WO2023245504A1 - 钴基合金、可佩戴物品和金属制品的制备方法 - Google Patents

钴基合金、可佩戴物品和金属制品的制备方法 Download PDF

Info

Publication number
WO2023245504A1
WO2023245504A1 PCT/CN2022/100499 CN2022100499W WO2023245504A1 WO 2023245504 A1 WO2023245504 A1 WO 2023245504A1 CN 2022100499 W CN2022100499 W CN 2022100499W WO 2023245504 A1 WO2023245504 A1 WO 2023245504A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
casting
based alloy
alloy
phase
Prior art date
Application number
PCT/CN2022/100499
Other languages
English (en)
French (fr)
Inventor
梁锦荣
Original Assignee
得利钟表制品厂有限公司
东莞得利钟表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 得利钟表制品厂有限公司, 东莞得利钟表有限公司 filed Critical 得利钟表制品厂有限公司
Priority to PCT/CN2022/100499 priority Critical patent/WO2023245504A1/zh
Priority to CN202211519959.7A priority patent/CN115786778B/zh
Publication of WO2023245504A1 publication Critical patent/WO2023245504A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to cobalt-based alloys, wearable articles and methods of producing metal products, and in particular, to wearable articles made of cobalt-based alloys and methods of producing the same.
  • Cobalt-chromium alloy has excellent corrosion resistance and high temperature resistance. Due to these properties and their biocompatibility, cobalt-chromium alloys are commonly used in applications in harsh environments (e.g., gas turbines), medical and dental applications (e.g., dental and orthopedic implants), etc. However, traditional cobalt-chromium alloys usually have poor deformability and are prone to cracking, making them difficult to produce delicate and complex items (for example, inlaid jewelry pieces).
  • the invention provides a cobalt-based alloy consisting essentially of the following chemical composition, by weight percent: at least about 50% cobalt, at least about 20% chromium, at least about 0.1% molybdenum, and the balance being one or more of the group consisting of manganese, vanadium, tungsten, nickel, titanium, iron, aluminum, lanthanum, tantalum, iridium, cerium, phosphorus, carbon, and unavoidable impurities .
  • the weight percent cobalt is from about 50% to about 70%.
  • the weight percent cobalt is greater than about 67%.
  • the weight percent of chromium is from about 20% to about 40%.
  • the weight percent molybdenum is from about 0.1% to about 5%.
  • the weight percent molybdenum is about 2%.
  • the balance is less than about 5% by weight.
  • the weight percent nickel is less than about 0.4%.
  • the cobalt-based alloy has a Vickers hardness of at least about 270.
  • the cobalt-based alloy is a duplex cobalt-based alloy.
  • the dual-phase cobalt-based alloy has an HCP phase and an FCC phase.
  • the ratio of HCP phase to FCC phase is about 1:1.
  • the present invention provides a wearable article comprising a cobalt-based alloy.
  • the cobalt-based alloy may be the cobalt-based alloy of the first aspect.
  • the wearable item includes one of a watch and jewelry.
  • the jewelry includes one of a bracelet and a ring.
  • the invention provides a method of making a metal article, comprising the steps of forming a casting from a cobalt-based alloy consisting essentially of the following chemical composition: at least about 50% cobalt, at least about 20% Chromium, at least about 0.1% molybdenum, and the balance being one or more of the group consisting of manganese, vanadium, tungsten, nickel, titanium, iron, aluminum, lanthanum, tantalum, iridium, cerium, phosphorus , carbon, and unavoidable impurities; and treating the casting, which includes repeated heat treatment with a quenching process and then cold treatment of the casting.
  • the cobalt-based alloy may be the cobalt-based alloy of the first aspect.
  • the step of treating the casting includes steps performed in the following order: heat treating the casting at 1100°C to 1400°C for about 1 hour, quenching and cooling the casting, heat treating the casting at 800°C to 1000°C for about 4 hours, and quenching and cooling the casting. .
  • the temperature of the casting after formation is 1450°C to 1700°C
  • the step of processing the casting includes steps performed in the following order: cooling the casting at 1100°C to 1400°C until the temperature of the casting is 1100°C to 1400°C , and continue to keep the casting at 1100°C to 1400°C for about 1 hour, cool the casting at 800°C to 1000°C until the temperature of the casting is 800°C to 1000°C, and continue to keep the casting at 800°C to 1000°C for about 1 hour, and cooling the casting at 400°C to 600°C until the temperature of the casting is 400°C to 600°C, and continuing to heat the casting at 400°C to 600°C for about 1 hour.
  • the step of processing the casting further includes grinding or polishing the casting.
  • the step of forming the casting includes forming the casting using a lost wax casting technique.
  • the metal article includes a duplex cobalt-based alloy.
  • the dual-phase cobalt-based alloy has an HCP phase and an FCC phase.
  • the ratio of HCP phase to FCC phase is about 1:1.
  • the metal article is a wearable item.
  • the wearable item may be the wearable item in the second aspect.
  • the wearable item includes one of a watch and jewelry.
  • the jewelry includes one of a bracelet and a ring.
  • the present invention Compared with traditional cobalt-chromium alloys, the present invention effectively improves the ductility, deformability and other properties of cobalt-based alloys by optimizing the contents of various elements, so that it can be used in lost-wax casting molding and stone setting processes. Moreover, the cobalt-based alloy of the present invention has a gloss similar to that of platinum and platinum, but is much cheaper than platinum and platinum. It is also hypoallergenic to the human body, has good stability, is not easy to oxidize, and is easy to clean and maintain. It is very suitable for wearable items. .
  • Figure 1 is a phase diagram of a cobalt-chromium alloy according to an embodiment of the present invention
  • Figure 2 is a microscopic image of the polished surface of the cobalt-chromium alloy of Figure 1;
  • Figure 3 is a graph showing the porosity of the polished surface of the cobalt-chromium alloy of Figure 1;
  • Figure 4A is a scanning electron microscope (SEM) image of the polished surface of the cobalt-chromium alloy of Figure 1;
  • Figure 4B is another scanning electron microscope image of the polished surface of the cobalt-chromium alloy of Figure 1;
  • Figure 5A is a microscopic image of the etched surface of the cobalt-chromium alloy of Figure 1;
  • Figure 5B is another microscopic image of the etched surface of the cobalt-chromium alloy of Figure 1;
  • Figure 6A is another microscopic image of the etched surface of the cobalt-chromium alloy of Figure 1;
  • Figure 6B is another microscopic image of the etched surface of the cobalt-chromium alloy of Figure 1;
  • Figure 7 is a scanning electron microscope image of the etched surface of the cobalt-chromium alloy in Figure 1;
  • Figure 8 is an X-ray diffraction (XRD) pattern of the cobalt-chromium alloy of Figure 1;
  • Figure 9A shows a conventional 316 stainless steel material after surface friction testing
  • Figure 9B shows the cobalt-chromium alloy of Figure 1 after surface friction testing
  • Figure 10 is a phase diagram of a cobalt-chromium alloy according to another embodiment of the present invention.
  • Figure 11A is a microscopic image of the polished surface of the cobalt-chromium alloy of Figure 10;
  • Figure 11B is another microscopic image of the polished surface of the cobalt-chromium alloy of Figure 10;
  • Figure 11C is another microscopic image of the polished surface of the cobalt-chromium alloy of Figure 10;
  • Figure 11D is another microscopic image of the polished surface of the cobalt-chromium alloy of Figure 10;
  • Figure 12A is a microscopic image of the etched surface of the cobalt-chromium alloy of Figure 10;
  • Figure 12B is another microscopic image of the etched surface of the cobalt-chromium alloy of Figure 10;
  • Figure 13A is another microscopic image of the etched surface of the cobalt-chromium alloy of Figure 10;
  • Figure 13B is another microscopic image of the etched surface of the cobalt-chromium alloy of Figure 10;
  • Figure 14A is a scanning electron microscope image of the etched surface of the cobalt-chromium alloy of Figure 10;
  • Figure 14B is another scanning electron microscope image of the etched surface of the cobalt-chromium alloy of Figure 10;
  • Figure 15 is an X-ray diffraction pattern of the cobalt-chromium alloy of Figure 10;
  • Figure 16A shows a cobalt-chromium alloy according to another embodiment of the present invention after surface friction testing
  • Figure 16B shows a cobalt-chromium alloy according to another embodiment of the present invention after surface friction testing
  • Figure 17A shows the cobalt-chromium alloy of Figure 16A after bending testing
  • Figure 17B shows the cobalt-chromium alloy of Figure 16B after bending testing
  • Figure 17C shows the cobalt-chromium alloy of Figure 16A after extension testing
  • Figure 17D shows the cobalt-chromium alloy of Figure 16B after extension testing
  • Figure 18A shows two rings made of traditional 316 stainless steel material
  • Figure 18B shows the ring of Figure 18A after a bend test
  • Figure 18C shows two rings made of the cobalt-chromium alloy of Figure 1;
  • Figure 18D shows the ring of Figure 18C after a bend test
  • Figure 19A shows a watch case made of the cobalt-chromium alloy of Figure 16A.
  • Figure 19B shows a watch case made of the cobalt-chromium alloy of Figure 16B.
