WO2023245570A1 - 用电装置及其电池的充电时间计算方法、装置及介质 - Google Patents

用电装置及其电池的充电时间计算方法、装置及介质 Download PDF

Info

Publication number
WO2023245570A1
WO2023245570A1 PCT/CN2022/100885 CN2022100885W WO2023245570A1 WO 2023245570 A1 WO2023245570 A1 WO 2023245570A1 CN 2022100885 W CN2022100885 W CN 2022100885W WO 2023245570 A1 WO2023245570 A1 WO 2023245570A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
interval
charging
charging time
material active
Prior art date
Application number
PCT/CN2022/100885
Other languages
English (en)
French (fr)
Inventor
王海将
李海力
张世昌
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280014061.6A priority Critical patent/CN117642955A/zh
Priority to PCT/CN2022/100885 priority patent/WO2023245570A1/zh
Publication of WO2023245570A1 publication Critical patent/WO2023245570A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This application relates to battery management technology, in particular to a charging time calculation method, device and medium for an electrical device and its battery.
  • the response of the remaining charging time can provide a time basis for electric vehicle owners to reasonably arrange their car use time and work and life time. Furthermore, accurate remaining charging time allows electric car owners to efficiently utilize their living and working time. For example, when an electric car enters the charging state after plugging in the gun, the electric car owner can accurately know the remaining charging time in the current charging process through the mobile phone or charging pile in real time. Thereby improving the driving experience of electric vehicle owners.
  • the response of the remaining charging time of the battery in the related art usually has a problem of inaccurate calculation of the remaining charging time due to different materials of the battery system.
  • Embodiments of the present application provide a charging time calculation method, device and medium for an electrical device and its battery. This solves the problem in related technologies that the remaining charging time is inaccurately calculated due to different materials of the battery system.
  • a battery charging time calculation method including:
  • the material active range Based on the electrical parameters during the battery charging process, determine the material active range that the battery is currently in.
  • the material active range reflects the chemical reaction activity of the battery under the corresponding electrical parameters; if the current material active range uses constant voltage charging
  • the target material active interval for charging is determined based on the pre-stored charging time set corresponding to the target material active interval.
  • the charging time set records the charging time spent on charging each sub-interval of the target material interval in the historical period. duration.
  • the charging time required to complete charging of each sub-interval of the material interval can be inferred based on the pre-stored historical charging records. The remaining charging time corresponding to the next charging interval. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • the battery is a composite material system
  • the material active section at least includes a first material active section and a second material active section.
  • the first material active area is a lithium iron phosphate material area; the second material active area is a lithium manganese phosphate material interval; among them, the target material active interval is the lithium manganese phosphate material interval.
  • determining the remaining charging time of the battery based on a pre-stored charging time set corresponding to the active interval of the target material includes: determining the current power value of the battery; based on the current power value, Determine the to-be-charged interval of the battery; calculate the remaining charging time of the battery based on the pre-stored charging time set corresponding to the to-be-charged interval and the active interval of the target material.
  • the corresponding phosphoric acid can be determined in real time based on the current value of the battery to be charged.
  • the interval to be charged of the manganese lithium material is so that the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time required to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • calculating the remaining charging time of the battery based on the pre-stored charging time set corresponding to the interval to be charged and the target material active interval includes: according to each period included in the target material active interval.
  • Each power sub-interval is determined to determine all power sub-intervals belonging to the interval to be charged; the charging time corresponding to each power sub-interval belonging to the interval to be charged is accumulated to obtain the remaining charging time of the battery.
  • the current material active interval is not the target material active interval
  • the target material active interval based on the preset battery temperature rise prediction model and the target material active interval corresponding A set of pre-stored charging times is used to determine the remaining charging time of the battery.
  • the remaining charging time corresponding to the interval to be charged can be inferred later based on the charging time required to complete charging of each sub-interval of the lithium manganese phosphate material interval pre-stored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • determining the remaining charging time of the battery based on the preset battery temperature rise prediction model and the pre-stored charging time set corresponding to the target material active interval includes: based on the battery Determine the charging interval of the battery based on the current power value of the battery; determine the sub-interval to be charged that does not belong to the active interval of the target material; calculate the first charging consumption required for the sub-interval to be charged based on the preset battery temperature rise prediction model time; accumulate all the charging time consuming in the pre-stored charging time length set to obtain the second charging time consuming corresponding to the active range of the target material; calculate the sum of the first charging time consuming and the second charging time consuming to obtain the remaining charging time of the battery.
  • the charging process of the lithium iron phosphate material interval can be calculated based on the preset battery temperature rise prediction model.
  • the remaining charging time corresponding to the interval to be charged is inferred based on the charging time taken to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • calculating the first charging time required for the sub-interval to be charged based on a preset battery temperature rise prediction model includes: obtaining a preset charging stage set ; According to the current charging current, based on the charging stage set and the preset battery temperature rise prediction model, calculate the first charging time required for the sub-interval to be charged.
  • the charging time of each electric quantity sub-interval of the active interval of the target material is recorded; the current charging time of each electric quantity sub-interval in the pre-stored charging time set is The corresponding charging time is updated to the charging time of each electric sub-interval recorded in this charging process.
  • the actual charging time of each sub-section is recorded during this charging process of the lithium manganese phosphate material section.
  • the data of the pre-stored charging time set is updated according to the actual charging time. This avoids the problem in related technologies of inaccurate calculation of remaining charging time due to inaccurate recording of charging time in historical periods.
  • determining the material active range of the battery currently located based on the electrical parameters during the battery charging process includes: obtaining the electrical parameters during the battery charging process; based on The preset parameter thresholds of electrical parameters determine the material activity range in which the battery is located.
  • the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time taken to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • determining the material activity interval in which the battery is located based on a preset parameter threshold of the electrical parameter includes: determining that the battery is currently active based on the electrical parameter being less than the preset parameter threshold.
  • the material active interval in which the battery is located is the first material active interval; according to whether the electrical parameter is greater than or equal to the preset parameter threshold, the material active interval in which the battery is currently located is determined to be the second material active interval.
  • the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time taken to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • obtaining the electrical parameters during the battery charging process includes: obtaining the cell voltage of each cell contained in the battery; Select the maximum cell voltage among the voltages and determine the maximum cell voltage as the electrical parameter of the battery.
  • the electrical parameters include the SOC or the maximum cell voltage of the battery.
  • the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time taken to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • a battery charging time calculation device including: a first determination module configured to determine the current location of the battery based on electrical parameters during the battery charging process. material active interval, the material active interval reflects the chemical reaction activity of the battery under corresponding electrical parameters; the second determination module is configured to if the current material active interval is a target material for charging using a constant voltage charging method active interval, the remaining charging time of the battery is determined based on the pre-stored charging time set corresponding to the target material active interval.
  • the charging time set records the historical period of charging of each sub-interval of the target material interval. The time spent charging.
  • an electrical device including:
  • the display is configured to execute the executable instructions with the memory to complete the operation of any of the above battery charging time calculation methods.
  • a computer-readable storage medium for storing computer-readable instructions.
  • the instructions When the instructions are executed, the operations of any of the above battery charging time calculation methods are performed. .
  • Figure 1 is a schematic structural diagram of a power supply device applied to a battery proposed by this application;
  • FIG. 2 is a schematic diagram of a battery charging time calculation method proposed by this application.
  • FIG. 3 is a schematic flow chart of a battery charging time calculation method proposed in this application.
  • FIG. 4 is a schematic structural diagram of the battery charging time calculation device proposed in this application.
  • Figure 5 is a schematic diagram of the electrical device proposed in this application.
  • FIGS. 1-3 A method for calculating the charging time of a battery according to an exemplary embodiment of the present application will be described below with reference to FIGS. 1-3 . It should be noted that the following application scenarios are only shown to facilitate understanding of the spirit and principles of the present application, and the implementation of the present application is not subject to any limitation in this regard. On the contrary, the embodiments of the present application can be applied to any applicable scenario.
  • charging time has become one of the main concerns of many electric vehicle owners when using their cars in daily life, and the remaining charging time can be reasonable for electric vehicle owners.
  • the response to the user's accurate remaining charging time allows electric car owners to efficiently utilize their living and working time.
  • the electric car owner can accurately understand the charging time through the mobile phone or charging pile in real time. The remaining charging time until the current charging process.
  • fast charging quickly recharges electric vehicles through high-power charging piles to meet customers' car needs in a short period of time.
  • the accuracy of fast charging charging time calculation is more important to electric vehicle owners .
  • Remaining charging time remaining capacity (CAP_remain)/remaining time calculation current value (I_Count);
  • the calculation method of remaining capacity is cell capacity * remaining SOC (charging target SOC - current SOC); according to the above calculation formula, the remaining fast charging time in this charging process can be roughly calculated; but through this calculation formula Calculating the remaining charging time will lead to a large calculation error between the calculated remaining charging time and the actual charging time; one of the main reasons for the large error in the calculation formula is the remaining time calculation current value (I_Count) used in the remaining charging time calculation formula ))))))))
  • I_Count remaining time calculation current value
  • the charging current capacity of the lithium-ion battery has a strong correlation with the cell temperature and the battery SOC state; when the lithium-ion battery is in a low SOC state, the battery's charging current capability is high; when the lithium-ion battery is in a high SOC state, the battery The charging capacity is low; temperature will also have a greater impact on the charging speed of lithium-ion batteries.
  • the higher the temperature the more intense the molecular movement.
  • the faster the electrochemical reaction and chemical activity reaction inside the battery the stronger the charging capacity of the battery cell; therefore, at the initial moment of charging, to accurately predict the charging time during this charging process, different SOC states and different temperatures need to be comprehensively considered.
