WO2024045055A1 - 透镜、透镜阵列、显示模组和显示装置 - Google Patents

透镜、透镜阵列、显示模组和显示装置 Download PDF

Info

Publication number
WO2024045055A1
WO2024045055A1 PCT/CN2022/116244 CN2022116244W WO2024045055A1 WO 2024045055 A1 WO2024045055 A1 WO 2024045055A1 CN 2022116244 W CN2022116244 W CN 2022116244W WO 2024045055 A1 WO2024045055 A1 WO 2024045055A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
display
emitting element
lens body
Prior art date
Application number
PCT/CN2022/116244
Other languages
English (en)
French (fr)
Inventor
迟卫宁
韩锐
尹大根
马青
崔栋
张志鹏
王丰平
翟跃
李文洋
齐勇乐
冷寿阳
李必奇
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002988.8A priority Critical patent/CN118160022A/zh
Priority to PCT/CN2022/116244 priority patent/WO2024045055A1/zh
Publication of WO2024045055A1 publication Critical patent/WO2024045055A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present disclosure relates to the technical field of display devices, and specifically to a lens, a lens array, a display module and a display device.
  • the light type of the display module light source included in the current display device is usually Lambertian, with both large-angle incident light and small-angle incident light, the small-angle light cannot adjust the optical path through light modulation structures such as reflective cups. Therefore, As a result, small-angle light is usually emitted from the edge of the display module, causing a waste of light source energy, thereby affecting the brightness of the display device and reducing the display effect of the display device.
  • Embodiments of the present disclosure provide a lens, a lens array, a display module and a display device to solve the problem of wasting light source energy in related technologies.
  • an embodiment of the present disclosure provides a lens, which includes: a lens body and a light-emitting component;
  • the lens body is a tapered housing with an inner cavity, and the light-emitting component is provided at the first end of the lens body;
  • a first quadratic surface is provided in the inner cavity of the lens body; a second quadratic surface is provided on the inner wall of the lens body;
  • the first quadratic surface is convex to the first end of the lens body
  • the second quadratic surface is convex to the second end of the lens body
  • the second end of the main body is the two opposite ends of the lens main body, and the second end of the lens main body is the end of the lens main body that emits light;
  • the light emitted by the light-emitting element in the first incident angle range is refracted by the first quadratic surface and then collimated and emitted from the second end of the lens body.
  • the light emitted by the light-emitting element in the second incident angle range is After the light is reflected by the second quadratic surface, it is collimated and emitted from the second end of the lens body, and the maximum angle value in the first incident angle range is less than the minimum value of the second incident angle range, so
  • the first incident angle range is the incident angle range corresponding to the light emitted from the light-emitting element and directly emitted from the second end of the lens body without being reflected by the inner wall of the lens body.
  • a microstructure array is provided on the end surface of the second end of the lens body
  • the surface of each microstructure away from the light-emitting component is a curved surface.
  • the light source utilization rate of each microstructure is greater than 90%.
  • the distance between each two adjacent microstructures tends to be 1 mm.
  • the second quadratic surface is arranged around the light-emitting element, and the focus of the second quadratic surface is located on one side of the first surface of the light-emitting element, wherein the first surface of the light-emitting element It is the surface opposite to the light-emitting surface of the light-emitting element.
  • the distance between the focus of the second quadratic surface and the light-emitting element is a first distance, and the first distance ranges from 1 mm to 4 mm.
  • the focus of the first quadratic surface is located on one side of the second surface of the light-emitting element, wherein the second surface of the light-emitting element is the light-emitting surface of the light-emitting element.
  • the second distance is greater than the distance between the first end and the second end of the lens body.
  • the lens includes a curved lens and a fixed cavity
  • One end of the fixed cavity is fixed on the first end of the lens body, the curved lens is fixed on the second end of the fixed cavity, and the convex surface of the curved lens forms the first secondary curved surface.
  • an embodiment of the present disclosure also provides a lens array, which includes the lens described in any embodiment of the first aspect;
  • a plurality of the lenses are arranged in a preset array, wherein the preset array is an array constituting the display size of the lens array.
  • an embodiment of the present disclosure provides a display module, which includes a light panel, a display panel, and the lens array described in any embodiment of the second aspect;
  • the lens array is disposed between the display panel and the light panel;
  • the display panel covers the top surface of the lens array, the first surface of the light panel is disposed at the bottom of the lens array, and the light-emitting component is electrically connected to the first surface of the light panel.
  • the display module also includes a backplane
  • the back plate is disposed on the second surface of the light panel.
  • the second surface of the light panel is a surface opposite to the first surface of the light panel.
  • the back plate is used to control the light panel.
  • the electrically connected light-emitting component emits light.
  • the display module also includes a heat sink
  • the heat sink is wrapped on the surface of the back plate away from the light panel.
  • the display panel includes a main display layer and a bottom display layer;
  • the main display layer and the bottom display layer are stacked, and the bottom display layer covers the top surface of the lens array;
  • the bottom display layer is used to control the brightness of the display module
  • the main display layer is a display layer covering a color filter.
  • the underlying display layer includes a plurality of pixel display units, and the brightness of each pixel display unit is controllable.
  • the main display layer includes a monochrome pixel display unit
  • the main display layer includes a color display unit
  • the area occupied by the monochrome pixel display unit in the bottom display layer and the color pixel display The ratio between the areas occupied by the units in the main display layer is greater than 1:4.
  • the brightness of the display module is at the maximum brightness value
  • the brightness of the display module is at the minimum brightness value
  • the brightness of the display module is between the maximum brightness value and the minimum brightness value. brightness value.
  • an embodiment of the present disclosure provides a display device, which includes the display module described in any embodiment of the third aspect.
  • the first quadratic surface is provided in the inner cavity of the lens body; the second quadratic surface is provided on the inner wall of the lens body, the first quadratic surface is convex to The first end of the lens body and the second quadratic surface are convex to the second end of the lens body. Therefore, the light emitted by the light-emitting element in the first incident angle range can be refracted after passing through the first quadratic surface. The two ends are collimated and emitted.
  • the light emitted by the light-emitting element in the second incident angle range After the light emitted by the light-emitting element in the second incident angle range passes through the second quadratic surface, it can be reflected on the second quadratic surface and emit collimated from the second end of the lens body. And because the maximum angle value in the first incident angle range is less than the minimum value in the second incident angle range, the light emitted by the light-emitting element in the first incident angle range directly passes from the lens without being reflected by the inner wall of the lens body. The light emitted from the second end of the main body corresponds to the incident angle range, so that all the light emitted from the light-emitting part can be modulated and then emitted collimated, thereby avoiding the waste of energy of the light-emitting part and achieving 100% utilization of light.
