WO2023246953A1 - 背光模组及其显示装置 - Google Patents

背光模组及其显示装置 Download PDF

Info

Publication number
WO2023246953A1
WO2023246953A1 PCT/CN2023/113968 CN2023113968W WO2023246953A1 WO 2023246953 A1 WO2023246953 A1 WO 2023246953A1 CN 2023113968 W CN2023113968 W CN 2023113968W WO 2023246953 A1 WO2023246953 A1 WO 2023246953A1
Authority
WO
WIPO (PCT)
Prior art keywords
backlight module
light source
light
reflector
display device
Prior art date
Application number
PCT/CN2023/113968
Other languages
English (en)
French (fr)
Inventor
山口勝
見村知哉
Original Assignee
伟时电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伟时电子股份有限公司 filed Critical 伟时电子股份有限公司
Priority to US18/533,170 priority Critical patent/US20240103317A1/en
Publication of WO2023246953A1 publication Critical patent/WO2023246953A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the present invention relates to the technical field of backlight modules, and in particular, to a direct backlight module and a display device having the backlight module.
  • Fields such as vehicle-mounted display have higher contrast requirements for display devices.
  • existing vehicle-mounted display devices due to the light crosstalk between the partitioned display areas in the backlight module, the originally dark areas are distorted by the light emitted from the surrounding light sources.
  • the dark area is not dark enough, which reduces the contrast of the display device, resulting in poor display effect of the display device and reducing user experience.
  • the present invention provides a backlight module and a display device having the backlight module, which can improve the contrast of the display device without affecting the optical quality of the display device.
  • an embodiment of the present invention provides a backlight module, including: a substrate configured with a bearing surface; a plurality of light sources configured on the bearing surface of the substrate; a plurality of reflectors , located on the bearing surface of the substrate, configured to surround the periphery of each light source; wherein the surface of the reflector facing the light source is a multi-level curved surface.
  • the distance L between the multi-level curved surface and the normal line of the light source increases sequentially as a whole.
  • the surface of each level of curved surface facing the light source is a concave arc surface.
  • half of the number of radians of the concave arc surface at each level is 10° to 25°.
  • the concave arc surface is a flat surface or a non-flat surface.
  • the light source is a side-emitting light source.
  • the backlight module further includes: an optical film set, which is arranged on the side of the reflector away from the bearing surface; and a housing, which is configured to carry the substrate and the optical film set.
  • the surface of the reflector facing the light source is a third-order curved surface.
  • the distance between the vertex of the reflector and the optical film is 0.1 to 2 mm.
  • a display device including:
  • the backlight module provided by the embodiment of the present invention includes a substrate, a light source and a reflector.
  • the surface of the reflector facing the light source is a multi-level curved surface, and emits light from the side of the light source.
  • the light basically emits in the vertical direction after being adjusted by the reflector, thereby collimating the light emitted by each light source and preventing the light emitted by the surrounding light sources from irradiating into nearby unlit areas. Prevent light leakage, thereby improving the contrast of the corresponding display device.
  • the reflector of this structure in the internal space formed by the reflector, the light emitted by the light source is continuously reflected in the horizontal X and Y directions, so that the light is uniform in the internal space formed by each reflector. , thereby avoiding shadows appearing at the position of the corresponding reflector on the display device when it is fully lit. problems, thereby improving the optical quality of the display device and enhancing the user experience.
  • Figure 1 is a schematic structural diagram of an existing backlight module
  • Figure 2 is a schematic cross-sectional structural diagram of a backlight module provided by an embodiment of the present invention.
  • Figure 3 is a partial structural schematic diagram of a backlight module provided by an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the optical path of the backlight module provided by an embodiment of the present invention.
  • Figures 5a-5d show some optical simulation results for the surface shapes of different reflectors facing the light source
  • Figure 6 is a schematic structural diagram of a backlight module provided by another embodiment of the present invention.
  • Figures 7a, 7b and 7c respectively show the optical simulation results of the backlight module provided by the embodiment of the present invention, the backlight module using the existing design shield and the backlight module without using a reflector when the lights are fully lit;
  • Figures 8a, 8b, and 8c respectively show the optical simulation results of the backlight module provided by the embodiment of the present invention, the backlight module using the existing shielding design, and the backlight module not using a reflector when partially lit.
  • FIG. 1 is a schematic structural diagram of an existing backlight module. Shields are provided around the light source 12. Object 2. By adding a shield, you can avoid the light emitted by the surrounding lit light sources from irradiating the nearby unlit areas, reduce the darkness of the unlit areas, and thereby improve the contrast of the unlit areas.
  • the present application discloses a The backlight module and the display device having the backlight module can improve the contrast without causing shadows to appear on the display device, thereby improving the optical quality of the display device and enhancing the user experience.
  • Figure 2 is a schematic cross-sectional structural diagram of a backlight module provided by an embodiment of the present invention.
  • Figure 3 is a partial structural schematic diagram of a backlight module provided by an embodiment of the present invention.