  • the present invention provides a cobalt-based alloy, which essentially consists of the following chemical components in weight percent: at least about 50% cobalt (Co), at least about 20% chromium (Cr), and at least about 0.1% molybdenum. (Mo), and the balance being one or more of the group consisting of: manganese (Mn), vanadium (V), tungsten (W), nickel (Ni), titanium (Ti), iron ( Fe), aluminum (Al), lanthanum (La), tantalum (Ta), iridium (Ir), cerium (Ce), phosphorus (P), carbon (C), and inevitable impurities.
  • Co Hard, brittle and ferromagnetic, and will lose magnetism at high temperatures (about 1150°C).
  • the present invention limits the Co content to a range of about 50% to about 70%. In some embodiments, the Co content is greater than about 67%. In other embodiments, the Co content is less than about 60%.
  • the present invention limits the Cr content to a range of about 20% to about 40%. In some embodiments, the Cr content ranges from about 26% to about 35%, preferably from about 27% to about 30%. In other embodiments, the Cr content ranges from about 21% to about 26%, preferably from about 23% to about 25%.
  • the present invention limits the Mo content to a range of about 0.1% to about 5%. In some embodiments, the Mo content ranges from about 1% to about 4%, preferably from about 1.5% to about 3%, and more preferably about 2%. In other embodiments, the Mo content ranges from about 0.2% to about 1%.
  • the remaining elements are preferably present in amounts less than about 5%.
  • Mn It can improve the strength and toughness, but too high Mn content will produce retained austenite in the alloy, leading to uneven distribution of the structure, thus affecting the hardness of the alloy. In addition, high Mn content may lead to segregation, toughness deterioration, and reduced weldability. Therefore, the content of Mn is preferably 0% to 2%.
  • V It can form MC-type carbide (M: V and/or other metal elements) with a face-centered cubic lattice (FCC) structure together with C and other metal elements. It has the characteristics of small size and high thermal stability. Carbide can effectively inhibit grain growth, leading to grain refinement and precipitation strengthening.
  • the content of V is 0% to 1%.
  • W It has high hardness and high melting point. However, excessive addition of W will precipitate the brittle phase of the solid solution and thus reduce the toughness of the alloy. Therefore, the content of W is preferably 0% to 5%.
  • Ni It has medium hardness and good ductility. However, Ni is one of the most common allergenic metals, which may be released through long-term skin contact and may cause severe allergic and dermatitis symptoms.
  • the Ni content should comply with the corresponding international or local nickel release testing standards (for example, testing standards for nickel release in various jewelry metals and electroplating). Therefore, the Ni content is preferably 0% to 4%, more preferably less than 0.4%.
  • Ti Improves the tensile strength and ductility of the alloy.
  • the content of Ti is 0% to 3%, preferably less than 0.35%.
  • Fe Improves the elasticity and hardness of the alloy and reduces the expansion coefficient.
  • the content of Fe is 0% to 2%.
  • Al It is ductile, but when the Al content is too high, it will make casting difficult. Therefore, the content of Al is preferably 0% to 2%.
  • La Helps improve antioxidant properties.
  • the content of La is 0% to 5%.
  • Ta Good ductility and corrosion resistance, but low hardness. Therefore, the content of Ta is preferably 0% to 2%.
  • Ir extremely corrosion-resistant.
  • the content of Ir is 0% to 0.5%.
  • Ce ductile, but highly susceptible to spontaneous combustion (especially when slightly oxidized or alloyed with iron). Therefore, the content of Ce is preferably 0% to 1%.
  • the content of P is preferably 0% to 0.5%.
  • C It will form carbides with certain metal elements, including M23C6 and MC (M: metal). However, too high C content will cause the alloy to continuously precipitate carbide phase at high temperatures and become brittle and affect the polishing performance. Therefore, the content of C is preferably 0% to 0.5%, more preferably less than 0.25%.
  • the cobalt-based alloy of the present invention also includes other unavoidable impurities, such as one or more of the following: nitrogen (N), nitrogen (O), and silicon (Si).
  • unavoidable impurities are, for example, impurities present in the purchased raw materials themselves, or components present in the ambient air during component testing.
  • These impurities are generally undesirable and can, for example, negatively affect the hardness and ductility of cobalt-based alloys. For example, too high N and O contents will reduce the ductility of the alloy, while too high Si content will increase the chance of crack formation in the alloy and reduce its wear resistance. Therefore, in the present invention, the contents of both N and O are less than 25 ppm, and the occurrence of Si should be avoided as much as possible.
  • the cobalt-based alloy has a Vickers hardness (HV) of at least about 270.
  • the cobalt-based alloy of the present invention can be made by methods known in the art, such as melting method (for example, controlling the content of non-metals in the alloy by controlling the ratio of nitrogen and oxygen), electrodeposition method, reduction method, powder metallurgy, etc. Therefore, the preparation method of the cobalt-based alloy will not be described in this article.
  • the above-mentioned cobalt-based alloy is suitable for making wearable items, such as watches, jewelry (bracelets, rings), etc., especially inlaid jewelry pieces.
  • the present invention also provides a method of producing a metal article, the method comprising the steps of forming a casting and processing the casting to form the metal article.
  • the casting may be a cobalt-based alloy as described above, or may be a casting formed from a cobalt-based alloy as described above using a lost wax casting technique.
  • cobalt-based alloys may have carbide particles that affect alloy properties, so the parameters of the treatment process need to be controlled to maintain the size and distribution of carbide particles and grain size at the desired level.
  • the metal article may be a dual-phase cobalt-based alloy having a hexagonal close-packed (HCP) phase and an FCC phase.
  • HCP hexagonal close-packed
  • FCC hexagonal close-packed
  • the ratio of HCP phase to FCC phase is about 1:1 to bring high plasticity and toughness to the alloy, as well as relatively low brittleness.
  • the step of treating the casting may include (e.g. in a quenching process) repeated heat treatment (e.g. using a thermostatic oven) and then cold treatment of the casting, This is preferably carried out in a gradual cooling manner.
  • this includes first performing a high-temperature (such as 1100°C to 1400°C) solid solution treatment to dissolve all primary carbides (including some MC-type carbides) into the solid solution to ensure that the grains do not grow too large, and then proceed to a lower temperature. (For example, 800°C to 1000°C) aging treatment to re-precipitate carbides.
  • the treatment process can also help improve ductility.
  • the casting is heat treated at 1100°C to 1400°C for about 1 hour, then quenched and cooled (eg, immersed in cold water (eg, 4°C water)), and then heat treated at 800°C to 1000°C For about 4 hours, it is finally quenched and cooled.
  • the above-mentioned quenching cooling can be, for example, immersing the casting in cold water (for example, 4°C water).
  • the casting has a temperature of 1450°C to 1700°C after formation, the casting is cooled at 1100°C to 1400°C until its temperature reaches 1100°C to 1400°C and continues to be maintained at 1100°C to 1400°C for about 1 hour. Then, the casting is cooled at 800°C to 1000°C until its temperature is 800°C to 1000°C, and maintained at 800°C to 1000°C for about 1 hour. Continue to cool the casting at 400°C to 600°C until its temperature is 400°C to 600°C, and continue to hold at 400°C to 600°C for about 1 hour. Finally, the casting was left at room temperature until its temperature dropped to room temperature.
  • the casting can be heated from a low temperature (eg, about 25°C) to 1250°C at a constant (eg, 10°C/second) heating rate and maintained at 1250°C for 1 hour before quenching (eg, Cooling to about 25°C); then heating from low temperature (for example, about 25°C) to 900°C at a constant (for example, 10°C/second) heating rate and maintaining it at 900°C for 4 hours before quenching (for example, cooling to about 25°C).
  • the dual-phase cobalt-based alloy can be ground (for example, using a pendant grinder at a rotation speed of 2500 r/min) or polished (for example, using a plasma polisher) based on actual needs, or additional elements (for example, gemstones) can be inlaid and decorated with Form metal products.
  • the metal products include wearable items, such as watches, jewelry (bracelets, rings), etc., preferably inlaid jewelry pieces.
  • Impurities in Alloy 1 include 14 ppm of oxygen and 0.64 ppm of nitrogen, and Alloy 1 has a hardness of 311.3HV.
  • Figures 1 to 8 illustrate various physical properties of Alloy 1.
  • the HCP phase begins to appear at 928°C, and the FCC phase disappears at 896°C. Harmful phases ⁇ and ⁇ (which have adverse effects on the toughness and corrosion resistance of the alloy) begin to appear at 425°C and 600°C respectively.
  • Alloy 1 was polished and etched, and the polished surface and etched surface of Alloy 1 were observed with a microscope and a scanning electron microscope respectively (Figure 2 to Figure 7).
  • Alloy 1 has many pores, most of which are small in size (1.87 ⁇ 0.05 ⁇ m) ( Figure 2).
  • the larger holes are 6 ⁇ 0.05 ⁇ m, mainly distributed in the upper and lower positions in Figure 2.
  • the size of the holes is mainly distributed between 1 ⁇ m and 3 ⁇ m, and their average size is 2.11 ⁇ 0.05 ⁇ m. Under secondary electrons, some irregular 7.16 ⁇ 0.05 ⁇ m pores were seen under the surface of Alloy 1 (Figure 4A and Figure 4B).