  • Figure 1 shows a schematic structural diagram of a lens provided by an embodiment of the present disclosure
  • Figure 2 shows a schematic diagram of the optical path propagation of a lens provided by an embodiment of the present disclosure
  • Figure 3 shows a schematic structural diagram of a microstructure array included in a lens provided by an embodiment of the present disclosure
  • Figure 4 shows a schematic structural diagram of a microstructure provided by an embodiment of the present disclosure
  • Figure 5 shows a schematic structural diagram of a lens array provided by an embodiment of the present disclosure
  • Figure 6 shows a schematic diagram of lens distribution of a lens array provided by an embodiment of the present disclosure
  • Figure 7 shows a schematic structural diagram of a display module provided by an embodiment of the present disclosure
  • FIG. 8 shows a schematic structural diagram of a display panel included in a display module provided by an embodiment of the present disclosure
  • Figure 9 shows a schematic diagram of brightness simulation of a lens array provided by an embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of intensity slices of a lens provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a lens.
  • Figure 1 shows a schematic structural diagram of a lens provided by an embodiment of the present disclosure.
  • the lens includes: a lens body 311 and a light-emitting component 312; 311 is a tapered housing with an inner cavity.
  • the light-emitting member 312 is provided at the first end of the lens body 311; the inner cavity of the lens body 311 is provided with a first quadratic surface 313; the inner wall of the lens body 311 is provided with a second second Quadratic surface 314; wherein, the first quadratic surface 313 is convex to the first end of the lens body 311, the second quadratic surface 314 is convex to the second end of the lens body 311, the first end of the lens body 311 and the lens body 311
  • the second end of the lens body 311 is the opposite end of the lens body 311, and the second end of the lens body 311 is the end from which the lens body 311 emits light; the light in the first incident angle range emitted by the light-emitting element 312 is refracted by the first quadratic surface 313 , collimated and emitted from the second end of the lens body 311, the incident light in the second incident angle range emitted by the light-emitting element 312 is reflected by the
  • the lens body 311 is a cup-shaped housing, usually a cone-shaped housing.
  • the lens body 311 can be a type of glass reflector, which is mainly made by one-time stripping.
  • the diameter of the first end of the lens body 311 is smaller than the second end of the lens body 311 .
  • the light-emitting element 312 can be disposed on the first end of the lens body 311, so that the light emitted by the light-emitting element 312 can be emitted through the second end of the lens body 311.
  • a first quadratic surface 313 is provided in the inner cavity of the lens body 311; a second quadratic surface 314 is provided on the inner wall of the lens body 311.
  • Both the first quadratic surface 313 and the second quadratic surface 314 can be any quadratic surface such as a sphere, an ellipsoid, an elliptical parabola, etc.
  • the quadratic surface is a surface represented by a quadratic equation of three variables, which is called a quadratic surface.
  • the curved surface that is, the surface represented by the three-dimensional quadratic equation in the three-dimensional coordinate system, is called the figure corresponding to the quadratic surface.
  • the first quadratic surface 313 is convex toward the first end of the lens, and the light-emitting element 312 is disposed at the first end of the lens body 311 , that is, the first quadratic surface 313 is convex toward the light-emitting surface of the light-emitting element 312 .
  • the light emitted by the light-emitting element 312 in the first incident angle range can be refracted after passing through the first quadratic surface 313 and then be collimated and emitted from the second end of the lens body 311 .
  • the first incident angle range refers to the incident angle range of the light emitted by the light emitting element 312 and directly emitted without being reflected by the inner wall of the lens body 311 .
  • the first reflection angle range is determined according to the shape and size of the inner cavity of the lens body 311, which is not limited in the embodiment of the present disclosure.
  • collimated emission refers to light that, after being refracted by the first quadratic surface 313, the angle between the emitted light and the axis of the lens body 311 converges to within ⁇ 15°.
  • the light emitted by the light-emitting component 312 in the first incident angle range is as shown in A in FIG. 2 .
  • the second quadratic surface 314 is convex toward the second end of the lens, and the second end of the lens body 311 is the end from which the lens body 311 emits light. That is, the second quadratic surface 314 is convex toward the light-emitting surface of the light-emitting element 312 . In this way, after the light in the second incident angle range emitted by the light-emitting element 312 passes through the second quadratic surface 314, it can be reflected on the second quadratic surface 314 and be collimated and emitted from the second end of the lens body 311. It should be noted that the second incident angle range refers to light in other incident angle ranges except the first incident angle range.
  • collimated emission refers to light that, after being reflected by the second quadratic surface 314, the angle between the emitted light and the axis of the lens body 311 converges to within ⁇ 15°.
  • the light emitted by the light-emitting component 312 in the first incident angle range is the light shown as A in Figure 2.
  • the intensity slice of the lens is shown in Figure 10. According to Figure 10, it can be seen that the display brightness of the lens converges to within ⁇ 15° when the vertical center viewing angle is 10%, and the collimation of the light passing through the lens is improved.
  • the light-emitting element 312 provided at the first end of the lens body 311 is a type of light-emitting diode.
  • the light-emitting element 312 is arranged on the axis of the lens body 311 so that the light emitted by the light-emitting element 312 can be dispersed on both sides of the axis of the lens body 311. side.
  • the first quadratic surface 313 is provided in the inner cavity of the lens body 311 and the second quadratic surface 314 is provided on the inner wall of the lens body 311, the first and second quadratic surfaces
  • the secondary curved surface 313 is convex to the first end of the lens body 311
  • the second secondary curved surface 314 is convex to the second end of the lens body 311. Therefore, the light in the first incident angle range emitted by the light-emitting element 312 passes through the first secondary curved surface 313.
  • the lens body 311 can be refracted, collimated and emitted from the second end of the lens body 311, and the light in the second incident angle range emitted by the light-emitting element 312 can be reflected on the second quadratic surface 314 after passing through the second quadratic surface 314. It is collimated and emitted from the second end of the lens body 311. And because the maximum angle value in the first incident angle range is less than the minimum value in the second incident angle range, the light emitted by the light emitting component 312 in the first incident angle range directly passes from the second end of the lens body without being reflected by the inner wall of the lens body.
  • the emitted light corresponds to the incident angle range, so that all the light emitted from the light-emitting component 312 can be modulated and then emitted collimated, thereby avoiding the waste of energy of the light-emitting component 312 and achieving 100% utilization of the light.
  • the structure of the lens body 311 will be introduced in detail, as well as the parameter ranges of the first quadratic surface 313 and the second quadratic surface 314 inside the lens body 311, as follows:
  • a microstructure array 315 is provided on the end surface of the second end of the lens body 311 .
  • the microstructure array 315 includes a plurality of microstructure units 3151 arranged in an array. Each microstructure unit 3151 is arranged in an array.
  • the surface of the structural unit 3151 away from the light emitting member 312 is an arc surface.
