及びt3において、信号強度及び往復位相を2回取得する。
 図9Bには、周波数f3、f4、f5で1回の第1送信処理及び1回の第1受信処理を行って得た周波数に対する往復位相(上側)と、周波数f3、f4、f5に対する信号強度(下側)とを示す。信号強度取得部175及び往復位相算出部176は、時刻t4で周波数f3に対する信号強度及び往復位相を取得し、時刻t5で周波数f4に対する信号強度及び往復位相を取得し、時刻t6で周波数f5に対する信号強度及び往復位相を取得し、時刻t7で周波数f6に対する信号強度及び往復位相を取得する。信号強度取得部175及び往復位相算出部176は、周波数f3については、時刻t4及びt7において、信号強度及び往復位相を2回取得する。
 図9Cには、周波数f6、f7、f8で1回の第1送信処理及び1回の第1受信処理を行って得た周波数に対する往復位相(上側)と、周波数f6、f7、f8に対する信号強度(下側)とを示す。信号強度取得部175及び往復位相算出部176は、時刻t8で周波数f3に対する信号強度及び往復位相を取得し、時刻t9で周波数f4に対する信号強度及び往復位相を取得し、時刻t10で周波数f5に対する信号強度及び往復位相を取得し、時刻t11で周波数f6に対する信号強度及び往復位相を取得する。信号強度取得部175及び往復位相算出部176は、周波数f3については、時刻t8及びt11において、信号強度及び往復位相を2回取得する。
 また、補正部178は、同一の周波数について2回取得された往復位相の差分Δθを求める。差分Δθは、第1往復位相と、第2往復位相との差分Δθである。補正部178は、図9Aに示す周波数f0について差分Δθs1を求め、図9Bに示す周波数f3について差分Δθs2を求め、図9Cに示す周波数f6について差分Δθs3を求める。図9Aには、周波数f0、f1、f2における往復位相にフィットする直線を破線で示す。図9Bには、周波数f3、f4、f5における往復位相にフィットする直線を破線で示す。図9Cには、周波数f6、f7、f8における往復位相にフィットする直線を破線で示す。
 また、図9A~図9Cにおいて信号強度を見ると、周波数f0~f2、f3、f4、f6~f8では信号強度が閾値TH以上であるが、周波数f5では信号強度が閾値TH未満になっている。
 このような場合に、抽出部177は、信号強度が閾値TH未満の信号対を除外し、信号強度が閾値TH以上の信号対について算出された往復位相を抽出する。図10は、図9A~図9Cの結果を纏め、抽出部177が抽出する信号対を示す図である。抽出部177は、図10に示すように信号強度が閾値TH未満の周波数f5の信号対を除外し、周波数f0~f2、f3、f4、f6~f8についての信号対について算出された往復位相を抽出する。
 図11は、補正部178の補正処理のうちの速度補正の処理を説明する図である。速度補正の処理は、測距装置100A及び100Bの相対的な移動によるドップラー効果の影響を補正する処理である。
 補正部178は、周波数f0、f1、f2で得た往復位相については、周波数f0についての差分Δθs1を周波数f1、f2における往復位相に均等に割り振ることで、周波数f1、f2における往復位相を補正する。周波数f0について2回取得された往復位相の差分Δθs1は時刻t0での周波数f0の往復位相に対する時刻t3での周波数f0の往復位相の増加分であるため、補正部178は、周波数f1における往復位相から(Δθs1)/2を減じるとともに、周波数f2における往復位相からΔθs1を減じる。時刻t0~t3は、一定間隔であるため、時刻t0からの経過時間に応じた割合を差分Δθs1に乗じた値を補正値として用いる。すなわち、周波数f1における往復位相についての補正値は-(Δθs1)/2であり、周波数f2における往復位相についての補正値は-Δθs1である。
 同様に、周波数f3について2回取得された往復位相の差分Δθs2は時刻t4での周波数f3の往復位相に対する時刻t7での周波数f3の往復位相の増加分であるため、補正部178は、周波数f4における往復位相から(Δθs2)/2を減じる。時刻t4~t7は、一定間隔であるため、時刻t4からの経過時間に応じた割合を差分Δθs2に乗じた値を補正値として用いる。すなわち、周波数f4における往復位相についての補正値は-(Δθs2)/2である。
 また、周波数f6について2回取得された往復位相の差分Δθs3は時刻t8での周波数f6の往復位相に対する時刻t11での周波数f6の往復位相の増加分であるため、補正部178は、周波数f7における往復位相から(Δθs3)/2を減じるとともに、周波数f8における往復位相からΔθs3を減じる。時刻t8~t11は、一定間隔であるため、時刻t8からの経過時間に応じた割合を差分Δθs3に乗じた値を補正値として用いる。すなわち、周波数f7における往復位相についての補正値は-(Δθs3)/2であり、周波数f8における往復位相についての補正値は-Δθs3である。
 図12、図13、及び図14は、補正部178が行う補正処理のうちの線形補正の処理を説明する図である。補正部178は、図12に示すように周波数f0、f1、f2の往復位相にフィットする直線の傾きS1と切片A1を算出する。