  • Alloy 1 has two phases. At 100 times, obvious dendrites can be seen, and the gray lath-like HCP phase and the white dendritic FCC phase can also be seen.
  • the lower right position in Figure 5B is the combined HCP and FCC phase. In Figure 7, you can see the white lath-shaped HCP phase, as well as the HCP and FCC combined phase (lower right position in Figure 7).
  • Alloy 1 was compared to traditional 316 stainless steel materials through anti-friction testing, and the test results are shown in Figures 9A and 9B.
  • the anti-friction test is conducted as follows: After polishing the traditional 316 stainless steel material and Alloy 1 sample blocks, they are fixed on the testing machine platform respectively, and the vertical pressure on the surface is set to 1 kilogram force (kgf). Then, wipe the sample block with steel wool for 1000 cycles, with the surface wiping frequency being 40 ⁇ 2 cycles/minute, and check the scratching degree of each surface after every 200 cycles of wiping.
  • Figures 9A and 9B show the excellent difference in wear resistance between ordinary 316 stainless steel material and Alloy 1. It can be seen that Alloy 1 has better wear resistance than ordinary 316 stainless steel material.
  • Impurities in Alloy 2 include 25 ppm oxygen and 0.19 ppm nitrogen.
  • Figures 10 to 15 illustrate various physical properties of Alloy 2.
  • the HCP phase begins to appear at 890°C, and the FCC phase disappears at 840°C.
  • the temperature at which the HCP phase appears and the temperature at which the FCC phase disappears in Alloy 2 decreases significantly, and the range of these two temperatures increases, which expands the heat treatment process window.
  • the harmful phases ⁇ and ⁇ begin to appear at 454°C and 518°C respectively.
  • the temperature at which the ⁇ phase appears is slightly increased, while the temperature at which the ⁇ phase appears decreases significantly, and the volume fractions of the two phases decrease significantly.
  • Alloy 2 has more Ti, Fe and C elements than Alloy 1, so M23C6 and MC carbides are produced correspondingly, which begin to appear at 1280°C and 1335°C respectively.
  • the white strips are the FCC phase, and the gray strips are the combined phase of HCP and FCC, which generate carbides on the grain boundaries (Figure 13B).
  • the chromium content at point 1 in Figure 14A is much higher than the average value. It is inferred that this substance is Cr23C6 carbide and is distributed on the grain boundaries of the structure.
  • the needle-like ones seen in Figure 14A are HCP phases, and most of them are FCC and HCP combined phases.
  • the titanium content at point 6 in Figure 14B is high, and it is speculated that this substance is TiC.
  • the size of titanium carbide is 8 ⁇ m, which is larger than expected, so the Ti content should be reduced. Without being limited by theory, it is believed that it is better to control the Ti content at 0.3%.
  • Alloy 3 was compared with Alloy 4 through anti-friction testing, bending testing, and ductility testing, and the test results are shown in Figures 16A to 17D.
  • the anti-friction test was conducted as follows: After polishing the alloy 3 and alloy 4 samples, they were fixed on the testing machine platform, and the vertical pressure on the surface was set to 1 kilogram force (kgf). Then, wipe the sample block with steel wool for 1000 cycles, with the surface wiping frequency being 40 ⁇ 2 cycles/minute, and check the scratching degree of each surface after every 200 cycles of wiping.
  • Figures 16A and 16B show the excellent differences in the wear resistance properties of Alloy 3 and Alloy 4. It can be seen that the wear resistance properties of Alloy 3 and Alloy 4 are generally the same.
  • the bending test was performed as follows: Alloy 3 and Alloy 4 specimens of substantially the same size and shape were repeatedly bent using a testing machine to detect the risk of cracking and breakage.
  • Figures 17A and 17B show the excellent difference in the bending properties of Alloy 3 and Alloy 4. It can be seen that the bending properties of Alloy 3 are better than Alloy 4.
  • the anti-extension test is carried out as follows: Alloy 3 and Alloy 4 samples with the same size, diameter and shape are fixed on the tensile machine to detect the elongation rate of the steel wire.
  • Figure 17C and Figure 17D show the excellent difference in the ductility properties of Alloy 3 and Alloy 4. It can be seen that the ductility of Alloy 3 is better than that of Alloy 4.
  • Ring plaster casting has a hardness of 336.46HV.
  • the ring plaster casting uses the lost wax casting technique and is made of Alloy 5 with a hardness of 422.36HV.
  • Ni in ring plaster castings is caused by the Ni element on the vessel sticking to the cobalt-based material during the casting process.
  • an automatic wax casting machine is used to inject wax into a wax cylinder, dissolve it at high temperature, and inject it into the mold to form and remove the wax embryo.
  • the wax casting process uses a temperature of about 65°C, a pressure of about 0.5kgf/cm, and a pressure of about 7.6mmHg. The degree of vacuum is carried out.
  • the wax embryos are welded to the wax tree one by one using electric iron at about 50° C. (which is called the upper tree).
  • a mixer and/or vacuum pump to prepare about 100g of gypsum powder and 23mL of water into a coagulating liquid for shell making, and sinter the gypsum powder in a CNC high-temperature furnace and lower it to a suitable temperature for pouring the mold.
  • the sintering process It was carried out at 280°C for 240 minutes, then 500°C for 120 minutes, 700°C for 240 minutes, 780°C for 90 minutes, and finally 680°C for 60 minutes.
  • the ring slip casting is also made of Alloy 5 with a hardness of 422.36HV.
  • the preparation method of the ring slime casting is similar to that of Example 4, except that the shell making step uses slime instead of plaster.
  • the hardness of the stock i.e., ring slip casting
  • the hardness of the finished ring was 401.82 HV.
  • the bracelet casting is made of Alloy 1 and has a hardness of 362.14HV.
  • the preparation method of the bracelet casting is similar to that of Example 4, except that the shape and size of the mold are different.
  • 3 sets of data under 5kg test tension and 2 sets of data under 3kg test torque were obtained. These data indicate that the bracelet casting has good tensile torque.
  • Example 4 The method of Example 4 was used to make rings from alloy 1 and traditional 316 stainless steel materials respectively (Fig. 18A to Fig. 18D).
  • Alloy 1 was compared with conventional 316 stainless steel materials through bending tests and ductility tests, and the test results are shown in Figures 18A and 18B.
  • the bending test is carried out as follows: two rings made of traditional 316 stainless steel and alloy 1 are respectively equipped with gemstones, and the rings have four-sided prongs. Then, use a testing machine to bend the prongs on all four sides to secure the gemstone. Repeat the disassembly and assembly process twice to detect whether there is a risk of cracks and breakage of the claws.
  • Figures 18A and 18B show a ring made of traditional 316 stainless steel material before and after the bending test, respectively. As shown in Figure 18B, two rings made of traditional 316 stainless steel have broken claws.
  • Figures 18C and 18D show a ring made of Alloy 1 before and after bending testing, respectively. As shown in Figure 18D, both alloy 1 rings have no broken claws and can be used for setting stones. Figures 18A to 18D show the excellent difference in bending properties between ordinary 316 stainless steel materials and Alloy 1. It can be seen that the bending properties of Alloy 1 are better than ordinary 316 stainless steel materials.
  • the anti-extension test is carried out as follows: two rings made of traditional 316 stainless steel material and alloy 1 are used to flatten the rings using a testing machine to deform them, and the rounding process is repeated twice. Then, use scissors to open and straighten the ring, and fix the ring on the tensile machine to detect the elongation rate of the steel wire.
  • Figures 18A to 18D show the excellent difference in ductility between ordinary 316 stainless steel material and Alloy 1. It can be seen that the ductility of Alloy 1 is better than that of ordinary 316 stainless steel material.
  • Example 4 The method of Example 4 was used to make watch cases from Alloy 3 and Alloy 4 respectively (Fig. 19A and Fig. 19B). It can be seen that there is not much difference in appearance. However, according to the test results in Example 3, since Alloy 3 has better bending properties and ductility than Alloy 4, Alloy 3 is considered to be more suitable than Alloy 4 for preparing watch cases with claw stones.
  • the cobalt-based alloy may have properties not specifically stated above (as long as it has the above composition), or the method of preparing the metal article may omit some of the above steps, or have additional steps.
  • cobalt-based alloys may inherently have dual phases due to their composition (eg, approximately 1:1 HCP phase and FCC phase). Therefore, the preparation method of metal products can omit the steps of heat treatment and cold treatment, that is, the casting can be directly ground or polished.
  • metal articles may be produced using other suitable casting techniques, such as sand casting, investment casting, centrifugal casting, low pressure casting, pressure casting, etc.
  • metal products can be wearable items other than watches and jewelry (e.g., eyeglass frames, etc.), or they can be non-wearable items (e.g., gas turbines, dental and orthopedic implants, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Adornments (AREA)

