WO2023246542A1 - 移相器及电子设备 - Google Patents

移相器及电子设备 Download PDF

Info

Publication number
WO2023246542A1
WO2023246542A1 PCT/CN2023/099647 CN2023099647W WO2023246542A1 WO 2023246542 A1 WO2023246542 A1 WO 2023246542A1 CN 2023099647 W CN2023099647 W CN 2023099647W WO 2023246542 A1 WO2023246542 A1 WO 2023246542A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
transmission line
row
dielectric substrate
Prior art date
Application number
PCT/CN2023/099647
Other languages
English (en)
French (fr)
Inventor
冯春楠
张志锋
车春城
郭昊
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023246542A1 publication Critical patent/WO2023246542A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present disclosure belongs to the field of communication technology, and specifically relates to a phase shifter and electronic equipment.
  • Phase shifters are used in a variety of electronic equipment in the communication field. Taking phased array antennas as an example, they occupy an important position in modern wireless communication systems due to their excellent characteristics such as fast beam scanning. Phase shifters serve as phase control It is an important part of the array antenna. Its structure and performance directly affect the performance of the entire phased array antenna. Therefore, it is very necessary to design a phase shifter with compact structure and flexible design.
  • Phase shifters require a lot of matching components, involving many small-sized capacitors, and the manufacturing tolerances of these small-sized capacitors will affect the capacitor size, thereby affecting the performance and consistency of the phase shifter, and have a negative impact on the actual Production and processing have a greater impact.
  • the present disclosure provides a phase shifter and electronic equipment.
  • an embodiment of the present disclosure provides a phase shifter, including a first substrate and a second substrate arranged oppositely, and an adjustable dielectric layer arranged between the first substrate and the second substrate;
  • the first substrate includes a first dielectric substrate, and a first electrode layer is provided on a side of the first dielectric substrate close to the adjustable dielectric layer;
  • the first electrode layer includes a first transmission line and a second side arranged side by side. a transmission line, and at least one first electrode disposed between the first transmission line and the second transmission line;
  • the second substrate includes a second dielectric substrate, and a second electrode layer is provided on a side of the second dielectric substrate close to the adjustable dielectric layer; the second electrode layer includes at least one second electrode and at least one first Three electrodes; among them,
  • the first electrode includes a first end and a second end that are oppositely arranged; the first end of one of the first electrodes and the first transmission line are connected to the same second electrode in the first medium. Positive on the substrate The projections at least partially overlap; the second end of one of the first electrodes and the second transmission line at least partially overlap with the orthographic projection of the same third electrode on the first dielectric substrate.
  • the first transmission line includes a first main body portion, and at least one first branch section connected to the first main body section; the first branch section is located near the first main body section and close to the first branch section.
  • One side of the first electrode; a first branch and a first end of the first electrode at least partially overlap with the orthographic projection of the same second electrode on the first dielectric substrate.
  • the first transmission line includes a first main body portion, and at least one first branch section connected to the first main body section; the first branch section is located near the first main body section and close to the first branch section.
  • the second transmission line includes a second main body and at least one second branch connected to the second main part; the second branch is located on the second main part close to the first One side of the electrode; a second branch and a second end of the first electrode at least partially overlap with the orthographic projection of the same second electrode on the first dielectric substrate.
  • the second transmission line includes a second main body and at least one second branch connected to the second main part; the second branch is located on the second main part close to the first One side of the electrode; the second main body, one second branch and one second end of the first electrode are at least partially orthogonal projections of the same second electrode on the first dielectric substrate overlapping.
  • the at least one first electrode includes a plurality of first electrodes, and the plurality of first electrodes are arranged side by side on the first transmission line along an extension direction of the first transmission line and the second transmission line.
  • the at least one first branch includes a plurality of first branches, and the plurality of first branches are arranged side by side along the extension direction close to the first transmission line.
  • One side of the plurality of first electrodes; the at least one second branch includes a plurality of second branches, and the plurality of second branches are arranged side by side along the extending direction near the second transmission line.
  • the at least one second electrode includes a plurality of second electrodes, and the plurality of second electrodes are arranged such that orthographic projections of the plurality of second electrodes on the first dielectric substrate are along the The extending directions are arranged side by side and at least partially overlap with the plurality of first branches, the plurality of first spacing regions and the first ends of the plurality of first electrodes respectively; and the at least one third The electrodes include a plurality of third electrodes, the plurality of third electrodes are arranged such that orthographic projections of the plurality of third electrodes on the first dielectric substrate are arranged side by side along the extending direction and are respectively aligned with the plurality of third electrodes.
  • the second branches, the plurality of second spacing regions, and the second ends of the plurality of first electrodes at least partially overlap.
  • the plurality of second electrodes are configured such that orthographic projections of the plurality of second electrodes on the first dielectric substrate extend through the plurality of first branches respectively in the vertical direction. and at least partially overlaps with the first body portion; and the plurality of third electrodes are arranged such that orthographic projections of the plurality of third electrodes on the first dielectric substrate extend respectively in the vertical direction. Passing through the plurality of second branches and at least partially overlapping with the second main body.
  • the spacing between two adjacent first electrodes among the plurality of first electrodes is equal.
  • the overlap area of the orthographic projections of the first end of the first electrode and the second electrode on the first dielectric substrate is the same as the overlap area of the second end of the first electrode and the second electrode.
  • the overlapping areas of orthographic projections of the third electrode on the first dielectric substrate are equal.
  • the number of the first electrode, the second electrode and the third electrode is multiple; the second electrode and the first transmission line are on the first dielectric substrate.
  • the overlapping areas are equal, and/or the overlapping areas of the third electrode and the second transmission line on the first dielectric substrate are equal.
  • the number of the first electrode, the second electrode and the third electrode is multiple; the second electrode and the first end of the first electrode are at the first end of the first electrode.
  • the overlapping areas on a dielectric substrate are equal, and/or the overlapping areas of the third electrode and the second end of the first electrode on the first dielectric substrate are equal.
  • the at least one first electrode includes a plurality of first electrodes between the first transmission line and the second transmission line along the first transmission line and the second transmission line. Shudi Multiple rows and columns of first electrodes are arranged spaced apart from each other in the extension direction of the two transmission lines and in the vertical direction perpendicular to the extension direction; the at least one first branch includes a plurality of first branches, and the plurality of first electrodes are The first branches are arranged side by side along the extension direction on the side of the first transmission line close to the plurality of first electrodes; the at least one second branch includes a plurality of second branches, and the plurality of third branches Two branches are arranged side by side along the extension direction on a side of the second transmission line close to the plurality of first electrodes; in the vertical direction, the plurality of columns of first electrodes are aligned with the plurality of first electrodes.
  • the branches correspond one to one, and the plurality of columns of first electrodes are spaced apart from the plurality of first branches by a plurality of first spacing regions; and the plurality of columns of first electrodes and the plurality of second branches are in one-to-one correspondence.
  • One correspondence, and the plurality of columns of first electrodes are spaced apart from the plurality of second branches by a plurality of second spacing regions.
  • the at least one second electrode includes a plurality of second electrodes, the plurality of second electrodes are configured to include at least a first row of second electrodes, the first row of second electrodes includes a A plurality of first branches have the same number of second electrodes, and the orthographic projections of the first row of second electrodes on the first dielectric substrate are arranged side by side along the extension direction and are respectively aligned with the plurality of first branches.
  • the stub, the plurality of first spacing regions and the first end of the row of first electrodes of the plurality of first electrodes closest to the first transmission line at least partially overlap; and the at least one third electrode comprising a plurality of third electrodes, the plurality of third electrodes being arranged to include at least a first row of third electrodes, the first row of third electrodes including the same number of third electrodes as the plurality of second branches, Orthographic projections of the first row of third electrodes on the first dielectric substrate are arranged side by side along the extension direction and are respectively aligned with the plurality of second branches, the plurality of second spacing areas and the plurality of second spacing areas. The second end portions of the row of first electrodes closest to the second transmission line among the first electrodes at least partially overlap.
  • the first electrodes in multiple rows and columns include at least three rows of first electrodes; the second electrodes are configured to include only second electrodes in the first row, and the second electrodes in the first row are The orthographic projections on the first dielectric substrate extend in a direction toward the second transmission line at least beyond the second end of the row of first electrodes closest to the first transmission line; and the plurality of third electrodes Arranged to include only a first row of third electrodes, orthographic projections of the first row of third electrodes on the first dielectric substrate respectively extend at least beyond the nearest second row in a direction toward the first transmission line. A first end of a row of first electrodes of the transmission line.
  • the plurality of rows and columns of first electrodes include at least three rows of first electrodes; the plurality of first electrodes The second electrodes are arranged to include at least a first row of second electrodes and a second row of second electrodes. The first row of second electrodes and the second row of second electrodes are arranged such that the second row of second electrodes are at The orthographic projection on the first dielectric substrate is away from the first transmission line relative to the orthographic projection of the first row of second electrodes on the first dielectric substrate;
  • the plurality of third electrodes are arranged to include at least a first row of third electrodes and a second row of third electrodes, and the first row of third electrodes and the second row of third electrodes are arranged to be the second row of third electrodes.
  • the orthographic projection of the three electrodes on the first dielectric substrate is far away from the second transmission line relative to the orthographic projection of the first row of third electrodes on the first dielectric substrate; the first row of second electrodes is on The orthographic projection on the first dielectric substrate is respectively connected with the first row of the plurality of first branches, the plurality of first spacing areas and the plurality of first electrodes closest to the first transmission line.
  • the first end of an electrode at least partially overlaps, and the orthographic projection of the second row of second electrodes on the first dielectric substrate is respectively connected with the second end of the first row of first electrodes and the second end of the first row of second electrodes.
  • the first end of a row of first electrodes on one side of the transmission line at least partially overlaps; and the orthographic projection of the first row of third electrodes on the first dielectric substrate is respectively with the plurality of second branches, the The plurality of second spacing regions at least partially overlap the second end of the second row of first electrodes closest to the second transmission line among the plurality of first electrodes, and the second row of third electrodes are on the
  • the orthographic projection on the first dielectric substrate is respectively connected with the first end of the second row of first electrodes, a row of first electrodes on the side of the second row of first electrodes away from the second transmission line, and the first row of first electrodes on the second row of first electrodes.
  • a plurality of spacing areas between two rows of first electrodes and second end portions of one row of first electrodes on the side of the second row of first electrodes away from the second transmission line at least partially overlap.
  • the spacing between two adjacent first electrodes in each row of the plurality of first electrodes is equal; and the distance between the first electrodes in each column of the plurality of first electrodes is equal. The spacing between two adjacent first electrodes is equal.
  • the tunable dielectric layer includes a liquid crystal layer.
  • an embodiment of the present disclosure provides an electronic device, which includes any of the above-mentioned phase shifters.
  • the electronic device further includes a reference electrode layer disposed on a side of the first dielectric substrate facing away from the tunable dielectric layer.
  • Figure 1 is an exemplary liquid crystal phase shifter in the related art
  • Figure 2 is a cross-sectional view of the phase shifter taken along line A-A' of Figure 1;
  • Figure 3 is a top view of a first phase shifter according to an embodiment of the present disclosure
  • Figure 4 is a top view of the first substrate of the phase shifter shown in Figure 3;
  • Figure 5 is a top view of the second substrate of the phase shifter shown in Figure 3;
  • Figure 6 is a cross-sectional view of the phase shifter taken along line B-B' of Figure 3;
  • Figure 7 is a partial schematic diagram of a second phase shifter according to an embodiment of the present disclosure.
  • Figure 8 is a top view of the first substrate of the phase shifter shown in Figure 7;
  • Figure 9 is a top view of the second substrate of the phase shifter shown in Figure 7;
  • Figure 10 is a cross-sectional view of the phase shifter taken along line C-C' of Figure 7;
  • Figure 11 is a partial schematic diagram of a third phase shifter according to an embodiment of the present disclosure.