  • the backlight module 10 includes a substrate 11 , a plurality of light sources 12 and a plurality of reflectors 13 .
  • the substrate 11 has a bearing surface 111 , a plurality of light sources 12 are arranged on the bearing surface 111 of the substrate 11 , a plurality of reflectors 13 are located on the bearing surface 111 , and are arranged around the periphery of each light source 12 , with the reflector 13 facing
  • the surface 131 of the light source 12 is a multi-level curved surface. It can be understood that each reflector 13 forms a semi-enclosed space, the light source 12 is arranged inside the space, and a reflector 13 surrounds a light source 12 . In the embodiment of the present invention, a reflector 13 is provided around the light source 12.
  • the surface 131 of the reflector 13 facing the light source 12 is a multi-level curved surface.
  • the light emitted from the side of the light source 12 basically follows the adjustment function of the reflector 13. Emitting in the vertical direction, the light emitted by each light source is collimated, thereby preventing the light emitted by the surrounding lit light sources from irradiating into nearby unlit areas, preventing light leakage, and thus improving the contrast of the corresponding display device.
  • the distance L between the multi-level curved surface and the normal line of the light source increases sequentially as a whole. That is to say, the reflection
  • the entire surface 131 of the body 13 facing the light source 12 is inclined toward the normal direction away from the light source.
  • the first-level curved surface close to the bearing surface 111 is called the first-level curved surface I, for example, and the one adjacent to the first-level curved surface I upward is called the first-level curved surface II.
  • the first-level curved surface II that is adjacent to it upwards is called the first-level curved surface II.
  • the adjacent one is called a third-order surface III, and so on.
  • the first-level curved surface I, the second-level curved surface II and the third-level curved surface III are annular structures with a certain width surrounding the light source 12. It can be understood that the first-level curved surface I, the second-level curved surface II and the third-level curved surface The distance L between III and the normal line of the light source increases sequentially as a whole. It can be understood that the connection between curved surfaces of different levels is not smooth, for example.
  • the light emitted from the light source 12 in a generally horizontal direction to the surrounding reflector 13 can be reflected along the generally vertical direction through the reflection of the inner surface of the reflector 13 eject, thereby preventing the light emitted by the light source from irradiating into nearby unlit areas and preventing light leakage;
  • the light emitted by the light source 12 is in the horizontal X direction and Y direction. The direction is continuously reflected, so that the light is uniform in the internal space formed by each reflector 13, thereby avoiding the problem of shadows appearing on the position of the corresponding reflector 13 on the display device when it is fully lit.
  • the surface of each level of curved surface facing the light source is a concave arc surface, and half of the arc number of the concave arc surface ranges from 10° to 25°. Specifically, half of the radian of the concave arc surface here refers to the concave arc surface.
  • the degree of half the central angle corresponding to the arc where the arc surface is located for example, the degree of angle A in Figure 4.
  • Figure 4 is a schematic diagram of the light path of the backlight module provided by an embodiment of the present invention.
  • the light emitted from the light source 12 is, for example, light a, light b, light c, light d, light e, light f, light
  • the inner surface of the reflector 13 the surface facing the light source
  • it is basically emitted in the vertical direction, thereby preventing the light emitted by the surrounding light sources from irradiating into nearby unlit areas.
  • Figures 5a-5d The simulation results are shown in Figures 5a-5d, where Figure 5a shows the surface of the reflector facing the light source. is the simulation result when it is flat.
  • Figure 5b shows the simulation result when the surface of the reflector facing the light source is a concave arc surface, and half of the arc number of the concave arc surface is 40°.
  • Figure 5c shows the surface of the reflector facing the light source is a concave arc surface. The simulation results when half of the arc number of the concave arc surface is 20°.
  • Figure 5d shows the simulation results when the surface of the reflector facing the light source is a concave arc surface and half of the arc number of the concave arc surface is 10°.
  • the optical simulation results are shown in Figure 5b.
  • the light emitted by the light source will emit in the direction of the light source, and the light mirror emitted by the light source cannot be completely obtained.
  • the concave arc surface When the concave arc surface When the radian value is appropriate, for example, when half of the radian of the concave arc surface is 20°, the optical simulation results are shown in Figure 5c.
  • Figure 5d shows the optical simulation results when half of the radian of the concave arc surface is 10°. It can be seen from the simulation results that when half of the radian of the concave arc surface is 10°, the light emitted by the light source is reflected After the adjustment effect of the body, it is almost completely emitted in the vertical direction, which will not cause loss of brightness, but also facilitates zoning control. Therefore, preferably, in the multi-level curved surface of the reflector facing the light source, half of the arc number of the concave curved surface of each level of the curved surface is between 10° and 25°.
  • the concave curved surface may be a substantially flat surface.
  • the concave curved surface may also be non-flat, such as frosted or frosted. With the flower-shaped surface, the light hitting the non-flat arc surface undergoes similar diffuse reflection, which can make the light more uniform in the internal space formed by the reflector.