Abstract

一种钴基合金、一种可佩戴物品和一种金属制品的制备方法。按重量百分比计,钴基合金基本上由以下化学成分组成:至少约50%钴、至少约20%铬、至少约0.1%钼,以及余量为由以下化学成分组成的组中的一种或多种:锰、钒、钨、镍、钛、铁、铝、镧、钽、铱、铈、磷、碳,以及不可避免的杂质。本发明的钴基合金具有高延展性、变形性和硬性等性质,使其特别适合用于可佩戴物品。

Description

钴基合金、可佩戴物品和金属制品的制备方法 技术领域
本发明涉及钴基合金、可佩戴物品和金属制品的制备方法,并且特别地,涉及由钴基合金制成的可佩戴物品及其制备方法。
背景技术
钴铬合金具有优异的耐腐蚀性和耐高温性。由于这些特性及其生物相容性,钴铬合金通常用于恶劣环境中的应用(例如,燃气轮机)、医疗和牙科应用(例如,牙科和骨科植入物)等。然而,传统钴铬合金通常变形性差且易破裂,使其难以用于生产精细且复杂的物品(例如,镶嵌类首饰件)。
发明内容
在第一方面,本发明提供了一种钴基合金,按重量百分比计,该钴基合金基本上由以下化学成分组成:至少约50%钴、至少约20%铬、至少约0.1%钼,以及余量为由以下化学成分组成的组中的一种或多种:锰、钒、钨、镍、钛、铁、铝、镧、钽、铱、铈、磷、碳,以及不可避免的杂质。
可选地,钴的重量百分比为约50%至约70%。
可选地,钴的重量百分比为大于约67%。
可选地,铬的重量百分比为约20%至约40%。
可选地,钼的重量百分比为约0.1%至约5%。
可选地,钼的重量百分比为约2%。
可选地,余量的重量百分比为少于约5%。
可选地,镍的重量百分比为少于约0.4%。
可选地,钴基合金具有至少约270的维氏硬度。
可选地,钴基合金是双相钴基合金。
可选地,双相钴基合金具有HCP相和FCC相。
可选地,HCP相和FCC相的比例为约1:1。
在第二方面,本发明提供了一种可佩戴物品,其包括钴基合金。该钴基合金可以是第一方面中的钴基合金。
可选地,可佩戴物品包括钟表和珠宝中的一种。
可选地,珠宝包括手链和戒指中的一种。
在第三方面,本发明提供了一种金属制品的制备方法,其包括以下步骤:用钴基合金形成铸件,钴基合金基本上由以下化学成分组成:至少约50%钴、至少约20%铬、至少约0.1%钼,以及余量为由以下化学成分组成的组中的一种或多种:锰、钒、钨、镍、钛、铁、铝、镧、钽、铱、铈、磷、碳,以及不可避免的杂质;以及处理铸件,其包括以淬火工艺重复热处理然后冷处理该铸件。该钴基合金可以是第一方面中的钴基合金。
可选地,处理铸件的步骤包括按以下顺序执行的步骤:以1100℃至1400℃热处理铸件达约1小时,淬火冷却铸件,以800℃至1000℃热处理铸件达约4小时,以及淬火冷却铸件。
可选地,铸件在形成后的温度为1450℃至1700℃,并且处理所述铸件的步骤包括按以下顺序执行的步骤:以1100℃至1400℃冷却铸件直到铸件的温度为1100℃至1400℃,并继续以1100℃至1400℃保温铸件达约1小时,以800℃至1000℃冷却铸件直到铸件的温度为800℃至1000℃,并继续以800℃至1000℃保温铸件达约1小时,以及以400℃至600℃冷却铸件直到铸件的温度为400℃至600℃,并继续以400℃至600℃保温铸件达约1小时。
可选地,处理铸件的步骤还包括打磨铸件或抛光铸件。
可选地,形成铸件的步骤包括使用失蜡铸造技术形成铸件。
可选地,金属制品包括双相钴基合金。
可选地,双相钴基合金具有HCP相和FCC相。
可选地,HCP相和FCC相的比例为约1:1。
可选地,金属制品是可佩戴物品。该可佩戴物品可以是第二方面中的可佩戴物品。
可选地,可佩戴物品包括钟表和珠宝中的一种。
可选地,珠宝包括手链和戒指中的一种。
与传统钴铬合金相比,本发明通过优化各种元素的含量,有效提高钴基合金的延展性、变形性等性能,使其可用于失蜡铸造成型和镶石工艺。而且,本发明的钴基合金光泽度与白金和铂金相似,但较白金和铂金廉价很多,并且对人体低过敏性,稳定性好,不易氧化,容易清洗和保养,十分适合用于可佩戴物品。
附图说明
现在将参照附图以示例的方式描述本发明的实施方式,其中:
图1是根据本发明的一个实施方式的钴铬合金的相图;
图2是图1的钴铬合金的抛光表面的显微图像;
图3是示出图1的钴铬合金的抛光表面的孔隙率的曲线图;
图4A是图1的钴铬合金的抛光表面的扫描电镜(SEM)图像;
图4B是图1的钴铬合金的抛光表面的另一扫描电镜图像;
图5A是图1的钴铬合金的浸蚀表面的显微图像;
图5B是图1的钴铬合金的浸蚀表面的另一显微图像;
图6A是图1的钴铬合金的浸蚀表面的另一显微图像;
图6B是图1的钴铬合金的浸蚀表面的另一显微图像;
图7是图1的钴铬合金的浸蚀表面的扫描电镜图像;
图8是图1的钴铬合金的X射线衍射(XRD)图;
图9A示出了表面摩擦测试后的传统316不锈钢材料;
图9B示出了表面摩擦测试后的图1的钴铬合金;
图10是根据本发明的另一实施方式的钴铬合金的相图;
图11A是图10的钴铬合金的抛光表面的显微图像;
图11B是图10的钴铬合金的抛光表面的另一显微图像;
图11C是图10的钴铬合金的抛光表面的另一显微图像;
图11D是图10的钴铬合金的抛光表面的另一显微图像;
图12A是图10的钴铬合金的浸蚀表面的显微图像;
图12B是图10的钴铬合金的浸蚀表面的另一显微图像;
图13A是图10的钴铬合金的浸蚀表面的另一显微图像;
图13B是图10的钴铬合金的浸蚀表面的另一显微图像;
图14A是图10的钴铬合金的浸蚀表面的扫描电镜图像;
图14B是图10的钴铬合金的浸蚀表面的另一扫描电镜图像;
图15是图10的钴铬合金的X射线衍射图;
图16A示出了表面摩擦测试后的根据本发明的另一实施方式的钴铬合金;
图16B示出了表面摩擦测试后的根据本发明的另一实施方式的钴铬合金;
图17A示出了弯曲测试后的图16A的钴铬合金;
图17B示出了弯曲测试后的图16B的钴铬合金;
图17C示出了延展测试后的图16A的钴铬合金;
图17D示出了延展测试后的图16B的钴铬合金;
图18A示出了两只以传统316不锈钢材料制成的戒指;
图18B示出了弯曲测试后的图18A的戒指;