  • Figure 12 is a top view of the first substrate of the phase shifter shown in Figure 11;
  • Figure 13 is a top view of the second substrate of the phase shifter shown in Figure 11;
  • Figure 14 is a cross-sectional view of the phase shifter taken along line D-D' of Figure 11;
  • Figure 15 is a schematic structural diagram of a phase shifter according to an embodiment of the present disclosure.
  • Figure 16 is a top view of the first substrate of the phase shifter shown in Figure 15;
  • Figure 17 is a top view of the second substrate of the phase shifter shown in Figure 15;
  • Figure 18 is a cross-sectional view of the phase shifter taken along line E-E' of Figure 15;
  • Figure 19 is a schematic structural diagram of a phase shifter according to an embodiment of the present disclosure.
  • Figure 20 is a top view of the first substrate of the phase shifter shown in Figure 19;
  • Figure 21 is a top view of the second substrate of the phase shifter shown in Figure 19;
  • Figure 22 is a cross-sectional view of the phase shifter taken along line FF' of Figure 19;
  • the reference numbers are: first dielectric substrate 10; second dielectric substrate 20; adjustable dielectric layer 30; first transmission line 11; second transmission line 12; first main part 111; first branch 112; second main part 121; second branch 122; first electrode 21; second electrode 22; third electrode 23; patch structure 24.
  • Figure 1 is an exemplary liquid crystal phase shifter in the prior art
  • Figure 2 is a cross-sectional view of the phase shifter taken along line AA' of Figure 1
  • the phase shifter The device includes a first substrate and a second substrate arranged oppositely, and an adjustable dielectric layer 30 arranged between the first substrate and the second substrate.
  • the first substrate includes a first dielectric substrate 10 and a first electrode layer disposed on a side of the first dielectric substrate 10 close to the tunable dielectric layer 30 .
  • the first electrode layer includes a first transmission line 11 and a second transmission line 12 arranged side by side and extending along the microwave signal transmission direction.
  • the second substrate includes a second dielectric substrate 20 disposed opposite to the first dielectric substrate 10, and a plurality of patch structures 24 disposed on the second dielectric substrate 20 and disposed side by side along the microwave signal transmission direction.
  • the two ends of each patch structure 24 at least partially overlap with the orthographic projections of the first transmission line 11 and the second transmission line 12 on the first dielectric substrate 10 respectively. Therefore, the patch structure 24 overlaps with the first transmission line 11 and the second transmission line respectively. 12 forms multiple capacitors.
  • a DC bias voltage can be applied to the first transmission line 11, the second transmission line 12 and the patch structure 24 to control the dielectric constant of the adjustable dielectric layer 30, thereby adjusting the total capacitance per unit length, and thus reached on the first transmission line 11 and the phase shifting effect of the second transmission line 12 outputting the microwave signal.
  • a phase shifter includes multiple capacitors, and small-sized capacitors are usually used. During the production process of phase shifters, the manufacturing tolerances of these small-sized capacitors will affect the capacitance size, causing the capacitance of each capacitor to be different, thus affecting the performance and consistency of the phase shifter.
  • Phase shifters are used in a variety of electronic equipment in the field of communications. Taking phased array antennas as an example, phase shifters are an important part of phased array antennas. Their structure and performance directly affect the entire phased array. Antenna performance. Therefore, a phase shifter with compact structure, flexible design and more reliability is needed, and the performance, consistency and service life of the phase shifter need to be further improved.
  • embodiments of the present disclosure provide a phase shifter that can use two or more large capacitors in series to replace one small-sized capacitor, thereby reducing the impact of capacitor tolerances during the manufacturing process on the consistency of the phase shifter product. Improve the performance of the phase shifter; and due to the use of large capacitors, the current density near the capacitor is reduced compared with the use of small capacitors, thereby increasing the life of the phase shifter.
  • phase shifter according to the embodiment of the present disclosure will be described below with reference to the drawings and specific embodiments.
  • the embodiment of the present disclosure provides a first phase shifter.
  • Figure 3 is a top view of the first phase shifter according to the embodiment of the present disclosure;
  • Figure 4 is a top view of the first substrate of the phase shifter shown in Figure 3;
  • Figure 5 is a top view of the second substrate of the phase shifter shown in Figure 3;
  • Figure 6 is a cross-sectional view of the phase shifter taken along line B-B' of Figure 3; as shown in Figures 3 to 6, in this application
  • the phase shifter includes a first substrate and a second substrate arranged oppositely, and an adjustable dielectric layer 30 arranged between the first substrate and the second substrate.
  • the first substrate includes a first dielectric substrate 10, and the second substrate includes a second dielectric substrate 20; the first electrode layer is disposed on the side of the first dielectric substrate 10 close to the adjustable dielectric layer 30, and the second electrode layer is disposed on the second dielectric substrate. 20 is close to the adjustable dielectric layer 30 side.
  • the first electrode layer includes a first transmission line 11 and a second transmission line 12 arranged side by side, and at least one first electrode 21 provided between the first transmission line 11 and the second transmission line 12; the second electrode layer includes at least one second electrode 22 and at least one third electrode 23.
  • At least one first electrode 21 includes a plurality of first electrodes 21
  • at least one second electrode 22 includes a plurality of second electrodes 22
  • at least one third electrode 23 includes a plurality of first electrodes 21 .
  • a third electrode 23 In one embodiment, as shown in FIG. 4 , a plurality of first electrodes 21 on the first electrode layer are arranged side by side in the extension direction X (microwave signal transmission direction) of the first transmission line 11 and the second transmission line 12 .
  • the line 12 is spaced apart from the first transmission line 11 and the second transmission line 12 by a certain distance in the vertical direction Y perpendicular to the extension direction X (microwave signal transmission direction).
  • a first distance d1 is spaced between the first electrode 21 and the first transmission line 11
  • a second distance d2 is spaced between the first electrode 21 and the second transmission line 12 .
  • the first distance d1 and the second distance d2 may be equal, so that the structure of the phase shifter formed in this way is symmetrical, the preparation process is simple, and the required small capacitance is easy to obtain.
  • the first dielectric substrate 10 in addition to the first transmission line 11 and the second transmission line 12 , also includes a transmission line arranged between the first transmission line 11 and the second transmission line 12 and related to the first transmission line 11 and the second transmission line 12 .
  • the first electrodes 21 of the transmission lines 12 are evenly spaced, and the corresponding second electrodes 22 and third electrodes 23 are provided on the second dielectric substrate 20. Therefore, compared with the phase shifter shown in the related art shown in FIG.
  • the capacitance formed between the first dielectric substrate 10 and the second dielectric substrate 20 in the phase shifter of the present disclosure has The positive opposing area of the contribution can be large because in the present disclosure, the first electrode 21 disposed between the first transmission line 11 and the second transmission line 12 will serve as a common plate of the formed series-connected capacitors to obtain a small capacitance.
  • the size of the capacitor is adjusted by adjusting the relative area of each overlapping portion, making the design of the phase shifter more flexible. Since the electrode area of the capacitor is increased, the temperature near the capacitor is reduced. The current density thereby reduces the heat generated by the phase shifter during operation and increases the service life of the phase shifter.
  • the first electrode 21 includes a first end and a second end that are oppositely arranged in the vertical direction Y; the first end of one first electrode 21 and the first transmission line 11 are both connected to the same
  • the orthographic projection of the second electrode 22 on the first dielectric substrate 10 at least partially overlaps; the second end of one first electrode 21 and the second transmission line 12 both overlap with the orthographic projection of the same third electrode 23 on the first dielectric substrate 10 At least partially overlap.
  • the opposite parts of the first transmission line 11 and the second electrode 22 form a capacitor, the first end of the first electrode 21 and the opposite part of the second electrode 22 form a capacitor, and the second end of the first electrode 21 and the second electrode 22 form a capacitor.
  • the opposite parts of the three electrodes 23 form a capacitor, and the opposite parts of the second transmission line 12 and the third electrode 23 form a capacitor.
  • the two capacitors formed by the first end of the first electrode 21 directly opposite the second electrode 22 and the first transmission line 11 are connected in parallel to form a large capacitor.
  • the second end of the first electrode 21 directly opposite the third electrode 23 The two capacitors formed by the second transmission line 12 are connected in parallel to form a large capacitor.
  • the two large capacitors are connected in series with each other, thereby forming a small capacitor suitable for a phase shifter. Use large power
  • the method of connecting capacitors in series is equivalent to a small capacitor, which reduces the impact of small capacitor manufacturing tolerances on the consistency of the phase shifter and improves product consistency.
  • Embodiments of the present disclosure also provide a second phase shifter.
  • Fig. 7 is a partial schematic diagram of the second phase shifter according to an embodiment of the present disclosure
  • Fig. 8 is a top view of the first substrate of the phase shifter shown in Fig. 7
  • Fig. 9 is a second substrate of the phase shifter shown in Fig. 7 A top view of the substrate
  • Figure 10 is a cross-sectional view along C-C' of the phase shifter in Figure 7; as shown in Figures 7-10, the first transmission line 11 includes a first main body part 111, and a first main body part 111 connected to the first transmission line 11.
  • At least one first branch 112 is located on the side of the first main body 111 close to the first electrode 21; the second transmission line 12 includes a second main body 121, and at least one connected to the second main body 121.
  • a second branch 122 is located on a side of the second main body 121 close to the first electrode 21 .
  • the first main body 111 , a first branch 112 and a first end of a first electrode 21 at least partially overlap with the corresponding orthographic projection of the same second electrode 22 on the first dielectric substrate 10 .
  • the second main body 121 , a second branch 122 and a second end of the first electrode 21 at least partially overlap with the corresponding orthographic projection of the same third electrode 23 on the first dielectric substrate 10 .
  • the extending direction of the first transmission line 11 and the second transmission line 12 is the microwave signal transmission direction.
  • the extension direction of the first main body part 111 is the extension direction of the first transmission line 11; in
  • the second transmission line 12 includes a second main body 121 and at least one second branch 122 branched from the second main body 121 , the extension direction of the second main body 121 is the extension direction of the second transmission line 12 .
  • first main body part 111 and the first branch part 112 are directly opposite to the second electrode 22 to form a capacitor.
  • the first end part of the first electrode 21 and the opposite part of the second electrode 22 are to form a capacitor.
  • the two capacitors are A large capacitor is formed in parallel; the second main body part 121 and the second branch part 122 are directly opposite to the third electrode 23 to form a capacitor, and the second end part of the first electrode 21 and the opposite part of the third electrode 23 are to form a capacitor.
  • Two capacitors are connected in parallel to form a large capacitor; the two parallel capacitors are connected in series with each other, equivalent to a small capacitor suitable for a phase shifter.
  • the first transmission line 11 includes a first main body part 111 and a plurality of first branches 112 connected to the first main body part 111;
  • the second transmission line 12 includes a second main body part. 121 and a plurality of second branches 122 connected to the second main body 121 .
  • multiple first branches The nodes 112 are arranged side by side along the extension direction of the first transmission line 11
  • the plurality of second branches 122 are arranged side by side along the extension direction of the second transmission line 12
  • the plurality of first electrodes 21 are arranged along the extension direction of the first transmission line 11 and the second transmission line 12 .
  • each first electrode 21 is respectively arranged between the corresponding first branch 112 and the second branch 122 and is separated from the corresponding first branch 112 and the second branch 122 by a third distance respectively. d3 and the fourth distance d4.
  • the third distance d3 and the fourth distance d4 can be equal, so that the structure of the phase shifter is symmetrical, the preparation process is simple, and the required capacitance is relatively easy to obtain.
  • the first main body part 111 and the plurality of first branches 112 may be integrally formed, for example, by using the same material through a patterning process.
  • the second main body part 121 and the plurality of second branches 122 may also be integrally formed, for example, by using the same material through a patterning process.
  • the first branch 112 , the first electrode 21 , the second branch 122 , the second electrode 22 and the third electrode 23 can be connected to the first transmission line 11 and the second transmission line 12
  • the widths in the extending direction are set to be substantially equal, so that the capacitance obtained by overlapping basically depends on the length of the overlapping portion in the vertical direction.
  • the orthographic projection of each of the second electrode 22 and the third electrode 23 on the first dielectric substrate 10 completely covers its corresponding first branch 112 and corresponding second branch 122 on the first dielectric substrate 10 .
  • the length of the second electrode 22 is set to extend through the corresponding first branch 112 and still overlap with the first main body 111; and the third electrode The length 23 is set such that it still overlaps with the second main body part 121 after extending through the corresponding second branch 122 . That is, a larger capacitance can be obtained by arranging the second electrode 22 and the third electrode 23 with a longer length in the vertical direction, as shown in FIG. 9 .
  • FIG. 11 is a partial schematic diagram of a third phase shifter according to an embodiment of the present disclosure
  • Figure 12 is a top view of the first substrate of the phase shifter shown in Figure 11
  • Figure 13 is a second substrate of the phase shifter shown in Figure 11
  • Figure 14 is a cross-sectional view of the phase shifter taken along line DD' of Figure 11
  • the first transmission line 11 includes a first body portion 111 and is connected to the first At least one first branch 112 of the main body 111 , the first branch 112 is located on a side of the first main part 111 close to the first electrode 21