  • the usual charging method for batteries with commonly used lithium ion material systems is to check the charging stage of the battery based on the temperature and SOC characteristics of the battery. The charging stage needs to be determined according to the different conditions of the battery. Actual testing under temperature and SOC conditions.
  • the charging path during the current charging process of the battery is estimated (while considering the influence of SOC and temperature variables), thus Estimate the remaining charging time during battery charging in real time.
  • Batteries with different material systems have different charging methods, so the remaining charging time calculation methods are also different. Due to its unique cell characteristics, the charging method of lithium iron manganese phosphate material is different from that of batteries with commonly used lithium ion material systems.
  • lithium iron phosphate (LiFePO4) material has good cycle performance and safety performance, but its discharge platform is relatively low, resulting in low battery capacity density and affecting the cruising range of electric vehicles; among the same family of compounds, lithium manganese phosphate ( LiMnPO4) has a high discharge voltage platform, but its reactivity is low, so in actual production, LiFePO4 is usually combined with LiMnPO4 phosphorus to form LiFe1-xMnxPO4 lithium manganese iron phosphate material (0 ⁇ x ⁇ 1), lithium manganese iron phosphate material (LiFe1-xMnxPO4), contains two regions during the charge and discharge process, one is between 4.0 and 4.1V, corresponding to the reaction of Mn3+/Mn2+; the other is between 3.5 and 3.6V, corresponding to the reaction of Fe3+/Fe2+.
  • LiMnPO4 lithium manganese phosphate material
  • the electrochemical performance of lithium iron manganese phosphate material decreases with the increase of Mn content; the kinetic performance of lithium iron manganese phosphate material in the 4V voltage platform region is very poor.
  • the polarization resistance of the battery cell mainly comes from the positive electrode material. Under high-rate charging conditions, the battery will soon reach the full charge cut-off voltage of the battery due to excessive polarization of the positive electrode of the battery; therefore, the battery will not A large charging rate causes lithium to precipitate in the negative electrode, thereby reducing the charging rate of the battery cell.
  • the battery terminal voltage will quickly reach the battery's full charge cut-off voltage; when the battery cell voltage reaches the battery's full charge cut-off voltage, if charging is stopped at this time, the battery will This leads to insufficient charging of the battery cell, resulting in cruising range problems; when charging an electric vehicle using lithium manganese iron phosphate material, the dynamic performance of the battery core is good in the low-end SOC range (LiFePO4 material range), while in the high-end SOC range (LiMnPO4 material range) range), the positive electrode material is highly polarized, which causes the battery to easily reach the charging cut-off voltage during charging, causing the problem that the battery cell is not fully charged. Therefore, the lookup table charging request current window can be used through the low-end SOC range (LiFePO4 material range)+ The high-end SOC range (LiMnPO4 material range) is charged by multi-step constant voltage charging (CV) charging.
  • CV constant voltage charging
  • the battery current is adaptively adjusted in real time according to the dynamic characteristics of the battery cell, so it is impossible to predict the battery's The current value during constant voltage charging, so the charging time of the battery in the high-end SOC range (LiMnPO4 material range) cannot be predicted during the charging process.
  • this application provides a battery based on a composite material system. How to calculate remaining charging time.
  • the composite material system can be a lithium manganese iron phosphate composite material system.
  • the battery contains at least two material active areas. One is the lithium iron phosphate material interval, and the other is the lithium manganese phosphate material interval.
  • the target material active interval in the embodiment of the present application is the lithium manganese phosphate material interval.
  • inventions of the present application provide an electrical device using a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc. wait.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the battery pack in this application is rechargeable and dischargeable, such as lithium-ion battery, nickel-hydrogen battery, nickel-chromium battery, nickel-zinc battery, etc.
  • a vehicle 1000 is used as an example in which an electrical device according to an embodiment of the present application is used.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 400 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 400 , for example, for starting, navigation, and operating power requirements of the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • this application also proposes a charging time calculation method, device and medium for an electrical device and its battery.
  • FIG. 2 schematically shows a flow chart of a battery charging time calculation method according to an embodiment of the present application. As shown in Figure 2, this method includes:
  • the material activity range reflects the chemical reaction activity of the battery under the corresponding electrical parameters.
  • the battery management system (BMS) can calculate the current battery according to the internal calculation logic.
  • the acceptable charging capacity of the battery cell is sent to the electrical device and charging pile. Further, when the charging pile receives the charging request current and related information sent by the BMS, it can respond and output the relevant requested charging current.
  • the BMS battery management system
  • the BMS battery management system
  • BMS is to intelligently manage and maintain each battery unit, prevent the battery from overcharging and over-discharging, extend the service life of the battery, and monitor the status of the battery.
  • the BMS battery management system unit includes a BMS battery management system, a control module, a display module, a wireless communication module, electrical equipment, a battery pack for powering the electrical equipment, and a battery pack for collecting battery information.
  • the acquisition module, the BMS battery management system is connected to the wireless communication module and the display module respectively through the communication interface, the output end of the acquisition module is connected to the input end of the BMS battery management system, and the output end of the BMS battery management system is connected to the control module.
  • the input end of the battery pack is connected, the control module is connected to the battery pack and electrical equipment respectively, and the BMS battery management system is connected to the server through the wireless communication module.
  • the charging process of the battery can be implemented according to a charging stage set table including multiple charging stages.
  • the current material active interval is the target material active interval for charging using the constant voltage charging method
  • the charging time set records the charging time it took for the battery to charge each sub-interval of the lithium manganese phosphate material interval during the historical period (for example, each sub-interval is 2%, where each sub-interval consumes
  • the charging time can be the same or different)
  • the battery's to-be-charged range can be determined first (for example, the current charging range of the battery can be determined first
  • the electric power value is calculated, and the remaining electric power value is calculated based on the current electric power value.
  • the lithium manganese phosphate material interval corresponding to the remaining electric power value is the interval to be charged).
  • the interval to be charged is 10% (that is, the battery is 90% charged), and the charging time set records the charging time taken to complete charging in each 2% interval in the historical period (that is, the charging time set records In the process of charging the lithium manganese phosphate material range in a historical period, 90%-92% of the charging time consumed is a value, 92%-94% of the charging time spent on b value, 94%-96% of the charging time consumed Duration c value, 96%-98% charging time consumption d value, 98%-100% charging time consumption e value).
  • the charging time corresponding to each power sub-interval belonging to the interval to be charged can be accumulated to obtain the remaining charging time of the battery (i.e. a value + b value + c value + d value + e value and value).
  • Step 1 Insert the gun into charging.
  • the charging pile and the vehicle complete information exchange.
  • the vehicle completes internal communication with the battery management system (BMS).
  • BMS battery management system
  • the battery management system learns the maximum output current value of the charging pile and other related matters based on the interactive information of the charging pile. information;
  • the current material active range of the battery is the lithium manganese phosphate material range (ie, the second material active range).
  • Step 4 When the battery is in the second material active range (lithium manganese phosphate material range), the remaining charging time is calculated by dividing every 2% sub-interval of the second material active range into a region in advance, and dividing the historical charging time according to the historical charging records. During the charging process, the charging time corresponding to each 2% sub-interval is stored.
  • the second material active range lithium manganese phosphate material range
  • the set of charge durations can be stored in non-volatile storage.
  • the remaining charging time values of the stored sub-intervals corresponding to the second material active interval are accumulated and calculated, thereby obtaining the remaining charging time of the second material active interval. (That is, the second charging takes time).
  • the interval to be charged is 10% (that is, the battery has been charged 90%), and the charging time set is recorded In the historical period, the charging time required to complete charging of each 2% interval (that is, the charging time collection records the historical period of charging the lithium manganese phosphate material interval, the charging time consumed by 90%-92% is 1 minute, 92%-94% takes 1 minute to charge, 94%-96% takes 1.5 minutes to charge, 96%-98% takes 1.5 minutes to charge, and 98%-100% takes 1.5 minutes to charge 2 minutes). Then the second charging time is 7 minutes.
  • the above method of the embodiment of the present application can ensure that the charging time corresponding to the pre-stored charging time set is updated in real time during the entire life cycle of the battery, ensuring the accuracy of calculation of the remaining time of subsequent charging.
  • the remaining charging time corresponding to the second material active interval (lithium manganese phosphate material interval) can be calculated based on the initialization calibration parameters, and the setting of this parameter Obtained from actual testing of battery cells.
  • Step 6 Calculate the total remaining charging time of the battery based on the first charging time and the second charging time.
  • the remaining charging time of the battery is calculated as:
  • the remaining charging time the remaining charging time corresponding to the first material active interval (ie, the first charging time) + the remaining charging time corresponding to the second material active interval (ie, the second charging time).
  • the material active interval in which the battery is currently located can be determined based on the electrical parameters during the battery charging process.
  • the material active interval reflects the chemical reaction activity of the battery under the corresponding electrical parameters; if it is currently in
  • the material activity interval is the target material activity interval for charging using the constant voltage charging method.
  • the remaining charging time of the battery is determined based on the pre-stored charging time set corresponding to the target material active interval.
  • the charging time set records the historical period of the target material interval. The charging time it takes to complete charging in each sub-interval.
  • the battery is a composite material system
  • the material active section at least includes a first material active section and a second material active section.
  • the first material active area is a lithium iron phosphate material area; the second material active area is a lithium manganese phosphate material interval; among them, the target material active interval is the lithium manganese phosphate material interval.
  • determining the remaining charging time of the battery based on a pre-stored charging time set corresponding to the active interval of the target material includes: determining the current power value of the battery; based on the current power value, Determine the to-be-charged interval of the battery; calculate the remaining charging time of the battery based on the pre-stored charging time set corresponding to the to-be-charged interval and the active interval of the target material.
  • the corresponding phosphoric acid can be determined in real time based on the current value of the battery to be charged.
  • the interval to be charged of the manganese lithium material is so that the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time required to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • calculating the remaining charging time of the battery based on the pre-stored charging time set corresponding to the interval to be charged and the target material active interval includes: according to each period included in the target material active interval.
  • Each power sub-interval is determined to determine all power sub-intervals belonging to the interval to be charged; the charging time corresponding to each power sub-interval belonging to the interval to be charged is accumulated to obtain the remaining charging time of the battery.
  • the charging interval of the corresponding lithium manganese phosphate material can be determined in real time based on the current to-be-charged value of the battery.