  • the light source 12 is arranged on the bearing surface 111 of the substrate 11 and is located in the internal space formed by the reflector 13 .
  • multiple light sources 12 are arranged in an array on the bearing surface 111
  • the reflector 13 is arranged on the carrying surface 111 of the substrate 11 in one-to-one correspondence with the light source 12 and surrounds the light source 12 .
  • the light source 12 is, for example, a side-emitting LED.
  • the side-emitting LED can emit light to all sides, so that the light is more easily dispersed and evenly distributed in the internal space formed by the reflector 13.
  • the corresponding reflector on the display device is lowered. A shadow appears at position 13, thereby improving the optical quality of the display device.
  • it is not limited to this, and it can also be other types of light sources that can emit light to the side.
  • FIG. 6 is a structural representation of a backlight module 10 provided by another embodiment of the present invention.
  • the backlight module 10 further includes an optical film set 14 disposed on the side of the reflector 13 away from the bearing surface 111 ; and a housing 15 configured to carry the substrate 11 and the optical film set 14 .
  • the optical film set 14 includes, for example, a diffuser sheet, a dispersion sheet, a prism sheet and other optical films, and is used to homogenize the light emitted by the light source.
  • the housing 15 includes, for example, a bottom plate 151 and a side wall 152.
  • the base plate 11 is located on the bottom plate 151.
  • the side wall 152 protrudes toward the inner cavity of the housing 15 to form a step for supporting the optical film group 14.
  • the reflector 13 and The light source 12 is located in a closed space formed by the housing 15 and the optical film set 14 .
  • the surface of the reflector 13 facing the light source 12 is specifically a tertiary surface. From the bearing surface 111 of the substrate 11 to the vertical direction away from the bearing surface 111 , the overall distance from the tertiary curved surface to the normal line of the light source increases sequentially.
  • the highest point of the reflector 13 from the bearing surface 111 of the substrate 11 is called a vertex.
  • the distance D between the vertex of the reflector 13 and the optical film set 14 is 0.1 mm to 2 mm.
  • Figure 7a shows the brightness deviation of the backlight module using the reflector provided by the embodiment of the present invention when fully illuminated.
  • Simulation effect diagram specifically, the brightness difference between light and dark obtained by using the reflector provided by the embodiment of the present invention is 65%;
  • Figure 7b is a simulation of the light and dark brightness deviation of the backlight module using a general shield when the lights are fully lit.
  • the rendering shows that the light and dark brightness deviation obtained by using a backlight module with a general shield is 31%;
  • Figure 7c is a simulation rendering of the light and dark brightness deviation of a backlight module without a reflector when fully lit, and the backlight without a reflector
  • the obtained light and dark brightness deviation of the module is 34%.
  • the brightness deviation here refers to the percentage of the darkest part and the brightest part when all the light sources are lit. The larger the percentage value, the smaller the brightness deviation and the better the quality of the picture.
  • the backlight module using the reflector provided by the embodiment of the present invention has the smallest light-dark deviation, and therefore, accordingly, exhibits good and better performance. picture quality.
  • Figure 8a shows the light and dark brightness deviation of the backlight module using the reflector provided by the embodiment of the present invention when the central light source is turned off.
  • the simulation effect diagram shows that the brightness difference between light and dark obtained by using the reflector backlight module provided by the embodiment of the present invention is 4%;
  • Figure 8b shows the light and dark brightness deviation of the backlight module using a general shield when the central light source is turned off.
  • the simulation renderings show that the brightness deviation of the backlight module using a general shield is 11.1%.
  • Figure 8c is the simulation renderings of the brightness deviation of the backlight module without a reflector when the central light source is turned off.
  • the reflector is not used.
  • the obtained brightness deviation of the backlight module is 19.5%.
  • the brightness deviation here refers to the percentage of the darkest part and the brightest part when the central light source is turned off. The smaller the percentage value, the less light leakage occurs, and accordingly the quality of the picture is relatively better. From the above simulation results, we can It can be seen that the backlight module using the reflector provided by the embodiment of the present invention has the smallest brightness and dark deviation percentage value, which shows that the use of the reflector structure provided by the embodiment of the present invention can better prevent the light emitted from the surrounding light sources from being irradiated. into nearby unlit areas, thereby increasing the contrast of the corresponding display device.
  • a display device includes a display panel and a backlight module as described above.
  • the display panel is, for example, an LCD display panel.
  • the display device is, for example, used in the automotive field.
  • a backlight A reflector is provided in the module to prevent the light emitted by the surrounding light sources in the backlight module from irradiating into nearby unlit areas and prevent light leakage, thus improving the contrast of the corresponding display device and meeting the requirements of the vehicle-mounted display device. performance requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种背光模组及具有该背光模组的显示装置,该背光模组包括基板(11),多个光源(12)和多个反射体(13),反射体(13)围绕光源(12)周边设置,反射体(13)的面向光源(12)的表面为多级曲面,从光源(12)侧面发出的光经过反射体(13)的多级曲面调节后基本上沿着竖直方向出射,对光源(12)发出的光进行准直,从而防止周围点亮的光源(12)发出的光照射到附近的未点亮的区域内,防止漏光,从而提高相应的显示装置的对比度。采用该种结构的反射体(13),在反射体(13)形成的内部空间内,光源(12)发出的光线在水平X方向和Y方向不断被反射,从而使得在每个反射体(13)形成的内部空间内,光线是均匀的,从而避免出现全点亮时,显示装置上对应反射体(13)的位置有阴影出现的问题,从而提高显示装置的光学品位,提升用户体验。