  • the second transmission line 12 includes a second main part 121 and is connected to the second main part 121 121 has at least one second branch 122 , and the second branch 122 is located on the side of the second main body 121 close to the first electrode 21 .
  • a first branch 112 and a first end of a first electrode 21 at least partially overlap with the corresponding orthographic projection of the same second electrode 22 on the first dielectric substrate 10 .
  • a first The two branches 122 and the second end of one first electrode 21 at least partially overlap with the corresponding orthographic projection of the same third electrode 23 on the first dielectric substrate 10 .
  • the opposite part of the first branch 112 and the second electrode 22 forms a capacitor
  • the first end of the first electrode 21 and the opposite part of the second electrode 22 form a capacitor
  • the two capacitors are connected in parallel to form a large capacitor
  • the opposite part of the second branch 122 and the third electrode 23 forms a capacitor.
  • the second end of the first electrode 21 and the opposite part of the third electrode 23 form a capacitor.
  • the two capacitors are connected in parallel to form a large capacitor.
  • the two large capacitors are connected in series with each other. , equivalent to a small capacitor suitable for a phase shifter.
  • the first main body part 111 and the second main body part 121 of the first transmission line 11 and the second transmission line 12 are no longer used as part of the capacitor.
  • the second electrode 22 and the third electrode 23 of the electrode layer form a capacitor, so the areas of the first branch 112 and the second branch 122 can be appropriately increased in the implementation of the present disclosure.
  • the area ratios of the first main body part 111 and the second main body part 121 and the first branch nodes 112 and the second branch nodes 122, as well as the materials and manufacturing processes are not further limited.
  • the first main body part 111 and its multiple first branches 112 can be integrally formed using the same material through a patterning process, while the second main body part 112 and its multiple second branches 122 can be formed using the same material.
  • One-time composition process is integrated into one piece.
  • the first transmission line 11 includes a first main body part 111 and a plurality of first branches 112 connected to the first main body part 111;
  • the second transmission line 12 includes a second main body part. 121 and a plurality of second branches 122 connected to the second main body 121 .
  • a plurality of first branches 112 are arranged side by side along the extension direction of the first transmission line 11
  • a plurality of second branches 122 are arranged side by side along the extension direction of the second transmission line 12
  • a plurality of first electrodes 21 are arranged side by side along the extension direction of the second transmission line 12 .
  • each first electrode 21 is respectively arranged between the corresponding first branch 112 and the second branch 122, and is connected with the corresponding first branch 112
  • the fifth distance d5 and the sixth distance d6 are respectively spaced apart from the second branch 122 .
  • the fifth distance d5 and the sixth distance d6 can be equal, so that the structure of the phase shifter is symmetrical, the preparation process is simple, and the required capacitance is relatively easy to obtain.
  • the first branch 112 , the first electrode 21 , the second branch 122 , the second electrode 22 and the third electrode 23 can be connected to the first transmission line 11 and the second transmission line 12
  • the widths in the extension direction are set to be substantially equal, so that the capacitance size obtained by overlapping each other will basically be Depends on the length of the overlap in the vertical direction.
  • the orthographic projection of each of the second electrode 22 and the third electrode 23 on the first dielectric substrate 10 completely covers its corresponding first branch 112 and corresponding second branch 122 on the first dielectric substrate 10 . Orthographic projection on dielectric substrate 10.
  • the length of the second electrode 22 is set to overlap only with the corresponding first branch 112 without extending to the first main body 111 ; and the length of the third electrode 23 is set to only overlap with the corresponding first branch 112 .
  • Figure 15 is a schematic structural diagram of a phase shifter according to an embodiment of the present disclosure
  • Figure 16 is a top view of the first substrate of the phase shifter shown in Figure 15
  • Figure 17 is a second substrate of the phase shifter shown in Figure 15 top view
  • Figure 18 is a cross-sectional view along E-E' of the phase shifter of Figure 15; as shown in Figures 15 to 18, on the first electrode layer of the first dielectric substrate 10, the first electrodes 21 can be arranged side by side There are multiple first electrodes 21 , and the distance between adjacent first electrodes 21 is equal.
  • the plurality of first electrodes 21 are arranged in an array, that is, along the extension direction of the first transmission line 11 and the second transmission line 12 and the vertical direction perpendicular to the extension direction. Arrange in multiple rows and columns.
  • the second electrodes 22 are respectively connected with the first transmission line 11 , the first electrode 21 close to the first transmission line 11 and the first end of the first electrode 21 in the middle.
  • the third electrode 23 forms three parallel capacitors with the second transmission line 12, the first electrode 21 close to the second transmission line 12, and the second end of the first electrode 21 in the middle.
  • the two parts Parallel capacitors are connected in series with each other and are equivalent to small capacitors suitable for phase shifters.
  • the electrode area that can form a capacitor on the first dielectric substrate 10 is increased, further reducing the impact of manufacturing tolerances on the consistency of the phase shifter.
  • Figure 19 is a schematic structural diagram of a phase shifter according to an embodiment of the present disclosure
  • Figure 20 is a top view of the first substrate of the phase shifter shown in Figure 19
  • Figure 21 is a top view of the second substrate of the phase shifter shown in Figure 19
  • Figure 22 is a cross-sectional view of the phase shifter taken along line FF' of Figure 19
  • the first electrodes 21 can be arranged side by side A plurality of first electrodes 21 are provided, and the distance between adjacent first electrodes 21 is equal.
  • the plurality of first electrodes 21 are arranged in an array, that is, along the extension direction of the first transmission line 11 and the second transmission line 12 and the vertical direction perpendicular to the extension direction. Arrange in multiple rows and columns. As shown in FIG. 21 , multiple second electrodes 22 may be arranged side by side, and the distance between adjacent second electrodes 22 is equal. A plurality of third electrodes 23 may be arranged side by side, and the distance between adjacent third electrodes 23 is equal.
  • the second electrode 22 close to the first transmission line 11 is connected to the first end of the first transmission line 11 and the first electrode 21 close to the first transmission line 11 respectively.
  • the second electrode 22 far away from the first transmission line 11 forms two parallel capacitors with the second end of the first electrode 21 close to the first transmission line 11 and the first end of the first electrode 21 in the middle.
  • Parallel capacitance, the third electrode 23 close to the second transmission line 12 forms two parallel capacitances with the second transmission line 12 and the second end of the first electrode 21 close to the second transmission line 12 respectively, and the third electrode 23 away from the second transmission line 12 forms two parallel capacitances.
  • the three electrodes 23 respectively form two parallel capacitors with the first end of the first electrode 21 close to the second transmission line 12 and the second end of the first electrode 21 in the middle.
  • the four parallel capacitors are connected in series with each other.
  • the equivalent is applicable to for the small capacitance of the phase shifter.
  • the first end of all the first electrodes 21 refers to the end close to the first transmission line 11
  • the second end of all the first electrodes 21 refers to the end close to the first transmission line 11 .
  • the overlapping area of the orthographic projection of the first end of the first electrode 21 and the second electrode 22 on the first dielectric substrate 10 is the same as that of the second end of the first electrode 21 and the third electrode 23 .
  • the overlapping areas of the orthographic projections on the medium are equal.
  • the number of the first electrode 21 , the second electrode 22 and the third electrode 23 is multiple; the overlapping areas of the second electrode 22 and the first transmission line 11 on the first dielectric substrate 10 are equal, and/ Or the overlapping areas of the third electrode 23 and the second transmission line 12 on the first dielectric substrate 10 are equal.
  • the number of the first electrode 21 , the second electrode 22 and the third electrode 23 is multiple; the overlap of the second electrode 22 and the first end of the first electrode 21 on the first dielectric substrate 10 The areas are equal, and/or the overlapping areas of the third electrode 23 and the second end of the first electrode 21 on the first dielectric substrate 10 are equal.
  • the overlapping area of the orthographic projection of the first end of the first electrode 21 and the second electrode 22 on the first dielectric substrate 10 is the same as that of the second end of the first electrode 21 and the third electrode 23 .
  • the overlapping area of the orthographic projection on the first dielectric plate 10, the overlapping area of the second electrode 22 and the first transmission line 11 on the first dielectric substrate 10, the third electrode 23 and the second transmission line 12 on the first dielectric The intersection on the substrate 10
  • the overlapping area is the overlapping area of the second electrode 22 and the first end of the first electrode 21 on the first dielectric substrate 10 , and the overlapping area of the third electrode 23 and the second end of the first electrode 21 on the first dielectric substrate 10
  • the overlapping area, the size of each overlapping area and the ratio of each overlapping area are not further limited in the embodiments of the present disclosure, and can be adjusted according to specific products.
  • tunable dielectric layer 30 includes a liquid crystal layer.
  • the liquid crystal layer forms an electric field between the capacitors formed by the first electrode layer and the second electrode layer to drive the liquid crystal molecules of the liquid crystal layer to deflect and change the dielectric constant of the liquid crystal layer, thereby realizing the connection between the first transmission line 11 and the second transmission line 11 .
  • the microwave signal transmitted by the transmission line 12 is phase-shifted.
  • the materials of the first dielectric substrate 10 and the second dielectric substrate 20 include but are not limited to quartz, glass and other hard materials with lower microwave loss.
  • the materials of the first electrode layer and the second electrode layer can be low-resistance, low-loss metals such as copper, gold, and silver, and can be prepared by magnetron sputtering, thermal evaporation, electroplating, and other methods.
  • An embodiment of the present disclosure also provides an electronic device, which includes an antenna, and the antenna includes any of the above-mentioned phase shifters.
  • a reference electrode layer needs to be provided on the side of the first dielectric substrate 10 away from the tunable dielectric layer 30 to be used as a metal reference ground.
  • Electronic devices in embodiments of the present disclosure may be various devices that require the use of phase shifters, such as phased array antennas.
  • the electronic equipment implemented in the present disclosure uses the phase shifter mentioned above. Since small capacitors are replaced with multiple large capacitors in series during production, the tolerance of the product is reduced and the consistency of the product is improved; and due to the use of large capacitors , which reduces the current density near the capacitor, reduces the heating of electronic equipment to a certain extent, and extends the life of electronic equipment.
  • the antenna in the electronic device also includes a transceiver unit, a radio frequency transceiver, a signal amplifier, a power amplifier, and a filter unit.
  • This antenna can be used as a transmitting antenna or a receiving antenna.
  • the transceiver unit may include a baseband and a receiving end.
  • the baseband provides signals in at least one frequency band, such as 2G signals, 3G signals, 4G signals, 5G signals, etc., and sends signals in at least one frequency band to the radio frequency transceiver.
  • After the transparent antenna in the communication system receives the signal it can pass through the filter unit, power amplifier,
  • the signal amplifier and radio frequency transceiver (not shown in the figure) are processed and then transmitted to the receiving end in the transceiver unit.
  • the receiving end can be, for example, a smart gateway.
  • the radio frequency transceiver is connected to the transceiver unit and is used to modulate the signal sent by the transceiver unit, or to demodulate the signal received by the transparent antenna and then transmit it to the transceiver unit.
  • the radio frequency transceiver can include a transmitting circuit, a receiving circuit, a modulating circuit, and a demodulating circuit. After the transmitting circuit receives multiple types of signals provided by the baseband, the modulating circuit can modulate the multiple types of signals provided by the baseband, and then sent to the antenna.
  • the transparent antenna receives the signal and transmits it to the receiving circuit of the radio frequency transceiver.
  • the receiving circuit transmits the signal to the demodulation circuit.
  • the demodulation circuit demodulates the signal and transmits it to the receiving end.
  • the radio frequency transceiver is connected to a signal amplifier and a power amplifier, the signal amplifier and the power amplifier are connected to a filtering unit, and the filtering unit is connected to at least one antenna.
  • the signal amplifier is used to improve the signal-to-noise ratio of the signal output by the radio frequency transceiver and then transmitted to the filtering unit;
  • the power amplifier is used to amplify the power of the signal output by the radio frequency transceiver and then transmits it to the filtering unit;
  • the filter unit may specifically include a duplexer and a filter circuit.
  • the filter unit combines the signals output by the signal amplifier and the power amplifier, filters out clutter, and then transmits the signals to the transparent antenna, and the antenna radiates the signal.
  • the antenna receives the signal and transmits it to the filtering unit.
  • the filtering unit filters out the clutter from the signal received by the antenna and transmits it to the signal amplifier and power amplifier.
  • the signal amplifier gains the signal received by the antenna. Increase the signal-to-noise ratio of the signal; the power amplifier amplifies the power of the signal received by the antenna.
  • the signal received by the antenna is processed by the power amplifier and signal amplifier and then transmitted to the radio frequency transceiver, and then the radio frequency transceiver transmits it to the transceiver unit.
  • the signal amplifier may include multiple types of signal amplifiers, such as low noise amplifiers, which are not limited here.
  • the antenna provided by embodiments of the present disclosure further includes a power management unit, which is connected to the power amplifier and provides the power amplifier with a voltage for amplifying the signal.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本公开提供一种移相器及电子设备,属于通信技术领域,其中移相器包括相对设置的第一基板和第二基板,设置在第一基板和第二基板之间的可调电介质层;第一基板包括第一介质基板,设置在第一介质基板靠近可调电介质层一侧的第一电极层;第一电极层包括并排设置的第一传输线和第二传输线,至少一个第一电极设置在两者之间;第二基板包括第二介质基板,设置在第二介质基板靠近可调电介质层一侧的第二电极层;第二电极层包括至少一个第二电极和至少一个第三电极;第一电极相对设置第一端部和第二端部;一个第一电极的第一端部和第一传输线与一个第一电极的第二端部和第二传输线分别与同一第二电极和同一第三电极在第一介质基板上的正投影至少部分重叠。

