WO2023246027A1 - 化霜控制方法、装置及空调 - Google Patents

化霜控制方法、装置及空调 Download PDF

Info

Publication number
WO2023246027A1
WO2023246027A1 PCT/CN2022/139984 CN2022139984W WO2023246027A1 WO 2023246027 A1 WO2023246027 A1 WO 2023246027A1 CN 2022139984 W CN2022139984 W CN 2022139984W WO 2023246027 A1 WO2023246027 A1 WO 2023246027A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
heating capacity
pressure
defrost
frost
Prior art date
Application number
PCT/CN2022/139984
Other languages
English (en)
French (fr)
Inventor
李龙
程琦
周进
钟海玲
李顺意
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023246027A1 publication Critical patent/WO2023246027A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure

Definitions

  • the present disclosure relates to the field of defrost technology, and specifically to a defrost control method, device and air conditioner.
  • frost When the air conditioner is running for heating in winter, frost will appear on the outdoor heat exchanger. The frost layer will reduce the heating performance of the air conditioner, so defrost is required.
  • Related art air conditioning defrost control methods generally start defrosting when the continuous operation time of the compressor meets the time condition, and when the difference between the outdoor heat exchanger surface temperature and the outdoor ambient temperature meets the temperature condition. There is also a method to detect the ambient temperature and humidity, and compare it with the temperature threshold and humidity threshold to determine whether the outdoor heat exchanger has begun to frost, and simply rely on the frost time to determine whether defrost has begun.
  • Embodiments of the present disclosure provide a defrost control method, device and air conditioner to at least solve the problem of insufficient accuracy in air conditioner defrost control.
  • a defrost control method including:
  • the ambient temperature, ambient humidity and low pressure of the air conditioner are detected according to a preset cycle
  • Whether to enter defrost is determined based on the frosting situation of the air conditioner and the change of the heating capacity of the air conditioner.
  • determining the frosting condition of the air conditioner according to the ambient temperature, the ambient humidity and the low pressure includes:
  • the air conditioner According to the deviation between the low pressure pressure and the frost pressure, it is determined whether the air conditioner is frosted and the degree of frosting.
  • determining whether the air conditioner is frosted and the degree of frosting is determined based on the deviation between the low pressure pressure and the frost pressure, including:
  • the air conditioner is frosted and has a first degree of frosting
  • the air conditioner is frosted and it is the second frost. degree
  • the thickness of the frost layer of the first degree of frosting is smaller than the thickness of the frost layer of the second degree of frosting.
  • the deviation between the low pressure pressure and the frost pressure is determined by the ratio of the low pressure pressure to the frost pressure, or by the difference between the low pressure pressure and the frost pressure. value to determine.
  • determining whether to enter defrost based on the frosting situation of the air conditioner and the change of the heating capacity of the air conditioner includes:
  • the air conditioner is controlled to maintain heating operation, and returns to the steps of detecting the ambient temperature, ambient humidity and low pressure of the air conditioner according to a preset cycle;
  • the air conditioner If the air conditioner is frosted and reaches the first degree of frost, it is determined whether to enter defrost based on the change in the heating capacity of the air conditioner;
  • the air conditioner is frosted and the degree of frost is the second degree, it is determined to be defrosted.
  • determining whether to enter defrost based on changes in the heating capacity of the air conditioner includes:
  • the heating capacity of the air conditioner is detected every preset time
  • determining whether to enter defrost is based on the deviation between the heating capacity detected this time and the initial heating capacity, including:
  • the air conditioner is controlled to maintain heating operation, and returns to perform the detection of ambient temperature, ambient humidity and all ambient temperature according to the preset cycle. Describe the steps for low-pressure air conditioning
  • the heating capacity detected this time is less than or equal to the initial heating capacity, and the deviation between the heating capacity detected this time and the initial heating capacity is less than a second preset deviation degree, then it is determined that it is not possible. Enter defrost, control the air conditioner to maintain heating operation, and return to the step of detecting the heating capacity of the air conditioner every preset time;
  • the deviation between the heating capacity detected this time and the initial heating capacity is determined by the ratio of the heating capacity detected this time to the initial heating capacity, or by It is determined by the difference between the heating capacity detected this time and the initial heating capacity.
  • the method further includes:
  • the air conditioner is controlled to continue defrosting until it reaches the defrosting time, and then exits defrosting.
  • An embodiment of the present disclosure also provides a defrost control device, including:
  • a detection module used to detect the ambient temperature, ambient humidity and low pressure of the air conditioner according to a preset period during the heating operation of the air conditioner;
  • a first determination module configured to determine the frosting condition of the air conditioner according to the ambient temperature, the ambient humidity and the low pressure
  • the second determination module is used to determine whether to enter defrost based on the frosting situation of the air conditioner and the change of the heating capacity of the air conditioner.
  • An embodiment of the present disclosure also provides a defrost control device, including: a memory; and a processor coupled to the memory, the processor being configured to perform any of the above-mentioned defrost controls based on instructions stored in the memory. method.
  • An embodiment of the present disclosure also provides an air conditioner, including: the defrost control device described in the embodiment of the present disclosure.
  • An embodiment of the present disclosure also provides a computer device, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a computer device including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, the embodiments of the present disclosure are implemented. Describe the steps of the method.
  • Embodiments of the present disclosure also provide a non-volatile computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the steps of the method described in the embodiments of the present disclosure are implemented.
  • An embodiment of the present disclosure also provides a computer program for causing the processor to execute any of the above defrost control methods.
  • Figure 1 is a flow chart of a defrost control method provided by some embodiments of the present disclosure.
  • Figure 2 is a workflow diagram of defrost control provided by some embodiments of the present disclosure.
  • Figure 3 is a structural block diagram of a defrost control device provided by some embodiments of the present disclosure.
  • Figure 4 is a schematic diagram of a defrost control device provided by other embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of a defrost control device provided by still other embodiments of the present disclosure.
  • Figure 6 is a schematic diagram of an air conditioner provided by some embodiments of the present disclosure.
  • the ambient temperature, ambient humidity and low pressure of the air conditioner are periodically detected to determine the frosting situation of the air conditioner, thereby accurately and reliably determining whether the air conditioner is frosted and whether the air conditioner is frosted.
  • Degree of frost consider the impact of frost on the air conditioner on the heating capacity of the air conditioner, and determine whether to enter defrost based on the frost formation of the air conditioner and the changes in the heating capacity of the air conditioner. This can make defrosting more reasonable and accurate and effectively avoid no-frost. It solves the problem of inaccurate defrost control in air conditioners when there is frost and the frost does not melt.
  • Figure 1 is a flow chart of a defrost control method provided by some embodiments of the present disclosure. As shown in Figure 1, the method includes the following steps:
  • S102 Determine the frosting condition of the air conditioner based on the ambient temperature, ambient humidity and low pressure.
  • S103 Determine whether to enter defrost based on the frosting condition of the air conditioner and the changes in the heating capacity of the air conditioner.
  • the initial operating time is set. After the initial operating time of the air conditioner and heating is turned on, the frost detection step is entered and ambient temperature, ambient humidity and low pressure are detected to ensure that no decontamination is performed during the initial operating time. Frost condition detection to avoid the phenomenon of unstable air conditioning operation during initial heating, leading to mistaken entry of defrost.
  • the preset period t is preset according to actual conditions.
  • the air conditioner is running for heating, the ambient temperature, ambient humidity and low pressure are re-detected every t time interval.
  • timing is performed, and when the current timing time reaches t, the detection data in this cycle is cleared, timing is restarted to enter the next cycle, and ambient temperature, ambient humidity, and low pressure are re-detected.
  • Ambient temperature and ambient humidity refer to the temperature and humidity outside the air-conditioned room.
  • Low pressure also called suction pressure or evaporation pressure, is the pressure at the outdoor heat exchanger.
  • the frosting situation of air conditioners mainly refers to the frosting situation of outdoor heat exchangers. The impact of frost on air conditioning performance can be reflected by changes in the heating capacity of the air conditioner.
  • this embodiment periodically detects the ambient temperature, ambient humidity and low pressure of the air conditioner to determine the frosting situation of the air conditioner, so that it can accurately and reliably determine whether the air conditioner is frosted and the degree of frosting; consider The impact of air conditioner frost on the heating capacity of the air conditioner is determined by combining the frost formation of the air conditioner and the changes in the heating capacity of the air conditioner to determine whether to enter defrost, which can more reasonably and accurately cut into defrost and effectively avoid frost-free defrost and frost. It solves the problem of inaccurate air conditioning defrost control.
  • determining the frosting condition of the air conditioner according to the ambient temperature, ambient humidity and low pressure pressure includes: determining the frosting pressure corresponding to the ambient temperature and ambient humidity; determining the frosting condition according to the deviation between the low pressure pressure and the frosting pressure. Whether the air conditioner is frosted and to what extent.