Description

背光模组及其显示装置 技术领域
本发明涉及背光模组技术领域,尤其涉及一种直下式背光模组及具有该背光模组的显示装置。
背景技术
车载显示等领域对显示装置的对比度要求较高,现有的车载显示装置由于背光模组中各分区显示区域间存在光的串扰,使得原本是暗态的区域由于从周围光源发出的光而使该暗态区域不够暗,降低显示装置的对比度,使得显示装置的显示效果不佳,降低用户体验。
发明内容
为了克服上述缺陷,本发明提供了一种背光模组及具有该背光模组的显示装置,能够提高显示装置的对比度,同时还不会影响显示装置的光学品位。
本发明为了解决其技术问题所采用的技术方案是:本发明实施例提供一种背光模组,包括:基板,配置有承载面;多个光源,配置于基板的承载面上;多个反射体,位于基板的承载面上,配置为环绕每个光源的周边;其中,所述反射体的面向光源的表面为多级曲面。
作为本发明的进一步改进,自承载面向远离承载面的竖直方向上,多级曲面到光源法线之间的距离L整体依次增大。
作为本发明的进一步改进,每一级曲面面向光源的表面为凹状的弧面。
作为本发明的进一步改进,每一级曲面凹状弧面的弧度数的一半取值为10°~25°
作为本发明的进一步改进,所述呈凹状的弧面为平坦面或非平坦面。
作为本发明的进一步改进,所述光源为侧向发光型光源。
作为本发明的进一步改进,所述背光模组还包括:光学膜片组,配置于反射体的远离承载面的一侧;壳体,配置为承载所述基板和所述光学膜片组。
作为本发明的进一步改进,所述反射体的面向光源的表面为三级曲面。
作为本发明的进一步改进,所述反射体的顶点与光学膜片之间的距离为0.1~2mm。
根据本发明的另一个方面,还提供一种显示装置,包括:
显示面板;和如前面所述的背光模组。
本发明的有益效果是:本发明实施例提供的背光模组包括基板,光源和反射体,通过在光源的周边设置反射体,该反射体的面向光源的表面为多级曲面,从光源侧面发出的光经过反射体的调节作用后基本上沿着竖直方向出射,从而对每个光源发出的光进行准直,防止周围点亮的光源发出的光照射到附近的未点亮的区域内,防止漏光,进而提高相应的显示装置的对比度。同时采用该种结构的反射体,在反射体形成的内部空间内,光源发出的光线在水平X方向和Y方向不断被反射,从而使得在每个反射体形成的内部空间内,光线是均匀的,从而避免出现全点亮时,显示装置上对应反射体的位置有阴影出现 的问题,从而提高显示装置的光学品位,提升用户体验。
附图说明
图1为现有的一种背光模组的结构示意图;
图2为本发明一个实施例提供的背光模组的剖面结构示意图;
图3为本发明一个实施例提供的背光模组的局部结构示意图;
图4为本发明一个实施例提供的背光模组的光路走向示意图
图5a-5d为针对不同的反射体面向光源的表面形状进行的一些光学模拟结果;
图6为本发明另一个实施例提供的背光模组的结构示意图;
图7a、7b以及7c分别为全点灯时,本发明实施例提供的背光模组、采用现有设计遮蔽物的背光模组以及未采用反射体的背光模组的光学模拟结果;
图8a、8b以及8c分别为部分点灯时,本发明实施例提供的背光模组、采用现有设计遮蔽物的背光模组以及未采用反射体的背光模组的光学模拟结果。
结合附图,作以下说明:
2、遮蔽物;          12、光源;
11、基板;           111、承载面;
13、反射体;         14、光学膜片组;
15、壳体;           151、底板;
152、侧壁。
具体实施方式
现有的车载显示装置由于背光模组中各分区显示区域间存在光的串扰,使得原本是暗态的区域由于从周围光源发出的光的串扰而使该暗态区域不够暗,降低显示装置的对比度,使得显示装置的显示效果不佳。为了解决这一问题,有的显示装置的背光模组在光源之间增加遮蔽物,如图1所示,图1是现有的一种背光模组的结构示意图,在光源12的周围设置遮蔽物2,通过增加遮蔽物可以避免周围点亮的光源发出的光照射到附近的未点亮的区域,降低未点亮区域的暗度,从而提高未点亮区域的对比度,但是这种解决方案产生另一个问题,当全点灯时,显示装置对应遮蔽物的位置会出现阴影,在显示装置上很容易被识别到,如此会降低显示装置的光学品位,针对上述这些问题,本申请公开了一种背光模组及具有该背光模组的显示装置,能够提高对比度的同时还不会使显示装置上有阴影出现,提高显示装置的光学品位,提升用户体验。