Description

移相器及电子设备
相关申请的交叉引用
本申请要求于2022年6月24日提交的中国专利申请No.2022107233187的优先权,其内容在此通过引用方式整体并入本申请。
技术领域
本公开属于通信技术领域,具体涉及一种移相器及电子设备。
背景技术
移相器在通信领域中的多种电子设备中都有所使用,以相控阵天线为例,凭借其快速波束扫描等优良特性在现代无线通信系统中占有重要地位,移相器作为相控阵天线中的重要组成部分,其结构与性能直接影响整个相控阵天线的表现,因此设计一款结构紧凑,设计灵活的移相器非常有必要。
移相器需要用到很多的匹配支节,涉及到很多尺寸很小的电容,而这些小尺寸的电容的制作公差会影响电容大小,从而影响移相器的性能及一致性,并且对实际的生产加工影响较大。
发明内容
本公开提供一种移相器及电子设备。
第一方面,本公开实施例提供一种移相器,包括相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的可调电介质层;
所述第一基板包括第一介质基板,设置在所述第一介质基板靠近所述可调电介质层一侧的第一电极层;所述第一电极层包括并排设置的第一传输线和第二传输线,以及设置在第一传输线和第二传输线之间的至少一个第一电极;
所述第二基板包括第二介质基板,设置在所述第二介质基板靠近所述可调电介质层一侧的第二电极层;所述第二电极层包括至少一个第二电极和至少一个第三电极;其中,
所述第一电极包括相对设置的第一端部和第二端部;一个所述第一电极的第一端部和所述第一传输线均与同一所述第二电极在所述第一介质基板上的正 投影至少部分重叠;一个所述第一电极的第二端部和所述第二传输线均与同一所述第三电极在所述第一介质基板上的正投影至少部分重叠。
在一个实施例中,所述第一传输线包括第一主体部,以及连接至所述第一主体部的至少一个第一枝节;所述第一枝节位于所述第一主体部靠近所述第一电极的一侧;一个所述第一枝节和一个所述第一电极的第一端部与同一所述第二电极在所述第一介质基板上的正投影至少部分重叠。
在一个实施例中,所述第一传输线包括第一主体部,以及连接至所述第一主体部的至少一个第一枝节;所述第一枝节位于所述第一主体部靠近所述第一电极的一侧;所述第一主体部、一个所述第一枝节和一个所述第一电极的第一端部与同一所述第二电极在所述第一介质基板上的正投影至少部分重叠。
在一个实施例中,所述第二传输线包括第二主体部,以及连接至所述第二主体部的至少一个第二枝节;所述第二枝节位于所述第二主体部靠近所述第一电极的一侧;一个所述第二枝节和一个所述第一电极的第二端部与同一所述第二电极在所述第一介质基板上的正投影至少部分重叠。
在一个实施例中,所述第二传输线包括第二主体部,以及连接至所述第二主体部的至少一个第二枝节;所述第二枝节位于所述第二主体部靠近所述第一电极的一侧;所述第二主体部、一个所述第二枝节和一个所述第一电极的第二端部与同一所述第二电极在所述第一介质基板上的正投影至少部分重叠。
在一个实施例中,所述至少一个第一电极包括多个第一电极,所述多个第一电极沿着所述第一传输线和所述第二传输线的延伸方向并排设置在所述第一传输线和所述第二传输线之间;所述至少一个第一枝节包括多个第一枝节,所述多个第一枝节沿着所述延伸方向并排设置在所述第一传输线的靠近所述多个第一电极的一侧;所述至少一个第二枝节包括多个第二枝节,所述多个第二枝节沿着所述延伸方向并排设置在所述第二传输线的靠近所述多个第一电极的一侧;在垂直于所述延伸方向的垂直方向上,所述多个第一电极与所述多个第一枝节一一对应,并且所述多个第一电极通过多个第一间隔区域与所述多个第一枝节间隔开;以及所述多个第一电极与所述多个第二枝节一一对应,并且所述多个第一电极通过多个第二间隔区域与所述多个第二枝节间隔开。
在一个实施例中,所述至少一个第二电极包括多个第二电极,所述多个第二电极设置为所述多个第二电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且分别与所述多个第一枝节、所述多个第一间隔区域和所述多个第一电极的第一端部至少部分交叠;以及所述至少一个第三电极包括多个第三电极,所述多个第三电极设置为所述多个第三电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且分别与所述多个第二枝节、所述多个第二间隔区域和所述多个第一电极的第二端部至少部分交叠。
在一个实施例中,所述多个第二电极设置为所述多个第二电极在所述第一介质基板上的正投影在所述垂直方向上分别延伸穿过所述多个第一枝节并且与所述第一主体部至少部分交叠;以及所述多个第三电极设置为所述多个第三电极在所述第一介质基板上的正投影在所述垂直方向上分别延伸穿过所述多个第二枝节并且与所述第二主体部至少部分交叠。
在一个实施例中,所述多个第一电极中相邻设置的两个第一电极之间的间距相等。
在一个实施例中,所述第一电极的第一端部与所述第二电极在第一介质基板上的正投影的交叠面积,与所述第一电极的第二端部与所述第三电极在所述第一介质基板上的正投影的交叠面积相等。
在一个实施例中,所述第一电极、所述第二电极和所述第三电极的数量均为多个;所述第二电极与所述第一传输线在所述第一介质基板上的交叠面积相等,和/或所述第三电极与所述第二传输线在所述第一介质基板上的交叠面积相等。
在一个实施例中,所述第一电极、所述第二电极和所述第三电极的数量均为多个;所述第二电极与所述第一电极的第一端部在所述第一介质基板上的交叠面积相等,和/或所述第三电极与所述第一电极的第二端部在所述第一介质基板上的交叠面积相等。
在一个实施例中,所述至少一个第一电极包括多个第一电极,所述多个第一电极在所述第一传输线和所述第二传输线之间沿着所述第一传输线和所述第 二传输线的延伸方向和与所述延伸方向垂直的垂直方向上设置为彼此间隔开的多行多列第一电极;所述至少一个第一枝节包括多个第一枝节,所述多个第一枝节沿着所述延伸方向并排设置在所述第一传输线的靠近所述多个第一电极的一侧;所述至少一个第二枝节包括多个第二枝节,所述多个第二枝节沿着所述延伸方向并排设置在所述第二传输线的靠近所述多个第一电极的一侧;在所述垂直方向上,所述多列第一电极与所述多个第一枝节一一对应,并且所述多列第一电极通过多个第一间隔区域与所述多个第一枝节间隔开;以及所述多列第一电极与所述多个第二枝节一一对应,并且所述多列第一电极通过多个第二间隔区域与所述多个第二枝节间隔开。
在一个实施例中,所述至少一个第二电极包括多个第二电极,所述多个第二电极设置为至少包括第一行第二电极,所述第一行第二电极包括与所述多个第一枝节的数量相同的第二电极,所述第一行第二电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且分别与所述多个第一枝节、所述多个第一间隔区域和所述多个第一电极中最靠近所述第一传输线的一行第一电极的第一端部至少部分交叠;以及所述至少一个第三电极包括多个第三电极,所述多个第三电极设置为至少包括第一行第三电极,所述第一行第三电极包括与所述多个第二枝节的数量相同的第三电极,所述第一行第三电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且分别与所述多个第二枝节、所述多个第二间隔区域和所述多个第一电极中最靠近所述第二传输线的一行第一电极的第二端部至少部分交叠。
在一个实施例中,所述多行多列第一电极包括至少三行第一电极;所述多个第二电极设置为仅包括第一行第二电极,所述第一行第二电极在所述第一介质基板上的正投影分别在朝向所述第二传输线的方向上至少延伸超过最靠近所述第一传输线的一行第一电极的第二端部;以及所述多个第三电极设置为仅包括第一行第三电极,所述第一行第三电极在所述第一介质基板上的正投影分别在朝向所述第一传输线的方向上至少延伸超过最靠近所述第二传输线的一行第一电极的第一端部。
在一个实施例中,所述多行多列第一电极包括至少三行第一电极;所述多 个第二电极设置为至少包括第一行第二电极和第二行第二电极,所述第一行第二电极和所述第二行第二电极设置为所述第二行第二电极在所述第一介质基板上的正投影相对于所述第一行第二电极在所述第一介质基板上的正投影远离所述第一传输线;
所述多个第三电极设置为至少包括第一行第三电极和第二行第三电极,所述第一行第三电极和所述第二行第三电极设置为所述第二行第三电极在所述第一介质基板上的正投影相对于所述第一行第三电极在所述第一介质基板上的正投影远离所述第二传输线;所述第一行第二电极在所述第一介质基板上的正投影分别与所述多个第一枝节、所述多个第一间隔区域和所述多个第一电极中最靠近所述第一传输线的第一行第一电极的第一端部至少部分交叠,所述第二行第二电极在所述第一介质基板上的正投影分别与所述第一行第一电极的第二端部、所述第一行第一电极的远离所述第一传输线一侧的一行第一电极和所述第一行第一电极之间的多个间隔区域、所述第一行第一电极的远离所述第一传输线一侧的一行第一电极的第一端部至少部分交叠;以及所述第一行第三电极在所述第一介质基板上的正投影分别与所述多个第二枝节、所述多个第二隔区域和所述多个第一电极中最靠近所述第二传输线的第二行第一电极的第二端部至少部分交叠,所述第二行第三电极在所述第一介质基板上的正投影分别与所述第二行第一电极的第一端部、所述第二行第一电极的远离所述第二传输线一侧的一行第一电极和所述第二行第一电极之间的多个间隔区域、所述第二行第一电极的远离所述第二传输线一侧的一行第一电极的第二端部至少部分交叠。
在一个实施例中,所述多个第一电极中每行第一电极中相邻设置的两个第一电极之间的间距相等;以及所述多个第一电极中每列第一电极中相邻设置的两个第一电极之间的间距相等。
在一个实施例中,所述可调电介质层包括液晶层。
第二方面,本公开实施例提供一种电子设备,其包括上述任一所述移相器。
在一个实施例中,所述电子设备还包括设置在所述第一介质基板背离所述可调电介质层一侧的参考电极层。
附图说明
图1为一种相关技术中示例性的液晶移相器;
图2为沿着图1的线A-A'所截取的移相器的剖面图;
图3为本公开实施例的第一种移相器的俯视图;
图4为图3所示的移相器的第一基板的俯视图;
图5为图3所示的移相器的第二基板的俯视图;
图6为沿着图3的线B-B'所截取的移相器的剖面图;
图7为本公开实施例的第二种移相器的局部示意图;
图8为图7所示的移相器的第一基板的俯视图;
图9为图7所示的移相器的第二基板的俯视图;
图10为沿着图7的线C-C'所截取的移相器的剖面图;
图11为本公开实施例的第三种移相器的局部示意图;
图12为图11所示的移相器的第一基板的俯视图;
图13为图11所示的移相器的第二基板的俯视图;