  • the corresponding relationship between ambient temperature, ambient humidity, and frost pressure is set in advance through experiments, and the corresponding relationship is stored.
  • Frost pressure refers to the low pressure corresponding to when frost begins to form under the corresponding ambient temperature and ambient humidity conditions.
  • the deviation between the actual low-pressure pressure of the air conditioner and the frost pressure can reflect whether the air conditioner is frosted and the degree of frost.
  • Different ambient temperatures and ambient humidity correspond to different frost pressures.
  • the ambient temperature and ambient humidity are segmented to correspond to different frost pressures.
  • Table 1 Correspondence table of ambient temperature, ambient humidity and frost pressure
  • This implementation determines the corresponding frost pressure based on the ambient temperature and ambient humidity, and then determines whether the air conditioner is frosted and the degree of frost based on the deviation between the actual low pressure pressure and the frost pressure, thereby accurately and reliably identifying the frost situation of the air conditioner. .
  • the low-pressure pressure is less than or equal to the frost pressure, and the deviation between the low-pressure pressure and the frost pressure is less than the first preset deviation degree, it means that the air conditioner has just started to frost or is slightly frosted, and is in the early stage of frost, then it is determined that the air conditioner is frosted and is the first degree of frost;
  • the low-pressure pressure is less than the frost pressure, and the deviation between the low-pressure pressure and the frost pressure is greater than or equal to the first preset deviation degree, it means that the actual low-pressure pressure of the air conditioner is much lower than the frost pressure, and the air conditioner is seriously frosted, then it is determined that the air conditioner is frosted and It is the second degree of frosting.
  • the thickness of the frost layer of the first degree of frost is less than the thickness of the frost layer of the second degree of frost, that is, the second degree of frost is more severe than the first degree of frost.
  • the first preset deviation degree is a threshold used to measure the deviation between the actual low pressure of the air conditioner and the frost pressure in the current environment. In some embodiments, the first preset deviation degree is preset according to actual conditions.
  • This implementation method can accurately and reliably identify the frosting situation of the air conditioner based on the deviation between the actual low pressure of the air conditioner and the frost pressure in the current environment.
  • the deviation between the low pressure and the frost pressure is determined by the ratio of the low pressure to the frost pressure, or by the difference between the low pressure and the frost pressure. That is to say, in some embodiments, the first preset deviation degree is represented by a deviation degree threshold based on a pressure ratio or a deviation degree threshold based on a pressure difference.
  • the ratio X of low-pressure pressure to frost pressure If The deviation between the pressure and the frost pressure is not large (that is, the deviation is less than the first preset deviation degree). The air conditioner is in the early stage of frost, which is the first degree of frost. If X ⁇ A, it means that the low pressure is less than the frost pressure, and the low pressure The deviation between the pressure and the frost pressure is large (that is, the deviation is greater than or equal to the first preset deviation degree), that is, the low pressure pressure is much lower than the frost pressure, and the frost in the air conditioner is more serious, which is the second degree of frost.
  • A is the deviation degree threshold based on the pressure ratio, 0 ⁇ A ⁇ 1.
  • K the difference between low pressure and frost pressure. If K>0, it means that the low pressure is greater than the frost pressure and the air conditioner is not frosted. If C ⁇ K ⁇ 0, it means that the low pressure is less than or equal to the frost pressure. And the deviation between the low-pressure pressure and the frosting pressure is not large (that is, the deviation is less than the first preset deviation degree).
  • the air conditioner is in the early stage of frosting, which is the first degree of frosting. If K ⁇ C, it means that the low-pressure pressure is less than the frosting pressure.
  • C is the deviation degree threshold based on the pressure difference, C ⁇ 0.
  • This implementation provides two ways to determine the deviation between low pressure and frost pressure, making the application more flexible.
  • determining whether to enter defrost is based on the frosting situation of the air conditioner and the changes in the heating capacity of the air conditioner, including: if the air conditioner is not frosted, determining not to enter defrost, controlling the air conditioner to maintain heating operation, and Return to the step of detecting the ambient temperature, ambient humidity and low pressure of the air conditioner according to the preset cycle; if the air conditioner is frosted and it is the first degree of frost, determine whether to enter defrost based on the change in the heating capacity of the air conditioner; if the air conditioner If there is frost and it is the second degree of frost, it is determined to have entered defrost.
  • the air conditioner when the air conditioner is severely frosted, it directly controls the air conditioner to enter the defrosting state.
  • the frosting is analyzed based on the changes in the heating capacity of the air conditioner after frost. It affects the air-conditioning capacity and determines whether defrost has started, so that defrost can be started more reasonably and accurately.
  • determine whether to enter defrost based on changes in the heating capacity of the air conditioner including: detecting the heating capacity of the air conditioner at the current moment, which is recorded as the initial heating capacity; and then detecting the heating capacity of the air conditioner at preset intervals thereafter. ; Based on the deviation between the heating capacity detected this time and the initial heating capacity, determine whether to enter defrost.
  • the preset time is preset according to actual conditions. As frost develops further, the heating capacity of the air conditioner will decrease. The deviation between the heating capacity detected each time and the initial heating capacity can reflect the impact of frost on the heating capacity of the air conditioner.
  • This embodiment periodically detects the heating capacity of the air conditioner, and based on the deviation between the detected heating capacity and the initial heating capacity, can determine the degree of decline in the heating capacity of the air conditioner, so that defrost can be entered more reasonably and accurately.
  • determining whether to enter defrost is based on the deviation between the heating capacity detected this time and the initial heating capacity, including:
  • the heating capacity detected this time is greater than the initial heating capacity, which means that the heating capacity of the air conditioner has not declined, it is determined not to enter defrost, and the air conditioner is controlled to maintain heating operation, and returns to perform detection of ambient temperature and ambient humidity according to the preset cycle. and low-pressure steps for air conditioning;
  • the heating capacity detected this time is less than or equal to the initial heating capacity, and the deviation between the heating capacity detected this time and the initial heating capacity is less than the second preset deviation degree, it means that the heating capacity of the air conditioner maintains the status quo or decreases slightly. It will have little impact on the overall performance of the air conditioner and can meet the user's needs normally. Then it is determined not to enter defrost, control the air conditioner to maintain heating operation, and return to the step of testing the heating capacity of the air conditioner every preset time;
  • the heating capacity detected this time is less than the initial heating capacity, and the deviation between the heating capacity detected this time and the initial heating capacity is greater than or equal to the second preset deviation degree, it means that the frost of the air conditioner has a greater impact on the heating capacity of the air conditioner. If it is large, it will definitely enter defrost.
  • the second preset deviation degree is a threshold used to measure the deviation between the currently detected air conditioning heating capacity and the initial heating capacity.
  • the second preset deviation level is preset according to actual conditions.
  • This implementation method can more reasonably and accurately determine whether to enter defrost based on the deviation between the heating capacity detected this time and the initial heating capacity.
  • the deviation between the heating capacity detected this time and the initial heating capacity is determined by the ratio of the heating capacity detected this time to the initial heating capacity, or by the ratio of the heating capacity detected this time to the initial heating capacity. Determined by the difference in ability. That is to say, in some embodiments, the second preset degree of deviation is represented by a deviation degree threshold based on the heating capacity ratio or a deviation level threshold based on the heating capacity difference.
  • the ratio Y of the heating capacity tested this time to the initial heating capacity If Y>1, it means that the heating capacity tested this time is greater than the initial heating capacity, that is, the heating capacity of the air conditioner does not decrease and defrost does not occur. , continue heating, and continue to periodically detect the ambient temperature, ambient humidity and low pressure; if B ⁇ Y ⁇ 1, it means that the heating capacity tested this time is less than or equal to the initial heating capacity, and the heating capacity tested this time
  • the deviation from the initial heating capacity is not large (that is, the deviation is less than the second preset deviation degree), that is, the heating capacity of the air conditioner maintains the status quo or decreases slightly. It has little impact on the overall performance of the air conditioner and can meet user needs normally without entering defrost.
  • B is the deviation degree threshold based on the heating capacity ratio, 0 ⁇ B ⁇ 1.
  • Defrost it can meet user needs normally and does not enter Defrost, continue heating, and continue to periodically detect the heating capacity of the air conditioner; if M ⁇ D, it means that the heating capacity tested this time is less than the initial heating capacity, and the heating capacity tested this time is less than the initial heating capacity. If the deviation is larger (that is, the deviation is greater than or equal to the second preset deviation degree), that is, the frosting of the air conditioner has a greater impact on the heating capacity of the air conditioner, and defrost is entered directly. D is the deviation degree threshold based on the heating capacity difference, D ⁇ 0.
