WO2023248329A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023248329A1
WO2023248329A1 PCT/JP2022/024666 JP2022024666W WO2023248329A1 WO 2023248329 A1 WO2023248329 A1 WO 2023248329A1 JP 2022024666 W JP2022024666 W JP 2022024666W WO 2023248329 A1 WO2023248329 A1 WO 2023248329A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
active element
optically active
lower semiconductor
Prior art date
Application number
PCT/JP2022/024666
Other languages
English (en)
French (fr)
Inventor
亘 小林
学 満原
慈 金澤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/024666 priority Critical patent/WO2023248329A1/ja
Publication of WO2023248329A1 publication Critical patent/WO2023248329A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Definitions

  • the present invention relates to a semiconductor device in which a plurality of optically active elements are integrated.
  • a light source with a modulation function is used.
  • an EML Electroabsorption-modulator Integrated Distributed Feedback Laser
  • an electroabsorption-type optical modulator and a DFB laser are integrated is used.
  • a DFB laser that generates light as a carrier wave and an EA modulator that modulates the carrier wave are monolithically integrated on a single semiconductor substrate.
  • a conductive polarity (mainly an n-polar InP substrate) is used as the semiconductor substrate. Therefore, the electrical polarity of the substrate of each integrated element is inevitably short-circuited due to its structure. Therefore, when the DFB laser and EA modulator operate, the substrate is connected to GND, a positive polarity voltage is applied to the DFB laser section, and a negative polarity voltage is applied to the EA modulator.
  • the EA modulator is driven by applying a single-phase modulation signal. For example, one of the electrodes of the EA modulator is connected to GND to perform single-phase driving.
  • differential driving has the effect of improving the S/N of an optical waveform by suppressing common mode noise and halving the modulation amplitude voltage applied to each signal line (Non-Patent Document 1).
  • Non-Patent Document 1 Non-Patent Document 1
  • the DFB laser is driven in single phase, and the EA modulator cannot be driven differentially.
  • the conventional technology has a problem in that it is not possible to drive two monolithically integrated optical active elements using different methods.
  • the present invention has been made to solve the above problems, and its purpose is to drive two monolithically integrated optical active elements using different methods.
  • a semiconductor device includes a substrate made of a semi-insulating compound semiconductor, a first lower semiconductor layer of a first conductivity type, a first active layer formed on the first lower semiconductor layer, and a first active layer formed on the first lower semiconductor layer.
  • a first optically active element formed on a substrate including an upper semiconductor layer of a second conductivity type formed on an active layer; a second lower semiconductor layer of a first conductivity type; and a second lower semiconductor layer.
  • the substrate includes a lower semiconductor layer, a third active layer formed on the third lower semiconductor layer, and an upper semiconductor layer formed on the third active layer, and the third lower semiconductor layer is in contact with the substrate.
  • An optical waveguide that optically connects the second optically active element, a first etching stop layer formed between the substrate and the first lower semiconductor layer, and a first etching stop layer formed between the substrate and the second lower semiconductor layer. a second etching stop layer formed thereon.
  • a first optical active element and a second optical active element are formed on a substrate made of a semi-insulating compound semiconductor via an etching stop layer, and these elements are Since an optical waveguide is provided between them to function as an electrical isolation section, the two monolithically integrated optically active devices can be driven in different ways.
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2A is a distribution diagram showing the calculation result of the electric field intensity distribution in the cross section perpendicular to the waveguide direction in the first optically active element 102.
  • FIG. 2B is a distribution diagram showing the calculation result of the electric field intensity distribution in the cross section perpendicular to the waveguide direction in the first optically active element 102.
  • FIG. 2C is a distribution diagram showing the calculation result of the electric field intensity distribution in the cross section perpendicular to the waveguide direction in the first optically active element 102.
  • FIG. 3 is a configuration diagram showing the configuration of a model used to calculate the electrical resistance value of the third lower semiconductor layer 141 in the optical waveguide 104.
  • FIG. 4A is a configuration diagram showing the configuration of a model used in a simulation performed regarding optical coupling between the first optically active element 102 and the optical waveguide 104.
  • FIG. 4B is a characteristic diagram showing the calculation results of the optical coupling coefficient with respect to the variation ⁇ z of the thickness z of the third lower semiconductor layer 141 of the optical waveguide 104.
  • FIG. 5A is an explanatory diagram illustrating the difference in ⁇ W between the waveguide width W LD of the first optically active element 102 and the waveguide width W iso of the optical waveguide 104.
  • FIG. 5B is a characteristic diagram showing calculation results of optical coupling efficiency with respect to the difference ⁇ W in waveguide width.
  • FIG. 6A is a cross-sectional view of a plane parallel to the waveguide direction showing a state of a semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6C is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6A is a cross-sectional view of a plane parallel to the waveguide direction showing a state of a semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for
  • FIG. 6D is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6E is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method of manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6F is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6D is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6E is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method of
  • FIG. 6G is a cross-sectional view of a plane perpendicular to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6H is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6I is a cross-sectional view of a plane perpendicular to the waveguide direction showing a state of a semiconductor device in an intermediate process for explaining the method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 6G is a cross-sectional view of a plane perpendicular to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to the embodiment of the present invention.
  • FIG. 6H is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the
  • FIG. 6J is a cross-sectional view of a plane perpendicular to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining the method for manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 7A is a cross-sectional view of a plane parallel to the waveguide direction showing a state of a semiconductor device in an intermediate step for explaining another method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 7B is a cross-sectional view of a plane perpendicular to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining another method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 7A is a cross-sectional view of a plane parallel to the waveguide direction showing a state of a semiconductor device in an intermediate step for explaining another method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 7B is a cross-sectional view of a plane perpendicular to the waveguide direction showing the state of
  • FIG. 7C is a cross-sectional view of a plane parallel to the waveguide direction showing the state of the semiconductor device in an intermediate process for explaining another method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 7D is a cross-sectional view of a plane perpendicular to the waveguide direction showing the state of the semiconductor device in an intermediate step for explaining another method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • This semiconductor device includes a substrate 101 made of a semi-insulating compound semiconductor, a first optical active element formed on the substrate 101, a second optical active element 103 formed on the substrate 101, It includes an optical waveguide 104 that optically connects the first optically active element 102 and the second optically active element 103.
  • the substrate 101 can be made of, for example, InP (SI-InP) doped with Fe to have high resistance. Further, the substrate 101 can have the (001) plane of InP as its main surface. Note that FIG. 1 shows a cross section parallel to the waveguide direction of light as a carrier wave.
  • the first optical active element 102 is formed on the first etching stop layer 106a, and the second optical active element 103 is formed on the second etching stop layer 106b.