图14为沿着图11的线D-D'所截取的移相器的剖面图;
图15为本公开实施例的一种移相器的结构示意图;
图16为图15所示的移相器的第一基板的俯视图;
图17为图15所示的移相器的第二基板的俯视图;
图18为沿着图15的线E-E'所截取的移相器的剖面图;
图19为本公开实施例的一种移相器的结构示意图;
图20为图19所示的移相器的第一基板的俯视图;
图21为图19所示的移相器的第二基板的俯视图;
图22为沿着图19的线F-F'所截取的移相器的剖面图;
其中附图标记为:第一介质基板10;第二介质基板20;可调电介质层30;第一传输线11;第二传输线12;第一主体部111;第一枝节112;第二主体部121;第二枝节122;第一电极21;第二电极22;第三电极23;贴片结构24。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为一种现有技术中示例性的液晶移相器;图2为沿着图1的线A-A'所截取的移相器的剖面图;如图1和图2所示,该移相器包括相对设置的第一基板和第二基板,以及设置在第一基板和第二基板之间的可调介质层30。第一基板包括第一介质基板10,设置在第一介质基板10靠近可调电介质层30一侧的第一电极层。其中,第一电极层包括并排设置、且沿微波信号传输方向延伸的第一传输线11和第二传输线12。第二基板包括与第一介质基板10相对设置的第二介质基板20,以及设置在第二介质基板20上的沿微波信号传输方向并排设置的多个贴片结构24。各贴片结构24的两个端部分别与第一传输线11和第二传输线12在第一介质基板10上的正投影至少部分重叠,故贴片结构24分别与第一传输线11、第二传输线12形成多个电容。在该种情况下,可以给第一传输线11、第二传输线12和贴片结构24上施加直流偏置电压,以控制可调电介质层30的介电常数,从而调节单位长度的总电容,进而达到对第一传输线11 和第二传输线12输出微波信号的移相作用。现有技术中,移相器包括多个电容,通常采用小尺寸电容。在移相器的生产制作过程中,这些小尺寸电容的制作公差会影响电容大小,使各电容的电容量有所差异,从而影响移相器的性能以及一致性。
移相器在通信领域中的多种电子设备中都有所使用,以相控阵天线为例,移相器作为相控阵天线中的重要组成部分,其结构与性能直接影响整个相控阵天线的表现。因此,需要一款结构紧凑,设计灵活和更加可靠的移相器,以及需要进一步提高移相器的性能和一致性、使用寿命。
鉴于此,本公开实施例提供一种移相器,可以采用两个或多个大电容串联替代一个小尺寸电容,以此降低电容在制作过程中的公差对移相器产品一致性的影响,提升移相器性能;并且由于采用了大电容,使电容附近的电流密度相较于采用小电容时,电容附近的电流密度有所减少,从而增加了移相器的寿命。
以下结合附图和具体实施例对本公开实施例的移相器进行说明。
本公开实施例提供了第一种移相器,图3为本公开实施例的第一种移相器的俯视图;图4为图3所示的移相器的第一基板的俯视图;图5为图3所示的移相器的第二基板的俯视图;图6为沿着图3的线B-B'所截取的移相器的剖面图;如图3至图6所示,本申请中的移相器包括相对设置的第一基板和第二基板,以及设置在第一基板和第二基板之间的可调电介质层30。第一基板包括第一介质基板10,第二基板包括第二介质基板20;第一电极层设置在第一介质基板10靠近可调电介质层30一侧,第二电极层设置在第二介质基板20靠近可调电介质层30一侧。第一电极层包括并排设置的第一传输线11和第二传输线12,以及设置在第一传输线11和第二传输线12之间的至少一个第一电极21;第二电极层包括至少一个第二电极22和至少一个第三电极23。
在图3至图6所示的移相器中,至少一个第一电极21包括多个第一电极21,至少一个第二电极22包括多个第二电极22,至少一个第三电极23包括多个第三电极23。在一个实施例中,如图4所示,第一电极层上的多个第一电极21在第一传输线11和第二传输线12的延伸方向X(微波信号传输方向)上并排设置在第一传输线11和第二传输线12之间,并且在与第一传输线11和第二传输 线12的延伸方向X(微波信号传输方向)垂直的垂直方向Y上分别与第一传输线11和第二传输线12间隔开一定距离。例如,如图4所示,在垂直方向Y上,第一电极21与第一传输线11之间间隔开第一距离d1,第一电极21与第二传输线12之间间隔开第二距离d2。第一距离d1和第二距离d2例如可以相等,这样形成的移相器的结构对称,制备工艺简单,易于获得所需的小电容。
在本公开实施例中,除了第一传输线11和第二传输线12之外,第一介质基板10上还包括设置在第一传输线11和第二传输线12之间的与第一传输线11和第二传输线12均间隔开的第一电极21,在第二介质基板20上设置了对应的第二电极22和第三电极23,因此相对于图1所示的相关技术所示的移相器中仅包括对电容有贡献的贴片电极24与第一传输线11和第二传输线12正相对面积,本公开的移相器中在第一介质基板10和第二介质基板20之间形成的对电容有贡献的正相对面积可以很大,这是因为在本公开中,设置在第一传输线11和第二传输线12之间的第一电极21将作为所形成的串联的电容器的共用极板来获得小电容。本公开中,由于可形成电容的电极面积增大,通过调整各重叠部分相对面积的大小调整电容大小,使移相器的设计更加灵活,由于增大了电容的电极面积,降低了电容附近的电流密度,进而降低了移相器在工作时产生的热量,增加了移相器的使用寿命。
进一步的,如图4所示,第一电极21在垂直方向Y上包括相对设置的第一端部和第二端部;一个第一电极21的第一端部和第一传输线11均与同一第二电极22在第一介质基板10上的正投影至少部分重叠;一个第一电极21的第二端部和第二传输线12均与同一第三电极23在第一介质基板10上的正投影至少部分重叠。第一传输线11和第二电极22的正相对部分形成一个电容,第一电极21的第一端部与第二电极22的正相对部分形成一个电容,第一电极21的第二端部与第三电极23的正相对部分形成一个电容,第二传输线12和第三电极23的正相对部分形成一个电容。与第二电极22正相对的第一电极21的第一端部和第一传输线11所形成的两电容并联形成一个大电容,与第三电极23正相对的第一电极21的第二端部和第二传输线12所形成的两电容并联形成一个大电容,两个大电容彼此串联,从而能够形成适用于移相器的小电容。使用大电 容串联等效成小电容的方法,减少了小电容制作公差对移相器一致性的影响,提高了产品一致性。
本公开实施例还提供了第二种移相器。图7为本公开实施例的第二种移相器的局部示意图;图8为图7所示的移相器的第一基板的俯视图;图9为图7所示的移相器的第二基板的俯视图;图10为沿着图7的移相器的C-C'的剖面图;如图7-10所示,第一传输线11包括第一主体部111,以及连接至第一主体部111的至少一个第一枝节112,第一枝节112位于第一主体部111靠近第一电极21的一侧;第二传输线12包括第二主体部121,以及连接至第二主体部121上的至少一个第二枝节122,第二枝节122位于第二主体部121靠近第一电极21的一侧。第一主体部111、一个第一枝节112和一个第一电极21的第一端部与对应的同一第二电极22在第一介质基板10上的正投影至少部分重叠。第二主体部121、一个第二枝节122和一个所述第一电极21的第二端部与对应的同一第三电极23在第一介质基板10上的正投影至少部分重叠。在本公开中,第一传输线11和第二传输线12的延伸方向即为微波信号传输方向。在第一传输线11包括第一主体部111和作为第一主体部111分支的至少一个第一枝节112的情况下,第一主体部111的延伸方向即为第一传输线11的延伸方向;在第二传输线12包括第二主体部121和作为第二主体部121分支的至少一个第二枝节122的情况下,第二主体部121的延伸方向即为第二传输线12的延伸方向。
进一步的,第一主体部111和第一枝节112与第二电极22正相对部分形成一个电容,第一电极21的第一端部和第二电极22的正相对部分形成一个电容,两电容并联形成一个大电容;第二主体部121和第二枝节122与第三电极23正相对部分形成一个电容,第一电极21的第二端部和第三电极23的正相对部分形成一个电容,两电容并联形成一个大电容;两部分并联电容彼此串联,等效成适用于移相器的小电容。通过在第一传输线11和第二传输线12的主体结构上设置分枝结构,增大了第一传输线11和第二传输线12可形成电容的面积。
在一个实施例中,在第一介质基板10上,第一传输线11包括第一主体部111和连接至第一主体部111的多个第一枝节112;第二传输线12包括第二主体部121和连接至第二主体部121的多个第二枝节122。如图8所示,多个第一枝 节112沿着第一传输线11的延伸方向并排设置,多个第二枝节122沿着第二传输线12的延伸方向并排设置,多个第一电极21沿着第一传输线11和第二传输线12的延伸方向并排设置,并且每个第一电极21分别设置在对应的第一枝节112和第二枝节122之间,并且与对应的第一枝节112和第二枝节122分别间隔开第三距离d3和第四距离d4。第三距离d3和第四距离d4可以相等,从而移相器的结构对称,制备工艺简单,比较容易获得所需的电容。
第一主体部111和多个第一枝节112可以一体成型,例如是采用相同材料通过一次构图工艺形成的。第二主体部121和多个第二枝节122也可以一体成型,例如是采用相同材料通过一次构图工艺形成的。
在图7至图10所示的实施例中,可以将第一枝节112、第一电极21、第二枝节122、第二电极22和第三电极23在第一传输线11和第二传输线12的延伸方向上的宽度设置为实质上相等,从而通过交叠获得的电容大小基本上取决于在垂直方向上的交叠部分的长度。如图10所示,第二电极22和第三电极23中的每一个在第一介质基板10上的正投影分别完全覆盖其对应的第一枝节112和对应的第二枝节122在第一介质基板10上的正投影,进一步地,在垂直方向上,第二电极22的长度设置为延伸穿过对应的第一枝节112后与第一主体部111仍然存在交叠;而第三电极23的长度设置为延伸穿过对应的第二枝节122后与第二主体部121仍然存在交叠。即,通过设置在垂直方向上长度较长的第二电极22和第三电极23可以获得较大的电容,如图9所示。
本公开实施例提供了第三种移相器。图11为本公开实施例的第三种移相器的局部示意图;图12为图11所示的移相器的第一基板的俯视图;图13为图11所示的移相器的第二基板的俯视图;图14为沿着图11的线D-D'所截取的移相器的剖面图;如图11至图14所示,第一传输线11包括第一主体部111,以及连接至第一主体部111的至少一个第一枝节112,第一枝节112位于第一主体部111靠近第一电极21的一侧;第二传输线12包括第二主体部121,以及连接至第二主体部121的至少一个第二枝节122,第二枝节122位于第二主体部121靠近第一电极21的一侧。一个第一枝节112和一个第一电极21的第一端部与对应的同一第二电极22在第一介质基板10上的正投影至少部分重叠。一个第 二枝节122和一个第一电极21的第二端部与对应的同一所述第三电极23在第一介质基板10上的正投影至少部分重叠。