  • This implementation provides two ways to determine the deviation between the heating capacity detected this time and the initial heating capacity, and the application is more flexible.
  • the method further includes: determining the defrost time based on the deviation value between the low pressure pressure and the frost pressure, or determining the defrost time based on the deviation value between the heating capacity detected this time and the initial heating capacity. Defrost time; control the air conditioner to continue defrosting and exit defrost after reaching the defrost time. After the defrost is completed, the air conditioner re-enters the heating state and restarts frost detection.
  • the defrost time is determined based on the deviation value between the low pressure pressure and the frost pressure at this time.
  • the deviation value of the low pressure pressure and the frost pressure is a ratio or difference. The lower the deviation value between low pressure pressure and frost pressure (that is, the greater the deviation between the two), the longer the corresponding defrost time.
  • the deviation value between the heating capacity detected this time and the initial heating capacity is a ratio or difference. The lower the deviation between the heating capacity detected this time and the initial heating capacity (that is, the greater the deviation between the two), the longer the corresponding defrost time will be.
  • the corresponding relationship between the deviation value of the low-pressure pressure and the frost pressure and the defrost time is set in advance through experiments, and the corresponding relationship between the deviation value of the air conditioner's current heating capacity and the initial heating capacity and the defrost time, And store the above corresponding relationship.
  • the length of time the air conditioner defrosts is maintained is related to the frosting condition of the air conditioner or the degree of impact of frosting on the air conditioner capacity. According to the pressure deviation or heating capacity deviation, a suitable defrost time that is consistent with the actual situation of the air conditioner is determined to ensure The accuracy of defrost time solves the problem of too long or too short defrost time.
  • the defrost control method includes the following steps:
  • the initial operation is t 3 , and no defrost condition detection is performed during this t 3 time to avoid the unstable operation of the air conditioning system during the initial startup, which may lead to the mistaken entry of defrost.
  • the frost detection step is entered.
  • the length of time the air conditioner defrost is maintained is related to the frosting condition of the air conditioner and the impact on the heating capacity of the air conditioner. Specifically, when the air conditioner enters the defrost state when X ⁇ A, the corresponding defrost time t 2 is determined based on the X value at this time. The lower the When Y ⁇ B enters the defrost state, the corresponding defrost time t 2 is determined based on the Y value at this time. The lower the Y value, the longer the corresponding defrost time t 2 .
  • This embodiment determines the corresponding frost pressure by detecting the ambient temperature and ambient humidity outside the air-conditioning room, and determines whether the air conditioner is frosted and the degree of frost by comparing the actual low pressure with the frost pressure. If the frost is severe, enter directly. Defrost. If the frost is not severe, the impact of frost on the air conditioner performance will be analyzed by comparing the heating capacity at the initial stage of frost with the subsequent heating capacity to determine whether it has entered defrost. That is, through the air conditioning after frost The heating capacity decreases to control whether the air conditioner enters defrost.
  • the switching between the heating state and the defrosting state of the air conditioner is comprehensively controlled, and the pressure deviation or capacity deviation is used to control the switching. Determine the appropriate defrost time of the air conditioner, effectively solving the problems of no-frost defrost, frost that does not defrost, and inaccurate defrost time.
  • a defrost control device for implementing the defrost control method described in the above embodiments.
  • the device is implemented by at least one of software and hardware, and the device can generally be integrated into a controller of the air conditioner.
  • FIG 3 is a structural block diagram of a defrost control device provided in Embodiment 3 of the present disclosure. As shown in Figure 3, the device includes:
  • the detection module 31 is used to detect the ambient temperature, ambient humidity and low pressure of the air conditioner according to a preset period during the heating operation of the air conditioner;
  • the first determination module 32 is used to determine the frosting condition of the air conditioner according to the ambient temperature, the ambient humidity and the low pressure;
  • the second determination module 33 is used to determine whether to enter defrost based on the frosting situation of the air conditioner and the change of the heating capacity of the air conditioner.
  • the first determining module 32 includes:
  • a first determination unit configured to determine the frost pressure corresponding to the ambient temperature and the ambient humidity
  • the second determination unit is used to determine whether the air conditioner is frosted and the degree of frosting based on the deviation between the low pressure pressure and the frost pressure.
  • the second determining unit is specifically used to:
  • the air conditioner is frosted and has a first degree of frosting
  • the air conditioner is frosted and it is the second frost. degree
  • the thickness of the frost layer of the first degree of frosting is smaller than the thickness of the frost layer of the second degree of frosting.
  • the deviation between the low pressure pressure and the frost pressure is determined by the ratio of the low pressure pressure to the frost pressure, or by the difference between the low pressure pressure and the frost pressure. value to determine.
  • the second determination module 33 includes:
  • the third determination unit is used to determine not to enter defrost if the air conditioner is not frosted, control the air conditioner to maintain heating operation, and return to perform detection of ambient temperature, ambient humidity and the air conditioner according to a preset cycle. Low pressure steps;
  • a fourth determination unit configured to determine whether to enter defrost based on changes in the heating capacity of the air conditioner if the air conditioner is frosted and has a first degree of frost;
  • the fifth determination unit is used to determine to enter defrost if the air conditioner is frosted and has a second degree of frost.
  • the fourth determining unit includes:
  • a detection subunit used to detect the heating capacity of the air conditioner at the current moment, recorded as the initial heating capacity; and, thereafter, detect the heating capacity of the air conditioner every preset time;
  • the determination subunit is used to determine whether to enter defrost based on the deviation between the heating capacity detected this time and the initial heating capacity.
  • the determination subunit is specifically used to:
  • the air conditioner is controlled to maintain heating operation, and returns to perform the detection of ambient temperature, ambient humidity and all ambient temperature according to the preset cycle. Describe the steps for low-pressure air conditioning
  • the heating capacity detected this time is less than or equal to the initial heating capacity, and the deviation between the heating capacity detected this time and the initial heating capacity is less than a second preset deviation degree, then it is determined that it is not possible. Enter defrost, control the air conditioner to maintain heating operation, and return to the step of detecting the heating capacity of the air conditioner every preset time;
  • the deviation between the heating capacity detected this time and the initial heating capacity is determined by the ratio of the heating capacity detected this time to the initial heating capacity, or by It is determined by the difference between the heating capacity detected this time and the initial heating capacity.
  • the above defrost control device further includes:
  • the time determination module is used to determine the defrost time based on the deviation value between the low pressure pressure and the frost pressure after the fifth determination unit or the determination sub-unit determines that defrost has entered, or based on the heating capacity detected this time and the initial heating The deviation value of the capacity determines the defrost time;
  • a control module is used to control the continuous defrosting of the air conditioner to exit the defrosting after reaching the defrosting time.
  • the above-mentioned defrost control device can execute the defrost control method provided by the embodiment of the present disclosure, and has functional modules and beneficial effects corresponding to the execution method.
  • the defrost control method provided by the embodiment of the present disclosure.
  • the defrost control device includes a memory 401 and a processor 402.
  • the memory 401 is a disk, flash memory or any other non-volatile storage medium.
  • the memory is used to store instructions in corresponding embodiments of the above defrost control method.
  • Processor 402 is coupled to memory 401 and is implemented as one or more integrated circuits, such as a microprocessor or microcontroller.
  • the processor 402 is used to execute instructions stored in the memory, which can effectively avoid the situation of no-frost defrost and presence of frost but no defrost, and solve the problem of inaccurate air-conditioning defrost control.
  • the defrost control device 500 includes a memory 501 and a processor 502 .
  • Processor 502 is coupled to memory 501 via BUS bus 503 .
  • the defrost control device 500 can also be connected to an external storage device 505 through a storage interface 504 to call external data, and can also be connected to a network or another computer system (not shown) through a network interface 506 . No further details will be given here.
  • the present disclosure provides an air conditioner 60 including: the defrost control device 61 described in the above embodiments.
  • the air conditioner is a heat pump air conditioner, such as an air-cooled heat pump air conditioner.
  • the present disclosure provides a computer device, including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • a computer device including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the processor executes the computer program, the above embodiments are implemented. The steps of the method.
  • the present disclosure provides a non-volatile computer-readable storage medium on which a computer program is stored, which implements the steps of the method described in the above embodiments when executed by a processor.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software products can be stored in computer-readable storage media, such as ROM/RAM, disks, etc. , optical disk, etc., including a number of instructions to cause a computer device (such as a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开一种化霜控制方法、装置及空调,涉及化霜技术领域。化霜控制方法包括:在空调制热运行过程中,按照预设周期检测环境温度、环境湿度和空调的低压压力;根据环境温度、环境湿度和低压压力确定空调的结霜情况;根据空调的结霜情况和空调的制热能力变化情况,确定是否进入化霜。