以下结合附图,对本发明的一个较佳实施例作详细说明。图2是本发明一个实施例提供的背光模组的剖面结构示意图,图3是本发明一个实施例提供的背光模组的局部结构示意图,如图2和3所示,在本发明一个实施例中,背光模组10包括基板11,多个光源12以及多个反射体13。其中,基板11具有承载面111,多个光源12配置于基板11的承载面111上,多个反射体13位于承载面111上,并配置为围绕每个光源12的周边,反射体13的面向光源12的表面131为多级曲面。可以理解为,每个反射体13形成一个半封闭的空间,光源12配置于该空间内部,一个反射体13围绕在一个光源12的四周。 本发明实施例通过在光源12的周边设置反射体13,该反射体13的面向光源12的表面131为多级曲面,从光源12侧面发出的光经过反射体13的调节作用后基本上沿着竖直方向出射,对每个光源发出的光进行准直,从而防止周围点亮的光源发出的光照射到附近的未点亮的区域内,防止漏光,从而提高相应的显示装置的对比度。
详细地,再次参考图2所示,自基板11的承载面111向远离承载面111的竖直方向上,多级曲面到光源法线之间的距离L整体依次增大,也就是说,反射体13的面向光源12的表面131整体是向远离光源的法线方向倾斜的。靠近承载面111的一级曲面例如被称为第一级曲面Ⅰ,向上与第一级曲面Ⅰ相邻的例如被称为第一级曲面Ⅱ,类似地,再向上与第二级曲面Ⅱ相邻的例如被称为第三级曲面Ⅲ,如此类推。这样,第一级曲面Ⅰ、第二级曲面Ⅱ以及第三级曲面Ⅲ为围绕光源12的具有一定宽度的环形结构,可以理解,第一级曲面Ⅰ、第二级曲面Ⅱ以及第三级曲面Ⅲ到光源法线之间的距离L整体依次增大,可以理解,不同级的曲面之间的连接处例如是不光滑的。采用本发明实施例提供的反射体结构,一方面,根据反射定律,从光源12大致呈水平方向出射到周围反射体13的光经反射体13内表面的反射作用,可沿着大概竖直方向射出,从而避免点亮的光源发出的光照射到附近的未点亮的区域内,防止漏光;另一方面,在反射体13形成的内部空间内,光源12发出的光线在水平X方向和Y方向不断被反射,从而使得在每个反射体13形成的内部空间内,光线是均匀的,从而避免出现全点亮时,显示装置上对应反射体13的位置有阴影出现的问题。
较佳地,每一级曲面的面向光源的表面为凹状的弧面,凹状弧面的弧度数的一半取值为10°~25°,具体地,这里凹状弧面的弧度的一半是指凹状弧面所在的圆弧所对应的二分之一圆心角的度数,例如是图4中角A的度数。图4为本发明一个实施例提供的背光模组的光路走向示意图,如图4所示,从光源12发出的光线例如光线a、光线b、光线c、光线d、光线e、光线f、光线g经过反射体13的内表面(面向光源的表面)的反射作用后,基本上沿着竖直方向出射,从而防止周围点亮的光源发出的光照射到附近的未点亮的区域内。
为了验证反射体面向光源的表面为不同形状时对光源光线的调节作用不同,本发明进行了一系列的光学模拟,模拟结果如图5a-5d所示,其中图5a为反射体面向光源的表面为平面时的模拟结果,图5b为反射体面向光源的表面为凹状弧面,凹状弧面弧度数的一半为40°时的模拟结果,图5c为反射体面向光源的表面为凹状弧面,凹状弧面弧度数的一半为20°时的模拟结果,图5d为反射体面向光源的表面为凹状弧面,凹状弧面弧度数的一半为10°时的模拟结果,从上面的模拟结果可知,当反射体面向光源的表面为平面时,光源发射的光线射向反射体面向光源的表面时,根据光的反射定律,光线会以相同的角度从法线的另一侧出射,无法完全做到光源发射的光镜反射体的调节作用后从竖直方向出射的效果,且光线不可控,不利于分区管控,另外由于从光源侧面发射的光线没有被充分利用,会造成亮度损失。若凹状弧面的弧度较大例如凹状弧面弧度数的一半为40°时,光学模拟结果如图5b所示,光源发出的光线会朝光源的方向出射,也不能完全取得光源发射的光镜反射体的调节作用后从竖直方向出射的效果。当凹状弧面的 弧度取值适当时,例如凹状弧面弧度数的一半为20°时,光学模拟结果如图5c所示,光源发射的光线射经反射体的调节作用后,几乎完全沿着竖直方向出射,且充分利用了光源发射的光线,不会有亮度损失,光线的出光角度大致相同,有助于分区管控。图5d为凹状弧面的弧度的一半取值为10°时的光学模拟结果,从模拟结果可以看出,凹状弧面的弧度数的一半取值为10°时,光源发射的光线射经反射体的调节作用后,也是几乎完全沿着竖直方向出射,既不会有亮度损失,也有助于分区管控。因此,较佳地,反射体面向光源的表面的多级曲面中,每一级曲面的凹状曲面的弧度数的一半取值在10°~25°之间。