进一步的,第一枝节112与第二电极22正相对部分形成一个电容,第一电极21第一端部和第二电极22的正相对部分形成一个电容,两电容并联形成一个大电容;第二枝节122与第三电极23正相对部分形成一个电容,第一电极21第二端部和第三电极23的正相对部分形成一个电容,两电容并联形成一个大电容;两部分大电容彼此串联,等效成适用于移相器的小电容。第一传输线11和第二传输线12的第一主体部111和第二主体部121不再用作电容的一部分,仅靠第一枝节112、第二枝节122和第一电极21分别与第二电极层的第二电极22和第三电极23形成电容,因此本公开实施中可以适当地增大第一枝节112和第二枝节122的面积。
需要说明的是,本公开实施例中,不对第一主体部111和第二主体部121与第一枝节112和第二枝节122的面积比例,以及材料和制作流程做进一步的限定。例如,如上所述,第一主体部111及其多个第一枝节112可以采用相同材料通过一次构图工艺一体成型,而第二主体部112及其多个第二枝节122可以采用相同材料通过一次构图工艺一体成型。
在一个实施例中,在第一介质基板10上,第一传输线11包括第一主体部111和连接至第一主体部111的多个第一枝节112;第二传输线12包括第二主体部121和连接至第二主体部121的多个第二枝节122。如图12所示,多个第一枝节112沿着第一传输线11的延伸方向并排设置,多个第二枝节122沿着第二传输线12的延伸方向并排设置,多个第一电极21沿着第一传输线11和第二传输线12的延伸方向并排设置,并且每个第一电极21分别设置在对应的第一枝节112和第二枝节122之间,并且与对应的第一枝节112和第二枝节122分别间隔开第五距离d5和第六距离d6。第五距离d5和第六距离d6可以相等,从而移相器的结构对称,制备工艺简单,比较容易获得所需的电容。
在图11至图14所示的实施例中,可以将第一枝节112、第一电极21、第二枝节122、第二电极22和第三电极23在第一传输线11和第二传输线12的延伸方向上的宽度设置为实质上相等,从而相互交叠获得的电容大小将基本上取 决于在垂直方向上的交叠部分的长度。如图14所示,第二电极22和第三电极23中的每一个在第一介质基板10上的正投影分别完全覆盖其对应的第一枝节112和对应的第二枝节122在第一介质基板10上的正投影。进一步地,在垂直方向上,第二电极22的长度设置为仅仅与对应的第一枝节112存在交叠,而不会延伸到达第一主体部111;而第三电极23的长度设置为仅仅与对应的第二枝节122存在交叠,而不会延伸到达第二主体部121。
图15为本公开实施例的一种移相器的结构示意图;图16为图15所示的移相器的第一基板的俯视图;图17为图15所示的移相器的第二基板的俯视图;图18为沿着图15的移相器的E-E'的剖面图;如图15至图18所示,在第一介质基板10的第一电极层上,第一电极21可以并排设置多个,且相邻的第一电极21之间的距离相等。即,在第一传输线11和第二传输线12之间,多个第一电极21布置为阵列排布,即沿着第一传输线11和第二传输线12的延伸方向和与延伸方向垂直的垂直方向排列成多行多列。如图16所示,以并排设置三个第一电极21为例,第二电极22分别与第一传输线11、靠近第一传输线11的第一电极21和中间的第一电极21的第一端部形成三个并联的电容,第三电极23分别与第二传输线12、靠近第二传输线12的第一电极21和中间的第一电极21的第二端部形成三个并联的电容,两部分并联电容彼此串联,等效为适用于移相器的小电容。通过在第一电极层设置多个第一电极21,增大了第一介质基板10上可形成电容的电极面积,进一步降低制作公差对移相器一致性的影响。
图19为本公开实施例的移相器的结构示意图;图20为图19所示的移相器的第一基板的俯视图;图21为图19所示的移相器的第二基板的俯视图;图22为沿着图19的线F-F'所截取的移相器的剖面图;如图19至图22所示,在第一介质基板10的第一电极层上,第一电极21可以并排设置多个,且相邻的第一电极21之间的距离相等。即,在第一传输线11和第二传输线12之间,多个第一电极21布置为阵列排布,即沿着第一传输线11和第二传输线12的延伸方向和与延伸方向垂直的垂直方向排列成多行多列。如图21所示,第二电极22可以并排设置多个,且相邻的第二电极22之间的距离相等。第三电极23可以并排设置多个,且相邻的第三电极23之间的距离相等。以并排设置三个第一电 极21、两个第二电极22和两个第三电极23为例,靠近第一传输线11的第二电极22分别与第一传输线11和靠近第一传输线11的第一电极21的第一端部形成两个并联的电容,远离第一传输线11的第二电极22分别与靠近第一传输线11的第一电极21的第二端部和中间的第一电极21的第一端部形成两个并联的电容,靠近第二传输线12的第三电极23分别与第二传输线12和靠近第二传输线12的第一电极21的第二端部形成两个并联的电容,远离第二传输线12的第三电极23分别与靠近第二传输线12的第一电极21的第一端部和中间的第一电极21的第二端部形成两个并联的电容,四部分并联电容彼此串联,等效为适用于移相器的小电容。通过在第一电极层和第二电极层设置多个第一电极21、多个第二电极22和多个第三电极23,增大了第一介质基板10和第二介质基板20上可形成电容的电极面积,进一步的降低制作公差对移相器一致性的影响。
需要说明的是,前述所有公开实施例中,所有第一电极21的第一端部指的是靠近第一传输线11一侧的端部,所有第一电极21的第二端部指的是靠近第二传输线12一侧的端部。
在一些示例中,第一电极21的第一端部与第二电极22在第一介质基板10上的正投影的交叠面积,与第一电极21的第二端部与第三电极23在所述一介质上的正投影的交叠面积相等。
在一些示例中,第一电极21、第二电极22和第三电极23的数量均为多个;第二电极22与第一传输线11在第一介质基板10上的交叠面积相等,和/或第三电极23与第二传输线12在第一介质基板10上的交叠面积相等。
在一些示例中,第一电极21、第二电极22和第三电极23的数量均为多个;第二电极22与第一电极21的第一端部在第一介质基板10上的交叠面积相等,和/或第三电极23与第一电极21的第二端部在第一介质基板10上的交叠面积相等。
需要说明的是,第一电极21的第一端部与第二电极22在第一介质基板10上的正投影的交叠面积,与第一电极21的第二端部与第三电极23在所述第一介质板10上的正投影的交叠面积,第二电极22与第一传输线11在第一介质基板10上的交叠面积,第三电极23与第二传输线12在第一介质基板10上的交 叠面积,第二电极22与第一电极21的第一端部在第一介质基板10上的交叠面积,第三电极23与第一电极21的第二端部在第一介质基板10上的交叠面积,各交叠面积的大小和各交叠面积的比例在本公开实施例中不做进一步的限定,可以根据具体产品进行调整。
在一些示例中,可调电介质层30包括液晶层。液晶层在第一电极层和第二电极层所形成的各个电容之间,形成电场,以驱动液晶层的液晶分子偏转,改变液晶层的介电常数,从而实现对第一传输线11和第二传输线12所传输的微波信号进行移相。
在一些示例中,第一介质基板10和第二介质基板20的材料包括但不限于石英、玻璃等具有较低微波损耗的硬性材质。
在一些示例中,第一电极层和第二电极层的材料均可以采用铜、金、银等低电阻、低损耗金属,均可采用磁控溅射、热蒸镀、电镀等方式制备。
本公开实施例还提供了一种电子设备,其包括天线,天线包括上述的任一移相器。
在一些示例中,为使电子设备的正常工作,需要在第一介质基板10背离可调电介质层30的一侧设置参考电极层,作为金属参考地使用。
本公开实施例的电子设备可以是需要使用移相器的各种设备,例如:相控阵天线。
本公开实施的电子设备,采用本公开前述的移相器,由于在制作中将小电容替换为多个串联的大电容,降低了产品的公差,提高了产品的一致性;并且由于采用大电容,使电容附近的电流密度有所下降,一定程度上降低了电子设备的发热,使电子设备的寿命有所延长。
该电子设备中的天线还包括收发单元、射频收发机、信号放大器、功率放大器、滤波单元。该天线可以作为发送天线,也可以作为接收天线。其中,收发单元可以包括基带和接收端,基带提供至少一个频段的信号,例如提供2G信号、3G信号、4G信号、5G信号等,并将至少一个频段的信号发送给射频收发机。而通信系统中的透明天线接收到信号后,可以经过滤波单元、功率放大器、 信号放大器、射频收发机(图中未示)的处理后传输给收发单元中的接收端,接收端例如可以为智慧网关等。
进一步地,射频收发机与收发单元相连,用于调制收发单元发送的信号,或用于解调透明天线接收的信号后传输给收发单元。具体地,射频收发机可以包括发射电路、接收电路、调制电路、解调电路,发射电路接收基底提供的多种类型的信号后,调制电路可以对基带提供的多种类型的信号进行调制,再发送给天线。而透明天线接收信号传输给射频收发机的接收电路,接收电路将信号传输给解调电路,解调电路对信号进行解调后传输给接收端。
进一步地,射频收发机连接信号放大器和功率放大器,信号放大器和功率放大器再连接滤波单元,滤波单元连接至少一个天线。在通信系统进行发送信号的过程中,信号放大器用于提高射频收发机输出的信号的信噪比后传输给滤波单元;功率放大器用于放大射频收发机输出的信号的功率后传输给滤波单元;滤波单元具体可以包括双工器和滤波电路,滤波单元将信号放大器和功率放大器输出的信号进行合路且滤除杂波后传输给透明天线,天线将信号辐射出去。在通信系统进行接收信号的过程中,天线接收到信号后传输给滤波单元,滤波单元将天线接收的信号滤除杂波后传输给信号放大器和功率放大器,信号放大器将天线接收的信号进行增益,增加信号的信噪比;功率放大器将天线接收的信号的功率放大。天线接收的信号经过功率放大器、信号放大器处理后传输给射频收发机,射频收发机再传输给收发单元。
在一些示例中,信号放大器可以包括多种类型的信号放大器,例如低噪声放大器,在此不做限制。
在一些示例中,本公开实施例提供的天线还包括电源管理单元,电源管理单元连接功率放大器,为功率放大器提供用于放大信号的电压。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种移相器,包括相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的可调电介质层;