  • the first etching stop layer 106a and the second etching stop layer 106b can be made of, for example, undoped InGaAsP (band gap wavelength: 1.1 ⁇ m). Further, the first etching stop layer 106a and the second etching stop layer 106b can have a thickness of about 10 nm.
  • the optical waveguide 104 is formed on and in contact with the substrate 101.
  • the first optically active element 102 includes a first lower semiconductor layer 121 of a first conductivity type, a first active layer 122 formed on the first lower semiconductor layer 121, and a first active layer 122 formed on the first active layer 122.
  • a biconductivity type upper semiconductor layer 105 is provided.
  • Upper semiconductor layer 105 functions as an upper cladding.
  • a first lower semiconductor layer 121 is formed on and in contact with the first etching stop layer 106a.
  • a first contact layer 123 is formed on the upper semiconductor layer 105, and a first p-electrode 124 is formed on the first contact layer 123.
  • the first lower semiconductor layer 121 can be made of, for example, n-type InP (doping amount: 1E18). Further, the first lower semiconductor layer 121 can have a thickness of about 800 nm.
  • the first active layer 122 can be made of, for example, InGaAsP or InGaAlAs. Further, the first active layer 122 can have a thickness of about 280 nm.
  • the upper semiconductor layer 105 can be made of, for example, p-type InP.
  • the first contact layer 123 can be made of, for example, InGaAs into which p-type impurities are introduced at a high concentration.
  • the first optically active element 102 can be, for example, a semiconductor laser.
  • the second photoactive element 103 includes a second lower semiconductor layer 131 of the first conductivity type, a second active layer 132 formed on the second lower semiconductor layer 131, and an upper portion formed on the second active layer 132.
  • a semiconductor layer 105 is provided.
  • a second lower semiconductor layer 131 is formed on and in contact with the second etching stop layer 106b.
  • a second contact layer 133 is formed on the upper semiconductor layer 105, and a second p-electrode 134 is formed on the second contact layer 133.
  • the second lower semiconductor layer 131 can be made of, for example, n-type InP.
  • the second active layer 132 can be made of, for example, InGaAsP or InGaAlAs. Further, the second active layer 132 can have a thickness of about 280 nm.
  • the second contact layer 133 can be made of, for example, InGaAs into which p-type impurities are introduced at a high concentration.
  • the second optically active element 103 can be, for example, an electro-absorption optical modulator (EA modulator).
  • first active layer 122 and the second active layer 132 can have a multiple quantum well structure (MQW structure).
  • the first active layer 122 and the second active layer 132 include a MQW structure and optical confinement layers (SCH) above and below the MQW structure, and also function as the core of the waveguide structure.
  • MQW structure multiple quantum well structure
  • SCH optical confinement layers
  • first etching stop layer 106a and the second etching stop layer 106b are made of different materials from the first lower semiconductor layer 121 and the second lower semiconductor layer 131.
  • the optical waveguide 104 includes a semi-insulating or undoped third lower semiconductor layer 141, a third active layer 142 formed on the third lower semiconductor layer 141, and an upper semiconductor layer formed on the third active layer 142. 105.
  • a third lower semiconductor layer 141 is formed on and in contact with the substrate 101 .
  • the third active layer 142 functions as the core of the optical waveguide 104.
  • the third lower semiconductor layer 141 and the upper semiconductor layer 105 function as a cladding.
  • the third lower semiconductor layer 141 can be made of i-type InP or high-resistance InP.
  • the third active layer 142 can be made of, for example, InGaAsP.
  • the optical waveguide 104 is disposed on the substrate 101 between the first optically active element 102 and the second optically active element 103, and serves as an electrical isolation section between the first optically active element 102 and the second optically active element 103. While functioning, the first optically active element 102 and the second optically active element 103 are optically connected.
  • the upper semiconductor layer 105 is commonly formed in the first optically active element 102, the second optically active element 103, and the optical waveguide 104.
  • the thickness W of the third active layer 142 is greater than or equal to the thickness x of the first active layer 122 and the second active layer 132.
  • the total thickness (W+z) of the third lower semiconductor layer 141 and the third active layer 142 is the total thickness of the first etching stop layer 106a, the first active layer 122, and the first lower semiconductor layer 121. (x+y+i), and the total thickness of the second etching stop layer 106b, the second lower semiconductor layer 131, and the second active layer 132 (x+y+i) or more.
  • the width (W ISO ) of the third active layer 142 in the waveguide direction can be greater than or equal to the width (W LD ) of the first active layer 122 and the second active layer 132 in the waveguide direction.
  • the first optically active element 102 is driven by DC, and the second optically active element 103 is driven by the second lower semiconductor layer 131 and the upper semiconductor layer 105 in the region of the second optically active element 103. It can be operated by applying a differential modulation signal between them.
  • Laser light emitted by driving the first optically active element 102, which is a semiconductor laser, is guided through an optical waveguide 104, and is modulated in the second optically active element 103, which is a differentially driven EA modulator. .
  • FIGS. 2A, 2B, and 2C show calculation results of the electric field intensity distribution in the cross section perpendicular to the waveguide direction in the first optically active element 102 (second optically active element 103).
  • calculation software "APSS” version: 2.3g, manufactured by Apollo was used.
  • FIGS. 2A, 2B, and 2C represent the outline of the structure for which calculations were performed.
  • the distribution indicated by shading in the figure indicates the distribution of electric field strength.
  • the field strength is strongest in the central part of the first active layer 122 where the concentration is high. Areas further away from this and with lower concentration have the weakest field strength.
  • the waveguide width W LD was set to 1.7 ⁇ m as an example. Calculations were performed on a structure in which the waveguide section was embedded with InP material. Moreover, FIG. 2A shows the results calculated when y is 1000 nm. FIG. 2B shows the calculation results when y is 500 nm. FIG. 2C shows the results calculated when y is 250 nm. Further, the thickness x of the first active layer 122 was set to 300 nm. Further, the compound semiconductor constituting the first active layer 122 was a compound semiconductor with a band gap wavelength of 1.3 ⁇ m. Further, the first etching stop layer 106a (second etching stop layer 106b) was made of a semiconductor having a bandgap wavelength of 1.1 ⁇ m and had a thickness of 30 nm.
  • the first etching stop layer 106a is made of a material different from InP that constitutes the first lower semiconductor layer 121, the second lower semiconductor layer 131, and the third lower semiconductor layer 141, and therefore has a refractive index higher than that of InP. Therefore, if the value of y is not set to a sufficient value, the electric field intensity distribution of the first optically active element 102 (second optically active element 103) will be optically coupled to the first etching stop layer 106a, resulting in characteristic deterioration. There are concerns.
  • the electrical resistance value of the third lower semiconductor layer 141 in the optical waveguide 104 will be explained. As shown in FIG. 3, a third lower semiconductor layer 141, Also consider a state in which a part of the third active layer 142 is inserted. Find the resistance value in this case.
  • the thickness of the first lower semiconductor layer 121 is y
  • the thickness of the first etching stop layer 106a is i
  • the width of the first lower semiconductor layer 121 (first active layer 122) in the direction perpendicular to the waveguide direction is A
  • L be the length of the third lower semiconductor layer 141 in the waveguide direction.
  • the separation resistance In order to realize stable operation of the first optically active element 102 and the second optically active element 103, the separation resistance needs to be 10 k ⁇ or more.
  • the separation width A 300 ⁇ m or more is required for forming electrodes of the first optically active element 102 and the second optically active element 103.
  • the separation length L approximately 250 ⁇ m is required in order to realize separation between the first contact layer 123 and the second contact layer 133 above the upper semiconductor layer 105 of the optical waveguide 104 by, for example, etching treatment.
  • the thinner y+i is, the more separation resistance can be maintained, but as described above, y cannot be made less than 500 nm because the electric field strength distribution leaks.
