WO2023247886A1 - Procede de valorisation de sous-produits lourds issus de la fabrication d'acide acrylique - Google Patents

Procede de valorisation de sous-produits lourds issus de la fabrication d'acide acrylique Download PDF

Info

Publication number
WO2023247886A1
WO2023247886A1 PCT/FR2023/050914 FR2023050914W WO2023247886A1 WO 2023247886 A1 WO2023247886 A1 WO 2023247886A1 FR 2023050914 W FR2023050914 W FR 2023050914W WO 2023247886 A1 WO2023247886 A1 WO 2023247886A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic acid
cracking
heavy
products
water
Prior art date
Application number
PCT/FR2023/050914
Other languages
English (en)
Inventor
Fédéric SANDRE
Fanny DANTON
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2023247886A1 publication Critical patent/WO2023247886A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones

Definitions

  • the present invention relates to a process for the regeneration, by thermal cracking, of acrylic acid (AA), from heavy by-products (residues called LAA) resulting from an AA production unit, with a view to their recycling in the acrylic acid production workshop.
  • This process consists of two stages: hydrolysis carried out in batches, and cracking carried out continuously, and improves the current performance of cracking installations.
  • 3-acryloxypropionic acid also called "dimeric acrylic acid” or "AA dimer”;
  • the cracking and vaporization of the light compounds generated are carried out in a reactor, then the generated gas flow is sent to a distillation column and finally the bottom flow of the distillation column is recycled into the reactor.
  • the light fraction obtained by cracking mainly consists of AA and ester acrylic monomers, which are particularly sensitive to polymerization
  • the distillation step must necessarily be carried out under reduced pressure, so as to reduce the temperature, to avoid the formation of polymer in the column.
  • EP 3255030 teaches the addition of higher alcohols during cleavage of the residue, the maleic anhydride present in the residue being converted to maleic acid esters which are less susceptible to polymerization.
  • said method comprises the following characters, where appropriate combined.
  • the temperature in the hydrolyzer varies between 80 and 200°C, preferably between 150 and 200°C.
  • the residence time of the reaction mixture in the cracking reactor is between 0.5h and 1Oh, preferably between 1h and 2h.
  • the thermal cracking reaction takes place in the absence of catalyst.
  • the present invention makes it possible to overcome the disadvantages of the state of the art. It makes it possible to recover the maximum amount of AA per cracking operation, while managing the viscosity of the residue formed without being dependent on another production unit. This is accomplished through the combination of a hydrolysis step of heavy by-products coming from an acrylic acid production unit, and a thermal cracking step of the hydrolyzed products.
  • Figure 1 schematically represents an embodiment of an installation according to the invention.
  • hydrolyzer refers to a reactor in which the hydrolysis reaction of the mixture of water and heavy AA can take place. This reactor can be heated and hold pressure. This can be a conventional stirred type reactor, or in a heat exchanger.
  • Hydrolysis in batch mode is carried out under a pressure ranging from 0.1 to 2 MPa.
  • the efficiency of the regeneration (expressed in the form of the cracking yield) essentially depends on: a/ the parameters for the hydrolysis: the temperature and pressure, the hydrolysis residence time and the Water/Heavy AA ratio, And
  • the mixture (1) containing the heavy acrylic acid compounds and water is heated to the temperature required to carry out the hydrolysis of the Michael addition derivatives into lighter compounds.
  • Stream (2) is recovered after the hydrolysis step is completed. It is then introduced continuously into a second reactor R2 where it is heated to the temperature required to carry out the cracking of the Michael addition derivatives into lighter compounds which are extracted in the form of a gaseous mixture (3) at the top of the reactor. reactor.
  • salts manganese such as manganese acetate
  • salts of thiocarbamic or dithiocarbamic acid such as metallic thi
  • the residue flow recovered at the bottom of the reactor (5) is cooled, then eliminated in the form of a liquid of moderate viscosity, so that it can be transported without difficulty by pump, for example to a storage or processing unit. incineration.
  • Example 1 Batch hydrolysis and continuous cracking (according to the invention)
  • Example 2 Comparison of Example 1 with the comparative example (Example 2) demonstrates that cracking can be done at a lower temperature in the case where the stream to be cracked has been previously hydrolyzed. In addition, the viscosity of the residue is lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de régénération, par craquage thermique, d'acide acrylique (AA), à partir de sous-produits lourds (résidus appelés LAA) issus d'une unité de production d'AA, en vue de leur recyclage dans l'atelier de production d'acide acrylique. Ce procédé est constitué de deux étapes : une hydrolyse réalisée en batch, et un craquage réalisé en continu, et améliore les performances actuelles des installations de craquage.