    所述第一基板包括第一介质基板,设置在所述第一介质基板靠近所述可调电介质层一侧的第一电极层;所述第一电极层包括并排设置的第一传输线和第二传输线,以及设置在第一传输线和第二传输线之间的至少一个第一电极;
    所述第二基板包括第二介质基板,设置在所述第二介质基板靠近所述可调电介质层一侧的第二电极层;所述第二电极层包括至少一个第二电极和至少一个第三电极;其中,
    所述至少一个第一电极中的每一个均包括相对设置的第一端部和第二端部;一个所述第一电极的第一端部和所述第一传输线均与对应的同一所述第二电极在所述第一介质基板上的正投影至少部分重叠;一个所述第一电极的第二端部和所述第二传输线均与对应的同一所述第三电极在所述第一介质基板上的正投影至少部分重叠。
  2. 根据权利要求1所述的移相器,其中,所述第一传输线包括第一主体部,以及连接至所述第一主体部的至少一个第一枝节;所述至少一个第一枝节位于所述第一主体部靠近所述第一电极的一侧;一个所述第一枝节和一个所述第一电极的第一端部与对应的同一所述第二电极在所述第一介质基板上的正投影至少部分重叠。
  3. 根据权利要求1所述的移相器,其中,所述第一传输线包括第一主体部,以及连接至所述第一主体部的至少一个第一枝节;所述至少一个第一枝节位于所述第一主体部靠近所述第一电极的一侧;所述第一主体部、一个所述第一枝节和一个所述第一电极的第一端部与对应的同一所述第二电极在所述第一介质基板上的正投影至少部分重叠。
  4. 根据权利要求1所述的移相器,其中,所述第二传输线包括第二主体部,以及连接至所述第二主体部的至少一个第二枝节;所述第二枝节位于所述第二主体部靠近所述第一电极的一侧;一个所述第二枝节和一个所述第一电极的第二端部与对应的同一所述第三电极在所述第一介质基板上的正投影至少部分重 叠。
  5. 根据权利要求1所述的移相器,其中,所述第二传输线包括第二主体部,以及连接至所述第二主体部的至少一个第二枝节;所述第二枝节位于所述第二主体部靠近所述第一电极的一侧;所述第二主体部、一个所述第二枝节和一个所述第一电极的第二端部与对应的同一所述第三电极在所述第一介质基板上的正投影至少部分重叠。
  6. 根据权利要求2至5中任一项所述的移相器,其中,
    所述至少一个第一电极包括多个第一电极,所述多个第一电极沿着所述第一传输线和所述第二传输线的延伸方向并排设置在所述第一传输线和所述第二传输线之间;
    所述至少一个第一枝节包括多个第一枝节,所述多个第一枝节沿着所述延伸方向并排设置在所述第一传输线的靠近所述多个第一电极的一侧;
    所述至少一个第二枝节包括多个第二枝节,所述多个第二枝节沿着所述延伸方向并排设置在所述第二传输线的靠近所述多个第一电极的一侧;
    在垂直于所述延伸方向的垂直方向上,所述多个第一电极与所述多个第一枝节一一对应,并且所述多个第一电极通过多个第一间隔区域与所述多个第一枝节间隔开;以及
    所述多个第一电极与所述多个第二枝节一一对应,并且所述多个第一电极通过多个第二间隔区域与所述多个第二枝节间隔开。
  7. 根据权利要求6所述的移相器,其中,
    所述至少一个第二电极包括多个第二电极,所述多个第二电极设置为所述多个第二电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且分别与所述多个第一枝节、所述多个第一间隔区域和所述多个第一电极的第一端部至少部分交叠;以及
    所述至少一个第三电极包括多个第三电极,所述多个第三电极设置为所述多个第三电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且 分别与所述多个第二枝节、所述多个第二间隔区域和所述多个第一电极的第二端部至少部分交叠。
  8. 根据权利要求7所述的移相器,其中,
    所述多个第二电极设置为所述多个第二电极在所述第一介质基板上的正投影在所述垂直方向上分别延伸穿过所述多个第一枝节并且与所述第一主体部至少部分交叠;以及
    所述多个第三电极设置为所述多个第三电极在所述第一介质基板上的正投影在所述垂直方向上分别延伸穿过所述多个第二枝节并且与所述第二主体部至少部分交叠。
  9. 根据权利要求1至8中任一项所述的移相器,其中,所述多个第一电极中相邻设置的两个第一电极之间的间距相等。
  10. 根据权利要求1至9中任一项所述的移相器,其中,所述多个第一电极中的每一个第一电极的第一端部与其对应的第二电极在第一介质基板上的正投影的交叠面积,与所述第一电极的第二端部与其对应的所述第三电极在所述第一介质基板上的正投影的交叠面积相等。
  11. 根据权利要求1至10中任移相所述的移相器,其中,所述至少一个第一电极包括多个第一电极、所述至少一个第二电极包括多个第二电极和所述至少一个第三电极包括多个第三电极;所述多个第二电极与所述第一传输线在所述第一介质基板上的交叠面积相等,和/或所述多个第三电极与所述第二传输线在所述第一介质基板上的交叠面积相等。
  12. 根据权利要求1至11中任移相所述的移相器,其中,所述至少一个第一电极包括多个第一电极、所述至少一个第二电极包括多个第二电极和所述至少一个第三电极包括多个第三电极;所述多个第二电极与所述多个第一电极的第一端部在所述第一介质基板上的交叠面积相等,和/或所述多个第三电极与所述多个第一电极的第二端部在所述第一介质基板上的交叠面积相等。
  13. 根据权利要求2至5中任一项所述的移相器,其中,
    所述至少一个第一电极包括多个第一电极,所述多个第一电极在所述第一 传输线和所述第二传输线之间沿着所述第一传输线和所述第二传输线的延伸方向和与所述延伸方向垂直的垂直方向上设置为彼此间隔开的多行多列第一电极;
    所述至少一个第一枝节包括多个第一枝节,所述多个第一枝节沿着所述延伸方向并排设置在所述第一传输线的靠近所述多个第一电极的一侧;
    所述至少一个第二枝节包括多个第二枝节,所述多个第二枝节沿着所述延伸方向并排设置在所述第二传输线的靠近所述多个第一电极的一侧;
    在所述垂直方向上,所述多列第一电极与所述多个第一枝节一一对应,并且所述多列第一电极通过多个第一间隔区域与所述多个第一枝节间隔开;以及
    所述多列第一电极与所述多个第二枝节一一对应,并且所述多列第一电极通过多个第二间隔区域与所述多个第二枝节间隔开。
  14. 根据权利要求13所述的移相器,其中,
    所述至少一个第二电极包括多个第二电极,所述多个第二电极设置为至少包括第一行第二电极,所述第一行第二电极包括与所述多个第一枝节的数量相同的第二电极,所述第一行第二电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且分别与所述多个第一枝节、所述多个第一间隔区域和所述多个第一电极中最靠近所述第一传输线的一行第一电极的第一端部至少部分交叠;以及
    所述至少一个第三电极包括多个第三电极,所述多个第三电极设置为至少包括第一行第三电极,所述第一行第三电极包括与所述多个第二枝节的数量相同的第三电极,所述第一行第三电极在所述第一介质基板上的正投影沿着所述延伸方向并排设置并且分别与所述多个第二枝节、所述多个第二间隔区域和所述多个第一电极中最靠近所述第二传输线的一行第一电极的第二端部至少部分交叠。
  15. 根据权利要求14所述的移相器,其中,
    所述多行多列第一电极包括至少三行第一电极;
    所述多个第二电极设置为仅包括第一行第二电极,所述第一行第二电极在所述第一介质基板上的正投影分别在朝向所述第二传输线的方向上至少延伸超过最靠近所述第一传输线的一行第一电极的第二端部;以及
    所述多个第三电极设置为仅包括第一行第三电极,所述第一行第三电极在所述第一介质基板上的正投影分别在朝向所述第一传输线的方向上至少延伸超过最靠近所述第二传输线的一行第一电极的第一端部。
  16. 根据权利要求14所述的移相器,其中,
    所述多行多列第一电极包括至少三行第一电极;
    所述多个第二电极设置为至少包括第一行第二电极和第二行第二电极,所述第一行第二电极和所述第二行第二电极设置为所述第二行第二电极在所述第一介质基板上的正投影相对于所述第一行第二电极在所述第一介质基板上的正投影远离所述第一传输线;
    所述多个第三电极设置为至少包括第一行第三电极和第二行第三电极,所述第一行第三电极和所述第二行第三电极设置为所述第二行第三电极在所述第一介质基板上的正投影相对于所述第一行第三电极在所述第一介质基板上的正投影远离所述第二传输线;
    所述第一行第二电极在所述第一介质基板上的正投影分别与所述多个第一枝节、所述多个第一间隔区域和所述多个第一电极中最靠近所述第一传输线的第一行第一电极的第一端部至少部分交叠,所述第二行第二电极在所述第一介质基板上的正投影分别与所述第一行第一电极的第二端部、所述第一行第一电极的远离所述第一传输线一侧的一行第一电极和所述第一行第一电极之间的多个间隔区域、所述第一行第一电极的远离所述第一传输线一侧的一行第一电极的第一端部至少部分交叠;以及
    所述第一行第三电极在所述第一介质基板上的正投影分别与所述多个第二枝节、所述多个第二隔区域和所述多个第一电极中最靠近所述第二传输线的第二行第一电极的第二端部至少部分交叠,所述第二行第三电极在所述第一介质基板上的正投影分别与所述第二行第一电极的第一端部、所述第二行第一电极 的远离所述第二传输线一侧的一行第一电极和所述第二行第一电极之间的多个间隔区域、所述第二行第一电极的远离所述第二传输线一侧的一行第一电极的第二端部至少部分交叠。
  17. 根据权利要求15或16所述的移相器,其中,
    所述多个第一电极中每行第一电极中相邻设置的两个第一电极之间的间距相等;以及
    所述多个第一电极中每列第一电极中相邻设置的两个第一电极之间的间距相等。
  18. 根据权利要求1至17中任一项所述的移相器,其中,所述可调电介质层包括液晶层。
  19. 一种电子设备,包括权利要求1-18中任一项所述的移相器。
  20. 根据权利要求19所述的电子设备,还包括设置在所述第一介质基板背离所述可调电介质层一侧的参考电极层。
PCT/CN2023/099647 2022-06-24 2023-06-12 移相器及电子设备 WO2023246542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210723318.7 2022-06-24
CN202210723318.7A CN117317545A (zh) 2022-06-24 2022-06-24 移相器及电子设备