 次に、補正部178は、算出した傾きSと切片Aを用いて、図13に示すように、周波数f3、f4の往復位相が周波数f0、f1、f2の往復位相にフィットする直線に接するように、周波数f3、f4の往復位相をオフセットさせる。周波数f3での往復位相θ3については、(θ3-(f3×S1+A1)をθ3から減じることで、図13に示すように周波数f3の往復位相θ3をオフセットさせる。周波数f4での往復位相θ4については、(θ3-(f3×S1+A1)をθ4から減じることで、図13に示すように周波数f4の往復位相θ4をオフセットさせる。周波数f3、f4の往復位相θ3、θ4については、同じ補正量(θ3-(f3×S1+A1)を用いてオフセットさせる。そして、補正部178は、周波数f0、f1、f2、f3、f4の往復位相にフィットする直線の傾きS2と切片A2を算出する。
 次に、補正部178は、周波数f0、f1、f2、f3、f4の往復位相にフィットする直線の傾きS2と切片A2を用いて、図14に示すように、周波数f6、f7、f8の往復位相が周波数f0、f1、f2、f3、f4の往復位相にフィットする直線に接するように、周波数f6、f7、f8の往復位相をオフセットさせる。周波数f6での往復位相θ6については、(θ6-(f6×S2+A2)をθ6から減じることで、図14に示すように周波数f6の往復位相θ6をオフセットさせる。周波数f7、f8での往復位相θ7、θ8については、(θ6-(f6×S2+A2)をθ7、θ8から減じることで、図14に示すように周波数f7、f8の往復位相θ7、θ8をオフセットさせる。周波数f6、f7、f8の往復位相θ6、θ7、θ8については、同じ補正量(θ6-(f6×S2+A2)を用いてオフセットさせる。そして、補正部178は、周波数f0、f1、f2、f3、f4、f6、f7、f8の往復位相にフィットする直線の傾きS3と切片A3を算出する。
 以上のような処理を周波数f0~fmの往復位相について行うことによって、周波数f0~fmの往復位相について、N個の往復位相と、N個の往復位相に対応するN個の信号対のN個の周波数とが、線形的な関係を有するように、N個の往復位相を補正する。これが線形補正の処理である。そして、測距部179は、このようにして得られる、N個の往復位相と、N個の往復位相に対応するN個の信号対のN個の周波数との線形的な関係(例えば、図14に示す切片がA3で傾きがS3の直線)を用いて、測距装置100Aに対する測距装置100Bの距離を測定する。
 <フローチャート>
 図15は、制御装置170が実行する処理の一例を表すフローチャートである。
 処理がスタートすると、信号強度取得部175及び往復位相算出部176は、1つの連続波送信期間毎に、3種類の周波数を用いて第1送信処理、第1受信処理、第2送信処理、及び第2受信処理を実行する(ステップS1)。信号強度取得部175及び往復位相算出部176は、第1送信処理、第1受信処理、第2送信処理、及び第2受信処理を別々の連続波送信期間において行う。
 図15のステップS1には、一例として、部分処理1、部分処理2、部分処理3を示す。部分処理1は、図9Aを用いて説明したように、周波数f0、f1、f2で1回の第1送信処理及び1回の第1受信処理を行って、往復位相θ0(t0)、θ1(t1)、θ2(t2)、θ0(t3)と、信号強度RSSI1、RSSI2、RSSI3を取得する処理である。時刻t0~t3は、往復位相に関する第1信号が送信された時刻である。部分処理2は、図9Bを用いて説明したように、周波数f3、f4、f5で1回の第1送信処理及び1回の第1受信処理を行って、往復位相θ3(t4)、θ4(t5)、θ5(t6)、θ3(t7)と、信号強度RSSI3、RSSI4、RSSI5を取得する処理である。時刻t4~t7は、往復位相に関する第1信号が送信された時刻である。部分処理3は、図9Cを用いて説明したように、周波数f6、f7、f8で1回の第1送信処理及び1回の第1受信処理を行って、往復位相θ6(t8)、θ7(t9)、θ8(t10)、θ6(t11)と、信号強度RSSI6、RSSI7、RSSI8を取得する処理である。時刻t8~t11は、往復位相に関する第1信号が送信された時刻である。信号強度取得部175及び往復位相算出部176は、周波数fmまで同様の処理を繰り返し実行する。
 信号強度取得部175及び往復位相算出部176は、ステップS1において実行した第1送信処理、第1受信処理、第2送信処理、及び第2受信処理において得られた往復位相、信号強度を出力する(ステップS2)。また、ステップS2では、補正部178は、各処理において同一の周波数について2回取得された往復位相の差分Δθを求める。
 主制御部170Aは、ステップS2で得られたすべてのデータを集約する(ステップS3)。
 抽出部177は、信号強度が閾値TH以上の信号対について算出された往復位相を抽出する(ステップS4)。ステップS4により、N個の往復位相に対応するN個の信号対のN個の周波数が抽出される。
 補正部178は、速度補正の処理を実行する(ステップS5)。測距装置100A及び100Bの相対的な移動によるドップラー効果の影響を補正するために、補正部178は、部分処理1、部分処理2、部分処理3を含む複数の処理で得られた3種類の周波数の往復位相について、図11を用いて説明した速度補正の処理を行う。