Description

PROCEDE DE VALORISATION DE SOUS-PRODUITS LOURDS ISSUS DE LA
FABRICATION D’ACIDE ACRYLIQUE
DOMAINE DE L’INVENTION
La présente invention concerne un procédé de régénération, par craquage thermique, d'acide acrylique (AA), à partir de sous-produits lourds (résidus appelés LAA) issus d'une unité de production d'AA, en vue de leur recyclage dans l'atelier de production d’acide acrylique. Ce procédé est constitué de deux étapes : une hydrolyse réalisée en batch, et un craquage réalisé en continu, et améliore les performances actuelles des installations de craquage.
ARRIERE-PLAN TECHNIQUE
Sous l’effet de la température durant les étapes de distillation, la fabrication d’acide acrylique s'accompagne de la formation de composés lourds, dérivés d'addition de composés à propriété nucléophile sur la double liaison des monomères carbonylés insaturés, par réaction de Michael. On appelle composés "lourds'’ les composés dont le point d'ébullition est supérieur à celui du monomère acrylique fabriqué.
Dans le cas d'une unité de production d'AA, il s'agit essentiellement :
- de dérivés d'addition d'acide acrylique sur la double-liaison d'une autre molécule d'acide acrylique : acide 3-acryloxypropionique encore appelé "acide acrylique dimère" ou "dimère AA" ;
- de dérivés d'addition d'acide acrylique sur la double-liaison sur une molécule de dimère AA, pour former le "trimère AA" et autres oligomères formés par additions successives d'acide acrylique sur les doubles liaisons des oligomères AA précédents, et
- de dérivés d'addition d'acide carboxyliques formés en sous-produits de l'acide acrylique ou d'eau sur la double liaison de l'AA ou des oligomères cités précédemment.
La récupération de monomères valorisables à partir de composés lourds dérivés de Michael est difficile dans le cas de lourds provenant d'une unité de production d'AA. En effet, au cours du processus de craquage thermique qui régénère de l’acide acrylique, lequel est distillé et valorisé, il reste un résidu dont la viscosité augmente fortement lorsqu’on recherche des hauts rendements de craquage, jusqu’à ne plus pouvoir être extrait du réacteur de craquage. Le principal facteur limitant de l'efficacité de la régénération des composés dérivés de la réaction de Michael contenus dans les flux lourds des ateliers d'AA est l'augmentation de la viscosité du résidu lourd obtenu en pied de craqueur, lorsque la fraction riche en monomères acryliques a été vaporisée.
La vaporisation de composés légers pendant le craquage entraîne une concentration des produits lourds dans le flux résidu, et une augmentation de la viscosité de ce flux. Cependant, le résidu doit rester suffisamment fluide après refroidissement pour être transporté puis traité en vue de sa destruction.
Dans le cas où il existe une production d’esters légers (acrylate de méthyle (AM) ou acrylate d’éthyle (EA)) à proximité de l’unité de production d’AA, un cocraquage des lourds respectifs peut améliorer la situation, en rendant le résidu de craquage plus fluide. La solution proposée permet de récupérer le maximum d’AA par opération de craquage tout en gérant la viscosité du résidu formé sans être dépendant d’une autre unité de production.
Ainsi, dans le document EP 717031 , il a été montré qu'il est possible d'améliorer l'efficacité de la récupération de ces produits nobles valorisables, si le craquage est réalisé à partir d’un mélange de lourds provenant d’une unité de production d’AA et d’une unité de production d’ester acrylique (EA), par rapport au craquage individuel des flux lourds de ces unités. L’effet de l’addition de lourds provenant des unités d’esters (LEA) aux lourds provenant d’une unité AA (LAA) est de diminuer la viscosité du résidu final. La réaction de craquage est réalisée à partir de mélanges à ratio de lourds AA / lourds ester de 9/1 à 1/9, à température de 180 à 220°C, sous