Publications (1)

Publication Number Publication Date
WO2023246542A1 true WO2023246542A1 (zh) 2023-12-28

Family

ID=89260951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099647 WO2023246542A1 (zh) 2022-06-24 2023-06-12 移相器及电子设备

Country Status (2)

Country Link
CN (1) CN117317545A (zh)
WO (1) WO2023246542A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220006166A1 (en) * 2019-08-14 2022-01-06 Boe Technology Group Co., Ltd. Phase shifter and antenna
CN113937439A (zh) * 2020-06-29 2022-01-14 上海天马微电子有限公司 移相器的制作方法及移相器、天线
CN114122649A (zh) * 2019-08-29 2022-03-01 京东方科技集团股份有限公司 移相器及天线
CN114122647A (zh) * 2021-11-24 2022-03-01 合肥工业大学 一种液晶移相单元、反射式全电控移相器及天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220006166A1 (en) * 2019-08-14 2022-01-06 Boe Technology Group Co., Ltd. Phase shifter and antenna
CN114122649A (zh) * 2019-08-29 2022-03-01 京东方科技集团股份有限公司 移相器及天线
CN113937439A (zh) * 2020-06-29 2022-01-14 上海天马微电子有限公司 移相器的制作方法及移相器、天线
CN114122647A (zh) * 2021-11-24 2022-03-01 合肥工业大学 一种液晶移相单元、反射式全电控移相器及天线

Also Published As

Publication number Publication date
CN117317545A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US11158916B2 (en) Phase shifter and liquid crystal antenna
US11949141B2 (en) Phase shifter and liquid crystal antenna
US11978942B2 (en) Feeding structure, microwave radio frequency device and antenna
US11949142B2 (en) Feeding structure, microwave radio frequency device and antenna
CN111293425A (zh) 一种液晶有源相控阵天线
US11411544B2 (en) Phase shifter and antenna
WO2021037132A1 (zh) 馈电结构、微波射频器件及天线
US11764449B2 (en) Metamaterial-based variable capacitor structure
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
WO2023246542A1 (zh) 移相器及电子设备
US20100203859A1 (en) Bandpass filter, and radio communication module and radio communication device using same
WO2023137690A1 (zh) 天线及天线系统
CN214797722U (zh) 基于基片集成波导的可调控缝隙阵列天线
WO2023240396A1 (zh) 天线、天线阵列及电子设备
US20230155294A1 (en) Antenna and communication apparatus
CN112087206B (zh) 一种超低功耗宽带低噪声放大器
WO2023206059A1 (zh) 移相器及其制备方法、电子设备
WO2024098275A1 (zh) 移相器、移相器阵列、天线阵列及电子设备
JP5288904B2 (ja) バンドパスフィルタならびにそれを用いた無線通信モジュールおよび無線通信機器
WO2023155185A1 (zh) 移相器、天线及电子设备
WO2024103200A1 (zh) 射频装置、天线及电子设备
WO2023206430A1 (zh) 射频器件及电子设备
WO2024036550A1 (zh) 天线、天线阵列及电子设备
US20240195069A1 (en) Antenna, manufacturing method thereof and communication system
TWI827926B (zh) 射頻液晶天線系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826191

Country of ref document: EP

Kind code of ref document: A1