图18C示出了两只以图1的钴铬合金制成的戒指;
图18D示出了弯曲测试后的图18C的戒指;
图19A示出了由图16A的钴铬合金制成的表壳;以及
图19B示出了由图16B的钴铬合金制成的表壳。
具体实施方式
除非另有特别规定,否则本文中的所有测试均在标准条件(包括室温(约25℃)的测试温度、海平面压力(1atm)、pH 7)下进行,所有测量均使用公制单位。此外,应当理解,除非另有特别说明,否则本文中的所有百分比、比率等均以重量计,并且本文所述的材料化合物、化学品等通常是可从世界各地的各种供应商处获得的商品和/或工业标准物品。
另外,应当理解,本文所使用的措词和术语是出于描述的目的,而不应被认为是限制性的。诸如“大体上”或“大约”的程度术语被本领域技术人员理解为指代给定值之外的合理范围,例如,与所描述的实施方式的制造、组装和使用相关联的一般公差。
本发明提供了一种钴基合金,按重量百分比计,该钴基合金基本上由以下化学成分组成:至少约50%钴(Co)、至少约20%铬(Cr)、至少约0.1%钼(Mo),以及余量为由以下化学成分组成的组中的一种或多种:锰(Mn)、钒(V)、钨(W)、镍(Ni)、钛(Ti)、铁(Fe)、铝(Al)、镧(La)、钽(Ta)、铱(Ir)、铈(Ce)、磷(P)、碳(C),以及不可避免的杂质。
上述各成分的特性和作用如下:
Co:硬而脆且有铁磁性,并会在高温(约1150℃)下失去磁性。本发明将Co的含量限制在约50%至约70%的范围内。在一些实施方式中,Co的含量大于约67%。在其他实施方式中,Co的含量少于约60%。
Cr:能有效地提高钴基合金的抗氧化性和抗腐蚀性,以及其硬度和强度,并能降低合金的膨胀系数。然而,Cr含量过高会降低合金的铸造性能并增加制造成本。因此,本发明将Cr的含量限制在约20%至约40%的范围内。在一些实施方式中,Cr的含量在约26%至约35%的范围内,优选地在约27%至约30%的范围内。在其他实施方式中,Cr的含量在约21%至约26%的范围内,优选地在约23%至约25%的范围内。
Mo:因其大原子半径,所以具有固溶强化作用,可用于增加合金硬度。同时,Mo合金的加入还会阻止晶粒长大,提高合金疲劳性能和耐蚀性能。然而,过量添加Mo会使固溶体的脆性相析出,并因此降低合金的韧性。因此,本发明将Mo的含量限制在约0.1%至约5% 的范围内。在一些实施方式中,Mo的含量在约1%至约4%的范围内,优选地在约1.5%至约3%的范围内,更优选地为约2%。在其他实施方式中,Mo的含量在约0.2%至约1%的范围内。
其余元素的含量优选地少于约5%。
Mn:可提高强度和韧性,但是过高的Mn含量会在合金产生残余奥氏体,导致组织分布不均,从而影响合金的硬度。此外,高含量的Mn可能导致偏析、韧性劣化和焊接性降低。因此,Mn的含量优选地为0%至2%。
V:其可与C和其他金属元素共同形成面心立方晶格(FCC)结构的MC型碳化物(M:V和/或其他金属元素),其具有尺寸小、热稳定性高的特点。碳化物可有效抑制晶粒长大,导致晶粒细化强化和析出强化作用。在本发明中,V的含量为0%至1%。
W:其硬度高且熔点高。然而,过量添加W会使固溶体的脆性相析出,并因此降低合金的韧性。因此,W的含量优选地为0%至5%。
Ni:其硬度中等且具有良好延展性。然而,Ni是其中一种最常见的致敏性金属,其可能经由长期的皮肤接触而释出,并可能造成严重的过敏及皮肤炎症状。Ni的含量应符合相应的国际或本地镍释放量的测试标准(例如,针对各种首饰类金属以及电镀中镍释放量的测试标准)。因此,Ni的含量优选地为0%至4%,更优选地为少于0.4%。
Ti:提高合金的抗拉强度和延展性。在本发明中,Ti的含量为0%至3%,优选地少于0.35%。
Fe:提高合金的弹性和硬度,并降低膨胀系数。在本发明中,Fe的含量为0%至2%。
Al:具有延展性,但当Al含量过高时,会使铸造带来困难。因此,Al的含量优选地为0%至2%。
La:有助改善抗氧化性能。在本发明中,La的含量为0%至5%。
Ta:具有良好的延展性和抗腐蚀性,但较低的硬度。因此,Ta的含量优选地为0%至2%。
Ir:具有极强的抗腐蚀性。在本发明中,Ir的含量为0%至0.5%。
Ce:具有延展性,但极易自燃(尤其在稍氧化或与铁生成合金时)。因此,Ce的含量优选地为0%至1%。
P:增加合金耐磨性和刚度。然而,过高的P含量会导致P与其他金属形成脆性化合物而使合金变脆。因此,P的含量优选地为0%至0.5%。
C:会与某些金属元素形成碳化物,例如包括M23C6和MC(M:金属)。然而,过高的C含量会使合金在高温下不断析出碳化物相而变脆并影响抛光性能。因此,C的含量优选地为0%至0.5%,更优选地少于0.25%。
除上述成分外,本发明的钴基合金还包括其他不可避免的杂质,例如以下的一种或多种:氮(N)、氮(O),以及硅(Si)。这些不可避免的杂质例如是购买的原材料本身存在的杂质,或在进行成分测试时测试环境空气中存在的成分等。这些杂质通常是不期望的,其例如会对钴基合金的硬度和延展性带来负面影响。例如,过高的N和O含量会降低合金的延展性,而过高的Si含量会使合金形成裂纹的机会增大并降低其耐磨性。因此,在本发明中,N和O的含量都少于25ppm,并且应尽量避免Si的出现。
在一个实施方式中,钴基合金具有至少约270的维氏硬度(HV)。
本发明的钴基合金可由本领域已知的方法制成,例如熔融法(例如,通过控制氮和氧的比例来控制合金内非金属的含量)、电沉积法、还原法、粉末冶金等。因此,在本文中不再加以描述钴基合金的制备方法。
上述的钴基合金适合制作可佩戴物品,例如钟表、珠宝(手链、戒指)等,特别是镶嵌类首饰件。
本发明也提供了一种金属制品的制备方法,该制备方法包括以下步骤:形成铸件并处理该铸件以形成金属制品。该铸件可以是上述的钴基合金,或可以是使用失蜡铸造技术用上述的钴基合金形成的铸件。
如上所述,钴基合金中可能具有会影响合金性质的碳化物颗粒,因此需要控制处理工艺的参数以使碳化物颗粒的大小和分布以及晶粒尺寸保持在期望的水平。