pression atmosphérique, durant un temps de séjour de 0,5 à 3 heures. Dans ce procédé, le craquage et la vaporisation des composés légers générés sont réalisés dans un réacteur, puis le flux gazeux généré est envoyé dans une colonne à distiller et enfin le flux de pied de la colonne de distillation est recyclé dans le réacteur. En revanche, la fraction légère obtenue par craquage étant principalement constituée des monomères acryliques AA et ester, qui sont particulièrement sensibles à la polymérisation, l’étape de distillation doit nécessairement être opérée sous pression réduite, de façon à réduire la température, pour éviter la formation de polymère dans la colonne. Par ailleurs, les plateaux de rectification de la colonne à distiller provoquent la séparation efficace des inhibiteurs de polymérisation entraînés dans le mélange gazeux, qui refluent vers le fond de colonne, et par conséquent, il est nécessaire d’introduire des inhibiteurs de polymérisation frais en tête de colonne, pour éviter la formation de polymères en partie supérieure de la colonne. De ce fait, on doit séparer les étapes de réaction, réalisée sous pression plus élevée, et de distillation, réalisée sous pression réduite. L'installation pour réaliser le procédé doit donc être équipée d'un réacteur et d'un condenseur en tête, opérés à la même pression, et d'une colonne à distiller opérée à pression réduite, alimentée par le produit condensé, et comprenant un bouilleur en pied, et en tête un condenseur, un équipement de reflux et une alimentation d’inhibiteurs. Ce dispositif est compliqué et coûteux.
Par ailleurs, le co-craquage des lourds AA en mélange avec les lourds EA entraîne des contraintes de fonctionnement. En effet, lorsque l’unité ester est à l’arrêt l’opération de craquage doit être arrêtée. Ceci engendre des pertes économiques.
Dans d’autres cas de figure, les lourds d’AA sont craqués thermiquement en discontinu sans ajout de lourds d’ester et génèrent un résidu extrêmement visqueux, ce qui limite les performances de ce craquage et engendre des problèmes au niveau du stockage et du transfert des résidus.
Pour pallier au problème lié à la viscosité, il est également connu d’ajouter un solvant au résidu de craquage de lourds AA.
Le document EP 3255030 enseigne l'addition d'alcools supérieurs pendant le clivage du résidu, l'anhydride maléique présent dans le résidu étant converti en esters d'acide maléique qui sont moins sensibles à la polymérisation.
Le document US 6414183 enseigne la dilution du résidu rejeté avec des solvants tels que l’acide acétique, l’eau et le méthanol.
WO 2021/224044 décrit un procédé de décomposition de produits d'addition de Michael de l’acide acrylique, par dilution dans un solvant 1 ayant un point d’ébullition à 1013 hPa d’au moins 170°C et une solubilité dans l'eau à 25°C d’au moins 20 g pour 100 g d'eau, ledit solvant étant choisi parmi les alcools tels que l'éthylène glycol, le propylène glycol, le diéthylène glycol, le triéthylène glycol et le 2-éthoxyéthanol, les carboxamides tels que le N,N-diméthylacétamide, le N-méthylacétamide et le N,N-diméthylformamide, les sulfoxydes tels que le diméthylsulfoxyde, et des sulfones telles que le sulfolane.
Cependant, cette solution présente plusieurs désavantages, comme la génération de déchets à brûler, si ce n’est pas un flux interne, ou la fourniture d’un équipement supplémentaire pour la réalisation du mélange. De plus, la plupart de ces solvants génèrent des dérivés azotés ou soufrés lors du brûlage. En conséquence, il existe un besoin d'améliorer le rendement de régénération, par craquage thermique, des composés lourds issus uniquement des unités d’AA.
RESUME DE L’INVENTION