  • each microstructure unit 3151 can be equivalent to a block structure, and the top of the block structure is an arc surface, that is, the surface of the block structure away from the light-emitting member 312 can be a spherical surface or a 1/2 arc surface. Any arc surface such as a surface, which is not limited in the embodiments of the present disclosure.
  • the arc surface is convex in a direction away from the light-emitting component 312 . Every two adjacent microstructure units 3151 are arranged closely together. When the number of microstructure units 3151 included on the end surface of the second end of the lens body 311 reaches a certain amount, the end surface of the second end of the lens body 311 is made uniform. Sexual convergence.
  • the light source utilization rate of each microstructure unit 3151 is greater than 90%.
  • simulation calculations can be performed based on the curvature value of the surface of each microstructure unit 3151 away from the light-emitting member 312, and a result with the minimum normalized variance can be obtained.
  • the curvature is 0.4358
  • each microstructure The light source utilization rate of the unit 3151 is greater than 90%. In this way, the probability of light passing through the microstructure unit 3151 array can be increased, and the display brightness of the lens can be improved.
  • the distance between each two adjacent microstructure units 3151 tends to be 1 mm.
  • the uniformity of the end surface of the second end of the lens body 311 can reach more than 60%.
  • the second quadratic surface 314 is arranged around the light-emitting element 312, and the focus of the second quadratic surface 314 is located on one side of the first surface of the light-emitting element 312, wherein the first surface of the light-emitting element 312 emits light.
  • the second quadratic surface 314 is a type of elliptical paraboloid, and the second quadratic surface 314 is arranged around the light-emitting element 312. In this way, the focus of the second quadratic surface 314 is located on the first surface of the light-emitting element 312. In the case of one side, it can be ensured that the incident light in the second incident angle range emitted by the light-emitting element 312 can be emitted through the second quadratic surface 314 .
  • the focus of the second quadratic surface 314 when the focus of the second quadratic surface 314 is located at the bottom of the light-emitting element 312, it can be ensured that the incident light in the second incident angle range emitted by the light-emitting element 312 can hit the quadratic surface to avoid causing damage to the light-emitting element. 312Waste of energy.
  • the distance between the focus of the second quadratic surface 314 and the light-emitting element 312 is a first distance, and the first distance ranges from 1 mm to 4 mm.
  • Quadratic surface 314 is ejected.
  • the distance between the focus of the second quadratic surface 314 and the light-emitting element 312 is 2 mm
  • the surface coefficient of the second quadratic surface 314 is -1.22
  • the curvature is 0.35, which can make the light-emitting element 312 emit light.
  • the angle at which the light reaches the second quadratic surface 314 is equal to the angle between the collimated light and the normal, which further improves the collimation of the light reflected from the second quadratic surface 314 .
  • the focus of the first quadratic surface 313 is located on one side of the second surface of the light-emitting element 312 , where the second surface of the light-emitting element 312 is the light-emitting surface of the light-emitting element 312 .
  • the focus of the first quadratic surface 313 is located on one side of the second surface of the light-emitting element 312, a certain distance is maintained between the light-emitting element 312 and the first quadratic surface 313.
  • the light-emitting element can be The light emitted by 312 can first pass through the cavity between the light-emitting element 312 and the first quadratic surface 313 and enter the first quadratic surface 313 in the first incident angle range, and then be refracted through the second quadratic surface 314. Since the refraction angle is smaller than the incident angle when light is incident from the air obliquely into other media, the propagation direction of the light can be changed.
  • the distance between the focus of the first quadratic surface 313 and the second surface of the light-emitting element 312 is at a certain value. In this case, the light emitted from the second quadratic surface 314 can be collimated and emitted.
  • the focus of the first quadratic surface 313 and the second surface of the light-emitting member 312 are separated by a second distance, and the second distance is greater than one-third of the distance between the first end and the second end of the lens body 311 .
  • the distance between the focus of the first quadratic surface 313 and the second surface of the light-emitting element 312 is greater than one-third of the distance between the first end and the second end of the lens body 311, so reflection can be ensured.
  • the angle at which the component reaches the first quadratic surface 313 is maintained at a certain value, that is, the angle at which the light reaches the first quadratic surface 313 can be modulated by the distance between the focus of the first quadratic surface 313 and the second surface of the light-emitting component 312, This is to ensure that the light emitted from the second quadratic surface 314 can be emitted in a collimated manner.
  • the distance between the focus of the first quadratic surface 313 and the second surface of the light-emitting element 312 is determined based on the distance between the first end and the second end of the lens body 311. For example, on the first end of the lens body 311, When the distance between the first end and the second end is 7 mm, the distance between the focus of the first quadratic surface 313 and the second surface of the light-emitting member 312 is 3 mm. In the embodiment of the present disclosure, the focus of the first quadratic surface 313 is The distance from the second surface of the light emitting member 312 is not limited.
  • the lens includes a curved lens and a fixed cavity 316; one end of the fixed cavity 316 is fixed on the first end of the lens body 311, the curved lens is fixed on the second end of the fixed cavity 316, and the convex surface of the curved lens The first quadratic surface 313 is formed.
  • the fixed cavity 316, the curved lens and the lens body 311 can be integrally formed by injection molding.
  • the fixed cavity 316 is formed between the light-emitting part 312 and the lens main body 311, and the curved lens is fixed through the fixed cavity 316, and through the fixed cavity 316, the fixed cavity 316 is formed.
  • the cavity 316 propagates the incident light in the first incident angle range emitted by the light-emitting element 312 .
  • the incident light in the second incident angle range emitted by the light-emitting element 312 will also be refracted to a certain extent when passing through the cavity wall of the fixed cavity 316.
  • the refraction of the incident light in the second incident angle range emitted by the light-emitting component 312 when passing through the cavity wall of the fixed cavity 316 is also negligible, and does not affect the effect of the second quadratic surface 314 on the light. reflection effect.
  • the first quadratic surface 313 is provided in the inner cavity of the lens body 311 and the second quadratic surface 314 is provided on the inner wall of the lens body 311, the first and second quadratic surfaces
  • the secondary curved surface 313 is convex to the first end of the lens body 311
  • the second secondary curved surface 314 is convex to the second end of the lens body 311. Therefore, the light in the first incident angle range emitted by the light-emitting element 312 passes through the first secondary curved surface 313.
  • the lens body 311 can be refracted, collimated and emitted from the second end of the lens body 311, and the light in the second incident angle range emitted by the light-emitting element 312 can be reflected on the second quadratic surface 314 after passing through the second quadratic surface 314. It is collimated and emitted from the second end of the lens body 311. And because the maximum angle value in the first incident angle range is less than the minimum value in the second incident angle range, the light emitted by the light emitting component 312 in the first incident angle range directly passes from the second end of the lens body without being reflected by the inner wall of the lens body.