 補正部178は、線形補正の処理を実行する(ステップS6)。線形補正の処理は、図12~図14を用いて説明したように、N個の往復位相と、N個の往復位相に対応するN個の信号対のN個の周波数とが、線形的な関係を有するように、N個の往復位相を補正する処理である。周波数と往復位相との線形的な関係は、一例として図14に示すように得られる。
 測距部179は、ステップS6において補正部178によって補正されたN個の第1往復位相と、複数の周波数との線形的な関係の切片と傾きに基づいて、測距装置100Bとの距離を測距する(ステップS7)。
 なお、以上では、部分処理1、部分処理2、部分処理3を含む複数の部分処理において、最も低い周波数について往復位相を2回取得し、ステップS2において、補正部178が、各部分処理において同一の周波数について2回取得された往復位相の差分Δθを求める形態について説明した。各部分処理において同一の周波数について2回取得された往復位相の差分Δθを求めることにより、測距装置100A及び100Bの相対移動速度の変動に応じて、ドップラー効果の影響をより正確に補正することができる。また、各部分処理では、最も低い周波数以外の周波数について往復位相を2回取得してもよい。
 しかしながら、複数の部分処理のうちの少なくともいずれか1つの部分処理において、最も低い周波数について往復位相を2回取得し、2回取得された往復位相の差分Δθに基づいて算出される移動速度を用いて、ステップS5でドップラー効果の影響を補正してもよい。例えば、部分処理1において、最も低い周波数f0について2回取得された往復位相の差分Δθに基づいて算出される移動速度を用いて、部分処理1以外の部分処理についてドップラー効果の影響を補正してもよい。測距装置100A及び100Bの相対移動速度が一定と考えられる場合には、このようにすることで、処理を簡略化することができる。
 以上のように、複数の信号対について往復位相を求めるとともに信号強度を取得し、複数の信号対の信号強度のうちの所定の閾値未満の1又は複数の信号強度を除いたN(Nは2以上の整数)個の信号強度に対応するN個の信号対を複数の信号対から抽出し、N個の往復位相と、複数の周波数とに基づいて、測距装置100Bとの距離を測距する。このため、マルチパスの影響を低減することができる。
 したがって、マルチパスが存在する環境下でも正確に測距可能な測距装置100を提供することができる。
 また、複数の信号対のうちの第1信号又は第2信号の信号強度が所定の閾値未満の1又は複数の信号対を除いたN個の信号対を複数の信号対から抽出するので、より確実にマルチパスの影響を低減することができ、より正確に測距可能である。
 また、前記送受信制御部171は、所定の期間において測距装置100Bに対して第1信号を送信する送信処理をOM130に繰り返し行わせて、OM130に測距装置100Bに対して異なるタイミングで3種類以上の複数の周波数の第1信号を送信させ、所定の期間において、第2信号を測距装置100Bから受信する受信処理をODM140に繰り返し行わせて、ODM140に測距装置100Bから異なるタイミングで3種類以上の複数の周波数の第2信号を受信させる。このため、送信処理と受信処理を行う期間が限られている状態でも、周波数と往復位相との関係を確実に取得することができ、正確に測距可能である。
 また、位相取得部173は、ODM140が受信処理を繰り返し行うことによって受信した複数の第2信号に含まれる位相データから複数の第1位相を取得するので、測距装置100Bの位相測定部174が測定した第1信号の受信時の第1位相を容易かつ確実に入手できる。この結果、正確に測距を行うことができる。
 また、信号強度取得部175は、複数の信号対についての信号強度として、複数の第1信号を測距装置100Bが受信したときの第1信号強度、又は、ODM140が受信処理を繰り返し行うことによって複数の第2信号を受信したときの第2受信強度を取得する。このため、信号受信時の位相を用いて往復位相を算出することができ、より正確に測距を行うことができる。
 また、信号強度取得部175は、ODM140が受信処理を繰り返し行うことによって受信した複数の第2信号に含まれる信号強度データから第1信号強度を取得する。第1信号を測距装置100Bが受信したときの第1信号強度を第2信号から取得でき、第2信号から取得した第1信号強度に基づいて往復位相を算出することができ、より正確に測距を行うことができる。なお、測距装置100Bが信号強度取得部175を有していてもよく、測距装置100Aが送信した第1信号に第2信号強度を書き込んで測距装置100Bの信号強度取得部175が第2信号強度を取得してもよい。
 N個の往復位相の各々について、測距装置100Bとの相対移動による往復位相の変化分を補正する補正部178をさらに含み、測距部179は、補正部178によって補正されたN個の往復位相と、複数の周波数とに基づいて、測距装置100Bとの距離を測距する。測距装置100Bとの相対移動によるドップラー効果の影響を補正でき、より正確に測距を行うことができる。