L’invention concerne un procédé de régénération d’un mélange de sous-produits lourds provenant d’une unité de production d’acide acrylique (LAA), ledit procédé comprenant les étapes suivantes : i. introduire lesdits sous-produits lourds avec de l’eau dans un hydrolyseur et les soumettre à une hydrolyse en batch, le ratio massique eau :LAA allant de 0,1 à 1,3 (bornes comprises) pendant une durée de 1 à 10 h, de préférence de 1 à 5h, conduisant à l’obtention d’un mélange de produits hydrolysés, ii. inj ecter ledit mélange de produits hydrolysés dans un réacteur et le soumettre à un craquage thermique en continu produisant un flux de tête gazeux contenant de l’acide acrylique et de l’eau et un flux de pied (résidu) concentré en produits lourds, iii. récupérer une fraction plus légère riche en AA et en eau pouvant être recyclée à différents endroits du procédé, iv. récupérer ledit résidu en vue d’un traitement d’élimination.
Selon diverses réalisations, ledit procédé comprend les caractères suivants, le cas échéant combinés.
Selon un mode de réalisation, la pression dans l’hydrolyseur varie entre 0,1 et 2 MPa, de préférence entre 0,5 et 1,5 MPa.
Selon un mode de réalisation, la température dans l’hydrolyseur varie entre 80 et 200°C, de préférence entre 150 et 200°C.
Selon un mode de réalisation, la température de craquage est comprise entre 140 et 260°C, de préférence entre 160 et 210°C.
Selon un mode de réalisation, le temps de séjour du mélange réactionnel dans le réacteur de craquage est compris entre 0,5h et lOh, de préférence entre Ih et 2h.
Selon un mode de réalisation, la réaction de craquage thermique a lieu à pression atmosphérique ou sous légère pression (maximum 0,2 MPa).
Selon un mode de réalisation, ledit flux de tête gazeux contenant de l’acide acrylique et de l’eau est injecté dans un condenseur. Selon un mode de réalisation, le flux de pied du réacteur (résidu) obtenu à l'issue de l'opération de craquage thermique présente une viscosité dynamique inférieure à 1 Pa.s, mesurée à température de 100°C par exemple à l’aide d’un viscosimètre Brookfield "CAP 1000+" de type cône - plan.
Selon un mode de réalisation, la réaction de craquage thermique a lieu en l’absence de catalyseur.
La présente invention permet de surmonter les inconvénients de l’état de la technique. Elle permet de récupérer le maximum d’AA par opération de craquage, tout en gérant la viscosité du résidu formé sans être dépendante d’une autre unité de production. Cela est accompli grâce à l’association d’une étape d’hydrolyse des sous-produits lourds provenant d'une unité de production d'acide acrylique, et d’une étape de craquage thermique des produits hydrolysés.
Les avantages principaux du procédé selon l’invention sont :
• Un procédé simple et peu coûteux en investissement puisqu'il ne nécessite pratiquement qu'un équipement supplémentaire (1’ hydro lyseur) par rapport à l’étape de craquage seule.
• Un procédé permettant de réduire les rejets en diminuant la quantité de résidu de craquage.
• Un résidu moins visqueux par rapport au craquage sans étape d’hydrolyse.
• L’étape de craquage ne dépend pas d’autres unités (notamment esters).
• L’hydrolyse permet aussi d’éviter un traitement particulier des résidus pour assurer leur évacuation tel que l’ajout de solvant par exemple pour les fluidifier.
• Une augmentation de rendement de récupération de produits nobles à partir des lourds dérivés de Michael présents dans les flux de lourds des ateliers AA en poussant plus à fond la réaction de craquage, la limite de viscosité du résidu étant atteinte plus tard par rapport à une solution sans hydrolyse.
FIGURES
La Figure 1 représente de manière schématique un mode de réalisation d’une installation selon l’invention.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. Le terme « sous-produits lourds provenant d'une unité de production d'acide acrylique », comprend :
• des dérivés d'addition d'acide acrylique sur la double-liaison d'une autre molécule d'acide acrylique : acide 3-acryloxypropionique encore appelé "acide acrylique dimère" ou "dimère AA" ;