  • the emitted light corresponds to the incident angle range, so that all the light emitted from the light-emitting component 312 can be modulated and then emitted collimated, thereby avoiding the waste of energy of the light-emitting component 312 and achieving 100% utilization of the light.
  • inventions of the present disclosure also provide a lens array.
  • the lens array includes a plurality of lenses 31 described in any embodiment of the first aspect; the plurality of lenses 31 are as follows: A preset array arrangement, wherein the preset array is an array constituting a display size of the lens array.
  • the preset array is an array that meets the display size of the lens array.
  • the display size of the lens array is 45 mm ⁇ 75 mm
  • the lenses 31 can be arranged in a 5 ⁇ 3 array, that is, the lens array
  • the number of rows is 3 and the number of columns is 3.
  • the average brightness is 2.61W million nits
  • the power consumption is 12W
  • the uniformity is 56%.
  • the light The efficiency can be increased by 2.8 times.
  • the preset array of the lens array is determined according to the display size of the lens array, which is not limited in the embodiments of the present disclosure.
  • the plurality of lenses 31 are arranged in a preset array, all the light emitted by the light-emitting part of each lens 31 can be modulated and then collimated and emitted, realizing that the light When fully utilized, the display brightness of the lens array can be increased, thereby improving the effect of the lens array.
  • the embodiment of the present disclosure also provides a display module.
  • the display module includes a light panel 1, a display panel 2 and a lens array 3 of the second aspect; the lens array 3 is provided on the display panel 2 and the light panel 1; the display panel 2 covers the top surface of the lens array 3, and the light-emitting member 312 is electrically connected to the first surface of the light panel 1.
  • the lens array 3 is disposed between the display panel 2 and the lamp panel 1, the display panel 2 covers the top surface of the lens array, and the light-emitting member 312 is electrically connected to the first surface of the lamp panel 1, therefore The light-emitting component 312 can be controlled by the light panel 1 to emit light, which is then displayed on the display panel 2 through the lens 31 . Since the display brightness of the lens array 3 is improved, the display effect of the display panel 2 is also improved, which is beneficial to improving the overall display effect of the display module.
  • the display module further includes a back plate 4; the back plate 4 is on the second surface of the light panel 1, and the second surface of the light panel 1 is a surface opposite to the first surface of the light panel 1.
  • the backplane 4 can control the circuit board on which the light-emitting component 312 emits light.
  • the backplane 4 can perform partition control on the light-emitting component 312 in each lens in the lens array 3 to achieve local dimming of the display module. Adapt to different application scenarios, making the use of display modules unrestricted.
  • the display module also includes a heat sink, and the heat sink covers the surface of the back panel 4 away from the light panel 1 .
  • the heat of the backplane 4 can be dissipated through the heat sink, which is beneficial to extending the service life of the display module.
  • the display panel 2 includes a main display layer 21 and a bottom display layer 22; the main display layer 21 and the bottom display layer 22 are stacked, and the bottom display layer 22 covers the top surface of the lens array; where , the bottom display layer 22 is used to control the brightness of the display module, and the main display layer 21 is a display layer covering the color film.
  • the bottom display layer 22 covers the top surface of the lens array, so the contrast of the display module can be improved, that is, the display can be controlled through the bottom display layer 22
  • the brightness of the module that is, controlling the ratio between the brightest and darkest display modules, that is, the double-panel display module composed of the main display layer 21 and the bottom display layer 22 provided by the embodiment of the present disclosure can make the display module Static contrast ratio achieves at least 500,000:1.
  • the bottom display layer 22 includes a plurality of pixel display units, and the brightness of each pixel display unit is controllable.
  • the number of pixel display units can be adjusted according to the size of the display module. For example, if the size of the display module is 65 inches, the number of pixel display units can reach 2,000,000. That is, the pixel display unit of the bottom display layer 22 can be fully opened to the bottom display layer 22 being partially dimmed or even turned off, and then the light and dark of each pixel display unit can be controlled on and off to make the display screen of the display module More delicate.
  • the brightness of the display module is at the maximum brightness value; when the multiple pixel display units included in the bottom display layer 22 are all turned off, the display The brightness of the module is at the minimum brightness value; when some of the multiple pixel display units included in the underlying display layer 22 are turned on or some of the pixel display units are turned off, the brightness of the display module is at the maximum brightness value and the minimum brightness.
  • the brightness value between values.
  • the bottom display layer 22 includes a monochrome pixel display unit
  • the main display layer 21 includes a color display unit, the area occupied by the monochrome pixel display unit in the bottom display layer and the area occupied by the color pixel display unit in the main display layer The ratio between them is less than 1:4.
  • the transparent The passing rate can be increased by 25.6%.
  • the pixel black matrix area and other designs continue to increase, there is not much room for improvement in the corresponding ratio transmittance. Therefore, it can be determined by the area occupied by the monochrome pixel display unit in the underlying display layer and the area occupied by the color pixel display unit in the main display layer.
  • the bottom display layer 22 is the display part of the screen, covering the display of color filters, and can realize the display of different colors, further improving the application scenarios of the display module.
  • the lens array 3 is disposed between the display panel 2 and the light panel 1 , the display panel 2 covers the top surface of the lens array, and the light-emitting member 312 is electrically connected to the first surface of the light panel 1 Therefore, the light-emitting component 312 can be controlled by the lamp panel 1 to emit light, and then displayed on the display panel 2 through the lens. Since the display brightness of the lens array 3 is improved, the display effect of the display panel 2 is also improved, which is beneficial to improving the overall display effect of the display module.
  • an embodiment of the present disclosure further provides a display device, which includes the display module described in any embodiment of the third aspect.
  • the display device can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle display device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook or a personal digital assistant (personal digital assistant).
  • a mobile display device such as a digital assistant (PDA), and the non-mobile display device can be a personal computer (PC), a television (TV), a teller machine or a self-service machine, etc.
  • the embodiments of the present disclosure are not specifically limited.
  • the display device has the same beneficial effects as the above-mentioned display module, which will not be described again in the embodiments of the present disclosure. For example, when the display device is a car head-up display, due to the increase in brightness, a more detailed projection display can be achieved and better visual effects can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种透镜、透镜阵列、显示模组和显示装置。透镜包括:透镜主体(311)和发光件(312);透镜主体(311)为具有内腔的锥形壳体,发光件(312)设置在透镜主体(311)的第一端;透镜主体(311)的内腔中设置有第一二次曲面(313);透镜主体(311)的内壁上设置有第二二次曲面(314);其中,第一二次曲面(313)凸向透镜主体(311)的第一端,第二二次曲面(314)凸向透镜主体(311)的第二端,透镜主体(311)的第一端和透镜主体(311)的第二端为透镜主体(311)相对的两端,透镜主体(311)的第二端为透镜主体(311)出射光线的一端;发光件(312)发出的第一入射角度范围的光线通过第一二次曲面(313)折射后,从透镜主体(311)的第二端准直射出,发光件(312)发出的第二入射角度范围的入射光线通过第二二次曲面(314)反射后,从透镜主体(311)第二端准直射出。