该金属制品可以是具有密排六方(HCP)相和FCC相的双相钴基合金。优选地,HCP相和FCC相的比例为约1:1,以为合金带来高塑性和韌性,以及相对较低的脆性。为了实现双相(特别是约1:1的双相)并控制碳化物的性质和析出,该处理铸件的步骤可以包括(例如以淬火工艺)重复热处理(例如,使用恒温箱)然后冷处理铸件,优选地以逐步冷却的方式进行。总体上,这包括首先进行高温(例如1100℃至1400℃)固溶处理,使所有的一次碳化物(包括部分MC型碳化物)溶入固溶体以确保晶粒没有过于长大,然后以较低温(例如800℃至1000℃)进行时效处理,以使碳化物重新析出。该处理工艺还可有助于提高延展性。
在一个实施方式中,铸件以1100℃至1400℃被热处理达约1小时,然后被淬火冷却(例如被浸没在冷水(例如,4℃的水)中),再以800℃至1000℃被热处理达约4小时,最后被淬火冷却。上述的淬火冷却可以例如是将铸件浸没在冷水(例如,4℃的水)中。
在另一实施方式中,铸件在形成后的温度为1450℃至1700℃,该铸件以1100℃至1400℃被冷却直到其温度达到1100℃至1400℃并继续以1100℃至1400℃保温 达约1小时。然后,以800℃至1000℃冷却铸件直到其温度为800℃至1000℃,并继续以800℃至1000℃保温达约1小时。继续以400℃至600℃冷却该铸件直到其温度为400℃至600℃,并继续以400℃至600℃保温达约1小时。最后,在室温放置该铸件直到其温度降至室温。
在另一实施方式中,可将铸件以恒定(例如,10℃/秒)的加热速率从低温(例如,约25℃)加热到1250℃并将其保持在1250℃达1小时后淬火(例如降温到约25℃);然后以恒定(例如,10℃/秒)的加热速率从低温(例如,约25℃)加热到900℃并将其保持在900℃达4小时后淬火(例如降温到约25℃)。
之后,可以基于实际需要打磨(例如,使用吊磨机以2500r/min的转速)或抛光(例如,使用等离子抛光机)该双相钴基合金,或镶嵌附加的元件(例如,宝石)并以形成金属制品。优选地,金属制品包括可佩戴物品,例如钟表、珠宝(手链、戒指)等,优选地是镶嵌类首饰件。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
合金
以X射线荧光(XRF)光谱仪进行本发明的各种钴基合金的组成成分的分析测试,并在表1中示出了测试结果。应当理解,因仪器检出限、分析方法检出限等,当下表列出的合金成分在未计算杂质成分时的总和已经等于100%的情况下,其仍可具有少量不可避免的杂质。
表1:钴基合金的组成成分
Figure PCTCN2022100499-appb-000001
Figure PCTCN2022100499-appb-000002
实施例1–合金1
合金1中的杂质包括14ppm的氧和0.64ppm的氮,并且合金1具有311.3HV的硬度。
图1至图8示出了合金1的各种物理性质。如图1所示,HCP相在928℃开始出现,并且FCC相在896℃消失。有害相σ和μ(其对合金的韧性和耐腐蚀性具有不利影响)分别在425℃和600℃开始出现。为了进行金相观察,分别对合金1进行抛光和浸蚀处理,并分别以显微镜和扫描电子显微镜观察了合金1的抛光表面和浸蚀表面(图2至图7)。合金1的孔洞很多,大多数为尺寸较小(1.87±0.05μm)的孔洞(图2)。另外,较大的孔洞为6±0.05μm,主要分布在图2中的靠上及靠下的位置。如图3所示,孔洞的尺寸主要分布在1μm和3μm之间,并且其平均尺寸为2.11±0.05μm。在二次电子下看到合金1表面下有一些不规则的7.16±0.05μm的孔洞(图4A和图4B)。如图5A至图6B所示,合金1具有双相。在100倍下可以看到明显枝晶,也可以看到灰色呈板条状的HCP相,以及白色呈树枝状的FCC相。图5B中的右下位置是HCP和FCC组合相。在图7中可以看到白色呈板条状的HCP相,以及HCP和FCC组合相(图7中的右下位置)。为了了解合金1的晶体结构,进行了X射线衍射法(XRD)并获取了XRD图(图8)。从该XRD图并以体积分数的计算公式(式1)得出合金1的HCP相的体积含量为74.9%。
Figure PCTCN2022100499-appb-000003
将合金1与传统316不锈钢材料通过抗摩擦测试进行比较,并在图9A和图9B中示出了测试结果。抗摩擦测试按以下方式进行:将传统316不锈钢材料和合金1样块抛光处理后,分别固定在测试机平台上,并设置表面承受的垂直压力为1千克力(kgf)。然后,用钢丝棉对样块进行1000个循环擦拭,其中表面擦拭频率为40±2循环/分钟,并在每200个循环擦拭后检查一次各表面的擦划程度。图9A和图9B示出了普通316不锈钢材料与合金1耐磨性能的优异差别,可见合金1的抗耐磨性能优于普通316不锈钢材料。
实施例2–合金2
合金2中的杂质包括25ppm的氧和0.19ppm的氮。
图10至图15示出了合金2的各种物理性质。如图10所示,HCP相在890℃开始出现,并且FCC相在840℃消失。与合金1相比,合金2的HCP相出现的温度和FCC相消失的温度明显下降,且这两个温度的区间增加,扩大了热处理工艺窗口。有害相σ和μ分别在454℃和518℃开始出现。与合金1相比,σ相出现的温度略有提升,而μ相出现的温度明显下降,并且两个相的体积分数明显下降。另外,合金2比合金1多了Ti、Fe和C元素,因此相应产生了M23C6和MC碳化物,其分别在1280℃和1335℃开始出现。
为了进行金相观察,分别对合金2进行抛光和浸蚀处理,并分别以显微镜和扫描电子显微镜观察了合金2的抛光表面和浸蚀表面(图11至图14)。如图11A至图11D所示,合金2没有孔洞,在50倍下还看到典型的铸态组织。因为加了C,在500倍下可以看到碳化物(图11D)。与合金1相比,合金2的抛光性能较低。如图12A至图13B所示,合金2具有双相。在50倍下看到枝晶组织较合金1要小(图12A)。也可以明显看到,白色条状的是FCC相,灰色条状的是HCP和FCC组合相,其在晶界上生成碳化物(图13B)。图14A中点1处的铬含量远高于平均值,推测该物质为Cr23C6碳化物,且分布在组织的晶界上。在图14A中看到的针状的是HCP相,并且大多是FCC和HCP组合相。图14B中点6处的钛含量高,推测该物质为TiC。碳化钛的尺寸为8μm,尺寸比期望水平较大,因此应减少Ti的含量。不受理论的限制,认为将Ti含量控制在0.3%为佳。为了了解合金2的晶体结构,进行了(XRD)并获取了XRD图(图15)。从该XRD图并以体积分数的计算公式(式1)得出合金2的HCP相的体积含量为14.2%,其HCP相较合金1少、FCC相较合金1多。