• des dérivés d'addition d'acide acrylique sur la double-liaison sur une molécule de dimère AA, pour former le "trimère AA" et autres oligomères formés par additions successives d'acide acrylique sur les doubles liaisons des oligomères AA précédents ;
• des dérivés d'addition d'acide carboxylique formés en sous-produits de l'acide acrylique (par exemple l'acide acétique) ou d'eau sur la double liaison de l'AA ou des oligomères cités précédemment.
Le terme « hydrolyseur » fait référence à un réacteur dans lequel peut se réaliser la réaction d’hydrolyse du mélange d’eau et de lourds AA. Ce réacteur peut être chauffé et tenir une pression. Celui-ci peut être un réacteur de type conventionnel agité, ou dans un échangeur de chaleur.
L’invention repose sur un procédé de craquage thermique en continu, couplé à une opération d’hydrolyse en batch réalisée au préalable sur les sous-produits lourds issus d'une unité de production d'AA.
Il est possible de régénérer les monomères acryliques impliqués dans les dérivés d'addition de Michael en effectuant une hydrolyse des oligomères préalablement à l’étape de traitement thermique. Cette réaction d’hydrolyse forme de l’acide hydroxypropionique (AHP), craquable thermiquement en acide acrylique. L’hydrolyse permet de réduire les chaînes d’oligomères, ce qui rend le résidu moins visqueux.
L’hydrolyse en mode batch est effectuée sous une pression allant de 0,1 à 2 MPa.
L'efficacité de la régénération (exprimée sous la forme du rendement de craquage) dépend essentiellement : a/ des paramètres pour l’hydrolyse : la température et la pression, le temps de séjour de l’hydrolyse et le ratio Eau / Lourds AA, et
- b/ des paramètres pour le craquage : la température et le temps de séjour du traitement thermique.
L’augmentation de ces deux derniers paramètres (b/) tend à améliorer le rendement de régénération, mais cela se fait au détriment d’une augmentation de la viscosité du résidu de craquage. Les performances du craquage sont caractérisées par deux valeurs : le TRU ou taux de récupération utile : il s’agit de la quantité d’acide acrylique récupérée après craquage ramenée à la quantité de lourds AA qui alimente le craqueur :
TRU = masse AA récupérée / Lourds AA alimentation craqueur le taux ou rendement de craquage : il s’agit de la quantité d’acide acrylique récupérée après craquage ramenée à la somme des composés valorisables dans l’alimentation du craqueur (Acide acrylique (AA), dimères d’acide acrylique (AA2) et acide hydroxypropionique (AHP)).
Selon le mode de réalisation du procédé représenté à la Figure 1 , le flux contenant les dits sous- produits lourds provenant d'atelier de production d'acide acrylique (LAA) et de l’eau sont introduits ensemble ou séparément dans le réacteur RI . Le flux LAA est riche en composés lourds dérivés d'addition de Michael générés lors des étapes de synthèse et de purification de l’acide acrylique, et contient également d'autres composés lourds accumulés lors des procédés de synthèse et purification, en particulier des inhibiteurs de polymérisation.
Le mélange (1) contenant les composés lourds d’acide acrylique et l’eau est chauffé à la température requise pour réaliser l’hydrolyse des dérivés d'addition de Michael en composés plus légers. Le flux (2) est récupéré après l’étape d’hydrolyse terminée. Il est alors introduit en continu dans un deuxième réacteur R2 où il est chauffé à la température requise pour réaliser le craquage des dérivés d'addition de Michael en composés plus légers qui sont extraits sous forme d'un mélange gazeux (3) en tête de réacteur.
Ce flux de vapeur riche en acide acrylique et contenant quelques composés lourds, dont des inhibiteurs en concentration faible, est avantageusement recyclé dans le procédé de production de l’acide acrylique, soit directement sous forme vapeur, ou après condensation totale dans un condenseur El flux (4).