 送受信制御部171は、複数の周波数の各々についてOM130に複数回にわたって第1信号を送信させるとともに、複数の周波数の各々についてODM140に複数回にわたって第2信号を受信させ、往復位相算出部176は、N個の信号対の各々に対して、複数の周波数の各々について複数の往復位相を求め、補正部178は、N個の信号対の各々に対して、往復位相算出部176によって複数の周波数の各々について求められる複数の往復位相の差分を用いて、測距装置100Bとの相対移動による往復位相の変化分を補正する。複数の往復位相の差分に基づいて、測距装置100Bとの相対移動速度の変化に応じてドップラー効果の影響を補正でき、さらに正確に測距を行うことができる。
 補正部178は、N個の信号対の各々について求められる複数の往復位相の差分から測距装置100Bとの相対速度を求め、相対速度と各信号対が得られた時間差とに基づいて、N個の往復位相と、N個の往復位相に対応するN個の信号対のN個の周波数とが、線形的な関係を有するように、N個の往復位相を補正する。このため、BLE(登録商標)における連続波送信期間のような断続的な期間において求めたN個の往復位相とN個の周波数とを直線上に並べることができ、N個の往復位相とN個の周波数との取得が断続的な複数の期間に分割されるような状況でも、正確に測距を行うことができる。
 所定の期間は、連続波送信期間である。このため、BLE(登録商標)における複数の断続的な連続波送信期間において求めたN個の往復位相とN個の周波数とに基づいて、正確に測距を行うことができる。
 連続波送信期間は、2.5ミリ秒である。このため、BLE(登録商標)における複数の断続的な2.5ミリ秒という非常に短い期間において求めたN個の往復位相とN個の周波数とに基づいて、正確に測距を行うことができる。
 所定の閾値は、マルチパスによって信号強度が低下した1又は複数の信号対を除外可能な閾値である。このため、マルチパスの影響を排除して、正確に測距を行うことができる。
 以上、本発明の例示的な実施形態の測距装置について説明したが、本発明は、具体的に開示された実施形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 なお、本国際出願は、2022年6月21日に出願した日本国特許出願2022-099835に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。
 10 車両
 20 スマートキー
 100A、100B 測距装置
 100R 無線装置
 110 PA
 120 LNA
 130 OM  (送信部の一例)
 140 ODM  (受信部の一例)
 150 VCO
 155 PLL
 160 コーデック処理部
 170 制御装置
 170A 主制御部
 171 送受信制御部
 172 切替部
 173 位相取得部
 174 位相測定部
 175 信号強度取得部
 176 往復位相算出部
 177 抽出部
 178 補正部
 179 測距部
 170M メモリ

Claims (12)

  1.  他のデバイスに第1信号を送信する送信部と、
     前記第1信号を受信した前記他のデバイスから第2信号を受信する受信部と、
     前記送信部が前記他のデバイスに対して異なるタイミングで3種類以上の複数の周波数で送信した複数の前記第1信号を前記他のデバイスが受信したときの複数の第1位相を取得する位相取得部と、
     前記他のデバイスから異なるタイミングで前記受信部が前記3種類以上の複数の周波数で前記第2信号を受信したときの複数の第2位相を測定する位相測定部と、
     複数の前記第1信号と複数の前記第2信号とで前記周波数が等しい信号同士の複数の信号対についての信号強度を取得する信号強度取得部と、
     前記複数の信号対に含まれる前記第1信号及び前記第2信号についての前記第1位相及び前記第2位相を合計した往復位相を前記複数の信号対について求める往復位相算出部と、
     前記複数の信号対の信号強度のうちの所定の閾値未満の1又は複数の信号強度を除いたN(Nは2以上の整数)個の信号強度に対応するN個の前記信号対を前記複数の信号対から抽出する抽出部と、
     前記N個の往復位相と、前記複数の周波数とに基づいて、前記他のデバイスとの距離を測距する測距部と
     を含む、測距装置。
  2.  前記抽出部は、前記複数の信号対のうちの前記第1信号又は前記第2信号の信号強度が前記所定の閾値未満の1又は複数の信号対を除いたN個の前記信号対を前記複数の信号対から抽出する、請求項1に記載の測距装置。
  3.  送受信の制御を行う送受信制御部をさらに含み、
     前記送受信制御部は、
     所定の期間において前記他のデバイスに対して前記第1信号を送信する送信処理を前記送信部に繰り返し行わせて、前記送信部に前記他のデバイスに対して異なるタイミングで前記3種類以上の複数の周波数の前記第1信号を送信させ、
     前記所定の期間において、前記第2信号を前記他のデバイスから受信する受信処理を前記受信部に繰り返し行わせて、前記受信部に前記他のデバイスから異なるタイミングで前記3種類以上の複数の周波数の前記第2信号を受信させる、請求項1に記載の測距装置。