Description

化霜控制方法、装置及空调
相关申请的交叉引用
本申请是以CN申请号为202210703879.0,申请日为2022年6月21日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及化霜技术领域,具体而言,涉及一种化霜控制方法、装置及空调。
背景技术
空调在冬季制热运行时,室外换热器会出现结霜,霜层会降低空调的制热性能,因此需要进行化霜。
相关技术的空调化霜控制方法,一般在压缩机连续运行时间满足时间条件,以及,室外换热器表面温度与室外环境温度的差值满足温度条件时,开始化霜。也有方法是检测环境温度和湿度,通过与温度阈值、湿度阈值进行比较,来判定室外换热器是否开始结霜,并简单的依靠结霜时间来判定是否进入化霜。
发明内容
本公开实施例提供一种化霜控制方法、装置及空调,以至少解决空调化霜控制不够准确的问题。
为解决上述技术问题,本公开实施例提供了一种化霜控制方法,包括:
在空调制热运行过程中,按照预设周期检测环境温度、环境湿度和所述空调的低压压力;
根据所述环境温度、所述环境湿度和所述低压压力,确定所述空调的结霜情况;
根据所述空调的结霜情况和所述空调的制热能力变化情况,确定是否进入化霜。
在一些实施例中,根据所述环境温度、所述环境湿度和所述低压压力,确定所述空调的结霜情况,包括:
确定与所述环境温度及所述环境湿度对应的结霜压力;
根据所述低压压力与所述结霜压力的偏差情况,确定所述空调是否结霜以及结霜程度。
在一些实施例中,根据所述低压压力与所述结霜压力的偏差情况,确定所述空调是否结霜以及结霜程度,包括:
若所述低压压力大于所述结霜压力,则确定所述空调未结霜;
若所述低压压力小于或等于所述结霜压力,且所述低压压力与所述结霜压力的偏差小于第一预设偏差程度,则确定所述空调结霜且为第一结霜程度;
若所述低压压力小于所述结霜压力,且所述低压压力与所述结霜压力的偏差大于或等于所述第一预设偏差程度,则确定所述空调结霜且为第二结霜程度;
其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度。
在一些实施例中,所述低压压力与所述结霜压力的偏差情况通过所述低压压力与所述结霜压力的比值来确定,或者,通过所述低压压力与所述结霜压力的差值来确定。
在一些实施例中,根据所述空调的结霜情况和所述空调的制热能力变化情况,确定是否进入化霜,包括:
若所述空调未结霜,则确定不进入化霜,控制所述空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和所述空调的低压压力的步骤;
若所述空调结霜且为第一结霜程度,则根据所述空调的制热能力变化情况确定是否进入化霜;
若所述空调结霜且为第二结霜程度,则确定进入化霜。
在一些实施例中,根据所述空调的制热能力变化情况确定是否进入化霜,包括:
检测所述空调在当前时刻的制热能力,记为初始制热能力;
之后每隔预设时间,检测一次所述空调的制热能力;
根据本次检测的制热能力与所述初始制热能力的偏差情况,确定是否进入化霜。
在一些实施例中,根据本次检测的制热能力与所述初始制热能力的偏差情况,确定是否进入化霜,包括:
若所述本次检测的制热能力大于所述初始制热能力,则确定不进入化霜,控制所述空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和所述空调的低压压力的步骤;
若所述本次检测的制热能力小于或等于所述初始制热能力,且所述本次检测的制热能力与所述初始制热能力的偏差小于第二预设偏差程度,则确定不进入化霜,控制所述空调维持制热运行,并返回执行每隔预设时间,检测一次所述空调的制热能力的步骤;
若所述本次检测的制热能力小于所述初始制热能力,且所述本次检测的制热能力与所述初始制热能力的偏差大于或等于所述第二预设偏差程度,则确定进入化霜。
在一些实施例中,所述本次检测的制热能力与所述初始制热能力的偏差情况通过所述本次检测的制热能力与所述初始制热能力的比值来确定,或者,通过所述本次检测的制热能力与所述初始制热能力的差值来确定。
在一些实施例中,在确定进入化霜之后,还包括:
根据低压压力与结霜压力的偏差值确定化霜时间,或者,根据本次检测的制热能力与初始制热能力的偏差值确定化霜时间;
控制所述空调持续化霜达到所述化霜时间后,退出化霜。
本公开实施例还提供了一种化霜控制装置,包括:
检测模块,用于在空调制热运行过程中,按照预设周期检测环境温度、环境湿度和所述空调的低压压力;
第一确定模块,用于根据所述环境温度、所述环境湿度和所述低压压力,确定所述空调的结霜情况;
第二确定模块,用于根据所述空调的结霜情况和所述空调的制热能力变化情况,确定是否进入化霜。
本公开实施例还提供了一种化霜控制装置,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行上文中提到的任意一种化霜控制方法。
本公开实施例还提供了一种空调,包括:本公开实施例所述的化霜控制装置。
本公开实施例还提供了一种计算机设备,包括:存储器、处理器及存储在存储器上并能够在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例所述方法的步骤。
本公开实施例还提供了一种非易失性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本公开实施例所述方法的步骤。
本公开实施例还提供了一种计算机程序,用于使处理器执行上文中任意一种化霜控制方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公 开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1是本公开的一些实施例提供的化霜控制方法的流程图。
图2是本公开的一些实施例提供的化霜控制的工作流程图。
图3是本公开的一些实施例提供的化霜控制装置的结构框图。
图4是本公开的另一些实施例提供的化霜控制装置的示意图。
图5是本公开的又一些实施例提供的化霜控制装置的示意图。
图6是本公开的一些实施例提供的空调的示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下能够互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是能够包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
发明人发现,相关技术中的化霜控制方法对空调是否结霜的判断不够准确,可能导致空调未达到化霜需求而进入化霜或者需要化霜却未进入化霜,出现无霜化霜或有霜不化的情况。
应用本公开的技术方案,在空调制热运行过程中,周期性检测环境温度、环境湿度和空调的低压压力,以确定空调的结霜情况,从而能够准确可靠地判断出空调是否结霜以及结霜程度;考虑空调结霜对空调制热能力的影响,结合空调的结霜情况和空调的制热能力变化情况确定是否进入化霜,能够更为合理准确地切入化霜,有效避免 无霜化霜和有霜不化的情况,解决空调化霜控制不够准确的问题。
图1是本公开的一些实施例提供的化霜控制方法的流程图,如图1所示,该方法包括以下步骤:
S101,在空调制热运行过程中,按照预设周期检测环境温度、环境湿度和空调的低压压力。
S102,根据环境温度、环境湿度和低压压力,确定空调的结霜情况。
S103,根据空调的结霜情况和空调的制热能力变化情况,确定是否进入化霜。
在一些实施例中,设置初始运行时间,在空调制热开机运行初始运行时间后,进入结霜检测步骤,开始检测环境温度、环境湿度和低压压力,从而保证在该初始运行时间内不进行化霜条件检测,以避免初始制热时空调运行不稳定导致误进入化霜的现象。
在一些实施例中,预设周期t根据实际情况进行预先设置。在空调制热运行时,每间隔t时间,重新检测一次环境温度、环境湿度和低压压力。具体的,在一些实施例中,进行计时,在当前计时时间达到t时,清空本周期内的检测数据,重新开始计时以进入下一周期,并重新检测环境温度、环境湿度和低压压力。
环境温度和环境湿度是指空调室外侧的温度和湿度。低压压力也称为吸气压力或蒸发压力,是室外换热器处的压力。空调的结霜情况主要是指室外换热器的结霜情况。通过空调的制热能力变化情况,能够反映出结霜对空调性能的影响。
本实施例在空调制热运行过程中,周期性检测环境温度、环境湿度和空调的低压压力,以确定空调的结霜情况,从而能够准确可靠地判断出空调是否结霜以及结霜程度;考虑空调结霜对空调制热能力的影响,结合空调的结霜情况和空调的制热能力变化情况确定是否进入化霜,能够更为合理准确地切入化霜,有效避免无霜化霜和有霜不化的情况,解决空调化霜控制不够准确的问题。
在一些实施方式中,根据环境温度、环境湿度和低压压力,确定空调的结霜情况,包括:确定与环境温度及环境湿度对应的结霜压力;根据低压压力与结霜压力的偏差情况,确定空调是否结霜以及结霜程度。