  • the remaining charging time corresponding to the interval to be charged can be inferred later based on the charging time required to complete charging of each sub-interval of the lithium manganese phosphate material interval pre-stored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • determining the remaining charging time of the battery based on the preset battery temperature rise prediction model and the pre-stored charging time set corresponding to the target material active interval includes: based on the battery Determine the charging interval of the battery based on the current power value of the battery; determine the sub-interval to be charged that does not belong to the active interval of the target material; calculate the first charging consumption required for the sub-interval to be charged based on the preset battery temperature rise prediction model time; accumulate all the charging time consuming in the pre-stored charging time length set to obtain the second charging time consuming corresponding to the active range of the target material; calculate the sum of the first charging time consuming and the second charging time consuming to obtain the remaining charging time of the battery.
  • the charging process of the lithium iron phosphate material interval can be calculated based on the preset battery temperature rise prediction model.
  • the remaining charging time corresponding to the interval to be charged is inferred based on the charging time taken to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • calculating the first charging time required for the sub-interval to be charged based on a preset battery temperature rise prediction model includes: obtaining a preset charging stage set ; According to the current charging current, based on the charging stage set and the preset battery temperature rise prediction model, calculate the first charging time required for the sub-interval to be charged.
  • the charging time of each electric quantity sub-interval of the active interval of the target material is recorded; the current charging time of each electric quantity sub-interval in the pre-stored charging time set is The corresponding charging time is updated to the charging time of each electric sub-interval recorded in this charging process.
  • the actual charging time of each sub-section is recorded during this charging process of the lithium manganese phosphate material section.
  • the data of the pre-stored charging time set is updated according to the actual charging time. This avoids the problem in related technologies of inaccurate calculation of remaining charging time due to inaccurate recording of charging time in historical periods.
  • determining the material active range of the battery currently located based on the electrical parameters during the battery charging process includes: obtaining the electrical parameters during the battery charging process; based on The preset parameter thresholds of electrical parameters determine the material activity range in which the battery is located.
  • the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time taken to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • determining the material activity interval in which the battery is located based on a preset parameter threshold of the electrical parameter includes: determining that the battery is currently active based on the electrical parameter being less than the preset parameter threshold.
  • the material active interval in which the battery is located is the first material active interval; according to whether the electrical parameter is greater than or equal to the preset parameter threshold, the material active interval in which the battery is currently located is determined to be the second material active interval.
  • the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time taken to complete charging of each sub-interval of the lithium manganese phosphate material interval prestored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • a method is proposed to solve the problem caused by using a multi-step constant voltage charging (CV) method in the lithium manganese phosphate material area of the battery of the lithium manganese iron phosphate composite material system during the charging process of the battery. Yes, the remaining charging time cannot be calculated.
  • CV constant voltage charging
  • embodiments of the present application propose a method by which the battery management system uses charging path estimation (estimated temperature change during charging + SOC table lookup) during charging of the first material active interval (ie, lithium iron phosphate material interval). ) method to calculate the remaining charging time and use the pre-stored charging time set in the second material active interval (lithium manganese phosphate material interval) to calculate the remaining charging time, thereby solving the problem of using multi-step constants in the lithium manganese phosphate material interval for lithium iron manganese phosphate batteries. In the voltage charging (CV) method, the remaining charging time cannot be calculated.
  • CV voltage charging
  • the stored charging time is re-updated after each charge to implement the method of updating the charging time set, which solves the problem of remaining charging time caused by changes in charging time due to aging of the battery during the cycle aging process of the battery. Inaccurate calculation problem.
  • obtaining the electrical parameters during the battery charging process includes: obtaining the cell voltage of each cell contained in the battery; Select the maximum cell voltage among the voltages and determine the maximum cell voltage as the electrical parameter of the battery.
  • the electrical parameters include the SOC or the maximum cell voltage of the battery.
  • the SOC or the maximum cell voltage of the battery reached in real time during the charging process and the preset parameter threshold can be determined relationship to determine the material active range in which the battery is located.
  • the remaining charging time corresponding to the interval to be charged can be inferred based on the charging time taken to complete the charging of each sub-interval of the lithium manganese phosphate material interval pre-stored in the historical charging record. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • this embodiment of the present application proposes a battery charging time calculation method, which includes:
  • the material active range Based on the electrical parameters during the battery charging process, determine the material active range that the battery is currently in.
  • the material active range reflects the chemical reaction activity of the battery under the corresponding electrical parameters; if the current material active range uses constant voltage charging
  • the target material active interval for charging is determined based on the pre-stored charging time set corresponding to the target material active interval.
  • the charging time set records the charging time spent on charging each sub-interval of the target material interval in the historical period. duration.
  • the charging time required to complete charging of each sub-interval of the material interval can be inferred based on the pre-stored historical charging records. The remaining charging time corresponding to the next charging interval. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • the present application also provides a battery charging time calculation device.
  • a battery charging time calculation device include:
  • the first determination module 301 is configured to determine the material activity interval in which the battery is currently located based on the electrical parameters during the battery charging process.
  • the material activity interval reflects the chemical reaction activity of the battery under the corresponding electrical parameters;
  • the second determination module 302 is configured to, if the current material active interval is a target material active interval for charging using a constant voltage charging method, determine the battery based on the pre-stored charging time set corresponding to the target material active interval. The remaining charging time, the charging time set records the charging time taken to complete charging of each sub-interval of the target material interval in the historical period.
  • the charging time required to complete charging of each sub-interval of the material interval can be inferred based on the pre-stored historical charging records. The remaining charging time corresponding to the next charging interval. This avoids the problem of inaccurate calculation of remaining charging time due to different materials of the battery system that occurs in related technologies.
  • the first determination module 301 is configured as:
  • the first determination module 301 is configured as:
  • the first material active interval is a lithium iron phosphate material interval
  • the second material active interval is a lithium manganese phosphate material interval
  • the target material active interval is the lithium manganese phosphate material interval.
  • the second determination module 302 is configured as:
  • the remaining charging time of the battery is calculated based on the pre-stored charging time set corresponding to the to-be-charged interval and the target material active interval.
  • each electricity sub-interval included in the target material active interval determine all electricity sub-intervals belonging to the to-be-charged interval
  • the charging time corresponding to each power sub-interval belonging to the to-be-charged interval is accumulated to obtain the remaining charging time of the battery.
  • the second determination module 302 is configured as:
  • the remaining charging time of the battery is determined based on the preset battery temperature rise prediction model and the pre-stored charging time set corresponding to the target material active interval. .
  • the second determination module 302 is configured as:
  • the first determination module 301 is configured as:
  • the first charging time required for the sub-interval to be charged is calculated based on the charging stage set and the preset battery temperature rise prediction model.
  • the second determination module 302 is configured as:
  • the current charging time corresponding to each power sub-interval in the pre-stored charging duration set is updated to the charging time of each power sub-interval recorded in the current charging process.
  • the first determination module 301 is configured as:
  • determining the material active interval in which the battery is currently located is the first material active interval
  • the material active interval in which the battery is currently located is determined to be the second material active interval.
  • the electrical parameters include the SOC or the maximum cell voltage of the battery.
  • Figure 5 is a logical structural block diagram of an electrical device according to an exemplary embodiment.
  • the battery 400 may include an electrical device carrying the battery.
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions.
  • the instructions can be executed by a battery processor to complete the above battery charging time calculation method.
  • the method includes : Based on the electrical parameters during the battery charging process, determine the material activity interval in which the battery is currently located. The material activity interval reflects the chemical reaction activity of the battery under the corresponding electrical parameters; if the current material activity interval is If the target material active interval is charged using the constant voltage charging method, the remaining charging time of the battery is determined based on the pre-stored charging time set corresponding to the target material active interval.
  • the charging time set records the historical time period for the said battery. The charging time it takes to complete charging of each sub-interval of the target material interval.
  • an application/computer program product including one or more instructions, which can be executed by a processor of the battery to complete the above battery charging time calculation method, The method includes: based on the electrical parameters during the battery charging process, determining the material active interval where the battery is currently located. The material active interval reflects the chemical reaction activity of the battery under the corresponding electrical parameters; if the material currently located If the active interval is the active interval of the target material charged using the constant voltage charging method, then the remaining charging time of the battery is determined based on the pre-stored charging time set corresponding to the target material active interval, and the historical period is recorded in the charging time set. The charging time required to complete charging of each sub-interval of the target material interval.
  • the above instructions can also be executed by the processor of the battery to complete other steps involved in the above exemplary embodiments.
  • FIG. 5 is an example diagram of battery 400.
  • the battery 400 may include more or fewer components than shown, or some components may be combined, or different components may be used, such as
  • the battery 400 may also include input and output devices, network access devices, buses, etc.
  • the memory 401 may include a hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM) or other non-volatile/volatile storage devices.
  • smart memory card Smart Media Card, SMC
  • flash memory card Flash Card
  • at least one disk storage device flash memory device
  • read-only memory Read-Only Memory
  • RAM random access memory
  • the integrated modules of the battery 400 are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through computer-readable instructions.
  • the computer-readable instructions can be stored in a computer-readable storage medium. When executed by the processor, the computer-readable instructions can implement the steps of each of the above method embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种用电装置及其电池的充电时间计算方法、装置及介质。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系电池的磷酸锰锂材料区间进行恒压充电时,依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。