  • the third lower semiconductor layer 141 is made of undoped InP, and the first lower semiconductor layer 121 and the second lower semiconductor layer 131 contain n-polar impurities of about 1E15 [cm -3 ]. It is assumed that In this case, the resistivity of the third lower semiconductor layer 141 is 1.3 ⁇ cm.
  • optical waveguide 104 will be explained.
  • high optical coupling is required between the first optically active element 102 and the optical waveguide 104.
  • the results of a simulation regarding this optical coupling will be explained.
  • a model shown in FIG. 4A was used.
  • each semiconductor layer constituting the first optically active element 102 and the second optically active element 103 is crystal-grown, and a part of the crystal-grown semiconductor layer (a region to be the optical waveguide 104) is grown. Remove by etching. Thereafter, a semiconductor layer constituting the optical waveguide 104 as an electrical isolation portion is crystal-grown in the removed region. Therefore, w and z of the optical waveguide 104 shown in FIG. 4A vary during manufacturing. Here, we show by calculation the relationships among x, y, w, z, W LD , and W iso that have a high tolerance that allows optical coupling to be maintained against such variations during manufacturing.
  • FIG. 5A shows a case where there is a difference of ⁇ W between the waveguide width W LD of the first optically active element 102 and the waveguide width W iso of the optical waveguide 104.
  • an etching stop layer 106 with a thickness of 100 nm is formed by crystal-growing n-type InGaAsP on a substrate 101 made of SI-InP.
  • the crystal-grown InGaAsP had a composition with a band gap wavelength of 1.2 ⁇ m, and the doping amount of the n-type impurity was 1E18.
  • n-type InP doping amount: 1E18
  • an active layer 202 of InGaAsP with a thickness of 250 nm is formed (crystal growth).
  • an active layer 202a is formed as shown in FIG. 6B, and an active layer 202b with a thickness of 280 nm made of InGaAsP is formed in the removed area. (crystal growth) and butt-join the active layers 202a and 202b in the waveguide direction (butt-joint process).
  • the active layer 202a and the active layer 202b have a multiple quantum well structure (MQW structure), and have the above-mentioned thickness including the optical confinement layers (SCH) above and below the MQW structure.
  • the active layer 202a and the active layer 202b can also be made of InGaAlAs.
  • predetermined regions of the active layer 202a, the active layer 202b, and the InP layer 201 are removed by etching using a mask pattern (not shown) formed by a known photolithography technique, as shown in FIG. 6C.
  • a mask pattern (not shown) formed by a known photolithography technique, as shown in FIG. 6C.
  • the first lower semiconductor layer 121 and the first active layer 122 of the first optically active element 102 are formed, and the second lower semiconductor layer 131 and the second optically active element 103 of the second optically active element 103 are formed.
  • a region between the first optically active element 102 and the second optically active element 103 is a region in which an optical waveguide 104 is formed.
  • the above-described etching process can be performed by selective wet etching using the etching stop layer 106 as an etching stop layer.
  • an etching process is performed on the etching stop layer 106 by selective wet etching using the substrate 101 as an etching stop layer by a further etching process using the above-described mask pattern (not shown), as shown in FIG. 6D.
  • a first etching stop layer 106a and a second etching stop layer 106b are formed.
  • the third lower semiconductor layer 141 and third active layer 142 of the optical waveguide 104 are formed by crystal growth.
  • the third lower semiconductor layer 141 is made of undoped InP and can be formed to have a thickness of about 800 nm, and the third active layer 142 can be formed to have a thickness of about 400 nm.
  • the upper semiconductor layer 105 is formed by crystal-growing p-type InP to a thickness of approximately 1500 nm, and the contact layer 105 is formed by crystal-growing InGaAs to a thickness of approximately 300 nm.
  • Form layer 203 is formed by crystal-growing p-type InP to a thickness of approximately 1500 nm, and the contact layer 105 is formed by crystal-growing InGaAs to a thickness of approximately 300 nm.
  • the contact layer 203 in the region of the optical waveguide 104 is removed by an etching process using a mask pattern (not shown) formed by a known photolithography technique, so that the first optical active layer 203 is removed as shown in FIG. 6G.
  • a first contact layer 123 of the device 102 is formed, and a second contact layer 133 of the second optically active device 103 is formed.
  • the first contact layer 123 and the second contact layer 133 are formed to be electrically isolated from each other in a plane direction parallel to the surface of the upper semiconductor layer 105.
  • waveguides are formed in each part by etching using a mask pattern (not shown) formed by a known photolithography technique.
  • the width of the ridge-shaped waveguide structure is 1.7 ⁇ m
  • the width of the ridge-shaped waveguide structure is 1.9 ⁇ m.
  • the ridge-shaped waveguide structure is buried with a buried layer 107 by regrowing crystals of InP, which is a semi-insulating material.
  • a first p-electrode 124 is formed on the first contact layer 123
  • a second p-electrode 134 is formed on the second contact layer 133.
  • a first n-electrode electrically connected to the first lower semiconductor layer 121 is formed, and a second n-electrode electrically connected to the second lower semiconductor layer 131 is formed.
  • the semiconductor device manufactured as described above has electrical resistance between the p-electrode and n-electrode of the first optically active element 102 serving as a laser and the p-electrode and n-electrode of the second optically active element 103 serving as an EA modulator. are all 10 k ⁇ or more. Electrical isolation between n-electrodes, which could not be achieved with conventional elements integrated on n-substrates, can be achieved. Further, the optical coupling efficiency between the first optically active element 102 serving as a laser portion and the optical waveguide 104 can be calculated to be a good value of about 98%.
  • the stable operation of the first optically active element 102 which serves as the laser section, reflects the above-mentioned high electrical resistance. , a clear waveform aperture of the second optically active element 103 was confirmed.
  • FIGS. 7A to 7D Next, another method of manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS. 7A to 7D.
  • each portion of the first optically active element 102, the second optically active element 103, and the optical waveguide 104 is formed into a ridge shape, similar to the manufacturing method described above with reference to FIGS. 6A to 6H.
  • a waveguide structure is formed.
  • the first The buried layer 107 is formed on the lower semiconductor layer 121 and the third lower semiconductor layer 141 by regrowing crystals of InP, which is a semi-insulating material.
  • the second optically active element 103 the upper part of the second lower semiconductor layer 131 left on both sides of the ridge-shaped waveguide structure is left open.
  • a low dielectric constant material is formed on the second lower semiconductor layer 131 left on both sides of the ridge-shaped waveguide structure.
  • a structured buried insulating layer 108 is formed.
  • a first p-electrode 124 is formed on the first contact layer 123
  • a second p-electrode 134 is formed on the second contact layer 133.
  • a first n-electrode electrically connected to the first lower semiconductor layer 121 is formed, and a second n-electrode electrically connected to the second lower semiconductor layer 131 is formed.
  • the electrical resistance between the p-electrode and n-electrode of the first optically active element 102 serving as a laser and the p-electrode and n-electrode of the second optically active element 103 serving as an EA modulator is 10 k ⁇ . That's all. Electrical isolation between n-electrodes, which could not be achieved with conventional elements integrated on n-substrates, can be achieved. Further, the optical coupling efficiency between the first optically active element 102 serving as a laser portion and the optical waveguide 104 can be calculated to be a good value of about 98%.
  • the second optically active element 103 serving as an EA modulator is embedded with a buried insulating layer 108 made of a low dielectric constant material, the parasitic capacitance of the element can be reduced compared to a semiconductor buried structure. Excellent high-speed characteristics are achieved.
  • the first optical active element serving as the laser section reflects the above-mentioned high electrical resistance. 102 and a clear waveform aperture of the second optically active element 103 were confirmed.
  • a first optical active element and a second optical active element are formed on a substrate made of a semi-insulating compound semiconductor with an etching stop layer interposed therebetween. Since an optical waveguide is provided between them to function as an electrical isolation section, it becomes possible to drive the two monolithically integrated optically active devices using different methods.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