在一些实施例中,预先通过试验设置环境温度、环境湿度与结霜压力的对应关系,并存储该对应关系。结霜压力是指在对应的环境温度和环境湿度条件下开始结霜时所对应的低压压力。空调的实际低压压力与结霜压力的偏差情况,能够反映出空调是否结霜以及结霜程度。不同的环境温度及环境湿度对应不同的结霜压力。在一些实施例 中,如表1所示,将环境温度和环境湿度分段对应不同的结霜压力。
表1 环境温度、环境湿度与结霜压力对应表
Figure PCTCN2022139984-appb-000001
本实施方式根据环境温度及环境湿度确定对应的结霜压力,然后根据实际低压压力与结霜压力的偏差情况确定空调是否结霜以及结霜程度,由此能够准确可靠地识别空调的结霜情况。
进一步的,根据低压压力与结霜压力的偏差情况,确定空调是否结霜以及结霜程度,包括:
若低压压力大于结霜压力,则确定空调未结霜;
若低压压力小于或等于结霜压力,且低压压力与结霜压力的偏差小于第一预设偏差程度,表示空调刚要开始结霜或者轻微结霜,处于结霜初期,则确定空调结霜且为第一结霜程度;
若低压压力小于结霜压力,且低压压力与结霜压力的偏差大于或等于第一预设偏差程度,表示空调实际低压压力远低于结霜压力,空调结霜严重,则确定空调结霜且为第二结霜程度。
第一结霜程度的霜层厚度小于第二结霜程度的霜层厚度,即第二结霜程度比第一结霜程度更为严重。第一预设偏差程度是用于衡量空调实际低压压力与当前环境下结霜压力的偏差大小的阈值。在一些实施例中,第一预设偏差程度根据实际情况进行预先设置。
本实施方式基于空调实际低压压力与当前环境下结霜压力的偏差,能够准确可靠地识别空调的结霜情况。
具体的,低压压力与结霜压力的偏差情况通过低压压力与结霜压力的比值来确定,或者,通过低压压力与结霜压力的差值来确定。也就是说,在一些实施例中,第一预设偏差程度通过基于压力比值的偏差程度阈值或基于压力差值的偏差程度阈值来表示。
例如,计算低压压力与结霜压力的比值X,若X>1,表示低压压力大于结霜压 力,空调未结霜;若A<X≤1,表示低压压力小于或等于结霜压力,且低压压力与结霜压力的偏差不大(即偏差小于第一预设偏差程度),空调处于结霜初期,为第一结霜程度;若X≤A时,表示低压压力小于结霜压力,且低压压力与结霜压力的偏差较大(即偏差大于或等于第一预设偏差程度),即低压压力远低于结霜压力,空调结霜较为严重,为第二结霜程度。A是基于压力比值的偏差程度阈值,0<A<1。
又如,计算低压压力与结霜压力的差值K,若K>0,表示低压压力大于结霜压力,空调未结霜;若C<K≤0,表示低压压力小于或等于结霜压力,且低压压力与结霜压力的偏差不大(即偏差小于第一预设偏差程度),空调处于结霜初期,为第一结霜程度;若K≤C时,表示低压压力小于结霜压力,且低压压力与结霜压力的偏差较大(即偏差大于或等于第一预设偏差程度),即低压压力远低于结霜压力,空调结霜较为严重,为第二结霜程度。C是基于压力差值的偏差程度阈值,C<0。
本实施方式提供确定低压压力与结霜压力偏差情况的两种方式,应用更为灵活。
在一些实施方式中,根据空调的结霜情况和空调的制热能力变化情况,确定是否进入化霜,包括:若空调未结霜,则确定不进入化霜,控制空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和空调的低压压力的步骤;若空调结霜且为第一结霜程度,则根据空调的制热能力变化情况确定是否进入化霜;若空调结霜且为第二结霜程度,则确定进入化霜。
本实施方式在空调结霜严重的情况下,直接控制空调进入化霜状态,在空调结霜不严重(即结霜初期)的情况下,根据结霜后空调制热能力变化情况来分析结霜对空调能力的影响,并判断是否进入化霜,由此能够更为合理准确地切入化霜。
进一步的,根据空调的制热能力变化情况确定是否进入化霜,包括:检测空调在当前时刻的制热能力,记为初始制热能力;之后每隔预设时间,检测一次空调的制热能力;根据本次检测的制热能力与初始制热能力的偏差情况,确定是否进入化霜。其中,在一些实施例中,预设时间根据实际情况进行预先设置。随着结霜的进一步发展,空调制热能力会有所下降,每次检测的制热能力与初始制热能力的偏差情况,能够反映出结霜对空调制热能力的影响。本实施方式通过周期性检测空调制热能力,基于所检测的制热能力与初始制热能力的偏差情况,能够确定空调制热能力的下降幅度,从而能够更为合理准确地进入化霜。
在一些实施方式中,根据本次检测的制热能力与初始制热能力的偏差情况,确定是否进入化霜,包括:
若本次检测的制热能力大于初始制热能力,表示空调制热能力没有下降,则确定不进入化霜,控制空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和空调的低压压力的步骤;
若本次检测的制热能力小于或等于初始制热能力,且本次检测的制热能力与初始制热能力的偏差小于第二预设偏差程度,表示空调制热能力维持现状或者略微下降,对空调整体性能影响不大,能够正常满足用户需求,则确定不进入化霜,控制空调维持制热运行,并返回执行每隔预设时间,检测一次空调的制热能力的步骤;
若本次检测的制热能力小于初始制热能力,且本次检测的制热能力与初始制热能力的偏差大于或等于第二预设偏差程度,表示空调结霜对空调制热能力影响较大,则确定进入化霜。
其中,第二预设偏差程度是用于衡量当前检测的空调制热能力与初始制热能力的偏差大小的阈值,在一些实施例中,第二预设偏差程度根据实际情况进行预先设置。
本实施方式基于本次检测的制热能力与初始制热能力的偏差,能够更为合理准确地确定是否进入化霜。
具体的,本次检测的制热能力与初始制热能力的偏差情况通过本次检测的制热能力与初始制热能力的比值来确定,或者,通过本次检测的制热能力与初始制热能力的差值来确定。也就是说,在一些实施例中,第二预设偏差程度通过基于制热能力比值的偏差程度阈值或基于制热能力差值的偏差程度阈值来表示。
例如,计算本次检测的制热能力与初始制热能力的比值Y,若Y>1,表示本次检测的制热能力大于初始制热能力,即空调制热能力没有下降,不进入化霜,继续制热,并继续周期性检测环境温度、环境湿度和低压压力;若B<Y≤1,表示本次检测的制热能力小于或等于初始制热能力,且本次检测的制热能力与初始制热能力的偏差不大(即偏差小于第二预设偏差程度),即空调制热能力维持现状或者略微下降,对空调整体性能影响不大,能够正常满足用户需求,不进入化霜,继续制热,并继续周期性检测空调制热能力;若Y≤B时,表示本次检测的制热能力小于初始制热能力,且本次检测的制热能力与初始制热能力的偏差较大(即偏差大于或等于第二预设偏差程度),即空调结霜对空调制热能力影响较大,直接进入化霜。B是基于制热能力比值的偏差程度阈值,0<B<1。
又如,计算本次检测的制热能力与初始制热能力的差值M,若M>0,表示本次检测的制热能力大于初始制热能力,即空调制热能力没有下降,不进入化霜,继续制 热,并继续周期性检测环境温度、环境湿度和低压压力;若D<M≤0,表示本次检测的制热能力小于或等于初始制热能力,且本次检测的制热能力与初始制热能力的偏差不大(即偏差小于第二预设偏差程度),即空调制热能力维持现状或者略微下降,对空调整体性能影响不大,能够正常满足用户需求,不进入化霜,继续制热,并继续周期性检测空调制热能力;若M≤D时,表示本次检测的制热能力小于初始制热能力,且本次检测的制热能力与初始制热能力的偏差较大(即偏差大于或等于第二预设偏差程度),即空调结霜对空调制热能力影响较大,直接进入化霜。D是基于制热能力差值的偏差程度阈值,D<0。
本实施方式提供确定本次检测的制热能力与初始制热能力偏差情况的两种方式,应用更为灵活。
在一些实施方式中,在确定进入化霜之后,还包括:根据低压压力与结霜压力的偏差值确定化霜时间,或者,根据本次检测的制热能力与初始制热能力的偏差值确定化霜时间;控制空调持续化霜达到化霜时间后,退出化霜。化霜结束后,空调重新进入制热状态,并重新开始进行结霜检测。
其中,若在空调结霜且为第二结霜程度(即结霜严重)的情况下进入化霜,则根据此时低压压力与结霜压力的偏差值来确定化霜时间。在一些实施例中,低压压力与结霜压力的偏差值是比值或差值。低压压力与结霜压力的偏差值越低(即二者偏差越大),对应的化霜时间越长。
若在本次检测的制热能力小于初始制热能力,且本次检测的制热能力与初始制热能力的偏差大于或等于第二预设偏差程度的情况下进入化霜,则根据本次检测的制热能力与初始制热能力来确定化霜时间。在一些实施例中,本次检测的制热能力与初始制热能力的偏差值是比值或差值。本次检测的制热能力与初始制热能力的偏差值越低(即二者偏差越大),对应的化霜时间越长。
在一些实施例中,预先通过试验设置低压压力与结霜压力的偏差值与化霜时间的对应关系,以及,空调当前制热能力与初始制热能力的偏差值与化霜时间的对应关系,并存储上述对应关系。
本实施方式中,空调化霜维持的时间长度与空调结霜情况或结霜对空调能力影响程度有关,根据压力偏差或制热能力偏差,确定出符合空调实际情况的合适的化霜时间,保证化霜时间的准确性,解决了化霜时间过长或过短的问题。
下面结合一些具体实施例对上述化霜控制方法进行说明,然而值得注意的是,该 具体实施例仅是为了更好地说明本申请,并不构成对本申请的不当限定。与上述实施例相同或相应的术语解释,本实施例不再赘述。
如图2所示,以通过比值来表示偏差为例,化霜控制方法包括如下步骤:
S201,空调制热开机后,初始运行t 3时长,在此t 3时长内不进行化霜条件检测,以避免初始开机时,空调系统运行不稳定从而导致误进入化霜的现象。空调制热开机初始运行时间t 3结束后,进入结霜检测步骤。
S202,检测环境温度T、环境湿度H和空调运行时的低压压力P。每间隔t时间,清空之前所检测的数据,重新进行一次环境温度T、环境湿度H和低压压力P的检测。每次重新检测T、P、H的时候,都将当前计时时间清零,并清空之前所检测的数据,以重新开始计时并检测数据。
S203,确定与当前的环境温度T及环境湿度P对应的结霜压力P 0,并计算当前的低压压力P与结霜压力P 0的比值,X=P/P 0
当X>1时,即空调的实际低压压力P高于此时温湿度对应的结霜压力P 0,表示空调没有结霜,无需化霜,维持制热运行,并返回S202继续检测。
当A<X≤1时,表示空调此时刚要开始结霜或者轻微结霜,对空调能力影响不显著,无需直接进入化霜,进入S204进行下一步对制热能力的判定。0<A<1。
当X≤A时,即空调的实际低压压力P远低于结霜压力P 0,表示此时空调结霜情况较为恶劣,直接进入化霜状态,即进入S207。
S204,检测空调在当前时刻的制热能力Q 0,作为初次检测的制热能力,并记录该值。
S205,在记录完Q 0后,每隔t 1时间检测一次空调的制热能力Q 1,并计算所检测的Q 1与Q 0的比值,Y=Q 1/Q 0
当Y>1时,表示空调能力没有下降,不进入化霜,维持制热运行,并返回S202继续检测。
当B<Y≤1时,表示空调制热能力维持现状或者略微下降,对空调整体性能影响不大,能够正常满足用户需求,空调维持现状运行,即进入S206。0<B<1。
当Y≤B时,表示空调的结霜对空调制热能力影响较大,则直接进入化霜状态,即进入S207。
S206,不进入化霜,维持制热运行,并返回S205,间隔t 1时间后再次检测空调的制热能力Q 1,重新进行制热能力对比判定。Q 1表示每隔t1时间检测到的空调制热 能力。
S207,进入化霜状态,确定化霜时间t 2,空调化霜持续t 2时间。空调化霜维持的时间长度与空调结霜情况和对空调制热能力影响程度有关。具体的,当空调在X≤A的情况进入化霜状态时,根据此时的X值来确定对应的化霜时间t 2,X值越低,对应的化霜时间t 2越长;当空调在Y≤B的情况进入化霜状态时,根据此时的Y值来确定对应的化霜时间t 2,Y值越低,对应的化霜时间t 2越长。
S208,化霜结束,空调重新进入制热状态,并返回S202进行新一轮的化霜判定。
本实施例通过检测空调室外侧的环境温度和环境湿度来确定对应的结霜压力,通过实际低压压力与结霜压力的对比来判定空调是否结霜以及结霜程度,若结霜严重,直接进入化霜,若结霜不严重,则通过结霜初期的制热能力与之后的制热能力进行对比来分析结霜对空调性能造成的影响,以判断是否进入化霜,即通过结霜后空调制热能力的下降幅度来控制空调是否进入化霜。根据环境温度、环境湿度、空调运行时的低压压力以及结霜对空调制热能力的影响,来综合性地控制空调制热状态与化霜状态之间的切换,并且通过压力偏差或能力偏差来确定空调合适的化霜时间,有效解决了无霜化霜、有霜不化和化霜时间不准确的问题。
在一些实施例中,基于与上文中的同一构思,提供了一种化霜控制装置,用于实现上述实施例所述的化霜控制方法。在一些实施例中,该装置通过软件与硬件中的至少一种实现,该装置一般能够集成于空调的控制器中。
图3是本公开实施例三提供的化霜控制装置的结构框图,如图3所示,该装置包括:
检测模块31,用于在空调制热运行过程中,按照预设周期检测环境温度、环境湿度和所述空调的低压压力;
第一确定模块32,用于根据所述环境温度、所述环境湿度和所述低压压力,确定所述空调的结霜情况;
第二确定模块33,用于根据所述空调的结霜情况和所述空调的制热能力变化情况,确定是否进入化霜。
在一些实施例中,第一确定模块32包括:
第一确定单元,用于确定与所述环境温度及所述环境湿度对应的结霜压力;
第二确定单元,用于根据所述低压压力与所述结霜压力的偏差情况,确定所述空调是否结霜以及结霜程度。
在一些实施例中,第二确定单元具体用于:
若所述低压压力大于所述结霜压力,则确定所述空调未结霜;
若所述低压压力小于或等于所述结霜压力,且所述低压压力与所述结霜压力的偏差小于第一预设偏差程度,则确定所述空调结霜且为第一结霜程度;
若所述低压压力小于所述结霜压力,且所述低压压力与所述结霜压力的偏差大于或等于所述第一预设偏差程度,则确定所述空调结霜且为第二结霜程度;
其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度。
在一些实施例中,所述低压压力与所述结霜压力的偏差情况通过所述低压压力与所述结霜压力的比值来确定,或者,通过所述低压压力与所述结霜压力的差值来确定。
在一些实施例中,第二确定模块33包括:
第三确定单元,用于若所述空调未结霜,则确定不进入化霜,控制所述空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和所述空调的低压压力的步骤;
第四确定单元,用于若所述空调结霜且为第一结霜程度,则根据所述空调的制热能力变化情况确定是否进入化霜;
第五确定单元,用于若所述空调结霜且为第二结霜程度,则确定进入化霜。
在一些实施例中,第四确定单元包括:
检测子单元,用于检测所述空调在当前时刻的制热能力,记为初始制热能力;以及,之后每隔预设时间,检测一次所述空调的制热能力;
确定子单元,用于根据本次检测的制热能力与所述初始制热能力的偏差情况,确定是否进入化霜。
在一些实施例中,确定子单元具体用于:
若所述本次检测的制热能力大于所述初始制热能力,则确定不进入化霜,控制所述空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和所述空调的低压压力的步骤;
若所述本次检测的制热能力小于或等于所述初始制热能力,且所述本次检测的制热能力与所述初始制热能力的偏差小于第二预设偏差程度,则确定不进入化霜,控制所述空调维持制热运行,并返回执行每隔预设时间,检测一次所述空调的制热能力的步骤;
若所述本次检测的制热能力小于所述初始制热能力,且所述本次检测的制热能力 与所述初始制热能力的偏差大于或等于所述第二预设偏差程度,则确定进入化霜。
在一些实施例中,所述本次检测的制热能力与所述初始制热能力的偏差情况通过所述本次检测的制热能力与所述初始制热能力的比值来确定,或者,通过所述本次检测的制热能力与所述初始制热能力的差值来确定。
在一些实施例中,上述化霜控制装置还包括:
时间确定模块,用于在第五确定单元或确定子单元确定进入化霜之后,根据低压压力与结霜压力的偏差值确定化霜时间,或者,根据本次检测的制热能力与初始制热能力的偏差值确定化霜时间;
控制模块,用于控制所述空调持续化霜达到所述化霜时间后,退出化霜。
上述化霜控制装置能够执行本公开实施例所提供的化霜控制方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本公开实施例提供的化霜控制方法。
本公开化霜控制装置的一些实施例的结构示意图如图4所示。化霜控制装置包括存储器401和处理器402。其中:存储器401是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储上文中化霜控制方法的对应实施例中的指令。处理器402耦接至存储器401,作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器402用于执行存储器中存储的指令,能够有效避免无霜化霜和有霜不化的情况,解决空调化霜控制不够准确的问题。
在一个实施例中,如图5所示,化霜控制装置500包括存储器501和处理器502。处理器502通过BUS总线503耦合至存储器501。该化霜控制装置500还能够通过存储接口504连接至外部存储装置505以便调用外部数据,还能够通过网络接口506连接至网络或者另外一台计算机系统(未标出)。此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,能够有效避免无霜化霜和有霜不化的情况,解决空调化霜控制不够准确的问题。
在一些实施例中,本公开提供一种空调60,包括:上述实施例所述的化霜控制装置61。在一些实施例中,该空调是热泵空调,例如风冷热泵空调。
在一些实施例中,本公开提供一种计算机设备,包括:存储器、处理器及存储在存储器上并能够在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述实施例所述方法的步骤。
在一些实施例中,本公开提供一种非易失性计算机可读存储介质,其上存储有计 算机程序,所述计算机程序被处理器执行时实现上述实施例所述方法的步骤。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(如个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技 术方案的精神和范围。