Description

用电装置及其电池的充电时间计算方法、装置及介质 技术领域
本申请中涉及电池管理技术,尤其是一种用电装置及其电池的充电时间计算方法、装置及介质。
背景技术
随着科学技术的发展,越来越多的用电装置都会以承载电池的方式实现运行功能。
以用电装置为电动汽车为例,相关技术中,随着新能源电动汽车的快速普及,充电剩余时间的响应可以为电动汽车车主合理安排自己的用车时间与工作生活时间提供时间依据。进一步的,准确的充电剩余时间,可以使得电动车主高效的利用自己的生活时间和工作时间。例如,当电动汽车在插枪进入充电状态时刻起,电动车主实时可以通过手机或者充电桩准确了解到本次充电过程中的充电剩余时间。从而提升电动汽车车主的用车体验。
然而,相关技术中电池充电剩余时间的响应通常会出现,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
发明内容
本申请实施例提供一种用电装置及其电池的充电时间计算方法、装置及介质。从而解决相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
其中,根据本申请实施例的一个方面,提供的一种电池的充电时间计算方法,包括:
基于电池充电过程中的电性参数,确定电池当前所处的材料活性区间,材 料活性区间反映电池在相应电性参数下的化学反应活性;若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,充电时长集合中记录有历史时段对目标材料区间的各个子区间充电完毕所耗费的充电时长。
本申请实施例的技术方案中,可以在对电池的某个特定材料区间进行恒压充电时,依据历史充电记录中预存的对该材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,电池为复合材料体系,材料活性区间至少包括第一材料活性区间和第二材料活性区间。通过应用本申请实施例的技术方案,可以在对复合材料体系的电池的某个特定材料区间进行恒压充电时,依据历史充电记录中预存的对该材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,电池为磷酸锰铁锂复合材料体系时,第一材料活性区间为磷酸铁锂材料区间;第二材料活性区间为磷酸锰锂材料区间;其中,目标材料活性区间为磷酸锰锂材料区间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池的磷酸锰锂材料区间进行恒压充电时,依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,包括:确定电池的当前电量值;基于当前电量值,确定电池的待充电区间;基于待充电区间以及目 标材料活性区间对应的预存充电时长集合,计算电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池的磷酸锰锂材料区间进行恒压充电时,实时的根据电池当前的待充电量值来确定与其对应的磷酸锰锂材料的待充电区间,以使后续依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于待充电区间以及目标材料活性区间对应的预存充电时长集合,计算电池的剩余充电时间,包括:根据目标材料活性区间包括的每个电量子区间,确定出属于待充电区间的所有电量子区间;将属于待充电区间的每个电量子区间对应的充电耗时进行累加,得到电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池的磷酸锰锂材料区间进行恒压充电时,实时的确定待充电区间中包含的所有电量子区间,并根据预存的对磷酸锰锂材料区间进行充电的每个子区间充电完毕所耗费的充电时长来进行累加计算,从而推断出本次待充电区间对应的剩余充电时间。从而实现一种可以实时计算磷酸锰锂材料区间进行恒压充电时的剩余充电时间的方法。进而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,若当前所处的材料活性区间不为目标材料活性区间,则基于预设的电池温升预估模型及目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,实时的根据电池当前的待充电量值来确定与其对应的磷酸锰锂材料的待充电区间,以使后续依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于预设的电池温升预估模型及目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,包括:基于电池的当前电量值,确定电池的待充电区间;确定待充电区间中不属于目标材料活性区间的待充子区间;基于预设的电池温升预估模型,计算待充子区间所需的第一充电耗时;将预存充电时长集合中的所有充电耗时累加,得到目标材料活性区间对应的第二充电耗时;计算第一充电耗时与第二充电耗时之和,得到电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,对磷酸铁锂材料区间的充电过程依据预设的电池温升预估模型来计算得到。而在对磷酸锰锂材料区间的充电过程依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于预设的电池温升预估模型,计算待充子区间所需的第一充电耗时,包括:获取预设的充电阶段集合;根据当前的充电电流,基于充电阶段集合与所预设的电池温升预估模型,计算待充子区间所需的第一充电耗时。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,对磷酸铁锂材料区间的充电过程依据预设的电池温升预估模型来计算得到。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,在本次充电过程中,记录目标材料活性区间的各个电量子区间的充电耗时;将预存充电时长集合中各个电量子区间当前对应的充电耗时,分别更新为本次充电过程记录的各个电量子区间的充电耗时。通过应用本申请实施例的技术方案,在本次对磷酸锰锂材料区间的充电过程中记录每个子区间的实际充电时长。并根据该实际充电时长对预存充电时长集合进行数据更新。从而避免了相关技术中出现的,由于历史时段的充电时长记录不准确而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于电池充电过程中的电性参数,确定电池当前所处的材料活性区间,包括:获取电池充电过程中的电性参数;基于电性参数的预设参数阈值确定电池所处的材料活性区间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,由充电过程中电池实时达到的电性参数来确定电池所处的材料活性区间。从而实现针对特定电池材料的恒压充电过程中选择依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于电性参数的预设参数阈值确定电池所处的材料活性区间,包括:根据电性参数小于预设参数阈值,确定电池当前所处的材料活性区间为第一材料活性区间;根据电性参数大于等于预设参数阈值,确定电池当前所处的材料活性区间为第二材料活性区间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,由充电过程中电池实时达到的电性参数与预设参数阈值的大小关系来确定电池所处的材料活性区间。从而实现针对特定电池材料的恒压充电过程中选择依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,获取电池充电过程中的电性参数,包括:获取电池包含的每个电芯的单体电压;从每个电芯的单体电压中选取最大的单体电压,将最大的单体电压确定为电池的电性参数。可选地,在基于本申请上述方法的另一个实施例中,电性参数包括电池的SOC或最大的单体电压。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,由充电过程中电池实时达到的电池的SOC或最大的单体电压与预设参数阈值的大小关系来确定电池所处的材料活性区间。从而 实现针对特定电池材料的恒压充电过程中选择依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
其中,根据本申请实施例的又一个方面,提供的一种电池的充电时间计算装置,包括:第一确定模块,被配置为基于电池充电过程中的电性参数,确定所述电池当前所处的材料活性区间,所述材料活性区间反映电池在相应电性参数下的化学反应活性;第二确定模块,被配置为若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,所述充电时长集合中记录有历史时段对所述目标材料区间的各个子区间充电完毕所耗费的充电时长。
根据本申请实施例的又一个方面,提供的一种用电装置,包括:
存储器,用于存储可执行指令;以及
显示器,用于与所述存储器执行所述可执行指令从而完成上述任一所述电池的充电时间计算方法的操作。
根据本申请实施例的还一个方面,提供的一种计算机可读存储介质,用于存储计算机可读取的指令,所述指令被执行时执行上述任一所述电池的充电时间计算方法的操作。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
构成说明书的一部分的附图描述了本申请的实施例,并且连同描述一起用于解释本申请的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本申请,其中:
图1为本申请提出的一种应用于电池的供电装置的结构示意图;
图2为本申请提出的一种电池的充电时间计算方法的示意图;
图3为本申请提出的一种电池的充电时间计算方法的流程示意图;
图4为本申请提出的电池的充电时间计算装置的结构示意图;
图5为本申请提出的用电装置的示意图。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
需要说明的是,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对 位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
下面结合图1-图3来描述根据本申请示例性实施方式的用于进行电池的充电时间计算方法。需要注意的是,下述应用场景仅是为了便于理解本申请的精神和原理而示出,本申请的实施方式在此方面不受任何限制。相反,本申请的实施方式可以应用于适用的任何场景。
以用电装置为电动汽车为例,随着新能源电动汽车的快速普及,充电时长成为了众多电动汽车车主在日常用车时的主要关心要素之一,而充电剩余时间可以为电动汽车车主合理安排自己的用车时间与工作生活时间提供时间依据。
进一步的,响应给用户准确的充电剩余时间,可以使得电动车主高效的利用自己的生活时间和工作时间,当电动汽车在插枪进入充电状态时刻起,电动车主实时可以通过手机或者充电桩准确了解到本次充电过程中的充电剩余时间。从而提升电动汽车车主的用车体验;快充充电通过大功率充电桩对电动汽车快速补电,从而满足客户短时间内的用车需求,快充充电时间的计算准确性对电动车主更为重要。
相关技术中,电动汽车计算充电剩余时间的基本公式如下所示:
充电剩余时间=剩余容量(CAP_remain)/剩余时间计算电流值(I_Count);