この半導体装置は、半絶縁性の化合物半導体から構成された基板(101)と、基板(101)の上に形成された第1光能動素子(102)と、基板(101)の上に形成された第2光能動素子(103)と、第1光能動素子(102)と第2光能動素子(103)とを光学的に接続する光導波路(104)とを備える。また、第1光能動素子(102)は、第1エッチングストップ層(106a)の上に形成され、第2光能動素子(103)は、第2エッチングストップ層(106b)の上に形成されている。光導波路(104)は、基板(101)の上に接して形成されている。

Description

半導体装置
 本発明は、複数の光能動素子が集積された半導体装置に関する。
 光通信では、変調機能を有する光源が用いられている。例えば、伝送距離が100km以下の比較的短距離の光通信では、電界吸収型の光変調器とDFBレーザとが集積されたEML(Electroabsorption-modulater Intergrated Distributed Feedback Laser)が用いられている。
 従来のEMLは、搬送波としての光を生成するDFBレーザと、搬送波を変調するためのEA変調器とが、単一の半導体基板にモノリシックに集積されている。この構成において、半導体基板は、導電性極性(主にn極性InP基板)が用いられている。したがって、集積している各素子の部分の基板の電気極性については、構造上必然的にショートしている。このため、DFBレーザおよびEA変調器の動作時は、基板をGNDとし、DFBレーザ部には正極性電圧を印加し、EA変調器は負極性電圧を印加している。この構成では、EA変調器には単相の変調信号を印加して駆動することになる。例えば、EA変調器の電極の片方をGNDに接続して単相駆動を行う。
W. Kobayashi et al., "Design and Fabrication of Wide Wavelength Range 25.8-Gb/S, 1.3-μM, Push-Pull-Driven DMLs", Journal of Lightwave Technology, vol. 32, no. 1, pp. 3-9, 2014.
 ところで、EA変調器の特性を最大限引き出すためには、差動駆動を行うほうが望ましい。差動駆動にはコモンモードノイズの抑制による光波形のS/N改善、各信号線に印加する変調振幅電圧の半減という効果があるためである(非特許文献1)。しかしながら、従来の構造では、基板側がショートしているために、DFBレーザは単相駆動し、EA変調器は差動駆動することができない。このように、従来の技術では、モノリシックに集積する2つの光能動素子を各々異なる方法で駆動することができないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、モノリシックに集積する2つの光能動素子を各々異なる方法で駆動することを目的とする。
 本発明に係る半導体装置は、半絶縁性の化合物半導体から構成された基板と、第1導電型の第1下部半導体層、第1下部半導体層の上に形成された第1活性層、第1活性層の上に形成された第2導電型の上部半導体層を備えて、基板の上に形成された第1光能動素子と、第1導電型の第2下部半導体層、第2下部半導体層の上に形成された第2活性層、第2活性層の上に形成された上部半導体層を備えて、基板の上に形成された第2光能動素子と、半絶縁性またはアンドープの第3下部半導体層、第3下部半導体層の上に形成された第3活性層、第3活性層の上に形成された上部半導体層を備えて、第3下部半導体層が基板に接する状態で基板の上に形成され、第1光能動素子と第2光能動素子との間に配置され、第1光能動素子と第2光能動素子との電気分離部として機能するとともに、第1光能動素子と第2光能動素子とを光学的に接続する光導波路と、基板と、第1下部半導体層との間に形成された第1エッチングストップ層と、基板と、第2下部半導体層との間に形成された第2エッチングストップ層とを備える。
 以上説明したように、本発明によれば、半絶縁性の化合物半導体から構成された基板の上に、エッチングストップ層を介して第1光能動素子、第2光能動素子を形成し、これらの間に電気分離部として機能する光導波路を設けたので、モノリシックに集積する2つの光能動素子を各々異なる方法で駆動できる。
図1は、本発明の実施の形態に係る半導体装置の構成を示す断面図である。 図2Aは、第1光能動素子102における、導波方向に垂直な断面の電界強度分布の計算結果を示す分布図である。 図2Bは、第1光能動素子102における、導波方向に垂直な断面の電界強度分布の計算結果を示す分布図である。 図2Cは、第1光能動素子102における、導波方向に垂直な断面の電界強度分布の計算結果を示す分布図である。 図3は、光導波路104における第3下部半導体層141による電気抵抗値の計算に用いたモデルの構成を示す構成図である。 図4Aは、第1光能動素子102と光導波路104との間の光結合について、実施したシミュレーションで用いたモデルの構成を示す構成図である。 図4Bは、光導波路104の第3下部半導体層141の厚さzの変動Δzに対する、光結合係数の計算結果を示す特性図である。 図5Aは、第1光能動素子102の導波路幅WLDと、光導波路104の導波路幅Wisoとの間の、ΔWの差について説明する説明図である。 図5Bは、導波路幅の差ΔWに対する、光結合効率の計算結果を示す特性図である。 図6Aは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図6Bは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図6Cは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図6Dは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図6Eは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図6Fは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図6Gは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に垂直な面の断面図である。 図6Hは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図6Iは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に垂直な面の断面図である。 図6Jは、本発明の実施の形態に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に垂直な面の断面図である。 図7Aは、本発明の実施の形態に係る半導体装置の他の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図7Bは、本発明の実施の形態に係る半導体装置の他の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に垂直な面の断面図である。 図7Cは、本発明の実施の形態に係る半導体装置の他の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に平行な面の断面図である。 図7Dは、本発明の実施の形態に係る半導体装置の他の製造方法を説明するための途中工程の半導体装置の状態を示す導波方向に垂直な面の断面図である。