  4.  前記位相取得部は、前記受信部が前記受信処理を繰り返し行うことによって受信した複数の前記第2信号に含まれる位相データから前記複数の第1位相を取得する、請求項3に記載の測距装置。
  5.  前記信号強度取得部は、複数の信号対についての信号強度として、複数の前記第1信号を前記他のデバイスが受信したときの第1信号強度、又は、前記受信部が前記受信処理を繰り返し行うことによって複数の前記第2信号を受信したときの第2受信強度を取得する、請求項3に記載の測距装置。
  6.  前記信号強度取得部は、前記受信部が前記受信処理を繰り返し行うことによって受信した複数の前記第2信号に含まれる信号強度データから前記第1信号強度を取得する、又は、前記受信部が前記受信処理を繰り返し行うことによって受信した複数の前記第1信号に含まれる信号強度データから前記第2信号強度を取得する、請求項5に記載の測距装置。
  7.  前記N個の往復位相の各々について、前記他のデバイスとの相対移動による往復位相の変化分を補正する補正部をさらに含み、
     前記測距部は、前記補正部によって補正された前記N個の往復位相と、前記複数の周波数とに基づいて、前記他のデバイスとの距離を測距する、請求項3に記載の測距装置。
  8.  前記送受信制御部は、前記複数の周波数の各々について前記送信部に複数回にわたって前記第1信号を送信させるとともに、前記複数の周波数の各々について前記受信部に複数回にわたって前記第2信号を受信させ、
     前記往復位相算出部は、前記N個の前記信号対の各々に対して、前記複数の周波数の各々について複数の前記往復位相を求め、
     前記補正部は、前記N個の前記信号対の各々に対して、前記往復位相算出部によって前記複数の周波数の各々について求められる複数の前記往復位相の差分を用いて、前記他のデバイスとの相対移動による往復位相の変化分を補正する、請求項7に記載の測距装置。
  9.  前記補正部は、
     前記N個の前記信号対の各々について求められる複数の前記往復位相の差分から前記他のデバイスとの相対速度を求め、
     前記相対速度と各信号対が得られた時間差とに基づいて、前記N個の往復位相と、前記N個の往復位相に対応する前記N個の信号対のN個の前記周波数とが、線形的な関係を有するように、前記N個の往復位相を補正する、請求項8に記載の測距装置。
  10.  前記所定の期間は、連続波送信期間である、請求項1乃至9のいずれか1項に記載の測距装置。
  11.  前記連続波送信期間は、2.5ミリ秒である、請求項10に記載の測距装置。
  12.  前記所定の閾値は、マルチパスによって信号強度が低下した1又は複数の前記信号対を除外可能な閾値である、請求項1に記載の測距装置。
PCT/JP2023/007726 2022-06-21 2023-03-02 測距装置 WO2023248540A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022099835 2022-06-21
JP2022-099835 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023248540A1 true WO2023248540A1 (ja) 2023-12-28

Family

ID=89379404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007726 WO2023248540A1 (ja) 2022-06-21 2023-03-02 測距装置

Country Status (1)

Country Link
WO (1) WO2023248540A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201003A1 (en) * 2010-04-26 2013-08-08 Sithamparanathan Sabesan Rfid tag location systems
JP2019174418A (ja) * 2018-03-29 2019-10-10 株式会社東海理化電機製作所 測距システム
US20190346554A1 (en) * 2016-06-22 2019-11-14 Intel Corporation Communication device and a method for localization
WO2021095558A1 (ja) * 2019-11-14 2021-05-20 ソニーセミコンダクタソリューションズ株式会社 通信装置および通信方法
WO2021193386A1 (ja) * 2020-03-25 2021-09-30 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信システム及び通信方法