Description

透镜、透镜阵列、显示模组和显示装置 技术领域
本公开涉及显示设备技术领域,具体涉及一种透镜、透镜阵列、显示模组和显示装置。
背景技术
随着显示装置的不断发展,人们对显示装置的显示要求也在逐步提升。如车载显示装置需要具有有高亮度、高准直度、低功耗、高度比度的显示需求。其中,实现高亮度的前提就是实现高准直度,而高准直度的实现需要显示装置尽可能的利用光源发出的所有光线。
然而,由于目前显示装置包括的显示模组光源的光型通常为朗伯体,同时具有大角度入射光线和小角度入射光线,小角度光线无法通过反光杯等光线调制结构进行光路的调整,因此导致小角度光线通常从显示模组的边缘射出,进而造成光源能量的浪费,进而影响显示装置的亮度,降低显示装置的显示效果。
概述
本公开实施例提供了一种透镜、透镜阵列、显示模组和显示装置,以解决相关技术中造成光源能量浪费的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种透镜,所述透镜包括:透镜主体和发光件;
所述透镜主体为具有内腔的锥形壳体,所述发光件设置在所述透镜主体的第一端;
所述透镜主体的内腔中设置有第一二次曲面;所述透镜主体的内壁上设置有第二二次曲面;
其中,所述第一二次曲面凸向所述透镜主体的第一端,所述第二二次曲 面凸向所述透镜主体的第二端,所述透镜主体的第一端和所述透镜主体的第二端为所述透镜主体相对的两端,所述透镜主体的第二端为所述透镜主体出射光线的一端;
所述发光件发出的第一入射角度范围的光线通过所述第一二次曲面折射后,从所述透镜主体的第二端准直射出,所述发光件发出的第二入射角度范围的入射光线通过所述第二二次曲面反射后,从所述透镜主体第二端准直射出,所述第一入射角度范围中的最大角度值小于于所述第二入射角度范围的最小值,所述第一入射角度范围为发光件发出的光线不经过所述透镜主体内壁的反射直接从所述透镜主体的第二端射出的光线对应的入射角度范围。
可选的,所述透镜主体的第二端的端面上设置有微结构阵列;
每个所述微结构远离所述发光件的表面为曲面。
可选的,每个所述微结构的光源利用率大于90%。
可选的,每相邻两个微结构之间的间距趋于1毫米。
可选的,所述第二二次曲面环绕所述发光件设置,所述第二二次曲面的焦点位于所述发光件的第一表面的一侧,其中,所述发光件的第一表面为和所述发光件的发光面相对的表面。
可选的,所述第二二次曲面的焦点和所述发光件之间的距离为第一距离,所述第一距离的范围为1毫米至4毫米。
可选的,所述第一二次曲面的焦点位于所述发光件第二表面的一侧,其中,所述发光件的第二表面为所述发光件的发光面。
可选的,所述第一二次曲面的焦点和所述发光件的第二表面之间相距第二距离,所述第二距离大于所述透镜主体的第一端和第二端之间距离的三分之一。
可选的,所述透镜包括曲面透镜和固定腔体;
所述固定腔体的一端固定在所述透镜主体的第一端,所述曲面透镜的固定在所述固定腔体的第二端,所述曲面透镜的凸面形成所述第一二次曲面。
第二方面,本公开实施例还提供了一种透镜阵列,所述透镜阵列包括第一方面任一实施例所述的透镜;
多个所述透镜按照预设阵列排列,其中,所述预设阵列为构成所述透镜阵列的显示尺寸的阵列。
第三方面,本公开实施例提供了一种显示模组,所述显示模组包括灯板、显示面板和第二方面任一实施例所述的透镜阵列;
所述透镜阵列设置在所述显示面板和所述灯板之间;
所述显示面板覆盖在所述透镜阵列的顶部表面上,所述灯板的第一表面设置在所述透镜阵列的底部,且所述发光件电连接在所述灯板的第一表面上。
可选的,所述显示模组还包括背板;
所述背板设置在所述灯板的第二表面上,所述灯板的第二表面为和所述灯板的第一表面相对的表面,所述背板用于控制所述灯板上电连接的所述发光件发光。
可选的,所述显示模组还包括散热片;
所述散热片包覆在所述背板远离所述灯板的表面上。
可选的,所述显示面板包括主显示层和底层显示层;
所述主显示层和所述底层显示层堆叠设置,所述底层显示层覆盖在所述透镜阵列的顶部表面上;
其中,所述底层显示层用于控制所述显示模组的亮度,所述主显示层为覆盖彩膜的显示层。
可选的,所述底层显示层包括多个像素显示单元,每个所述像素显示单元的亮度可控。
可选的,所述主显示层包括单色像素显示单元,所述主显示层包括彩色显示单元,所述单色像素显示单元在所述底层显示层中所占的面积和所述彩色像素显示单元在所述主显示层中所占的面积之间的比值大于1:4。
可选的,在所述底层显示层包括的所述多个像素显示单元全部打开的情况下,所述显示模组的亮度处于最大亮度值;
在所述底层显示层包括的所述多个像素显示单元全部关闭的情况下,所述显示模组的亮度处于最小亮度值;
在所述底层显示层包括的所述多个像素显示单元中部分像素显示单元打开或者部分像素显示单元关闭的情况下,所述显示模组的亮度处于最大亮度值值和最小亮度值之间的亮度值。
第四方面,本公开实施例提供了一种显示装置,所述显示装置包括第三 方面任一实施例所述的显示模组。
从上述实施例可以看出,在本公开实施例中,由于透镜主体的内腔中设置有第一二次曲面;透镜主体的内壁上设置有第二二次曲面,第一二次曲面凸向透镜主体的第一端,第二二次曲面凸向透镜主体的第二端,因此发光件发出的第一入射角度范围的光线通过第一二次曲面后,可以发生折射,从透镜主体的第二端准直射出,发光件发出的第二入射角度范围的光线通过第二二次曲面后,可以在第二二次曲面上发生反射,从透镜主体的第二端准直射出。又由于第一入射角度范围中的最大角度值小于于第二入射角度范围的最小值,所述第一入射角度范围为发光件发出的光线不经过所述透镜主体内壁的反射直接从所述透镜主体的第二端射出的光线对应的入射角度范围,因此使得从发光件发出的所有光线均可以被调制后准直射出,避免造成发光件能量的浪费,实现光线的百分之百利用。
附图简述
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例提供的一种透镜的结构示意图;
图2表示本公开实施例提供的一种透镜的光路传播示意图;
图3表示本公开实施例提供的一种透镜包括的微结构阵列的结构示意图;
图4表示本公开实施例提供的一种微结构的结构示意图;
图5表示本公开实施例提供的一种透镜阵列的结构示意图;
图6表示本公开实施例提供的一种透镜阵列的透镜分布示意图;
图7表示本公开实施例提供的一种显示模组的结构示意图;
图8表示本公开实施例提供的一种显示模组包括的显示面板的结构示意图;
图9表示本公开实施例提供的一种透镜阵列的亮度模拟示意图;
图10表示本公开实施例提供的一种透镜的强度切片示意图。
附图标记:
1:灯板;2:显示面板;3:透镜阵列;4:背板;21:主显示层;22:底层显示层;31:透镜;311:透镜主体;312:发光件;313:第一二次曲面;314:第二二次曲面;315:微结构阵列;316:固定腔体;3151:微结构单元。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
第一方面,本公开实施例提供了一种透镜,图1表示本公开实施例提供的一种透镜的结构示意图,如图1所示,该透镜包括:透镜主体311和发光件312;透镜主体311为具有内腔的锥形壳体,发光件312设置在透镜主体311的第一端;透镜主体311的内腔中设置有第一二次曲面313;透镜主体311的内壁上设置有第二二次曲面314;其中,第一二次曲面313凸向透镜主体311的第一端,第二二次曲面314凸向透镜主体311的第二端,透镜主体311的第一端和透镜主体311的第二端为透镜主体311相对的两端,透镜主体311的第二端为透镜主体311出射光线的一端;发光件312发出的第一入射角度范围的光线通过第一二次曲面313折射后,从透镜主体311的第二端准直射出,发光件312发出的第二入射角度范围的入射光线通过第二二次曲面314反射后,从透镜主体311第二端准直射出,第一入射角度范围中的最大角度值小于于第二入射角度范围的最小值,所述第一入射角度范围为发光件312发出的光线不经过所述透镜主体内壁的反射直接从所述透镜主体的 第二端射出的光线对应的入射角度范围。