 以下、本発明の実施の形態に係る半導体装置について図1を参照して説明する。この半導体装置は、半絶縁性の化合物半導体から構成された基板101と、基板101の上に形成された第1光能動素子と、基板101の上に形成された第2光能動素子103と、第1光能動素子102と第2光能動素子103とを光学的に接続する光導波路104とを備える。基板101は、例えば、Feをドープすることで高抵抗とされたInP(SI-InP)から構成することができる。また、基板101は、InPの(001)面を主表面とすることができる。なお、図1は、搬送波としての光の導波方向に平行な断面を示している。
 第1光能動素子102は、第1エッチングストップ層106aの上に形成され、第2光能動素子103は、第2エッチングストップ層106bの上に形成されている。第1エッチングストップ層106a、第2エッチングストップ層106bは、例えば、アンドープInGaAsP(バンドギャップ波長1.1μm)から構成することができる。また、第1エッチングストップ層106a、第2エッチングストップ層106bは、厚さ10nm程度とすることができる。光導波路104は、基板101の上に接して形成されている。
 第1光能動素子102は、第1導電型の第1下部半導体層121、第1下部半導体層121の上に形成された第1活性層122、第1活性層122の上に形成された第2導電型の上部半導体層105を備える。上部半導体層105は、上部クラッドとして機能する。第1下部半導体層121が、第1エッチングストップ層106aの上に接して形成されている。また、第1光能動素子102は、上部半導体層105の上に、第1コンタクト層123が形成され、第1コンタクト層123の上に、第1p電極124が形成されている。
 第1下部半導体層121は、例えば、n型のInP(ドープ量1E18)から構成することができる。また、第1下部半導体層121は、厚さ800nm程度とすることができる。第1活性層122は、例えば、InGaAsPやInGaAlAsから構成することができる。また、第1活性層122は、厚さ280nm程度とすることができる。上部半導体層105は、例えば、p型のInPから構成することができる。第1コンタクト層123は、例えば、p型不純物が高濃度に導入されたInGaAsから構成することができる。第1光能動素子102は、例えば、半導体レーザとすることができる。
 第2光能動素子103は、第1導電型の第2下部半導体層131、第2下部半導体層131の上に形成された第2活性層132、第2活性層132の上に形成された上部半導体層105を備える。第2下部半導体層131が、第2エッチングストップ層106bの上に接して形成されている。また、第2光能動素子103は、上部半導体層105の上に、第2コンタクト層133が形成され、第2コンタクト層133の上に、第2p電極134が形成されている。
 第2下部半導体層131は、例えば、n型のInPから構成することができる。第2活性層132は、例えば、InGaAsPやInGaAlAsから構成することができる。また、第2活性層132は、厚さ280nm程度とすることができる。第2コンタクト層133は、例えば、p型不純物が高濃度に導入されたInGaAsから構成することができる。第2光能動素子103は、例えば、電界吸収型の光変調器(EA変調器)とすることができる。
 また、第1活性層122、第2活性層132は、多重量子井戸構造(MQW構造)とすることができる。第1活性層122、第2活性層132は、MQW構造と、この上下の光閉じ込め層(SCH)とを含めた部分を示し、導波路構造のコアとしても機能する。
 なお、第1エッチングストップ層106a、第2エッチングストップ層106bは、よく知られているように、第1下部半導体層121、第2下部半導体層131とは、異なる材料から構成する。
 光導波路104は、半絶縁性またはアンドープの第3下部半導体層141、第3下部半導体層141の上に形成された第3活性層142、第3活性層142の上に形成された上部半導体層105を備える。第3下部半導体層141が、基板101の上に接して形成されている。第3活性層142は、光導波路104のコアとして機能する。光導波路104において、第3下部半導体層141および上部半導体層105は、クラッドとして機能する。第3下部半導体層141は、i型のInPや高抵抗なInPから構成することができる。第3活性層142は、例えば、InGaAsPから構成することができる。
 光導波路104は、基板101の上において、第1光能動素子102と第2光能動素子103との間に配置され、第1光能動素子102と第2光能動素子103との電気分離部として機能するとともに、第1光能動素子102と第2光能動素子103とを光学的に接続する。
 また、この例では、第1光能動素子102、第2光能動素子103、光導波路104において、上部半導体層105が共通に形成されている。
 さらに、第3活性層142の厚さWは、第1活性層122および第2活性層132の厚さx以上とされている。また、第3下部半導体層141と第3活性層142との合計の厚さ(W+z)は、第1エッチングストップ層106aと第1活性層122と第1下部半導体層121との合計の厚さ(x+y+i)、および第2エッチングストップ層106bと第2下部半導体層131と第2活性層132のとの合計の厚さ(x+y+i)以上とすることができる。また、第3活性層142の導波方向の幅(WISO)は、第1活性層122および第2活性層132の導波方向の幅(WLD)以上とすることができる。
 実施の形態に係る半導体装置において、第1光能動素子102は、DC駆動し、第2光能動素子103は、第2下部半導体層131と第2光能動素子103の領域の上部半導体層105との間に差動変調信号を印加して動作させることができる。半導体レーザである第1光能動素子102を駆動することで出射したレーザ光は、光導波路104を導波し、差動駆動されているEA変調器である第2光能動素子103において変調される。
 ここで、上述した寸法について、より詳細に説明する。まず、第1下部半導体層121の厚さyの値の最適値を見積もるため電界強度分布の計算を行った結果について図2A,図2B,図2Cを参照して説明する。図2A,図2B,図2Cは、第1光能動素子102(第2光能動素子103)における、導波方向に垂直な断面の電界強度分布の計算結果を示す。この計算には、計算ソフト「APSS」(バージョン:2.3g、Apollo社製)を用いた。
 図2A,図2B,図2Cの白線は、計算を行った構造の輪郭を表している。図中の濃淡で示される分布は、電界強度の分布を示している。第1活性層122の中央部の濃度の濃い部分が最もフィールド強度が強い。これより離れて濃度の薄い部分が、最もフィールド強度が弱い。