具体来说,剩余容量的计算方法为电芯容量*剩余SOC(充电目标SOC-当前SOC);根据上述计算公式可以大概计算出本次充电过程中的快充充电剩余时间;但是通过该计算公式计算充电剩余时间,会导致计算的充电剩余时间与真实的充电时间存在很大的计算误差;导致该计算公式误差大的一个主要原因为充电剩余时间计算公式中使用的剩余时间计算电流值(I_Count))存在一定的误差。
其中,锂离子电池的电芯充电电流能力与电芯温度以及电池SOC状态呈现强相关的关系;锂离子电池在低SOC状态下,电池的充电电流能力高;锂离子电池在高SOC状态,电池的充电能力低;温度也会对锂离子电池的充电 速度影响较大,温度越高,分子运动越剧烈。电池内部的电化学反应以及化学物质活性反应速度越快,电芯的充电能力越强;因此在充电初始时刻,准确预测出本次充电过程中的充电时长,需要综合考虑不同SOC状态和不同温度下电芯的充电能力不同对充电时间的影响。
进一步的,由于不同材料体系的锂离子电池存在不同的充电方法也会对充电剩余时间的计算产生很大的影响。常用锂离子材料体系(例如磷酸铁锂(LFP)以及三元材料体系(NCM))电池的通常充电方法为根据电芯的温度和SOC特性查电芯的充电阶段,充电阶段需要根据电池在不同温度和SOC状态下实际测试。
举例来说,例如磷酸铁锂(LFP)以及三元材料体系(NCM)电池在充电起始时刻,根据预估电池本次充电过程中的充电路径(同时考虑SOC和温度变量的影响),从而实时估算出电池充电过程中的充电剩余时间。而针对不同材料体系的电池,充电方式不同,因此充电剩余时间计算方法也不同,磷酸锰铁锂材料由于其独特的电芯特性,导致其充电方式与常用锂离子材料体系的电池充电方式不同。
其中,磷酸铁锂(LiFePO4)材料具有很好的循环性能和安全性能,但是其放电平台比较低,从而导致电池的能力密度低,影响电动汽车的续航里程;在同族化合物中,磷酸锰锂(LiMnPO4)具有高的放电电压平台,但是其反应活性低,所以在实际生产中,通常将LiFePO4与LiMnPO4磷复合形成LiFe1-xMnxPO4磷酸锰铁锂材料(0<x<1),磷酸锰铁锂材料(LiFe1-xMnxPO4),在充放电过程中包含两个区域,一个在4.0~4.1V之间,对应Mn3+/Mn2+的反应;另外一个在3.5~3.6V之间,对应于Fe3+/Fe2+的反应,x值的大小决定2个充放电平台的相对长短,有效提高材料的能量密度就需要4V平台要长,也就是Mn含量要高。
然而,磷酸锰铁锂材料(LiFe1-xMnxPO4)的电化学性能随着Mn含量的升高而下降;磷酸锰铁锂材料在4V电压平台区的动力学性能很差。在全电池体高端SOC区域,电芯的极化阻抗主要来自正极材料,大倍率充电工况 下,电池很快因为电池正极的极化过大达到电池的满充截止电压;因此电池不会因为充电倍率大导致负极析锂从而降低电芯的充电倍率。
上述问题的存在是因为磷酸锰铁锂材料电池的负极的动力学性能比正极的动力学性能好,大倍率充电情况下,负极还未达到析锂电位,而全电池因为正极的动力学性能差,很快达到了电池的满充截止电压,因此电芯可以大倍率充电,而不会导致析锂问题。
然而大倍率充电工况下,由于电芯的极化大将会导致电池端电压很快达到电池的满充截止电压;当电芯电压达到电池的满充截止电压,如果此时停止充电,将会导致电芯充入电量不足,导致续航里程问题;使用磷酸锰铁锂材料的电动汽车充电时,在低端SOC区间(LiFePO4材料区间)电芯的动力学性能好,而高端SOC区间(LiMnPO4材料区间),正极材料极化大,导致电池在充电时很容易达到充电截止电压,导致电芯充不满电的问题,因此可以通过低端SOC区间(LiFePO4材料区间)使用查表充电请求电流窗口+高端SOC区间(LiMnPO4材料区间)多步恒压充电(CV)充电的方式进行充电。
然而,在高端SOC区间(LiMnPO4材料区间)多步恒压充电(CV)充电的方式,由于CV充电过程,电池电流根据电芯的动力学特性,实时自适应调节,因此导致无法预估电池在恒压充电过程中的电流值,因此在充电过程中无法预测电池在高端SOC区间(LiMnPO4材料区间)的充电时长。
因此,为了解决磷酸锰铁锂电池在高端SOC区间(LiMnPO4材料区间)使用多步恒压充电(CV)方式,导致充电剩余时间无法计算的问题,本申请提供了一种基于复合材料体系电池的充电剩余时间计算方法。
一种方式中,该复合材料体系可以为磷酸锰铁锂复合材料体系。在该体系下,电池至少包含两种材料活性区间。其一为磷酸铁锂材料区间,其二为磷酸锰锂材料区间。其中,本申请实施例中的目标材料活性区间为磷酸锰锂材料区间。
可选的,本申请实施例提供一种电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
一种方式中,本申请中的电池包为可充放电式的,例如锂离子电池、镍氢电池、镍铬电池、镍锌电池等等。
以下实施例为了方便说明,以本申请一个实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达400,控制器200用来控制电池100为马达400供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
一种方式中,本申请还提出一种用电装置及其电池的充电时间计算方法、装置及介质。
图2示意性地示出了根据本申请实施方式的一种电池的充电时间计算方法的流程示意图。如图2所示,该方法,包括:
S201,基于电池充电过程中的电性参数,确定电池当前所处的材料活性区间,材料活性区间反映电池在相应电性参数下的化学反应活性。
进一步的,本申请实施例中可以由用电装置接收到充电启动指令后,开始 对电池进行分阶段充电。一种方式中,充电启动指令可以为用户将用电装置与充电装置相连接后生成的指令。作为示例的,用户可以将用电装置的充电插枪插入供电装置(例如充电桩)以进入充电。
一种可能的实施方式中,当充电桩和用电装置完成信息交互,且用电装置与电池管理系统(BMS)完成内部通讯,电池管理系统(BMS)即可根据内部计算逻辑计算出当前电池电芯的可接受充电能力发送给用电装置以及充电桩。进一步的,当充电桩接收到BMS发出的充电请求电流以及相关信息后,即可响应并输出相关的请求充电电流。
其中,用电装置中的BMS(电池管理系统)来接收作用于电池的充电启动指令。其中,BMS是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
一种方式中,BMS电池管理系统单元包括BMS电池管理系统、控制模组、显示模组、无线通信模组、电气设备、用于为电气设备供电的电池组以及用于采集电池组的电池信息的采集模组,BMS电池管理系统通过通信接口分别与无线通信模组及显示模组连接,采集模组的输出端与BMS电池管理系统的输入端连接,BMS电池管理系统的输出端与控制模组的输入端连接,控制模组分别与电池组及电气设备连接,BMS电池管理系统通过无线通信模块与服务器端连接。
可选的,本申请实施例中电池在充电过程中可以根据包含多个充电阶段的充电阶段集合表来实现。
S202,若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,充电时长集合中记录有历史时段对目标材料区间的各个子区间充电完毕所耗费的充电时长。
其中,在基于电池的电性参数,确定电池当前所处的材料活性区间为磷酸锰锂材料区间(即充电过程进入到对磷酸锰锂材料区间进行充电),且采用恒压充电方式时,即可依据历史充电记录中预存的对该材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避 免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
举例来说,例如充电时长集合中记录有历史时段中,该电池对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长(例如每个子区间为2%,其中每个子区间所耗费的充电时长可以相同也可以不相同),那么本次充电过程中,在检测到电池进入磷酸锰锂材料区间的充电过程中时,即可首先确定电池的待充电区间(例如可以首先确定电池的当前电量值,并基于当前电量值来计算剩余电量值,该剩余电量值所对应的磷酸锰锂材料区间即为待充电区间)。
作为示例的,例如该待充电区间为10%(即电池已充电90%),且充电时长集合中记录有历史时段中,每2%区间充电完毕所耗费的充电时长(即充电时长集合中记录有历史时段对磷酸锰锂材料区间进行充电的过程中,90%-92%所耗费的充电时长a值、92%-94%所耗费的充电时长b值、94%-96%所耗费的充电时长c值、96%-98%所耗费的充电时长d值、98%-100%所耗费的充电时长e值)。
进一步的,本申请实施例中即可以将属于待充电区间的每个电量子区间对应的充电耗时进行累加,得到电池的剩余充电时间(即a值+b值+c值+d值+e值的和值)。
需要说明的是,本申请不对每个充电时长集合中记录的目标材料区间的各个子区间的区间值进行限定,例如可以为2%或1%或3%等等。
作为示例的,以下以用电装置为电动汽车,电性参数为电芯的最大单体电压为例对本申请提出的电池的充电时间计算方法进行具体说明:
步骤1、插枪进入充电,充电桩和整车完成信息交互,整车与电池管理系统(BMS)完成内部通讯,电池管理系统根据充电桩的交互信息得知充电桩的最大输出电流值等相关信息;
步骤2、当检测到电池进入充电中时,电池管理系统实时检测电池组PACK中的电芯的最大单体电压值是否大于电压阈值(即预设参数阈值),以达到通过该电压阈值区分当前电芯所在材料区间的目的。
作为一种示例的,当电池电芯的最大单体电压小于该电压阈值,则判断当 前电池当前所处的材料活性区间为磷酸铁锂材料区间(即第一材料活性区间)。
作为另一种示例的,当电池电芯的最大单体电压大于等于该电压阈值,则判断当前电池当前所处的材料活性区间为磷酸锰锂材料区间(即第二材料活性区间)。
步骤3、当电池处于第一材料活性区间(磷酸铁锂材料区间)进行充电时,电池管理系统此时的充电剩余时间计算方法为结合电池温升预估模型以及电池的充电阶段,预估电池在第一材料活性区间(磷酸铁锂材料区间)的充电路径,进行第一材料活性区间的充电剩余时间(即第一充电耗时)计算。
步骤4、当电池处于第二材料活性区间(磷酸锰锂材料区间)的充电剩余时间计算方式为,预先将第二材料活性区间每2%的子区间划分为一个区域,根据历史充电记录将历史充电过程中每一个2%的子区间对应的充电时长进行存储。
一种方式中,可以将充电时长集合存储在非易失性储存器中。
进一步的,当计算第二材料活性区间的充电剩余时间值时,则把第二材料活性区间对应的存储的子区间充电剩余时间值进行累加和计算,从而得到第二材料活性区间的充电剩余时间(即第二充电耗时)。
具体而言,当电池处于第二材料活性区间(磷酸锰锂材料区间)充电时,作为示例的,例如该待充电区间为10%(即电池已充电90%),且充电时长集合中记录有历史时段中,每2%区间充电完毕所耗费的充电时长(即充电时长集合中记录有历史时段对磷酸锰锂材料区间进行充电的过程中,90%-92%所耗费的充电时长1分钟、92%-94%所耗费的充电时长1分钟、94%-96%所耗费的充电时1.5分钟、96%-98%所耗费的充电时长1.5分钟、且98%-100%所耗费的充电时长2分钟)。则第二充电耗时即为7分钟。
步骤5、一种方式中,当电池本次在第二材料活性区间(磷酸锰锂材料区间)充电时,对本次充电时长进行子区间的临时存储,例如仍以每2%SOC存储一次充电时长。当检测到本次充电完成,则将临时存储的充电时长存储在预存充电时长集合中(即将预存充电时长集合中各个电量子区间当前对应的充电耗时,分别更新为本次充电过程记录的各个电量子区间的充电耗时)。
可以理解的,本申请实施例的上述方式可以保证在电池的全生命周期内,实时更新预存充电时长集合对应的充电时间,保证后续充电剩余时间的计算精确性。