实施例3–合金3和合金4的比较
将合金3与合金4通过抗摩擦测试、弯曲测试和延展测试进行比较,并在图16A至图17D中示出了测试结果。抗摩擦测试按以下方式进行:将合金3与合金4样块抛光处理后,分别固定在测试机平台上,并设置表面承受的垂直压力为1千克力(kgf)。然后,用钢丝棉对样块进行1000个循环擦拭,其中表面擦拭频率为40±2循环/分钟,并在每200个循环擦拭后检查一次各表面的擦划程度。图16A和图16B示出了合金3和合金4耐磨性能的优异差别,可见合金3和合金4的抗耐磨性能大体相同。弯曲测试按以下方式进行:使用测试机重复压弯具有大体相同大小和形状的合金3与合金4样块,以检测是否存在龟裂及断脱风险。图17A和图17B示出了合金3与合金4弯曲性能的优异差别,可见合金3的弯曲性能优于合金4。抗延展测试按以下方式进行:将具有体相同大小、直径和形状的合金3与合金4样块固定在拉力机上,以检测钢线延展率大小。图17C和图17D示出了合金3与合金4延展性能的优异差别,可见合金3的延展性能优于合金4。
金属制品
以X射线荧光(XRF)光谱仪进行本发明的制成各种金属制品的铸件的组成成分的分析测试,并在表2中示出了测试结果。应当理解,因仪器检出限、分析方法检出限等,当下表列出的 铸件成分在未计算杂质成分时的总和已经等于100%的情况下,其仍可具有少量不可避免的杂质。
表2:铸件的组成成分
Figure PCTCN2022100499-appb-000004
实施例4-戒指石膏铸件
戒指石膏铸件具有336.46HV的硬度。戒指石膏铸件采用失蜡铸造技术并由422.36HV的硬度的合金5制成。戒指石膏铸件中的Ni是由于在铸造过程中,器皿上的Ni元素粘到钴基材料上所导致。首先,使用自动铸蜡机将蜡注入蜡缸中通过高温溶解并注入模具内成型并拆出蜡胚,其中铸蜡工艺以约65℃的温度、约0.5kgf/cm的压力,以及约7.6mmHg的真空度进行。然后,通过高温溶解,在约50℃使用电洛铁将蜡胚逐一焊接到蜡树上(其被称为上树)。另一方面,使用搅拌机和/或真空泵将约100g石膏粉和23mL的水调剂成凝固液以用于制壳,并将石膏粉以数控高温炉烧结并降至合适温度以便倒模,其中烧结工艺以280℃达240分钟,然后500℃达120分钟、700℃达240分钟、780℃达90分钟,最后680℃达60分钟进行。然后,进行倒模烧注,使用熔金机以约1700℃将合金5溶解后注入石膏盅。成型后,使用切割机将胚料逐一切割下来(被称为下树),并使用砂轮片以2500r/min的转速将胚料上的入水位去掉以形成戒指石膏铸件。
实施例5-戒指粘浆铸件
戒指粘浆铸件也是由422.36HV的硬度的合金5制成。戒指粘浆铸件的制备方法与实施例4的方法相似,只是制壳的步骤以粘浆代替石膏。树头料(即,戒指粘浆铸件)的硬度为271.2HV,并且成品戒指的硬度为401.82HV。
实施例6-手链铸件
手链铸件由合金1制成并具有362.14HV的硬度。手链铸件的制备方法与实施例4的方法相似,只是模具形状和尺寸不同。另外,在手链铸件的拉扭力测试中(其中扣链位未被焊接),得到了3组5kg测试拉力下的数据和2组3kg测试扭力下的数据。该等数据都表明手链铸件具有了良好的拉扭力。
实施例7–戒指
使用实施例4的方法分别以合金1和传统316不锈钢材料制成戒指(图18A至图18D)。
将合金1与传统316不锈钢材料通过弯曲测试和抗延展测试进行比较,并在图18A和图18B中示出了测试结果。弯曲测试按以下方式进行:将分别由传统316不锈钢材料和合金1制成的二款戒指装嵌宝石,其中戒指具有四边托爪。然后,使用测试机压弯四边托爪以固定宝石。重复两次拆装工序,以检测托爪是否存在龟裂及断脱风险。图18A和图18B分别示出了弯曲测试前和后的以传统316不锈钢材料制成的戒指。如图18B所示,两只传统316不锈钢材料的戒指都有断爪情况。图18C和图18D分别示出了弯曲测试前和后的以合金1制成的戒指。如图18D所示,两只合金1的戒指都没有断爪情况,并且可用于镶石。图18A至图18D示出了普通316不锈钢材料与合金1弯曲性能的优异差别,可见合金1的弯曲性能优于普通316不锈钢材料。
抗延展测试按以下方式进行:将分别由传统316不锈钢材料和合金1制成的二款戒指分别使用测试机压扁指环使其变形,并重复二次修圆工序。然后,用剪钳开和拉直指环,并将指环固定在拉力机上,以检测钢线延展率大小。图18A至图18D示出了普通316不锈钢材料与合金1延展性能的优异差别,可见合金1的延展性能优于普通316不锈钢材料。
实施例8–表壳
使用实施例4的方法分别以合金3和合金4制成表壳(图19A和图19B),可见其外观上分别不大。然而,根据实施例3中的测试结果,由于合金3比合金4具有更佳的弯曲性能和延展性能,合金3被认为比合金4更适合于制备有爪石的表壳。
本领域技术人员将理解,在不背离广泛描述的本发明的精神或范围的情况下,可以对具体实施方式中所示的本发明进行各种变化和/或修改。例如,钴基合金的可具有上面未具体指出的性质(只要其具有上述组成成分),或者金属制品的制备方法可省略上述步骤中的一些步骤,或具有附加步骤。例如,钴基合金可因其组成成分而本身具有双相(例如约1:1的HCP相和FCC相)。因此,金属制品的制备方法可省略热处理和冷处理的步骤,即可以直接打磨或抛光铸件。作为另一示例,替代失蜡铸造技术,金属制品的制备方法可使用其他合适的铸造技术,例如砂型铸造、熔模铸造、离心铸造、低压铸造、压力铸造等。另外,金属制品可以是除手表和珠宝以外的可佩戴物品(例如,眼镜框等),也可以是非可佩戴物品(例如,燃气轮机、牙科和骨科植入物等)。
因此,本发明所描述的实施方式在所有方面都应该被认为是说明性的,而不是限制性的。