 導波路幅WLDは、一例として1.7μmとした。導波路部をInP材料で埋め込んだ構造について計算を行った。また、図2Aは、yが1000nmの場合について計算した結果である。図2Bは、yが500nmの場合について計算した結果である。図2Cは、yが250nmの場合について計算した結果である。また、第1活性層122の厚さxは、300nmとした。また、第1活性層122を構成する化合物半導体は、バンドギャップ波長1.3μmの化合物半導体とした。また、第1エッチングストップ層106a(第2エッチングストップ層106b)は、バンドギャップ波長1.1μm組成の半導体を用いて厚さは30nmとした。
 yが250の時は、電界強度分布がエッチングストップ層106に染み出している。一方で、yが1000の時は、エッチングストップ層106への電界強度分布の染み出しが抑制できている。第1エッチングストップ層106aは、第1下部半導体層121、第2下部半導体層131、第3下部半導体層141を構成するInPと異なる材料で作製するため、屈折率はInPより高い値となる。このため、yの値を十分な値としないと、第1光能動素子102(第2光能動素子103)の電界強度分布が、第1エッチングストップ層106aに光結合してしまうことによる特性劣化の懸念がある。
 第1光能動素子102(第2光能動素子103)の特性を維持するためには、電界強度分布が、第1エッチングストップ層106a(第2エッチングストップ層106b)に染み出しを抑制する必要がある。第1エッチングストップ層106aへの染み出し量は、第1エッチングストップ層106aの光閉じ込め係数Γを計算することで算出可能である。Γは、y=1000nmの場合0.00023であり、y=750nmの場合0.00089であり、y=500nmの場合それぞれ0.0034であり、y=250nmの場合0.0123である。y=500nmでは0.01以下であり、十分染み出しを抑制可能である。
 次に、光導波路104における第3下部半導体層141による電気抵抗値ついて説明する。図3に示すように、第1下部半導体層121と第2下部半導体層131との間、および第1エッチングストップ層106aと第2エッチングストップ層106bとの間に、第3下部半導体層141、および一部の第3活性層142を挿入した状態を考える。この場合の抵抗値を求める。
 第1下部半導体層121の厚さをy、第1エッチングストップ層106aの厚さをi、第1下部半導体層121(第1活性層122)の導波方向に垂直な方向の幅をA、第3下部半導体層141の導波方向の長さをLとする。光導波路104を挾む第1光能動素子102と第2光能動素子103との間の分離抵抗Rは、抵抗率をρとして、「R=ρ×L/{A×(y+i)}」で表すことができる。
 第1光能動素子102、第2光能動素子103の安定動作を実現するためには、分離抵抗は10kΩ以上必要である。分離幅Aについては、第1光能動素子102、第2光能動素子103の電極形成のため300μm以上は必要である。分離長Lについては、光導波路104の上部半導体層105の上部における第1コンタクト層123と第2コンタクト層133との分離を、例えばエッチング処理などにより実現するために、250μm程度必要である。y+iは、薄ければ薄いほど分離抵抗を維持できるが、前述したように、電界強度分布の染み出しがあるため、yは500nm以下にはできない。
 計算の結果、分離抵抗Rとして10kΩの抵抗を確保するためには、y+iは1000nm以下であることが必要である。なお、この計算においては、第3下部半導体層141は、アンドープのInPから構成し、第1下部半導体層121、第2下部半導体層131においては、1E15[cm-3]程度のn極性の不純物を仮定している。この場合において、第3下部半導体層141の抵抗率は1.3Ωcmである。
 次に、光導波路104について説明する。第1光能動素子102と光導波路104との間には、一般に、高い光結合が要求される。この光結合について、シミュレーションを実施した結果について説明する。まず、シミュレーションにおいては、図4Aに示すモデルを用いた。
 この半導体装置の製造においては、まず第1光能動素子102および第2光能動素子103を構成する各半導体層を結晶成長し、結晶成長した半導体層の一部(光導波路104とする領域)をエッチングにより除去する。この後、除去した領域に、電気分離部としての光導波路104を構成する半導体層を結晶成長する。このため、図4Aに示す光導波路104のwやzは、製造時に変動する。ここでは、こうした製造時の変動に対して、光結合を維持可能な高いトレランスを有するx、y、w、z、WLD、Wisoの関係を計算により示す。
 図4Bに、光導波路104の第3下部半導体層141の厚さzの変動Δzに対する、光結合係数の計算結果を示す。WLD=Wiso(1.7μm)として計算を行った。図4Bに示すように、x=wの場合が最も高い結合係数を示す。製造上は厳密に同じ厚さにすることは容易ではないが、x=wを最も良い場合として、この条件からの光結合の劣化の状態を調べる。製造時の厚さの変動に対してトレランスを有するように値を設定する。図4Bから、wがxより同じ厚さかもしくはより厚くなるように設計したほうが、高い結合を維持できることがわかる。
 次に、導波路幅と光結合効率について説明する。図5Aに示すように、第1光能動素子102の導波路幅WLDと、光導波路104の導波路幅Wisoとの間に、ΔWの差がある場合を考える。図5Bに、導波路幅の差ΔWに対する、光結合効率の計算結果を示す。x=300nm、W=400nm、Δz=50nm、WLD=1.7μmの場合の計算を示す。図5Bに示すように、WLDに対して若干Wisoが広いほど結合効率が高くなる。ΔWが約25~50nmの時、結合効率は最大になることがわかる。
 図4B,図5Bの結果からw>xとし、WLD≦Wisoとすると、製造時の厚さの変動を吸収して高い結合効率を維持できることがわかる。
 次に、本発明の実施の形態に係る半導体装置の製造方法について、図6A~図6Jを参照して説明する。
 まず、図6Aに示すように、SI-InPから構成した基板101の上に、n型のInGaAsPを結晶成長することで、厚さ100nmのエッチングストップ層106を形成する。この結晶成長するInGaAsPは、バンドギャップ波長1.2μmとなる組成とし、また、n型不純物はドープ量1E18とした。引き続き、n型のInP(ドープ量1E18)を結晶成長して厚さ800nmのInP層201を形成する。引き続き、InGaAsPによる厚さ250nmの活性層202を形成(結晶成長)する。
 次に、第2光能動素子103とする領域の活性層202を除去することで、図6Bに示すように、活性層202aとし、除去した箇所に、InGaAsPによる厚さ280nmの活性層202bを形成(結晶成長)し、導波方向に、活性層202aと活性層202bとをバットジョイントさせる(バットジョイントプロセス)。なお、活性層202a、活性層202bは、多重量子井戸構造(MQW構造)とし、MQW構造の上下の光閉じ込め層(SCH)も含めて上述した厚さとする。なお、活性層202a、活性層202bは、InGaAlAsから構成することもできる。