其中,透镜主体311为杯型壳体,通常为锥形壳体。透镜主体311可以为玻璃反光杯的一种,主要通过一次脱膜制成。在透镜主体311为锥形壳体的情况下,透镜主体311第一端的直径小于透镜主体311的第二端。这样,可以将发光件312设置在透镜主体311的第一端上,使得发光件312发出的光线可以经由透镜主体311的第二端射出。
在本公开实施例中,为提升反射光线的准直度,在透镜主体311的内腔中设置有第一二次曲面313;透镜主体311的内壁上设置有第二二次曲面314。第一二次曲面313和第二二次曲面314均可以为球面、椭球面、椭圆抛物面等二次曲面中的任一种,二次曲面为三元二次方程所表示的曲面称作二次曲面,即在三维坐标系中三元二次方程所表示的曲面称作二次曲面对应的图形。
如图2所示,第一二次曲面313凸向透镜的第一端,发光件312设置在透镜主体311的第一端,即第一二次曲面313凸向发光件312的发光面。这样,发光件312发出的第一入射角度范围的光线通过第一二次曲面313后,可以发生折射,从透镜主体311的第二端准直射出。需要说明的是,第一入射角度范围指的是发光件312发出的光线不经过透镜主体311内壁的反射直接射出的光线的入射角度范围。第一反射角度范围依据透镜主体311内腔的形状和尺寸确定,本公开实施例对此不做限定。还需要说明的是,准直射出指的是经过第一二次曲面313折射后,出射的光线和透镜主体311的轴线之间的夹角收敛到±15°以内的光线。其中,发光件312发出的第一入射角度范围的光线如图2中A所示的光线。
第二二次曲面314凸向透镜的第二端,透镜主体311的第二端为透镜主体311出射光线的一端,即第二二次曲面314凸向发光件312的发光面。这样,发光件312发出的第二入射角度范围的光线通过第二二次曲面314后,可以在第二二次曲面314上发生反射,从透镜主体311的第二端准直射出。需要说明的是,第二入射角度范围指的是除第一入射角度范围内的其它入射角度范围的光线。还需要说明的是,准直射出指的是经过第二二次曲面314反射后,出射的光线和透镜主体311的轴线之间的夹角收敛到±15°以内的光线。其中,发光件312发出的第一入射角度范围的光线如图2中A所示 的光线。透镜的强度切片如图10所示,依据图10可以看出,透镜的显示亮度在垂直中心视角10%的时候收敛到±15°以内,通过透镜的光线的准直度得到提升。
此外,设置在透镜主体311的第一端的发光件312为发光二极管的一种,发光件312设置在透镜主体311的轴线上,使得发光件312发出的光线可以分散在透镜主体311的轴线两侧。
从上述实施例可以看出,在本公开实施例中,由于透镜主体311的内腔中设置有第一二次曲面313;透镜主体311的内壁上设置有第二二次曲面314,第一二次曲面313凸向透镜主体311的第一端,第二二次曲面314凸向透镜主体311的第二端,因此发光件312发出的第一入射角度范围的光线通过第一二次曲面313后,可以发生折射,从透镜主体311的第二端准直射出,发光件312发出的第二入射角度范围的光线通过第二二次曲面314后,可以在第二二次曲面314上发生反射,从透镜主体311的第二端准直射出。又由于第一入射角度范围中的最大角度值小于于第二入射角度范围的最小值,第一入射角度范围为发光件312发出的光线不经过透镜主体内壁的反射直接从透镜主体的第二端射出的光线对应的入射角度范围,因此使得从发光件312发出的所有光线均可以被调制后准直射出,避免造成发光件312能量的浪费,实现光线的百分之百利用。
接下来具体介绍下透镜主体311的结构,以及透镜主体311内部的第一二次曲面313和第二二次曲面314的参数范围,具体如下:
在一些实施例中,如图3和图4所示,透镜主体311的第二端的端面上设置有微结构阵列315,微结构阵列315包括多个阵列排布的微结构单元3151,每个微结构单元3151远离发光件312的表面为圆弧面。
需要说明的是,每个微结构单元3151可以等同于块状结构,块状结构的顶部为圆弧面,即块状结构的远离发光件312的表面上为可以为球面、1/2圆弧面等任一圆弧面,本公开实施例对此不做限定。该圆弧面凸向远离发光件312的方向。每相邻两个微结构单元3151之间紧贴设置,在透镜主体311的第二端的端面上包括的微结构单元3151包括的数量达到一定量时,使得透镜主体311的第二端的端面的均一性趋于一致。
可选的,每个微结构单元3151的光源利用率大于90%。
需要说明的是,可以通过每个微结构单元3151远离发光件312的表面的曲率的值进行模拟计算,可以得出归一化方差最小的结果,在曲率为0.4358的情况下,每个微结构单元3151光源利用率大于90%,这样,可以提升光线通过微结构单元3151阵列的概率,提升透镜的显示亮度。
可选的,每相邻两个微结构单元3151之间的间距趋于1毫米。
需要说明的是,在每相邻两个微结构单元3151之间的间距趋于1毫米的情况下,可以使得透镜主体311的第二端的端面的均一性达到60%以上。
在一些实施例中,第二二次曲面314环绕发光件312设置,第二二次曲面314的焦点位于发光件312的第一表面的一侧,其中,发光件312的第一表面为和发光件312的发光面相对的表面。
需要说明的是,第二二次曲面314为椭圆抛物面的一种,第二二次曲面314环绕发光件312设置,这样,在第二二次曲面314的焦点位于发光件312的第一表面的一侧的情况下,可以保证发光件312发出的第二入射角度范围的入射光线可以经由第二二次曲面314射出。换句话说,在第二二次曲面314的焦点位于发光件312底部的情况下,可以保证发光件312发出的第二入射角度范围的入射光线均可以打到二次曲面上,避免造成发光件312能量的浪费。
可选的,第二二次曲面314的焦点和发光件312之间的距离为第一距离,第一距离的范围为1毫米至4毫米。
需要说明的是,第二二次曲面314的焦点和发光件312之间的距离为1毫米至4毫米的情况下,可以进一步保证发光件312发出的第二入射角度范围的入射光线可以经由第二二次曲面314射出。示例性的,第二二次曲面314的焦点和发光件312之间的距离为2毫米,第二二次曲面314的曲面系数为-1.22,曲率为0.35,进而可以使得发光件312的发出的光线到达第二二次曲面314的角度和以准直射出的光线和法线之间的夹角相等,进一步提升从第二二次曲面314反射出的光线的准直度。
在一些实施例中,第一二次曲面313的焦点位于发光件312第二表面的一侧,其中,发光件312的第二表面为发光件312的发光面。
需要说明的是,由于第一二次曲面313的焦点位于发光件312第二表面的一侧,因此使得发光件312和第一二次曲面313之间间隔一定的距离,这 样,可以使得发光件312发出的光线可以先经过发光件312和第一二次曲面313之间的空腔以第一入射角度范围射入第一二次曲面313,之后经由第二二次曲面314折射出。由于光从空气斜射入其它介质时,折射角小于入射角,因此,可以将光线传播方向改变,在第一二次曲面313的焦点和发光件312的第二表面之间的距离在一定数值的情况下,可以使得从第二二次曲面314射出的光线准直射出。
可选的,第一二次曲面313的焦点和发光件312的第二表面之间相距第二距离,第二距离大于透镜主体311的第一端和第二端之间距离的三分之一。
需要说明的是,第一二次曲面313的焦点和发光件312的第二表面之间相距的距离大于透镜主体311第一端和第二端之间距离的三分之一,因此可以保证反射件到达第一二次曲面313的角度保持在一定数值,即可以通过第一二次曲面313的焦点和发光件312的第二表面之间的距离调制光线到达第一二次曲面313的角度,以保证从第二二次曲面314射出的光线可以准直射出。还需要说明的是,第一二次曲面313的焦点和发光件312的第二表面之间相距依据透镜主体311的第一端和第二端之间距离确定,如在透镜主体311的第一端和第二端之间距离为7毫米的情况下,第一二次曲面313的焦点和发光件312的第二表面之间相距3毫米,本公开实施例对第一二次曲面313的焦点和发光件312的第二表面之间的距离不做限定。
在一些实施例中,透镜包括曲面透镜和固定腔体316;固定腔体316的一端固定在透镜主体311的第一端,曲面透镜的固定在固定腔体316的第二端,曲面透镜的凸面形成第一二次曲面313。