Selon un mode de réalisation, au moins un inhibiteur de polymérisation est introduit au niveau du condenseur EL Ces inhibiteurs sont choisis parmi les inhibiteurs de polymérisation connus de l'homme de l'art : dérivés phénoliques comme 1’ hydroquinone et ses dérivés tels que l’éther méthylique de 1’ hydroquinone, le 2,6-di-terbutyl-4-méthyl phénol (BHT), et le 2,4- diméthyl-6-terbutyl phénol (Topanol A), la phénothiazine et ses dérivés, les sels de manganèse, comme l’acétate de manganèse, les sels de l’acide thiocarbamique ou dithiocarbamique, comme les thiocarbamates et dithiocarbamates métalliques, tels que le di-n-butyldithiocarbamate de cuivre, les composés N-oxyls, comme le 4-hydroxy-2,2,6,6- tétraméthyl pipéridinoxyl (4-OH- TEMPO), les composés à groupements nitroso, tels que la N-nitroso phényl hydroxylamine et ses sels d’ammonium, les composés aminés comme les dérivés de paraphénylènediamine ou un mélange de ces inhibiteurs.
Le flux de résidu récupéré en fond de réacteur (5) est refroidi, puis éliminé sous forme d'un liquide de viscosité modérée, de façon à pouvoir être transporté sans difficulté par pompe, par exemple jusqu'à un stockage ou une unité d'incinération.
EXEMPLES
Les exemples suivants illustrent l’invention sans la limiter.
Le taux d’épuisement est défini par le ratio Masse de distillat/masse de lourds. Dans le cas d’un rajout d’eau, ce taux devient le «taux d’épuisement corrigé » en soustrayant cette masse d’eau à la quantité de distillât.
Exemple 1 : Hydrolyse en batch et craquage en continu (selon l’invention)
Le montage utilisé pour l’opération d’hydrolyse est constitué d’un réacteur autoclave de laboratoire en HC 276 pouvant tenir une pression maximale de 80 bar @ 250°C de marque AmAr équipé d’un agitateur interne, d’un manomètre, d’une arrivée d’azote, d’une sonde de température plongeante et d’un manteau chauffant électrique externe régulé. Son volume utile est de 450 ml.
Le mélange à hydro lyser est introduit dans le réacteur puis le réacteur est fermé à l’aide d’un système de mâchoire permettant de le rendre étanche. Une conduite d’azote reliant le réacteur permet de le mettre sous une pression de 6 bars avant la montée en température. Le mélange et ensuite chauffé à une température de 150°C pendant 1H. La pression lue sur le manomètre augmente jusqu’à 12 bars. L’hydrolyse une fois terminée, le mélange est déchargé via la vanne de fond après refroidissement à température ambiante.
Le montage utilisé pour l’opération de craquage est constitué d’un réacteur en verre de 500 ml double enveloppe équipé d'un agitateur, d'une sonde de température immergée dans la phase liquide, d'une conduite verticale en partie supérieure, pour l'extraction des vapeurs, d’un piquage latéral permettant d’obtenir un niveau constant et l’évacuation du résidu de craquage et d’un condenseur. Le mélange préalablement hydrolysé est introduit en continu dans le réacteur puis chauffé à la température désirée. Le liquide (distillât) est recueilli dans un flacon récepteur et analysé. Le résidu évacué par débordement est collecté dans un flacon récepteur. Durée de l’essai : 61h
Hydrolyse : T = 150°C, temps de séjour : Hi, P = 1,2 MPa, ratio eau/lourds AA = 0,5
Craquage : T = 168°C, pression atmosphérique, temps de séjour : 4h, Ratio eau/lourds AA = 0,5
TRU = 61%
Taux épuisement corrigé = 66,5%
Viscosité 0,437 Pa.s.
Exemple 2: Craquage en continu sans hydrolyse (comparatif)
Durée essai : 58 h
Craquage : T= 193 °C, temps de séjour : 4h, pression atmosphérique, ratio eau/lourds AA = 0,5
TRU = 55.0%
Taux d’épuisement = 62,15%
Viscosité = 2,361 Pa.s.
La comparaison de l’exemple 1 avec l’exemple comparatif (exemple 2) démontre que le craquage peut se faire à plus basse température dans le cas où le flux à craquer a été préalablement hydrolysé. De plus, la viscosité du résidu est plus faible.