进一步地,该凹状的弧面表面可以是大致平坦的表面,例如光线射向该弧面大致发生类似镜面反射,较佳地,该凹状的弧面表面还可以是非平坦的,例如是磨砂的或者咬花状的表面,光线射向该非平坦的弧面发生类似漫反射,从而可以使得光线在反射体形成的内部空间内更加均匀化。
再次参考图2和图3所示,光源12配置于基板11的承载面111上,位于反射体13形成的内部空间内,在一个实施例中,多个光源12呈阵列状布置于承载面111内,对应地,反射体13与光源12一一对应地配置于基板11的承载面111,并围绕在光源12的四周。光源12例如是侧向发光型LED,侧向发光型LED可向四周出射光线,从而光线在反射体13形成的内部空间内更易分散均匀,当光源全部点亮时,降低显示装置上对应反射体13位置出现阴影,从而提高显示装置的光学品位。当然并不以此为限,还可以是其他种类的可向侧面发光的光源。
图6是本发明另一个实施例提供的背光模组10的结构示 意图,如图6所示,背光模组10还包括光学膜片组14,配置于反射体13的远离承载面111的一侧;壳体15,配置为承载基板11和光学膜片组14。具体地,光学膜片组14例如包括扩散片,分散片以及棱镜片等光学膜片,用于将光源发出的光线均匀化。壳体15例如包括底板151和侧壁152,基板11位于底板151上,侧壁152向壳体15内腔凸出形成台阶,用于支撑光学膜片组14,如此设置,将反射体13和光源12位于壳体15和光学膜片组14形成的封闭空间内。反射体13的面向光源12的表面具体地为三级表面,自基板11的承载面111向远离承载面111的竖直方向上,三级曲面到光源法线的距离整体依次增大。将反射体13距离基板11的承载面111的最高点称为顶点,在本发明的一个实施例中,反射体13的顶点与光学膜片组14之间的距离D为0.1mm~2mm。
为了验证本发明实施例提供的背光模组在全点灯时的光学效果,做了如下光学模拟,图7a为全点灯时,采用本发明实施例提供的反射体的背光模组的明暗亮度偏差的模拟效果图,具体地,采用本发明实施例提供的反射体的背光模组得到的明暗亮度差为65%;图7b为全点灯时,采用一般遮蔽物的背光模组的明暗亮度偏差的模拟效果图,采用一般遮蔽物的背光模组得到的明暗亮度偏差为31%;图7c为全点灯时,未采用反射体的背光模组的明暗亮度偏差的模拟效果图,未采用反射体的背光模组的得到的明暗亮度偏差为34%。这里的明暗亮度偏差指的是,光源全部点灯时,最暗处和最亮处的百分比,百分比数值越大,证明亮暗偏差越小,画面的品质相对越好,从上述模拟结果可以看出,采用本发明实施例提供的反射体的背光模组的亮暗偏差最小,因此,相应地,展现出良好的较好 的画面品质。
为了验证本发明实施例提供的背光模组在部分点灯时的光学效果,做了如下光学模拟,图8a为中央光源消灯时,采用本发明实施例提供的反射体的背光模组的明暗亮度偏差的模拟效果图,具体地采用本发明实施例提供的反射体的背光模组得到的明暗亮度差为4%;图8b为中央光源消灯时,采用一般遮蔽物的背光模组的明暗亮度偏差的模拟效果图,采用一般遮蔽物的背光模组得到的明暗亮度偏差为11.1%;图8c为中央光源消灯时时,未采用反射体的背光模组的明暗亮度偏差的模拟效果图,未采用反射体的背光模组的得到的明暗亮度偏差为19.5%。这里的明暗亮度偏差指的是,中央光源消灯时,最暗处和最亮处的百分比,百分比数值越小,表明发生越少的漏光,相应地画面的品质相对越好,从上述模拟结果可以看出,采用本发明实施例提供的反射体的背光模组的亮暗偏差百分比值最小,这表明采用本发明实施例提供的反射体结构,较佳地防止周围点亮的光源发出的光照射到附近的未点亮的区域内,从而提高相应的显示装置的对比度。
根据本发明的另一个方面,提供一种显示装置,该显示装置包括显示面板以及如前文所述的背光模组,显示面板例如是LCD显示面板,该显示装置例如应用于车载领域,通过在背光模组中设置反射体,从而避免背光模组中周围点亮的光源发出的光照射到附近的未点亮的区域内,防止漏光,从而提高相应的显示装置的对比度,满足车载显示装置对显示性能的要求。
在以上的描述中阐述了很多具体细节以便于充分理解本发明。但是以上描述仅是本发明的较佳实施例而已,本发明能 够以很多不同于在此描述的其它方式来实施,因此本发明不受上面公开的具体实施的限制。同时任何熟悉本领域技术人员在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