WO2022153773A1 (ja) * 2021-01-18 2022-07-21 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信システム及び通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201003A1 (en) * 2010-04-26 2013-08-08 Sithamparanathan Sabesan Rfid tag location systems
US20190346554A1 (en) * 2016-06-22 2019-11-14 Intel Corporation Communication device and a method for localization
JP2019174418A (ja) * 2018-03-29 2019-10-10 株式会社東海理化電機製作所 測距システム
WO2021095558A1 (ja) * 2019-11-14 2021-05-20 ソニーセミコンダクタソリューションズ株式会社 通信装置および通信方法
WO2021193386A1 (ja) * 2020-03-25 2021-09-30 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信システム及び通信方法
WO2022153773A1 (ja) * 2021-01-18 2022-07-21 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信システム及び通信方法

Similar Documents

Publication Publication Date Title
US11105880B2 (en) Distance measuring device and distance measuring method
US10712435B2 (en) Distance measuring device and distance measuring method
US10466350B2 (en) Transmitter-receiver circuit and method for distance measurement between a first node and a second node of a radio network
US9274218B2 (en) Distance measurement between two nodes of a radio network
US10557933B2 (en) Radar device and position-determination method
US9448303B2 (en) Radar device
JP5407856B2 (ja) マルチバンドトランシーバおよび該トランシーバを用いた測位システム
US9116237B2 (en) Phase-based ranging for backscatter RFID tags
US11774577B2 (en) Combined phase and time-of-flight measurement
US20100207820A1 (en) Distance measuring device
JP6092785B2 (ja) レーダ装置
KR20100054639A (ko) 레이더 시스템 및 이를 이용한 신호 처리 방법
JP2007139691A (ja) 車載用パルスレーダ装置
US11277142B2 (en) Phase correcting device, distance measuring device, phase fluctuation detecting device and phase correction method
Moghaddasi et al. Improved joint radar-radio (RadCom) transceiver for future intelligent transportation platforms and highly mobile high-speed communication systems
US6972711B2 (en) Transmit-receive FM-CW radar apparatus
US10379216B2 (en) Positioning system
JP4819067B2 (ja) 距離測定装置
WO2023248540A1 (ja) 測距装置
JP3690249B2 (ja) Fm−cwレ−ダ装置
JP2014059284A (ja) 相互間距離測定機能を付加した安全運転支援装置
JP2013217754A (ja) 距離測定装置および距離補正手段
EP3796041B1 (en) Distance measuring apparatus and distance measuring system
US20240080670A1 (en) Method for detecting a relay attack
JP2020159980A (ja) レーダ装置及び物標検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826729

Country of ref document: EP

Kind code of ref document: A1