Claims (15)

  1. 一种化霜控制方法,包括:
    在空调制热运行过程中,按照预设周期检测环境温度、环境湿度和所述空调的低压压力;
    根据所述环境温度、所述环境湿度和所述低压压力,确定所述空调的结霜情况;和
    根据所述空调的结霜情况和所述空调的制热能力变化情况,确定是否进入化霜。
  2. 根据权利要求1所述的化霜控制方法,其中,所述根据所述环境温度、所述环境湿度和所述低压压力,确定所述空调的结霜情况,包括:
    确定与所述环境温度及所述环境湿度对应的结霜压力;和
    根据所述低压压力与所述结霜压力的偏差情况,确定所述空调是否结霜以及结霜程度。
  3. 根据权利要求2所述的化霜控制方法,其中,所述根据所述低压压力与所述结霜压力的偏差情况,确定所述空调是否结霜以及结霜程度,包括以下至少一项:
    若所述低压压力大于所述结霜压力,则确定所述空调未结霜;
    若所述低压压力小于或等于所述结霜压力,且所述低压压力与所述结霜压力的偏差小于第一预设偏差程度,则确定所述空调结霜且为第一结霜程度;或
    若所述低压压力小于所述结霜压力,且所述低压压力与所述结霜压力的偏差大于或等于所述第一预设偏差程度,则确定所述空调结霜且为第二结霜程度,
    其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度。
  4. 根据权利要求2所述的化霜控制方法,其中,所述低压压力与所述结霜压力的偏差情况通过所述低压压力与所述结霜压力的比值来确定,或者,通过所述低压压力与所述结霜压力的差值来确定。
  5. 根据权利要求1所述的化霜控制方法,其中,所述根据所述空调的结霜情况和所述空调的制热能力变化情况,确定是否进入化霜,包括以下至少一项:
    若所述空调未结霜,则确定不进入化霜,控制所述空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和所述空调的低压压力的步骤;
    若所述空调结霜且为第一结霜程度,则根据所述空调的制热能力变化情况确定是 否进入化霜;或
    若所述空调结霜且为第二结霜程度,则确定进入化霜。
  6. 根据权利要求5所述的化霜控制方法,其中,所述根据所述空调的制热能力变化情况确定是否进入化霜,包括:
    检测所述空调在当前时刻的制热能力,记为初始制热能力;
    之后每隔预设时间,检测一次所述空调的制热能力;和
    根据本次检测的制热能力与所述初始制热能力的偏差情况,确定是否进入化霜。
  7. 根据权利要求6所述的化霜控制方法,其中,所述根据本次检测的制热能力与所述初始制热能力的偏差情况,确定是否进入化霜,包括以下至少一项:
    若所述本次检测的制热能力大于所述初始制热能力,则确定不进入化霜,控制所述空调维持制热运行,并返回执行按照预设周期检测检测环境温度、环境湿度和所述空调的低压压力的步骤;
    若所述本次检测的制热能力小于或等于所述初始制热能力,且所述本次检测的制热能力与所述初始制热能力的偏差小于第二预设偏差程度,则确定不进入化霜,控制所述空调维持制热运行,并返回执行每隔预设时间,检测一次所述空调的制热能力的步骤;或
    若所述本次检测的制热能力小于所述初始制热能力,且所述本次检测的制热能力与所述初始制热能力的偏差大于或等于所述第二预设偏差程度,则确定进入化霜。
  8. 根据权利要求6所述的化霜控制方法,其中,所述本次检测的制热能力与所述初始制热能力的偏差情况通过所述本次检测的制热能力与所述初始制热能力的比值来确定,或者,通过所述本次检测的制热能力与所述初始制热能力的差值来确定。
  9. 根据权利要求5或7所述的化霜控制方法,还包括:在确定进入化霜之后,
    根据低压压力与结霜压力的偏差值确定化霜时间,或者,根据本次检测的制热能力与初始制热能力的偏差值确定化霜时间;和
    控制所述空调持续化霜达到所述化霜时间后,退出化霜。
  10. 一种化霜控制装置,包括:
    检测模块,用于在空调制热运行过程中,按照预设周期检测环境温度、环境湿度和所述空调的低压压力;
    第一确定模块,用于根据所述环境温度、所述环境湿度和所述低压压力,确定所 述空调的结霜情况;和
    第二确定模块,用于根据所述空调的结霜情况和所述空调的制热能力变化情况,确定是否进入化霜。
  11. 一种化霜控制装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至9任一项所述的方法。
  12. 一种空调,包括:权利要求10或11所述的化霜控制装置。
  13. 一种计算机设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至9中任一项所述方法的步骤。
  14. 一种非易失性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述方法的步骤。
  15. 一种计算机程序,用于使处理器执行权利要求1至9任意一项所述的方法。
PCT/CN2022/139984 2022-06-21 2022-12-19 化霜控制方法、装置及空调 WO2023246027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210703879.0A CN114893866B (zh) 2022-06-21 2022-06-21 一种化霜控制方法、装置及空调
CN202210703879.0 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023246027A1 true WO2023246027A1 (zh) 2023-12-28