 次に、活性層202a、活性層202b、およびInP層201の所定領域を、公知のフォトリソグラフィー技術により形成したマスクパターン(不図示)を用いたエッチング処理により除去することで、図6Cに示すように、第1光能動素子102の第1下部半導体層121、第1活性層122を形成し、第2光能動素子103の第2下部半導体層131、第2光能動素子103を形成する。第1光能動素子102と第2光能動素子103との領域が、光導波路104を形成する領域となる。エッチングストップ層106をエッチング停止層として用いた選択的なウエットエッチングにより、上述したエッチング処理を実施することができる。
 次に、上述したマスクパターン(不図示)を用いたさらなるエッチング処理により、基板101をエッチング停止層として用いた選択的なウエットエッチングにより、エッチングストップ層106に対するエッチング処理を実施し、図6Dに示すように、第1エッチングストップ層106a、第2エッチングストップ層106bを形成する。
 次に、図6Eに示すように、光導波路104の第3下部半導体層141と第3活性層142とを、結晶成長により形成する。第3下部半導体層141は、アンドープのInPから構成して厚さ800nm程度に形成し、第3活性層142は、厚さ400nm程度に形成することができる。
 次に、図6Fに示すように、p型のInPを厚さ1500nm程度に結晶成長することで、上部半導体層105を形成し、さらに、InGaAsを厚さ300nm程度に結晶成長することで、コンタクト層203を形成する。
 次に、光導波路104の領域のコンタクト層203を、公知のフォトリソグラフィー技術により形成したマスクパターン(不図示)を用いたエッチング処理により除去することで、図6Gに示すように、第1光能動素子102の第1コンタクト層123を形成し、第2光能動素子103の第2コンタクト層133を形成する。第1コンタクト層123と第2コンタクト層133とは、上部半導体層105の表面に平行な面方向において、互いに電気的に分離した状態に形成する。
 次に、公知のフォトリソグラフィー技術により形成したマスクパターン(不図示)を用いたエッチング処理により、図6Hに示すように、各部の導波路形成を行う。第1光能動素子102(第2光能動素子103)では、リッジ状の導波路構造の幅を1.7μmとし、光導波路104では、リッジ状の導波路構造の幅を1.9μmとする。上述したマスクパターンを形成するためのフォトマスクにおける、リッジ状の導波路構造の部分の幅を変化させることで、上述した寸法の変化を実現する。なお、この加工において、リッジ状の導波路構造の両側方に、第1下部半導体層121(第2下部半導体層131)および第3下部半導体層141を、ある程度残しておく。
 次に、図6I,図6Jに示すように、リッジ状の導波路構造の両側方に残した第1下部半導体層121(第2下部半導体層131)および第3下部半導体層141の上に、半絶縁性材料のInPを結晶再成長することで、リッジ状の導波路構造を埋め込み層107で埋め込む。この後、第1コンタクト層123の上に第1p電極124を形成し、第2コンタクト層133の上に第2p電極134を形成する。また、図示していないが、第1下部半導体層121に電気的に接続する第1n電極を形成し、第2下部半導体層131に電気的に接続する第2n電極を形成する。
 上述したことにより作製した半導体装置は、レーザとする第1光能動素子102のp電極、n電極と、EA変調器とする第2光能動素子103のp電極、n電極との間の電気抵抗は、いずれも10kΩ以上となる。従来のn基板に集積した素子では実現できなかったn電極間の電気分離が実現できる。またレーザ部とする第1光能動素子102と光導波路104の光結合効率は、計算上約98%と良好な値を実現できる。
 作製した半導体装置のEA変調器とする第2光能動素子103に差動変調信号を印加した結果、上述した高い電気抵抗を反映して、レーザ部とする第1光能動素子102の安定動作と、第2光能動素子103の明瞭な波形開口が確認された。
 次に、本発明の実施の形態に係る半導体装置の他の製造方法について、図7A~図7Dを参照して説明する。
 この製造方法は、まず、前述した、図6A~図6Hを用いて説明した製造方法と同様に、第1光能動素子102、第2光能動素子103、光導波路104の各部分を、リッジ状の導波路構造に形成する。この後、図7A、図7Bに示すように、第2光能動素子103以外の領域(第1光能動素子102および光導波路104)において、リッジ状の導波路構造の両側方に残した第1下部半導体層121および第3下部半導体層141の上に、半絶縁性材料のInPを結晶再成長することで、埋め込み層107を形成する。この段階において、第2光能動素子103においては、リッジ状の導波路構造の両側方に残した第2下部半導体層131の上方が開放された状態とする。
 次に、図7C、図7Dに示すように、第2光能動素子103の領域において、リッジ状の導波路構造の両側方に残した第2下部半導体層131の上に、低誘電率材料から構成された埋め込み絶縁層108を形成する。この後、第1コンタクト層123の上に第1p電極124を形成し、第2コンタクト層133の上に第2p電極134を形成する。また、図示していないが、第1下部半導体層121に電気的に接続する第1n電極を形成し、第2下部半導体層131に電気的に接続する第2n電極を形成する。
 この構成においても、レーザとする第1光能動素子102のp電極、n電極と、EA変調器とする第2光能動素子103のp電極、n電極との間の電気抵抗は、いずれも10kΩ以上となる。従来のn基板に集積した素子では実現できなかったn電極間の電気分離が実現できる。またレーザ部とする第1光能動素子102と光導波路104の光結合効率は、計算上約98%と良好な値を実現できる。また、EA変調器とする第2光能動素子103は、低誘電率材料から構成された埋め込み絶縁層108で埋め込む構成としたので、半導体埋め込み構造に比べ素子の寄生容量を低減することができ、高速性に優れた特性が実現される。
 この構成においても、作製した半導体装置のEA変調器とする第2光能動素子103に差動変調信号を印加した結果、上述した高い電気抵抗を反映して、レーザ部とする第1光能動素子102の安定動作と、第2光能動素子103の明瞭な波形開口が確認された。
 以上に説明したように本発明によれば、半絶縁性の化合物半導体から構成された基板の上に、エッチングストップ層を介して第1光能動素子、第2光能動素子を形成し、これらの間に電気分離部として機能する光導波路を設けたので、モノリシックに集積する2つの光能動素子を各々異なる方法で駆動することが可能となる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…基板、102…第1光能動素子、103…第2光能動素子、104…光導波路、105…上部半導体層、106a…第1エッチングストップ層、106b…第2エッチングストップ層、121…第1下部半導体層、122…第1活性層、123…第1コンタクト層、124…第1p電極、131…第2下部半導体層、132…第2活性層、133…第2コンタクト層、134…第2p電極、141…第3下部半導体層、142…第3活性層。