Claims (26)

  1. 一种钴基合金,其特征在于,按重量百分比计,所述钴基合金基本上由以下化学成分组成:
    至少约50%钴、
    至少约20%铬、
    至少约0.1%钼,以及
    余量为由以下化学成分组成的组中的一种或多种:锰、钒、钨、镍、钛、铁、铝、镧、钽、铱、铈、磷、碳,以及不可避免的杂质。
  2. 根据权利要求1所述的钴基合金,其中,钴的重量百分比为约50%至约70%。
  3. 根据权利要求1或权利要求2所述的钴基合金,其中,钴的重量百分比为大于约67%。
  4. 根据权利要求1所述的钴基合金,其中,铬的重量百分比为约20%至约40%。
  5. 根据权利要求1至4中任一项所述的钴基合金,其中,钼的重量百分比为约0.1%至约5%。
  6. 根据权利要求1至5中任一项所述的钴基合金,其中,钼的重量百分比为约2%。
  7. 根据权利要求1所述的钴基合金,其中,所述余量的重量百分比为少于约5%。
  8. 根据权利要求1至7中任一项所述的钴基合金,其中,镍的重量百分比为少于约0.4%。
  9. 根据权利要求1至8中任一项所述的钴基合金,其中,所述钴基合金具有至少约270的维氏硬度。
  10. 根据权利要求1至9中任一项所述的钴基合金,其中,所述钴基合金是双相钴基合金。
  11. 根据权利要求10所述的钴基合金,其中,所述双相钴基合金具有HCP相和FCC相。
  12. 根据权利要求11所述的钴基合金,其中,所述HCP相和所述FCC相的比例为约1:1。
  13. 一种可佩戴物品,其特征在于,所述可佩戴物品包括权利要求1至12中任一项所述的钴基合金。
  14. 根据权利要求13所述的可佩戴物品,其中,所述可佩戴物品包括钟表和珠宝中的一种。
  15. 根据权利要求14所述的可佩戴物品,其中,所述珠宝包括手链和戒指中的一种。
  16. 一种金属制品的制备方法,其特征在于,所述制备方法包括以下步骤:
    用钴基合金形成铸件,所述钴基合金基本上由以下化学成分组成:
    至少约50%钴、
    至少约20%铬、
    至少约0.1%钼,以及
    余量为由以下化学成分组成的组中的一种或多种:锰、钒、钨、镍、钛、铁、铝、镧、钽、铱、铈、磷、碳,以及不可避免的杂质;以及
    处理通过所述铸件,其包括以淬火工艺重复热处理然后冷处理所述铸件。
  17. 根据权利要求16所述的制备方法,其中,所述处理所述铸件的步骤包括按以下顺序执行的步骤:
    以1100℃至1400℃热处理所述铸件达约1小时,
    淬火冷却所述铸件,
    以800℃至1000℃热处理所述铸件达约4小时,以及
    淬火冷却所述铸件。
  18. 根据权利要求16所述的制备方法,其中,所述铸件在形成后的温度为1450℃至1700℃,并且所述处理所述铸件的步骤包括按以下顺序执行的步骤:
    以1100℃至1400℃冷却所述铸件直到所述铸件的温度为1100℃至1400℃,并继续以1100℃至1400℃保温所述铸件达约1小时,
    以800℃至1000℃冷却所述铸件直到所述铸件的温度为800℃至1000℃,并继续以800℃至1000℃保温所述铸件达约1小时,以及
    以400℃至600℃冷却所述铸件直到所述铸件的温度为400℃至600℃,并继续以400℃至600℃保温所述铸件达约1小时。
  19. 根据权利要求16至18中任一项所述的制备方法,所述处理所述铸件的步骤还包括打磨所述铸件或抛光所述铸件。
  20. 根据权利要求16至19中任一项所述的制备方法,所述形成铸件的步骤包括使用失蜡铸造技术形成所述铸件。
  21. 根据权利要求16至20中任一项所述的制备方法,其中,所述金属制品包括双相钴基合金。
  22. 根据权利要求21所述的钴基合金,其中,所述双相钴基合金具有HCP相和FCC相。
  23. 根据权利要求22所述的制备方法,其中,所述HCP相和所述FCC相的比例为约1:1。
  24. 根据权利要求16至23中任一项所述的制备方法,其中,所述金属制品是可佩戴物品。
  25. 根据权利要求24所述的制备方法,其中,所述可佩戴物品包括钟表和珠宝中的一种。
  26. 根据权利要求25所述的制备方法,其中,所述珠宝包括手链和戒指中的一种。
PCT/CN2022/100499 2022-06-22 2022-06-22 钴基合金、可佩戴物品和金属制品的制备方法 WO2023245504A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/100499 WO2023245504A1 (zh) 2022-06-22 2022-06-22 钴基合金、可佩戴物品和金属制品的制备方法
CN202211519959.7A CN115786778B (zh) 2022-06-22 2022-11-30 钴基合金、可佩戴物品和金属制品的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100499 WO2023245504A1 (zh) 2022-06-22 2022-06-22 钴基合金、可佩戴物品和金属制品的制备方法

Publications (1)

Publication Number Publication Date
WO2023245504A1 true WO2023245504A1 (zh) 2023-12-28

Family

ID=85443729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100499 WO2023245504A1 (zh) 2022-06-22 2022-06-22 钴基合金、可佩戴物品和金属制品的制备方法

Country Status (2)

Country Link
CN (1) CN115786778B (zh)
WO (1) WO2023245504A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117385234A (zh) * 2023-12-12 2024-01-12 成都先进金属材料产业技术研究院股份有限公司 一种高端饰品用钴基合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462575A (en) * 1993-12-23 1995-10-31 Crs Holding, Inc. Co-Cr-Mo powder metallurgy articles and process for their manufacture
CN104263999A (zh) * 2014-10-11 2015-01-07 上海大学兴化特种不锈钢研究院 一种新型高塑性医用钴基合金
CN109234574A (zh) * 2018-09-11 2019-01-18 中国科学院金属研究所 一种具有抗菌功能的抗菌钴基合金
CN114540669A (zh) * 2022-02-22 2022-05-27 东莞理工学院 一种用于戒指环的钴铬合金及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576038A (en) * 1978-12-04 1980-06-07 Hitachi Ltd High strength high toughness cobalt-base alloy
DE3319457C1 (de) * 1983-05-28 1984-02-09 Degussa Ag, 6000 Frankfurt Kobaltlegierungen zur Herstellung von Zahnersatz
FR2733416B1 (fr) * 1995-04-28 1997-07-25 Bourrelly Georges Alliage pour protheses dentaires a base de cobalt-chrome aluminium
FR2750858A1 (fr) * 1996-07-15 1998-01-16 Bourrelly Georges Alliage de cobalt-chrome-tantale-aluminium pour protheses dentaires
US20100329920A1 (en) * 2009-06-26 2010-12-30 Edward Rosenberg Cobalt-based jewelry article
US9289037B2 (en) * 2011-10-20 2016-03-22 Mythrial Metals Llc Hardened cobalt based alloy jewelry and related methods
WO2015159166A1 (en) * 2014-04-16 2015-10-22 Indian Institute Of Science Gamma - gamma prime strengthened tungsten free cobalt-based superalloy
CN114990387B (zh) * 2022-07-20 2022-11-25 无锡卡仕精密科技有限公司 钴铬钼合金植入物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462575A (en) * 1993-12-23 1995-10-31 Crs Holding, Inc. Co-Cr-Mo powder metallurgy articles and process for their manufacture
CN104263999A (zh) * 2014-10-11 2015-01-07 上海大学兴化特种不锈钢研究院 一种新型高塑性医用钴基合金
CN109234574A (zh) * 2018-09-11 2019-01-18 中国科学院金属研究所 一种具有抗菌功能的抗菌钴基合金
CN114540669A (zh) * 2022-02-22 2022-05-27 东莞理工学院 一种用于戒指环的钴铬合金及其制备方法

Also Published As

Publication number Publication date
CN115786778A (zh) 2023-03-14
CN115786778B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
KR102180486B1 (ko) 외부 컴포넌트를 위한 고엔트로피 합금
JP6839213B2 (ja) ボロンドーピングされた高エントロピー合金およびその製造方法
EP0663453B1 (en) Titanium alloy and method for production thereof
JP4941854B2 (ja) 固結された粉末冶金物品、同物品から作られた鋼線及び同鋼線の製造方法
Sampath Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu–Al–Ni alloys
TWI443215B (zh) Tantalum sputtering target
EP1711641B1 (en) Platinum alloy and method of production thereof
JP4493028B2 (ja) 被削性及び熱間加工性に優れたα−β型チタン合金
JP6826235B2 (ja) Ni基合金軟化粉末および該軟化粉末の製造方法
JP2014506293A (ja) キャスティングによるナノ双晶形成チタン材料の作製方法
KR20130134014A (ko) 저탄성 고강도 베타형 타이타늄 합금
WO2020241176A1 (ja) NiTi系合金材料、NiTi系合金材料の製造方法およびNiTi系合金材料からなる線材または管材
WO2023245504A1 (zh) 钴基合金、可佩戴物品和金属制品的制备方法
EP3199651A1 (en) CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
KR102500630B1 (ko) 주조용 몰드재 및 Cu-Cr-Zr-Al 합금 소재
JP2017031488A (ja) β型強化チタン合金、β型強化チタン合金の製造方法
JP6497689B2 (ja) Co−Cr−W基合金熱間加工材、焼鈍材、鋳造材、均質化熱処理材、及びCo−Cr−W基合金熱間加工材の製造方法、焼鈍材の製造方法
JP2007107040A5 (zh)
TWI844981B (zh) 高硬度貴金屬合金及其製造方法
KR20170059435A (ko) 주조용 몰드재 및 Cu-Cr-Zr 합금 소재
JP2007107040A (ja) 宝飾品用グリーンゴールド合金
CN105992830A (zh) 用于饰品工业和钟表工业的贵金属合金
CN108078788B (zh) 一种牙科修复材料
WO2023063156A1 (ja) 高硬度貴金属合金及びその製造方法
JP2021105210A (ja) 装身具及び装身具の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947283

Country of ref document: EP

Kind code of ref document: A1