一种方式中,当检测到电动汽车为第一次充电时,则第二材料活性区间(磷酸锰锂材料区间)对应的充电剩余时间计算,可以根据初始化标定参数计算,而该参数的设定为对电芯实际测试而得到。
步骤6、基于第一充电耗时以及第二充电耗时,计算得到电池的总计剩余充电时间。
作为示例的,电池的剩余充电时间计算公式为:
剩余充电时间=第一材料活性区间对应的充电剩余时间(即第一充电耗时)+第二材料活性区间对应的充电剩余时间(即第二充电耗时)。
本申请实施例的技术方案中,可以基于电池充电过程中的电性参数,确定电池当前所处的材料活性区间,材料活性区间反映电池在相应电性参数下的化学反应活性;若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,充电时长集合中记录有历史时段对目标材料区间的各个子区间充电完毕所耗费的充电时长。
通过应用本申请实施例的技术方案,可以在对电池的某个特定材料区间进行恒压充电时,依据历史充电记录中预存的对该材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,电池为复合材料体系,材料活性区间至少包括第一材料活性区间和第二材料活性区间。通过应用本申请实施例的技术方案,可以在对复合材料体系的电池的某个特定材料区间进行恒压充电时,依据历史充电记录中预存的对该材料区间的各个子区间充电完毕 所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,电池为磷酸锰铁锂复合材料体系时,第一材料活性区间为磷酸铁锂材料区间;第二材料活性区间为磷酸锰锂材料区间;其中,目标材料活性区间为磷酸锰锂材料区间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池的磷酸锰锂材料区间进行恒压充电时,依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,包括:确定电池的当前电量值;基于当前电量值,确定电池的待充电区间;基于待充电区间以及目标材料活性区间对应的预存充电时长集合,计算电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池的磷酸锰锂材料区间进行恒压充电时,实时的根据电池当前的待充电量值来确定与其对应的磷酸锰锂材料的待充电区间,以使后续依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于待充电区间以及目标材料活性区间对应的预存充电时长集合,计算电池的剩余充电时间,包括:根据目标材料活性区间包括的每个电量子区间,确定出属于待充电区间的所有电量子区间;将属于待充电区间的每个电量子区间对应的充电耗时进行累加,得到电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池的磷酸锰锂材料区间进行恒压充电时,实时的确定 待充电区间中包含的所有电量子区间,并根据预存的对磷酸锰锂材料区间进行充电的每个子区间充电完毕所耗费的充电时长来进行累加计算,从而推断出本次待充电区间对应的剩余充电时间。从而实现一种可以实时计算磷酸锰锂材料区间进行恒压充电时的剩余充电时间的方法。进而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,若当前所处的材料活性区间不为目标材料活性区间,则基于预设的电池温升预估模型及目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,实时的根据电池当前的待充电量值来确定与其对应的磷酸锰锂材料的待充电区间,以使后续依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于预设的电池温升预估模型及目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,包括:基于电池的当前电量值,确定电池的待充电区间;确定待充电区间中不属于目标材料活性区间的待充子区间;基于预设的电池温升预估模型,计算待充子区间所需的第一充电耗时;将预存充电时长集合中的所有充电耗时累加,得到目标材料活性区间对应的第二充电耗时;计算第一充电耗时与第二充电耗时之和,得到电池的剩余充电时间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,对磷酸铁锂材料区间的充电过程依据预设的电池温升预估模型来计算得到。而在对磷酸锰锂材料区间的充电过程依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于预设的电池温升预估模型,计算待充子区间所需的第一充电耗时,包括:获取预设的充电阶段集合;根据当前的充电电流,基于充电阶段集合与所预设的电池温升预估模型,计算待充子区间所需的第一充电耗时。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,对磷酸铁锂材料区间的充电过程依据预设的电池温升预估模型来计算得到。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,在本次充电过程中,记录目标材料活性区间的各个电量子区间的充电耗时;将预存充电时长集合中各个电量子区间当前对应的充电耗时,分别更新为本次充电过程记录的各个电量子区间的充电耗时。通过应用本申请实施例的技术方案,在本次对磷酸锰锂材料区间的充电过程中记录每个子区间的实际充电时长。并根据该实际充电时长对预存充电时长集合进行数据更新。从而避免了相关技术中出现的,由于历史时段的充电时长记录不准确而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于电池充电过程中的电性参数,确定电池当前所处的材料活性区间,包括:获取电池充电过程中的电性参数;基于电性参数的预设参数阈值确定电池所处的材料活性区间。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,由充电过程中电池实时达到的电性参数来确定电池所处的材料活性区间。从而实现针对特定电池材料的恒压充电过程中选择依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选地,在基于本申请上述方法的另一个实施例中,基于电性参数的预设参数阈值确定电池所处的材料活性区间,包括:根据电性参数小于预设参数阈值,确定电池当前所处的材料活性区间为第一材料活性区间;根据电性参数大于等于预设参数阈值,确定电池当前所处的材料活性区间为第二材料活性区间。 通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,由充电过程中电池实时达到的电性参数与预设参数阈值的大小关系来确定电池所处的材料活性区间。从而实现针对特定电池材料的恒压充电过程中选择依据历史充电记录中预存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
本申请实施例中,提出了一种为了解决电池在充电过程中,磷酸锰铁锂复合材料体系的电池在磷酸锰锂材料区使用多步恒压充电(CV)方式进行充电的过程中所导致的,充电剩余时间无法计算的问题。
针对上述问题,本申请实施例提出一种由电池管理系统在第一材料活性区间(即磷酸铁锂材料区间)的充电期间使用充电路径预估(预估充电过程中的温度变化+SOC查表)计算充电剩余时间以及在第二材料活性区间(磷酸锰锂材料区间)利用预存的充电时长集合计算剩余充电时间的方法,从而解决了磷酸锰铁锂电池在磷酸锰锂材料区间使用多步恒压充电(CV)方式,无法计算充电剩余时间的问题。
另外,本申请实施例中在每次充电之后重新更新存储充电时间以实现更新充电时长集合的方法,解决了电芯在循环老化过程中,电芯由于老化导致充电时间变化进而出现的充电剩余时间计算不准的问题。
可选地,在基于本申请上述方法的另一个实施例中,获取电池充电过程中的电性参数,包括:获取电池包含的每个电芯的单体电压;从每个电芯的单体电压中选取最大的单体电压,将最大的单体电压确定为电池的电性参数。
可选地,在基于本申请上述方法的另一个实施例中,电性参数包括电池的SOC或最大的单体电压。通过应用本申请实施例的技术方案,可以在对磷酸锰铁锂复合材料体系的电池进行充电时,由充电过程中电池实时达到的电池的SOC或最大的单体电压与预设参数阈值的大小关系来确定电池所处的材料活性区间。从而实现针对特定电池材料的恒压充电过程中选择依据历史充电记录中预 存的对磷酸锰锂材料区间的各个子区间充电完毕所耗费的充电时长来推断待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选的,如图3所示,本申请实施例提出一种电池的充电时间计算方法,其包括:
基于电池充电过程中的电性参数,确定电池当前所处的材料活性区间,材料活性区间反映电池在相应电性参数下的化学反应活性;若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于目标材料活性区间对应的预存充电时长集合,确定电池的剩余充电时间,充电时长集合中记录有历史时段对目标材料区间的各个子区间充电完毕所耗费的充电时长。
本申请实施例的技术方案中,可以在对电池的某个特定材料区间进行恒压充电时,依据历史充电记录中预存的对该材料区间的各个子区间充电完毕所耗费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
可选的,在本申请的另外一种实施方式中,如图4所示,本申请还提供一种电池的充电时间计算装置。其中包括:
第一确定模块301,被配置为基于电池充电过程中的电性参数,确定所述电池当前所处的材料活性区间,所述材料活性区间反映电池在相应电性参数下的化学反应活性;
第二确定模块302,被配置为若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,所述充电时长集合中记录有历史时段对所述目标材料区间的各个子区间充电完毕所耗费的充电时长。
本申请实施例的技术方案中,可以在对电池的某个特定材料区间进行恒压充电时,依据历史充电记录中预存的对该材料区间的各个子区间充电完毕所耗 费的充电时长来推断本次待充电区间对应的剩余充电时间。从而避免了相关技术中出现的,由于电池系统的材料不同而导致的充电剩余时间计算不准确的问题。
在本申请的另外一种实施方式中,第一确定模块301,被配置为:
电池为复合材料体系,所述材料活性区间至少包括第一材料活性区间和第二材料活性区间。
在本申请的另外一种实施方式中,第一确定模块301,被配置为:
电池为磷酸锰铁锂复合材料体系时,所述第一材料活性区间为磷酸铁锂材料区间;所述第二材料活性区间为磷酸锰锂材料区间;
其中,所述目标材料活性区间为所述磷酸锰锂材料区间。
在本申请的另外一种实施方式中,第二确定模块302,被配置为:
确定所述电池的当前电量值;
基于所述当前电量值,确定所述电池的待充电区间;
基于所述待充电区间以及所述目标材料活性区间对应的预存充电时长集合,计算所述电池的剩余充电时间。
在本申请的另外一种实施方式中,第二确定模块302,被配置为:
根据所述目标材料活性区间包括的每个电量子区间,确定出属于所述待充电区间的所有电量子区间;
将属于所述待充电区间的每个电量子区间对应的充电耗时进行累加,得到所述电池的剩余充电时间。
在本申请的另外一种实施方式中,第二确定模块302,被配置为:
若当前所处的材料活性区间不为所述目标材料活性区间,则基于预设的电池温升预估模型及所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间。