Family

ID=82727988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139984 WO2023246027A1 (zh) 2022-06-21 2022-12-19 化霜控制方法、装置及空调

Country Status (2)

Country Link
CN (1) CN114893866B (zh)
WO (1) WO2023246027A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893866B (zh) * 2022-06-21 2023-07-21 珠海格力电器股份有限公司 一种化霜控制方法、装置及空调
CN115342483B (zh) * 2022-08-23 2024-09-10 南京天加环境科技有限公司 一种空调器用四通阀不换向除霜控制方法及空调系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002461A (ja) * 2010-06-18 2012-01-05 Sharp Corp 空気調節機
CN104566820A (zh) * 2014-12-26 2015-04-29 珠海格力电器股份有限公司 空调器及其控制方法和装置
US20160238271A1 (en) * 2013-09-30 2016-08-18 Fujitsu General Limited Air conditioner
CN106288243A (zh) * 2016-10-20 2017-01-04 广东美的暖通设备有限公司 空调器的除霜控制方法及装置
CN109323368A (zh) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 空调及其化霜方法和装置
CN111156657A (zh) * 2019-12-25 2020-05-15 珠海格力电器股份有限公司 空调结霜状态确定方法和装置
CN111207486A (zh) * 2020-01-14 2020-05-29 珠海格力电器股份有限公司 一种空调智能化霜控制方法、计算机可读存储介质及空调
CN111780464A (zh) * 2020-06-05 2020-10-16 上海爱斯达克汽车空调系统有限公司 电动汽车车外换热器的结霜与除霜系统及方法
CN114893866A (zh) * 2022-06-21 2022-08-12 珠海格力电器股份有限公司 一种化霜控制方法、装置及空调

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091506B (zh) * 2016-06-02 2018-12-04 珠海格力电器股份有限公司 空调防结霜方法及系统
EP3531045A1 (en) * 2016-10-20 2019-08-28 GD Midea Heating & Ventilating Equipment Co., Ltd. Method and device for defrosting air conditioner
CN109323370B (zh) * 2018-09-30 2021-05-25 广东美的制冷设备有限公司 空调及其化霜方法和装置
CN110044036A (zh) * 2019-02-27 2019-07-23 青岛海尔空调电子有限公司 热源塔控制方法、控制装置及热源塔
CN112628941B (zh) * 2020-12-11 2022-02-18 珠海格力电器股份有限公司 一种空调化霜控制方法、装置、存储介质及空调

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002461A (ja) * 2010-06-18 2012-01-05 Sharp Corp 空気調節機
US20160238271A1 (en) * 2013-09-30 2016-08-18 Fujitsu General Limited Air conditioner
CN104566820A (zh) * 2014-12-26 2015-04-29 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN106288243A (zh) * 2016-10-20 2017-01-04 广东美的暖通设备有限公司 空调器的除霜控制方法及装置
CN109323368A (zh) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 空调及其化霜方法和装置
CN111156657A (zh) * 2019-12-25 2020-05-15 珠海格力电器股份有限公司 空调结霜状态确定方法和装置
CN111207486A (zh) * 2020-01-14 2020-05-29 珠海格力电器股份有限公司 一种空调智能化霜控制方法、计算机可读存储介质及空调
CN111780464A (zh) * 2020-06-05 2020-10-16 上海爱斯达克汽车空调系统有限公司 电动汽车车外换热器的结霜与除霜系统及方法
CN114893866A (zh) * 2022-06-21 2022-08-12 珠海格力电器股份有限公司 一种化霜控制方法、装置及空调

Also Published As

Publication number Publication date
CN114893866B (zh) 2023-07-21
CN114893866A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2023246027A1 (zh) 化霜控制方法、装置及空调
CN110006133B (zh) 一种空调除霜控制方法、装置及空调器
CN110469959B (zh) 用于空调除霜的控制方法、装置及空调
CN109737560B (zh) 一种空调化霜控制方法、装置及空调器
CN111023424B (zh) 一种控制方法、系统及空调器
CN111023429B (zh) 一种控制方法、系统及空调器
CN110469991B (zh) 用于空调除霜的控制方法、装置及空调
CN110469993B (zh) 用于空调除霜的控制方法、装置及空调
CN112050376A (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN110017593B (zh) 空气源热泵机组及其控制方法和装置、存储介质
CN112781289B (zh) 一种低温热泵除霜控制方法、装置、设备及存储介质
CN110542234B (zh) 空调器及其运行控制方法、装置和计算机可读存储介质
CN108644971B (zh) 空调化霜的控制方法和装置、存储介质和处理器
CN111947350B (zh) 除霜控制方法、除霜控制系统及空气源热泵装置
WO2024045623A1 (zh) 用于空调防冻结的控制方法、装置、空调、存储介质
CN112050367B (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN110470000B (zh) 用于空调除霜的控制方法、装置及空调
CN111141006A (zh) 一种空调化霜的控制方法、控制装置、存储介质及空调
CN110470003B (zh) 用于空调除霜的控制方法及装置、空调
CN110469998B (zh) 用于空调除霜的控制方法、装置及空调
CN112013502B (zh) 一种空调换热器的除霜方法及空调
CN110469999B (zh) 用于空调除霜的控制方法、装置及空调
CN111895591B (zh) 一种空调除霜的控制方法、装置及空调
CN113432249A (zh) 一种基于风机状态的除霜控制方法及装置
CN115654777B (zh) 一种除霜控制方法、装置及热泵机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947762

Country of ref document: EP

Kind code of ref document: A1