  1. 一种背光模组,其特征在于,包括:
    基板,配置有承载面;
    多个光源,配置于基板的承载面上;
    多个反射体,位于基板的承载面上,配置为环绕每个光源的周边;
    其中,所述反射体的面向光源的表面为多级曲面。
  2. 根据权利要求1所述的背光模组,其特征在于:自承载面向远离承载面的竖直方向上,多级曲面到光源法线之间的距离L整体依次增大。
  3. 根据权利要求1所述的背光模组,其特征在于:每一级曲面面向光源的表面为凹状的弧面。
  4. 根据权利要求3所述的背光模组,其特征在于:每一级曲面凹状弧面的弧度数的一半取值为10°~25°。
  5. 根据权利要求3所述的背光模组,其特征在于:所述呈凹状的弧面为平坦面或非平坦面。
  6. 根据权利要求1所述的背光模组,其特征在于:所述光源为侧向发光型光源。
  7. 根据权利要求1所述的背光模组,其特征在于:所述背光模组还包括:
    光学膜片组,配置于反射体的远离承载面的一侧;
    壳体,配置为承载所述基板和所述光学膜片组。
  8. 根据权利要求7所述的背光模组,其特征在于:所述反射体的面向光源的表面为三级曲面。
  9. 根据权利要求7所述的背光模组,其特征在于:所述 反射体的顶点与光学膜片之间的距离为0.1~2mm。
  10. 一种显示装置,包括:
    显示面板;和
    如权利要求1-9任一项所述的背光模组。
PCT/CN2023/113968 2022-06-23 2023-08-21 背光模组及其显示装置 WO2023246953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/533,170 US20240103317A1 (en) 2022-06-23 2023-12-08 Backlight Module and Display Apparatus with Backlight Module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210718833.6 2022-06-23
CN202210718833.6A CN115016175A (zh) 2022-06-23 2022-06-23 背光模组及其显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/533,170 Continuation US20240103317A1 (en) 2022-06-23 2023-12-08 Backlight Module and Display Apparatus with Backlight Module