需要说明的是,固定腔体316、曲面透镜和透镜主体311可以一体注塑形成,在发光件312和透镜主体311之间形成固定腔体316,进而通过固定腔体316固定曲面透镜,且通过固定腔体316传播发光件312发出的第一入射角度范围的入射光线。此外,由于固定腔体316的存在,因此使得发光件312发出的第二入射角度范围的入射光线在经过固定腔体316的腔体壁时,也会发生一定程度的折射,在腔体壁的厚度忽略不计的情况下,发光件312发出的第二入射角度范围的入射光线在经过固定腔体316的腔体壁时发生的折射也可以忽略不计,并不影响第二二次曲面314对光线的反射作用。
从上述实施例可以看出,在本公开实施例中,由于透镜主体311的内腔 中设置有第一二次曲面313;透镜主体311的内壁上设置有第二二次曲面314,第一二次曲面313凸向透镜主体311的第一端,第二二次曲面314凸向透镜主体311的第二端,因此发光件312发出的第一入射角度范围的光线通过第一二次曲面313后,可以发生折射,从透镜主体311的第二端准直射出,发光件312发出的第二入射角度范围的光线通过第二二次曲面314后,可以在第二二次曲面314上发生反射,从透镜主体311的第二端准直射出。又由于第一入射角度范围中的最大角度值小于于第二入射角度范围的最小值,第一入射角度范围为发光件312发出的光线不经过透镜主体内壁的反射直接从透镜主体的第二端射出的光线对应的入射角度范围,因此使得从发光件312发出的所有光线均可以被调制后准直射出,避免造成发光件312能量的浪费,实现光线的百分之百利用。
第二方面,如图5和图6所示,本公开实施例还提供了一种透镜阵列,该透镜阵列包括多个上述第一方面任一实施例所述的透镜31;多个透镜31按照预设阵列排列,其中,预设阵列为构成透镜阵列的显示尺寸的阵列。
需要说明的是,预设阵列为满足透镜阵列的显示尺寸的阵列,如透镜阵列的显示尺寸为45毫米×75毫米的显示尺寸,则透镜31可以按照5×3的阵列排布,即透镜阵列的行数为3行,列数为3列,如图9所示,根据最终的透镜阵列模拟结果,平均亮度261w万nit,功耗12W,均一性56%,相比传统的反光杯方案光效可以提升2.8倍。透镜阵列的预设阵列依据透镜阵列的显示尺寸确定,本公开实施例对此不做限定。
从上述实施例可以看出,在本公开实施例中,由于多个透镜31按照预设阵列排列,因此在每个透镜31的发光件发出的所有光线均可以被调制后准直射出,实现光线的百分之百利用的情况下,可以提升透镜阵列的显示亮度,使得透镜阵列的效果得提升。
第三方面,如图7所示,本公开实施例还提供了一种显示模组,显示模组包括灯板1、显示面板2和第二方面的透镜阵列3;透镜阵列3设置在显示面板2和灯板1之间;显示面板2覆盖在透镜阵列3的顶部表面上,且发光件312电连接在灯板1的第一表面上。
需要说明的是,由于透镜阵列3设置在显示面板2和灯板1之间,显示面板2覆盖在透镜阵列的顶部表面上,且发光件312电连接在灯板1的第一表面上,因此可以通过灯板1控制发光件312发光,之后透过透镜31显示在显示面板2上。由于透镜阵列3的显示亮度得到提升,因此使得显示面板2的显示效果也得到提升,有利于提升显示模组整体的显示效果。
在一些实施例中,显示模组还包括背板4;背板4在灯板1的第二表面上,灯板1的第二表面为和灯板1的第一表面相对的表面。
需要说明的是,背板4可以控制发光件312发光的电路板,通过背板4对透镜阵列3中每个透镜中的发光件312进行分区控制,实现对显示模组的局部调光,以适应不同的应用场景,使得显示模组的使用不受限。
可选的,显示模组还包括散热片,散热片覆盖在背板4远离灯板1的表面上。这样,通过散热片使得背板4的热量得以散失,有利于延长显示模组的使用寿命。
可选的,如图8所示,显示面板2包括主显示层21和底层显示层22;主显示层21和底层显示层22堆叠设置,底层显示层22覆盖在透镜阵列的顶部表面上;其中,底层显示层22用于控制显示模组的亮度,主显示层21为覆盖彩膜的显示层.
需要说明的是,通过将主显示层21和底层显示层22堆叠设置,底层显示层22覆盖在透镜阵列的顶部表面上,因此可以改善显示模组的对比度,即可以通过底层显示层22控制显示模组的亮度,即控制显示模组最亮和最暗之间的比例,即通过本公开实施例提供的主显示层21和底层显示层22构成的双面板显示模组可以使得显示模组的静态对比度实现至少500,000:1的效果。
进一步的,底层显示层22包括多个像素显示单元,每个像素显示单元的亮度可控。
需要说明的是,像素显示单元的个数可以依据显示模组的尺寸进行调整,示例性的,如显示模组的尺寸为65寸,则像素显示单元的个数可以达到2000000个。即,可以实现底层显示层22的像素显示单元全开至底层显示层22局部变暗甚至关断效果,进而可以通过对每个像素显示单元的明暗进行开关控制,以使得显示模组的显示画面更为细腻。
具体的,在底层显示层22包括的多个像素显示单元全部打开的情况下,显示模组的亮度处于最大亮度值;在底层显示层22包括的多个像素显示单元全部关闭的情况下,显示模组的亮度处于最小亮度值;在底层显示层22包括的多个像素显示单元中部分像素显示单元打开或者部分像素显示单元关闭的情况下,显示模组的亮度处于最大亮度值值和最小亮度值之间的亮度值。这样,在底层显示层22包括的多个像素显示单元的个数足够大的情况下,可以使得显示模组的亮度可调范围进一步增大,进而通过对每个像素显示单元的明暗进行开关控制,以使得显示模组的显示画面更为细腻。
此外,底层显示层22包括单色像素显示单元,主显示层21包括彩色显示单元,单色像素显示单元在底层显示层中所占的面积和彩色像素显示单元在主显示层中所占的面积之间的比值小于1:4。
示例性的,色像素显示单元在底层显示层中所占的面积和彩色像素显示单元在主显示层中所占的面积之间的比值为1:25的时候相比1:4的时候,透过率对应可提升25.6%。进一步说明,由于像素黑色矩阵区等设计继续增大对应比值透过率提升空间不大,因此可以通过单色像素显示单元在底层显示层中所占的面积和彩色像素显示单元在主显示层中所占的面积之间的比值来提升透过率,可实现更加细腻的显示功能,大幅提升显示画质,降低显示模组的功耗。此外,底层显示层22为画面的显示部分,涵盖彩膜的显示,可以实现不同颜色的显示,使得显示模组的应用场景进一步得到提升。
从上述实施例可以看出,由于透镜阵列3设置在显示面板2和灯板1之间,显示面板2覆盖在透镜阵列的顶部表面上,且发光件312电连接在灯板1的第一表面上,因此可以通过灯板1控制发光件312发光,之后透过透镜显示在显示面板2上。由于透镜阵列3的显示亮度得到提升,因此使得显示面板2的显示效果也得到提升,有利于提升显示模组整体的显示效果。
第四方面,本公开实施例还提供了一种显示装置,该显示装置包括第三方向任一实施例所述的显示模组。
需要说明的是,该显示装置可以为手机、平板电脑、笔记本电脑、掌上电脑、车载显示装置、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant, PDA)等移动显示装置,非移动显示装置可以为个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本公开实施例不作具体限定。该显示装置所具备的有益效果和上述显示模组一致,本公开实施例对此不再赘述。示例性的,在该显示装置为汽车抬头显示器时,由于亮度的提升,实现更加细腻的投影显示,可以达到更好的视觉效果。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本公开实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的物品或者终端设备中还存在另外的相同要素。
以上对本公开所提供的技术方案进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,同时,对于本领域的一般技术人员,依据本公开的原理及实现方式,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本公开的限制。