在本申请的另外一种实施方式中,第二确定模块302,被配置为:
基于所述电池的当前电量值,确定所述电池的待充电区间;
确定所述待充电区间中不属于所述目标材料活性区间的待充子区间;
基于预设的电池温升预估模型,计算所述待充子区间所需的第一充电耗时;
将所述预存充电时长集合中的所有充电耗时累加,得到所述目标材料活性区间对应的第二充电耗时;
计算所述第一充电耗时与所述第二充电耗时之和,得到所述电池的剩余充电时间。
在本申请的另外一种实施方式中,第一确定模块301,被配置为:
获取预设的充电阶段集合;
根据当前的充电电流,基于所述充电阶段集合与所预设的电池温升预估模型,计算所述待充子区间所需的第一充电耗时。
在本申请的另外一种实施方式中,第二确定模块302,被配置为:
在本次充电过程中,记录所述目标材料活性区间的各个电量子区间的充电耗时;
将所述预存充电时长集合中所述各个电量子区间当前对应的充电耗时,分别更新为本次充电过程记录的所述各个电量子区间的充电耗时。
在本申请的另外一种实施方式中,第一确定模块301,被配置为:
获取电池充电过程中的电性参数;
基于所述电性参数的预设参数阈值确定所述电池所处的材料活性区间。
在本申请的另外一种实施方式中,第一确定模块301,被配置为:
根据所述电性参数小于预设参数阈值,确定所述电池当前所处的材料活性区间为第一材料活性区间;
根据所述电性参数大于等于预设参数阈值,确定电池当前所处的材料活性区间为第二材料活性区间。
在本申请的另外一种实施方式中,第一确定模块301,被配置为:
获取电池包含的每个电芯的单体电压;
从每个电芯的单体电压中选取最大的单体电压,将最大的单体电压确定为所述电池的电性参数。
在本申请的另外一种实施方式中,第一确定模块301,被配置为:
所述电性参数包括电池的SOC或最大的单体电压。
图5是根据一示例性实施例示出的一种用电装置的逻辑结构框图。例如,电池400可以是包含一种承载由电池的用电装置。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由电池处理器执行以完成上述电池的充电时间计算方法,该方法包括:基于电池充电过程中的电性参数,确定所述电池当前所处的材料活性区间,所述材料活性区间反映电池在相应电性参数下的化学反应活性;若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,所述充电时长集合中记录有历史时段对所述目标材料区间的各个子区间充电完毕所耗费的充电时长。可选地,上述指令还可以由电池的处理器执行以完成上述示例性实施例中所涉及的其他步骤。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在示例性实施例中,还提供了一种应用程序/计算机程序产品,包括一条或多条指令,该一条或多条指令可以由电池的处理器执行,以完成上述电池的充电时间计算方法,该方法包括:基于电池充电过程中的电性参数,确定所述电池当前所处的材料活性区间,所述材料活性区间反映电池在相应电性参数下的化学反应活性;若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,所述充电时长集合中记录有历史时段对所述目标材料区间的各个子区间充电完毕所耗费的充电时长。可选地,上述指令还可以由电池的处理器执行以完成上述示例性实施例中所涉及的其他步骤。
图5为电池400的示例图。本领域技术人员可以理解,示意图5仅仅是电池400的示例,并不构成对电池400的限定,可以包括比图示更多或更少的部 件,或者组合某些部件,或者不同的部件,例如电池400还可以包括输入输出设备、网络接入设备、总线等。
所称处理器402可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器402也可以是任何常规的处理器等,处理器402是电池400的控制中心,利用各种接口和线路连接整个电池400的各个部分。
存储器401可用于存储计算机可读指令403,处理器402通过运行或执行存储在存储器401内的计算机可读指令或模块,以及调用存储在存储器401内的数据,实现电池400的各种功能。存储器401可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电池400的使用所创建的数据等。此外,存储器401可以包括硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或其他非易失性/易失性存储器件。
电池400集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机可读指令来指令相关的硬件来完成,的计算机可读指令可存储于一计算机可读存储介质中,该计算机可读指令在被处理器执行时,可实现上述各个方法实施例的步骤。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开 的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种电池的充电时间计算方法,其特征在于,包括:
    基于电池充电过程中的电性参数,确定所述电池当前所处的材料活性区间,所述材料活性区间反映电池在相应电性参数下的化学反应活性;
    若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,所述充电时长集合中记录有历史时段对所述目标材料区间的各个子区间充电完毕所耗费的充电时长。
  2. 根据权利要求1所述的方法,其特征在于,所述电池为复合材料体系,所述材料活性区间至少包括第一材料活性区间和第二材料活性区间。
  3. 根据权利要求2所述的方法,其特征在于,所述电池为磷酸锰铁锂复合材料体系时,所述第一材料活性区间为磷酸铁锂材料区间;所述第二材料活性区间为磷酸锰锂材料区间;
    其中,所述目标材料活性区间为所述磷酸锰锂材料区间。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述基于所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,包括:
    确定所述电池的当前电量值;
    基于所述当前电量值,确定所述电池的待充电区间;
    基于所述待充电区间以及所述目标材料活性区间对应的预存充电时长集合,计算所述电池的剩余充电时间。
  5. 如权利要求4所述的方法,其特征在于,所述基于所述待充电区间以及所述目标材料活性区间对应的预存充电时长集合,计算所述电池的剩余充电时 间,包括:
    根据所述目标材料活性区间包括的每个电量子区间,确定出属于所述待充电区间的所有电量子区间;
    将属于所述待充电区间的每个电量子区间对应的充电耗时进行累加,得到所述电池的剩余充电时间。
  6. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    若当前所处的材料活性区间不为所述目标材料活性区间,则基于预设的电池温升预估模型及所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间。
  7. 如权利要求6所述的方法,其特征在于,所述基于预设的电池温升预估模型及所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,包括:
    基于所述电池的当前电量值,确定所述电池的待充电区间;
    确定所述待充电区间中不属于所述目标材料活性区间的待充子区间;
    基于预设的电池温升预估模型,计算所述待充子区间所需的第一充电耗时;
    将所述预存充电时长集合中的所有充电耗时累加,得到所述目标材料活性区间对应的第二充电耗时;
    计算所述第一充电耗时与所述第二充电耗时之和,得到所述电池的剩余充电时间。
  8. 如权利要求7所述的方法,其特征在于,所述基于预设的电池温升预估模型,计算所述待充子区间所需的第一充电耗时,包括:
    获取预设的充电阶段集合;
    根据当前的充电电流,基于所述充电阶段集合与所预设的电池温升预估模型,计算所述待充子区间所需的第一充电耗时。
  9. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    在本次充电过程中,记录所述目标材料活性区间的各个电量子区间的充电耗时;
    将所述预存充电时长集合中所述各个电量子区间当前对应的充电耗时,分别更新为本次充电过程记录的所述各个电量子区间的充电耗时。
  10. 如权利要求1-3任一项所述的方法,其特征在于,所述基于电池充电过程中的电性参数,确定所述电池当前所处的材料活性区间,包括:
    获取电池充电过程中的电性参数;
    基于所述电性参数的预设参数阈值确定所述电池所处的材料活性区间。
  11. 如权利要求10所述的方法,其特征在于,所述基于所述电性参数的预设参数阈值确定所述电池所处的材料活性区间,包括:
    根据所述电性参数小于预设参数阈值,确定所述电池当前所处的材料活性区间为第一材料活性区间;
    根据所述电性参数大于等于预设参数阈值,确定电池当前所处的材料活性区间为第二材料活性区间。
  12. 如权利要求10所述的方法,其特征在于,所述获取电池充电过程中的电性参数,包括:
    获取电池包含的每个电芯的单体电压;
    从每个电芯的单体电压中选取最大的单体电压,将最大的单体电压确定为所述电池的电性参数。
  13. 如权利要求1-3任一项所述的方法,其特征在于,所述电性参数包括电池的SOC或最大的单体电压。
  14. 一种电池的充电时间计算装置,其特征在于,包括:
    第一确定模块,被配置为基于电池充电过程中的电性参数,确定所述电池当前所处的材料活性区间,所述材料活性区间反映电池在相应电性参数下的化学反应活性;
    第二确定模块,被配置为若当前所处的材料活性区间为采用恒压充电方式进行充电的目标材料活性区间,则基于所述目标材料活性区间对应的预存充电时长集合,确定所述电池的剩余充电时间,所述充电时长集合中记录有历史时段对所述目标材料区间的各个子区间充电完毕所耗费的充电时长。
  15. 一种用电装置,其特征在于,包括:
    存储器,用于存储可执行指令;以及,
    处理器,用于与所述存储器执行所述可执行指令从而完成权利要求1-13中任一所述电池的充电时间计算方法的操作。
  16. 一种计算机可读存储介质,用于存储计算机可读取的指令,其特征在于,所述指令被执行时执行权利要求1-13中任一所述电池的充电时间计算方法的操作。
PCT/CN2022/100885 2022-06-23 2022-06-23 用电装置及其电池的充电时间计算方法、装置及介质 WO2023245570A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280014061.6A CN117642955A (zh) 2022-06-23 2022-06-23 用电装置及其电池的充电时间计算方法、装置及介质
PCT/CN2022/100885 WO2023245570A1 (zh) 2022-06-23 2022-06-23 用电装置及其电池的充电时间计算方法、装置及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100885 WO2023245570A1 (zh) 2022-06-23 2022-06-23 用电装置及其电池的充电时间计算方法、装置及介质