Claims

REVENDICATIONS . Procédé de régénération de sous-produits lourds provenant d'une unité de production d'acide acrylique (LAA), ledit procédé comprenant les étapes suivantes : i. introduire lesdits sous-produits lourds avec de l’eau dans un hydrolyseur et les soumettre à une hydrolyse en batch, le ratio eau :LAA allant de 0,1 à 1,3 pendant une durée de 1 à 10 h, de préférence de 1 à 5h, conduisant à l’obtention d’un mélange de produits hydrolysés, ii. injecter ledit mélange de produits hydrolysés dans un réacteur et le soumettre à un craquage thermique en continu produisant un flux de tête gazeux contenant de l’acide acrylique et de l’eau et un flux de pied (résidu) concentré en produits lourds, iii. récupérer une fraction plus légère riche en AA et en eau pouvant être recyclée à différents endroits du procédé, iv. récupérer ledit résidu en vue d’un traitement d’élimination. . Procédé selon la revendication 1, dans lequel l’étape i) est réalisée à une pression comprise entre 0,1 et 2 MPa, de préférence entre 0,5 et 1,5 MPa. . Procédé selon l’une des revendications 1 et 2, dans lequel la température d’hydrolyse est comprise entre 80 et 200°C, de préférence entre 150 et 200°C. . Procédé selon l’une des revendications 1 à 3, dans lequel la température de craquage est comprise entre 140 et 260°C, de préférence entre 160 et 210°C. . Procédé selon l’une des revendications 1 à 4, dans lequel le temps de séjour du mélange réactionnel dans le réacteur de craquage est compris entre 0,5h et lOh, de préférence entre Ih et 2h. . Procédé selon l’une des revendications 1 à 4, dans lequel le flux de pied du réacteur (résidu) obtenu à l'issue de l'opération de craquage thermique présente une viscosité dynamique mesurée à 100°C inférieure à 1 Pa.s. Procédé selon l’une des revendications précédentes comprenant une étape d’injection dudit flux de tête gazeux contenant de l’acide acrylique et de l’eau, dans un condenseur. Procédé selon la revendication 7 dans lequel au moins un inhibiteur de polymérisation est introduit au niveau dudit condenseur. Procédé selon l’une des revendications 1 à 7 dans lequel la réaction de craquage thermique a lieu en l’absence de catalyseur.
PCT/FR2023/050914 2022-06-24 2023-06-20 Procede de valorisation de sous-produits lourds issus de la fabrication d'acide acrylique WO2023247886A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2206333A FR3137089B1 (fr) 2022-06-24 2022-06-24 Procede de valorisation de sous-produits lourds issus de la fabrication d’acide acrylique
FRFR2206333 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023247886A1 true WO2023247886A1 (fr) 2023-12-28

Family

ID=83188894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050914 WO2023247886A1 (fr) 2022-06-24 2023-06-20 Procede de valorisation de sous-produits lourds issus de la fabrication d'acide acrylique

Country Status (2)