Claims (18)

  1. 一种透镜,其特征在于,所述透镜包括:透镜主体和发光件;
    所述透镜主体为具有内腔的锥形壳体,所述发光件设置在所述透镜主体的第一端;
    所述透镜主体的内腔中设置有第一二次曲面;所述透镜主体的内壁上设置有第二二次曲面;
    其中,所述第一二次曲面凸向所述透镜主体的第一端,所述第二二次曲面凸向所述透镜主体的第二端,所述透镜主体的第一端和所述透镜主体的第二端为所述透镜主体相对的两端,所述透镜主体的第二端为所述透镜主体出射光线的一端;
    所述发光件发出的第一入射角度范围的光线通过所述第一二次曲面折射后,从所述透镜主体的第二端准直射出,所述发光件发出的第二入射角度范围的入射光线通过所述第二二次曲面反射后,从所述透镜主体第二端准直射出,所述第一入射角度范围中的最大角度值小于于所述第二入射角度范围的最小值,所述第一入射角度范围为发光件发出的光线不经过所述透镜主体内壁的反射直接从所述透镜主体的第二端射出的光线对应的入射角度范围。
  2. 根据权利要求1所述的透镜,其特征在于,所述透镜主体的第二端的端面上设置有微结构阵列;
    所述微结构阵列包括多个阵列排布的微结构单元,每个所述微结构单元远离所述发光件的表面为圆弧面。
  3. 根据权利要求2所述的透镜,其特征在于,每个所述微结构单元的光源利用率大于90%。
  4. 据权利要求2所述的透镜,其特征在于,每相邻两个微结构单元之间的间距趋于1毫米。
  5. 根据权利要求1所述的透镜,其特征在于,所述第二二次曲面环绕所述发光件设置,所述第二二次曲面的焦点位于所述发光件的第一表面的一 侧,其中,所述发光件的第一表面为和所述发光件的发光面相对的表面。
  6. 根据权利要求1所述的透镜,其特征在于,所述第二二次曲面的焦点和所述发光件之间的距离为第一距离,所述第一距离的范围为1毫米至4毫米。
  7. 根据权利要求1所述的透镜,其特征在于,所述第一二次曲面的焦点位于所述发光件第二表面的一侧,其中,所述发光件的第二表面为所述发光件的发光面。
  8. 根据权利要求6所述的透镜,其特征在于,所述第一二次曲面的焦点和所述发光件的第二表面之间相距第二距离,所述第二距离大于所述透镜主体的第一端和第二端之间距离的三分之一。
  9. 根据权利要求1所述的透镜,其特征在于,所述透镜包括曲面透镜和固定腔体;
    所述固定腔体的一端固定在所述透镜主体的第一端,所述曲面透镜的固定在所述固定腔体的第二端,所述曲面透镜的凸面形成所述第一二次曲面。
  10. 一种透镜阵列,其特征在于,所述透镜阵列包括多个如权利要求1-9任一项所述的透镜;
    多个所述透镜按照预设阵列排列,其中,所述预设阵列为构成所述透镜阵列的显示尺寸的阵列。
  11. 一种显示模组,其特征在于,所述显示模组包括灯板、显示面板和如权利要求10所述的透镜阵列;
    所述透镜阵列设置在所述显示面板和所述灯板之间;
    所述显示面板覆盖在所述透镜阵列的顶部表面上,所述灯板的第一表面设置在所述透镜阵列的底部,且所述发光件电连接在所述灯板的第一表面上。
  12. 根据权利要求11所述的显示模组,其特征在于,所述显示模组还包括背板;
    所述背板设置在所述灯板的第二表面上,所述灯板的第二表面为和所述灯板的第一表面相对的表面,所述背板用于控制所述灯板上电连接的所述发光件发光。
  13. 根据权利要求12所述的显示模组,其特征在于,所述显示模组还包括散热片;
    所述散热片包覆在所述背板远离所述灯板的表面上。
  14. 根据权利要求11所述的显示模组,其特征在于,所述显示面板包括主显示层和底层显示层;
    所述主显示层和所述底层显示层堆叠设置,所述底层显示层覆盖在所述透镜阵列的顶部表面上;
    其中,所述底层显示层用于控制所述显示模组的亮度,所述主显示层为覆盖彩膜的显示层。
  15. 根据权利要求14所述的显示模组,其特征在于,所述底层显示层包括多个像素显示单元,每个所述像素显示单元的亮度可控。
  16. 根据权利要求14所述的显示模组,其特征在于,所述底层显示层包括单色像素显示单元,所述主显示层包括彩色显示单元,所述单色像素显示单元在所述底层显示层中所占的面积和所述彩色像素显示单元在所述主显示层中所占的面积之间的比值小于1:4。
  17. 根据权利要求14所述的显示模组,其特征在于,在所述底层显示层包括的所述多个像素显示单元全部打开的情况下,所述显示模组的亮度处于最大亮度值;
    在所述底层显示层包括的所述多个像素显示单元全部关闭的情况下,所 述显示模组的亮度处于最小亮度值;
    在所述底层显示层包括的所述多个像素显示单元中部分像素显示单元打开或者部分像素显示单元关闭的情况下,所述显示模组的亮度处于最大亮度值值和最小亮度值之间的亮度值。
  18. 一种显示装置,其特征在于,所述显示装置包括权利要求11-17所述的显示模组。
PCT/CN2022/116244 2022-08-31 2022-08-31 透镜、透镜阵列、显示模组和显示装置 WO2024045055A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002988.8A CN118160022A (zh) 2022-08-31 2022-08-31 透镜、透镜阵列、显示模组和显示装置
PCT/CN2022/116244 WO2024045055A1 (zh) 2022-08-31 2022-08-31 透镜、透镜阵列、显示模组和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116244 WO2024045055A1 (zh) 2022-08-31 2022-08-31 透镜、透镜阵列、显示模组和显示装置

Publications (1)

Publication Number Publication Date
WO2024045055A1 true WO2024045055A1 (zh) 2024-03-07

Family

ID=90100011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116244 WO2024045055A1 (zh) 2022-08-31 2022-08-31 透镜、透镜阵列、显示模组和显示装置

Country Status (2)

Country Link
CN (1) CN118160022A (zh)
WO (1) WO2024045055A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128233A1 (en) * 2008-11-21 2010-05-27 Hong Kong Applied Science And Technology Research Institute Led light shaping device and illumination system
CN104180300A (zh) * 2013-05-28 2014-12-03 海洋王(东莞)照明科技有限公司 灯具及其透镜
US20150070900A1 (en) * 2013-09-12 2015-03-12 3M Innovative Properties Company Catadioptric spotlight
CN104676466A (zh) * 2013-11-29 2015-06-03 海洋王(东莞)照明科技有限公司 透镜及具有该透镜的光源组件
CN105570832A (zh) * 2014-10-15 2016-05-11 比亚迪股份有限公司 Led透镜
CN105785567A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 一种新型抬头显示仪及其光源系统
CN106444067A (zh) * 2016-08-30 2017-02-22 京东方科技集团股份有限公司 光线准直结构、基板及制造方法、背光模组和显示装置
CN107013884A (zh) * 2017-05-31 2017-08-04 杭州光锥科技有限公司 投光灯透镜、具有该投光灯透镜的发光模块和投光灯
CN208253212U (zh) * 2018-05-29 2018-12-18 深圳市蓝巨科技有限公司 紫外线会聚光源、远距离聚焦光源模组及小角度cob光源
CN110673412A (zh) * 2019-10-17 2020-01-10 京东方科技集团股份有限公司 显示面板和显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128233A1 (en) * 2008-11-21 2010-05-27 Hong Kong Applied Science And Technology Research Institute Led light shaping device and illumination system
CN104180300A (zh) * 2013-05-28 2014-12-03 海洋王(东莞)照明科技有限公司 灯具及其透镜
US20150070900A1 (en) * 2013-09-12 2015-03-12 3M Innovative Properties Company Catadioptric spotlight
CN104676466A (zh) * 2013-11-29 2015-06-03 海洋王(东莞)照明科技有限公司 透镜及具有该透镜的光源组件
CN105570832A (zh) * 2014-10-15 2016-05-11 比亚迪股份有限公司 Led透镜
CN105785567A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 一种新型抬头显示仪及其光源系统
CN106444067A (zh) * 2016-08-30 2017-02-22 京东方科技集团股份有限公司 光线准直结构、基板及制造方法、背光模组和显示装置
CN107013884A (zh) * 2017-05-31 2017-08-04 杭州光锥科技有限公司 投光灯透镜、具有该投光灯透镜的发光模块和投光灯
CN208253212U (zh) * 2018-05-29 2018-12-18 深圳市蓝巨科技有限公司 紫外线会聚光源、远距离聚焦光源模组及小角度cob光源
CN110673412A (zh) * 2019-10-17 2020-01-10 京东方科技集团股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN118160022A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
US8746909B2 (en) Backlight module
CN111834542B (zh) 显示面板和显示装置
US9507204B2 (en) Baffled micro-optical elements for thin liquid crystal display backlight units
KR101957184B1 (ko) 백라이트 유닛 및 그를 구비한 디스플레이 장치
TWI752234B (zh) 具有極薄直下式背光之光學透鏡之發光裝置
US20080303757A1 (en) Light emitting device, area light source apparatus and image display apparatus
WO2018214618A1 (zh) 背光模组及液晶显示装置
WO2020233282A1 (zh) 透镜结构、光源结构、背光模组和显示装置
US10871608B2 (en) Illumination device including side-emitting LED
TWI838652B (zh) 發光模組和顯示裝置
US11181682B2 (en) Segmented backlight structure
CN115407551B (zh) 一种显示装置
CN111787137B (zh) 显示装置
WO2024045055A1 (zh) 透镜、透镜阵列、显示模组和显示装置
US20190324191A1 (en) Segmented backlight structure with in-coupling structures
CN107179632A (zh) 背光模组、显示模组及显示装置
KR20050121578A (ko) 백라이트 유닛
CN114924344B (zh) 导光板及背光模组
CN114256312B (zh) 显示面板和显示装置
KR101735671B1 (ko) 디스플레이 장치
WO2023159672A1 (zh) 显示模组及显示装置
CN109036116A (zh) 一种反射腔、背光模组及显示器
US20240038944A1 (en) Led display panel and display device
CN216647023U (zh) 一种背光模组及显示装置
WO2023065527A1 (zh) 均匀光透镜及背光模组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002988.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956884

Country of ref document: EP

Kind code of ref document: A1