Claims (4)

  1.  半絶縁性の化合物半導体から構成された基板と、
     第1導電型の第1下部半導体層、前記第1下部半導体層の上に形成された第1活性層、前記第1活性層の上に形成された第2導電型の上部半導体層を備えて、前記基板の上に形成された第1光能動素子と、
     第1導電型の第2下部半導体層、前記第2下部半導体層の上に形成された第2活性層、前記第2活性層の上に形成された前記上部半導体層を備えて、前記基板の上に形成された第2光能動素子と、
     半絶縁性またはアンドープの第3下部半導体層、前記第3下部半導体層の上に形成された第3活性層、前記第3活性層の上に形成された前記上部半導体層を備えて、前記第3下部半導体層が前記基板に接する状態で前記基板の上に形成され、前記第1光能動素子と前記第2光能動素子との間に配置され、前記第1光能動素子と前記第2光能動素子との電気分離部として機能するとともに、前記第1光能動素子と前記第2光能動素子とを光学的に接続する光導波路と、
     前記基板と、前記第1下部半導体層との間に形成された第1エッチングストップ層と、
     前記基板と、前記第2下部半導体層との間に形成された第2エッチングストップ層と
     を備えることを特徴とする半導体装置。
  2.  請求項1記載の半導体装置において、
     前記第3活性層の厚さは、前記第1活性層および前記第2活性層の厚さ以上とされ、
     前記第3下部半導体層と前記第3活性層との合計の厚さは、前記第1エッチングストップ層と前記第1下部半導体層と前記第1活性層との合計の厚さ、および前記第2エッチングストップ層と前記第2下部半導体層と前記第2活性層のとの合計の厚さ以上とされている
     ことを特徴とする半導体装置。
  3.  請求項2記載の半導体装置において、
     前記第3活性層の導波方向の幅は、前記第1活性層および前記第2活性層の導波方向の幅以上とされていることを特徴とする半導体装置。
  4.  請求項1~3のいずれか1項に記載の半導体装置において、
     前記第1光能動素子は、DC駆動され、
     前記第2光能動素子は、前記第2下部半導体層と前記第2光能動素子の領域の前記上部半導体層との間に差動変調信号が印加される
     ことを特徴とする半導体装置。
PCT/JP2022/024666 2022-06-21 2022-06-21 半導体装置 WO2023248329A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024666 WO2023248329A1 (ja) 2022-06-21 2022-06-21 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024666 WO2023248329A1 (ja) 2022-06-21 2022-06-21 半導体装置

Publications (1)

Publication Number Publication Date
WO2023248329A1 true WO2023248329A1 (ja) 2023-12-28

Family

ID=89379549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024666 WO2023248329A1 (ja) 2022-06-21 2022-06-21 半導体装置

Country Status (1)

Country Link
WO (1) WO2023248329A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124731A (ja) * 2000-10-19 2002-04-26 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の製造方法
JP2013222795A (ja) * 2012-04-16 2013-10-28 Mitsubishi Electric Corp 変調器集積型レーザ素子
WO2018131227A1 (ja) * 2017-01-10 2018-07-19 三菱電機株式会社 半導体光増幅器およびその製造方法、光位相変調器
JP2019054107A (ja) * 2017-09-14 2019-04-04 日本電信電話株式会社 半導体光素子
US20190326729A1 (en) * 2016-11-17 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for fabricating an elctro-absorption modulated laser and electro-absorption modulated laser
US20200021080A1 (en) * 2018-07-10 2020-01-16 Qorvo Us, Inc. Monolithic eml with electrically isolated electrodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124731A (ja) * 2000-10-19 2002-04-26 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の製造方法
JP2013222795A (ja) * 2012-04-16 2013-10-28 Mitsubishi Electric Corp 変調器集積型レーザ素子
US20190326729A1 (en) * 2016-11-17 2019-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for fabricating an elctro-absorption modulated laser and electro-absorption modulated laser
WO2018131227A1 (ja) * 2017-01-10 2018-07-19 三菱電機株式会社 半導体光増幅器およびその製造方法、光位相変調器
JP2019054107A (ja) * 2017-09-14 2019-04-04 日本電信電話株式会社 半導体光素子
US20200021080A1 (en) * 2018-07-10 2020-01-16 Qorvo Us, Inc. Monolithic eml with electrically isolated electrodes

Similar Documents

Publication Publication Date Title
US6872966B2 (en) Optical semiconductor device
US5680411A (en) Integrated monolithic laser-modulator component with multiple quantum well structure
US5801872A (en) Semiconductor optical modulation device
JP4828018B2 (ja) 光変調器およびその製造方法並びに光半導体装置
JP3839710B2 (ja) 半導体光変調器、マッハツェンダ型光変調器、及び光変調器一体型半導体レーザ
JP2019054107A (ja) 半導体光素子
JP4690515B2 (ja) 光変調器、半導体光素子、及びそれらの作製方法
JP6939411B2 (ja) 半導体光素子
JP2019008179A (ja) 半導体光素子
JP3809941B2 (ja) 電界吸収型光変調器
EP0296066B1 (en) An integrated laser device with refractive index modulator
WO2023248329A1 (ja) 半導体装置
JP2005116644A (ja) 半導体光電子導波路
WO2023188426A1 (ja) 半導体装置
KR100569040B1 (ko) 반도체 레이저 장치
KR100378596B1 (ko) 반도체 광변조기 구조
JPH07231132A (ja) 半導体光装置
WO2024100788A1 (ja) 半導体装置
US20210184421A1 (en) Semiconductor Optical Element
JP2004341092A (ja) 電界吸収型光変調器、電界吸収型光変調器付き半導体集積素子、それらを用いたモジュール及び電界吸収型光変調器付き半導体集積素子の製造方法
WO2023058216A1 (ja) 半導体装置およびその製造方法
JP2760276B2 (ja) 選択成長導波型光制御素子
WO2018185829A1 (ja) 半導体装置、半導体装置の製造方法
JP7444290B2 (ja) 半導体光素子
JP3942511B2 (ja) 光半導体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947892

Country of ref document: EP

Kind code of ref document: A1