Publications (1)

Publication Number Publication Date
WO2023245570A1 true WO2023245570A1 (zh) 2023-12-28

Family

ID=89378916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100885 WO2023245570A1 (zh) 2022-06-23 2022-06-23 用电装置及其电池的充电时间计算方法、装置及介质

Country Status (2)

Country Link
CN (1) CN117642955A (zh)
WO (1) WO2023245570A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975710A (zh) * 2019-04-01 2019-07-05 北京长城华冠汽车科技股份有限公司 计算车辆电池充电时间的计算方法及电池管理系统
US20200039376A1 (en) * 2017-04-14 2020-02-06 Murata Manufacturing Co., Ltd. Charging device, charging method, secondary battery, battery pack, electric vehicle, power storage device, electronic device, and power storage system
CN111806296A (zh) * 2020-06-15 2020-10-23 汉腾汽车有限公司 一种电动汽车充电剩余时间估算方法
CN113572209A (zh) * 2020-04-29 2021-10-29 长城汽车股份有限公司 车辆充电时长计算方法、装置、可读介质及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200039376A1 (en) * 2017-04-14 2020-02-06 Murata Manufacturing Co., Ltd. Charging device, charging method, secondary battery, battery pack, electric vehicle, power storage device, electronic device, and power storage system
CN109975710A (zh) * 2019-04-01 2019-07-05 北京长城华冠汽车科技股份有限公司 计算车辆电池充电时间的计算方法及电池管理系统
CN113572209A (zh) * 2020-04-29 2021-10-29 长城汽车股份有限公司 车辆充电时长计算方法、装置、可读介质及车辆
CN111806296A (zh) * 2020-06-15 2020-10-23 汉腾汽车有限公司 一种电动汽车充电剩余时间估算方法

Also Published As

Publication number Publication date
CN117642955A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN110869784B (zh) 用于估计soc-ocv曲线的方法和设备
JP6524182B2 (ja) 二次電池のパラメーター推定装置及び方法
US10811886B2 (en) Charge control apparatus capable of high speed cell balancing and energy saving and method thereof
KR101454832B1 (ko) 이차 전지의 방전 심도 추정 장치 및 방법
EP2762907B1 (en) Apparatus and method for estimating state of charge of battery
KR101454833B1 (ko) 이차 전지의 파라미터 추정 장치 및 방법
CN102761141A (zh) 一种锂离子动力蓄电池的电量校正和控制方法
JP2016126887A (ja) 蓄電デバイス劣化推定装置、蓄電デバイス劣化推定方法、移動体
JP2020514757A (ja) バッテリー抵抗推定装置及び方法
KR20190074123A (ko) 배터리 충전 방법 및 장치
US11942810B2 (en) Apparatus and method for controlling operation of secondary battery using relative deterioration degree of electrode
CN105667326A (zh) 一种具有主动防护功能的混合动力汽车充电系统和方法
CN115027313A (zh) 电动车辆的智能充电控制方法、存储介质和电动车辆
CN109884529A (zh) 一种混合动力汽车动力电池剩余电量计算方法
WO2023245570A1 (zh) 用电装置及其电池的充电时间计算方法、装置及介质
KR102417889B1 (ko) 전기차량의 보조배터리 충전 제어장치 및 그 방법
CN111835056B (zh) 电池管理方法、应用其的供电电池以及供电系统
CN114084045A (zh) 一种动力电池生命周期管理方法
WO2023245572A1 (zh) 用电装置及其电池的充电方法、装置及介质
WO2023221055A1 (zh) 电池的放电方法和放电装置
US20240092211A1 (en) Method and device for charging secondary battery, computer storage medium, and electronic equipment
US20240190295A1 (en) Vehicle and recording medium
US20240175934A1 (en) Battery processing system and battery processing method
EP4231412A1 (en) Power battery charging method and battery management system
WO2024000145A1 (zh) 电池soh检测方法、装置、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280014061.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947341

Country of ref document: EP

Kind code of ref document: A1