Publications (1)

Publication Number Publication Date
WO2023246953A1 true WO2023246953A1 (zh) 2023-12-28

Family

ID=83077865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113968 WO2023246953A1 (zh) 2022-06-23 2023-08-21 背光模组及其显示装置

Country Status (3)

Country Link
US (1) US20240103317A1 (zh)
CN (1) CN115016175A (zh)
WO (1) WO2023246953A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205566A1 (de) * 2022-06-01 2023-12-07 Continental Automotive Technologies GmbH Anzeigevorrichtung und Fortbewegungsmittel
CN115016175A (zh) * 2022-06-23 2022-09-06 伟时电子股份有限公司 背光模组及其显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297613A (ja) * 2000-04-14 2001-10-26 Koichi Matsui 直下型照明装置
JP2002169478A (ja) * 2000-11-29 2002-06-14 Koichi Matsui 直下型照明装置
US6481872B1 (en) * 1998-10-22 2002-11-19 Koito Industries, Ltd. Astral lamp
CN101004507A (zh) * 2006-01-21 2007-07-25 鸿富锦精密工业(深圳)有限公司 背光模组
CN101017281A (zh) * 2006-02-10 2007-08-15 鸿富锦精密工业(深圳)有限公司 背光系统
CN101315494A (zh) * 2007-06-01 2008-12-03 株式会社日立制作所 液晶显示装置
TW201439471A (zh) * 2013-04-01 2014-10-16 Lextar Electronics Corp 燈具結構
CN215416195U (zh) * 2021-05-17 2022-01-04 深圳市隆利科技股份有限公司 一种反射罩及直下式背光结构
CN114153095A (zh) * 2021-12-02 2022-03-08 上海中航光电子有限公司 一种背光模组及其制备方法、显示装置
CN115016175A (zh) * 2022-06-23 2022-09-06 伟时电子股份有限公司 背光模组及其显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6481872B1 (en) * 1998-10-22 2002-11-19 Koito Industries, Ltd. Astral lamp
JP2001297613A (ja) * 2000-04-14 2001-10-26 Koichi Matsui 直下型照明装置
JP2002169478A (ja) * 2000-11-29 2002-06-14 Koichi Matsui 直下型照明装置
CN101004507A (zh) * 2006-01-21 2007-07-25 鸿富锦精密工业(深圳)有限公司 背光模组
CN101017281A (zh) * 2006-02-10 2007-08-15 鸿富锦精密工业(深圳)有限公司 背光系统
CN101315494A (zh) * 2007-06-01 2008-12-03 株式会社日立制作所 液晶显示装置
TW201439471A (zh) * 2013-04-01 2014-10-16 Lextar Electronics Corp 燈具結構
CN215416195U (zh) * 2021-05-17 2022-01-04 深圳市隆利科技股份有限公司 一种反射罩及直下式背光结构
CN114153095A (zh) * 2021-12-02 2022-03-08 上海中航光电子有限公司 一种背光模组及其制备方法、显示装置
CN115016175A (zh) * 2022-06-23 2022-09-06 伟时电子股份有限公司 背光模组及其显示装置

Also Published As

Publication number Publication date
US20240103317A1 (en) 2024-03-28
CN115016175A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2023246953A1 (zh) 背光模组及其显示装置
KR940003349Y1 (ko) 액정표시소자의 조명장치
US8500308B2 (en) Light source device and illumination device using the same
US11106081B2 (en) Light-emitting mechanism and backlight module
JP2020522894A (ja) 極薄直接点灯バックライト用の光学レンズ
KR20060046432A (ko) 직하식 백라이트 모듈
GB2162300A (en) Lighting means for display device
WO2023184582A1 (zh) 背光模组及显示装置
JPWO2020240664A1 (ja) 照明装置
CN108302380A (zh) 一种透镜式led黑板灯
JP4842107B2 (ja) 照明装置及びこれを備えた液晶表示装置
CN110160014B (zh) 一种照明灯具
CN218003878U (zh) 背光模组及其显示装置
CN207921869U (zh) 一种led黑板灯
US20220090748A1 (en) Lighting fixture
CN112413469B (zh) 一种侧发光式面板灯
WO2023065527A1 (zh) 均匀光透镜及背光模组
CN216521397U (zh) 一种矩阵式侧射车灯光学系统
WO2024045055A1 (zh) 透镜、透镜阵列、显示模组和显示装置
CN212673128U (zh) 背板、灯具框架以及led灯具
CN220119222U (zh) 照明灯具
KR200197762Y1 (ko) 발광다이오드식 유도등의 조사구조
CN211875722U (zh) 一种具有导光板的led光源
CN219871841U (zh) 一种导光组件、mini led背光模组及显示装置
TWI639793B (zh) 空腔側光式led發光結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826597

Country of ref document: EP

Kind code of ref document: A1