Country Link
FR (1) FR3137089B1 (fr)
WO (1) WO2023247886A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2415092A1 (fr) * 1978-01-19 1979-08-17 Nippon Catalytic Chem Ind Procede pour valoriser les oligomeres de l'acide acrylique obtenus a la preparation de ce compose en recuperant simultanement l'hydroquinone utilisee comme inhibiteur de polymerisation
EP0717031A1 (fr) 1994-12-12 1996-06-19 Elf Atochem S.A. Procédé de récupération des produits nobles légers contenus dans les résidus de distillation des procédés de fabrication de l'acide acrylique et de ses esters
EP0779268A1 (fr) * 1995-12-15 1997-06-18 Rohm And Haas Company Procédé de production d'acrylate d'alkyle
US6414183B1 (en) 1999-04-05 2002-07-02 Nippon Shokubai Co., Ltd. Method for handling waste oil
EP3255030A1 (fr) 2015-02-05 2017-12-13 Nippon Shokubai Co., Ltd. Procédé de production d'acide acrylique
WO2021224044A1 (fr) 2020-05-04 2021-11-11 Basf Se Procédé de décomposition d'adduits de michael contenus dans un fluide f et formés au cours de la préparation d'acide acrylique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2415092A1 (fr) * 1978-01-19 1979-08-17 Nippon Catalytic Chem Ind Procede pour valoriser les oligomeres de l'acide acrylique obtenus a la preparation de ce compose en recuperant simultanement l'hydroquinone utilisee comme inhibiteur de polymerisation
EP0717031A1 (fr) 1994-12-12 1996-06-19 Elf Atochem S.A. Procédé de récupération des produits nobles légers contenus dans les résidus de distillation des procédés de fabrication de l'acide acrylique et de ses esters
EP0779268A1 (fr) * 1995-12-15 1997-06-18 Rohm And Haas Company Procédé de production d'acrylate d'alkyle
US6414183B1 (en) 1999-04-05 2002-07-02 Nippon Shokubai Co., Ltd. Method for handling waste oil
EP3255030A1 (fr) 2015-02-05 2017-12-13 Nippon Shokubai Co., Ltd. Procédé de production d'acide acrylique
WO2021224044A1 (fr) 2020-05-04 2021-11-11 Basf Se Procédé de décomposition d'adduits de michael contenus dans un fluide f et formés au cours de la préparation d'acide acrylique

Also Published As

Publication number Publication date
FR3137089B1 (fr) 2024-05-10
FR3137089A1 (fr) 2023-12-29

Similar Documents

Publication Publication Date Title
EP3606903B1 (fr) Procede de purification d'acide (meth)acrylique incluant une colonne de distillation a paroi separatrice.
EP3268345B1 (fr) Procede ameliore de production d'acide (meth)acrylique
EP2773608B1 (fr) Procédé de production d'acrylate de 2-octyle par estérification directe
EP3027586B1 (fr) Procédé de production en continu d'acrylates légers par estérification d'un acide acrylique de grade ester brut
FR2862644A1 (fr) Utilisation de ressources renouvelables
EP3225613A1 (fr) Procede ameliore de production d'acide (meth)acrylique
FR2868419A1 (fr) Procede de fabrication de dichloropropanol
FR2901272A1 (fr) Procede perfectionne de fabrication de (meth)acrylates d'alkyle en c1-c4
EP1680389B1 (fr) Procede de purification de l'acide (meth)acrylique obtenu par oxydation d'un substrat gazeux
EP4139273B1 (fr) Procede de valorisation de lourds d'acide acrylique et d'esters dudit acide par craquage thermique avec condensation partielle
WO2023247886A1 (fr) Procede de valorisation de sous-produits lourds issus de la fabrication d'acide acrylique
WO2023247884A1 (fr) Procede de valorisation en batch de sous-produits lourds issus de la fabrication d'acide acrylique
WO2023247885A1 (fr) Procede de valorisation continu de sous-produits lourds issus de la fabrication d'acide acrylique
WO2023247887A1 (fr) Procede de valorisation de sous-produits lourds issus de la fabrication d'acide acrylique
WO2024069082A1 (fr) Procede de fabrication d'acide (meth)acrylique
BE1029670B1 (fr) Procédé de récupération de lactide et d'acide lactique lors des étapes de production de polylactide (PLA)
WO2024052284A1 (fr) Procede ameliore de fabrication d'acides carboxyliques alpha-beta insatures a partir de poly(3-hydroxyalcanoate)
WO2023025999A1 (fr) Procede perfectionne de fabrication d'acrylate de butyle de purete elevee
WO2021205090A1 (fr) Procede de purification d'acide (meth)acrylique
EP3887349A1 (fr) Purification de solutions aqueuses contenant du formaldehyde, et utilisation de la solution purifiee dans un procede de production d'acide acrylique
BE706281A (fr)
CZ328095A3 (cs) Způsob ne-katalytického zpětného získávání lehkých cenných produktů, které jsou obsaženy v destilačních zbytcích pocházejících z procesu výroby kyseliny akrylové a z výroby esterů této kyseliny

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23744525

Country of ref document: EP

Kind code of ref document: A1