WO2023244068A1 - 삼중 프레임 나노입자 및 이의 제조방법 - Google Patents

삼중 프레임 나노입자 및 이의 제조방법 Download PDF

Info

Publication number
WO2023244068A1
WO2023244068A1 PCT/KR2023/008356 KR2023008356W WO2023244068A1 WO 2023244068 A1 WO2023244068 A1 WO 2023244068A1 KR 2023008356 W KR2023008356 W KR 2023008356W WO 2023244068 A1 WO2023244068 A1 WO 2023244068A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
gold
nanoparticles
triple
triple frame
Prior art date
Application number
PCT/KR2023/008356
Other languages
English (en)
French (fr)
Inventor
박성호
이수현
이성우
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2023244068A1 publication Critical patent/WO2023244068A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/005Constitution or structural means for improving the physical properties of a device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to triple frame nanoparticles, and more specifically, to a method of synthesizing triple frame nanoparticles using the Kirkendall effect and an aqueous solution etching method, and to a surface enhanced Raman scattering analysis method using triple frame nanoparticles.
  • Precious metal nanoparticles are frequently used in surface-enhanced Raman scattering techniques due to the local surface plasmon resonance phenomenon that occurs in the noble metal nanoparticles.
  • the surface-enhanced Raman scattering technique is an ultra-sensitive analysis technique that enables detection of single molecules and is widely used in fields such as life science, chemical production, and environmental management.
  • the electromagnetic field near the noble metal nanoparticles is maximized between the narrow gaps between the noble metal nanoparticles, also called hot spots, and as a result, the Raman scattering signal of the target molecule can be amplified.
  • nanoparticles are controlled to have gaps between particles, or particles with gaps within a single particle, rough surfaces, or porous structures are synthesized.
  • particles with gaps inside the particles are synthesized. Synthesis of particles allows for uniform control of the size of the hot spot, improving sensitivity and reproducibility when applied to surface-enhanced Raman analysis.
  • DNA or polymers with sulfur functional groups are used to synthesize nanoparticles so that there are gaps within the particles.
  • particles with a porous structure have a high density of hot spots and can be used in surface-enhanced Raman scattering analysis, or have a large surface area to volume ratio and can be used in catalysts, plasma etching methods, acid dealloying corrosion methods, and galvanic substitution reactions.
  • a porous structure can be synthesized using the method.
  • the nanoframe structure has a larger surface area than the nanoparticle structure and can smoothly interact with external light, so it is widely used in catalysts, surface-enhanced Raman scattering, and medical fields.
  • Lithography and galvanic substitution methods are mainly used.
  • the technical problem to be achieved by the present invention is to provide triple frame nanoparticles and a method of manufacturing the same.
  • the triple frame nanoparticles can precisely control their internal spacing and shape, maximizing interaction with light to provide a surface-enhanced Raman scattering substrate that can be used in applied research such as bio and chemical detection. .
  • an embodiment of the present invention provides a method for manufacturing triple frame nanoparticles.
  • a triple frame nanoparticle manufacturing method includes preparing a single frame made of gold or platinum with a closed loop structure; forming a first ring structure with a silver thin film layer by concentrically growing silver nanoparticles on the single frame; Gold nanoparticles are formed on the first ring structure, and the silver thin film layer is transformed into a gold-silver alloy layer spaced apart from the single frame by performing a Kirkendall process, with the inner and inner sides based on the single frame.
  • forming a second ring structure by forming a gold-silver alloy layer in which the thickness of the layer formed on the outer side is thicker than the thickness of the layer formed on the upper and lower sides; and the gold-silver alloy layer of the second ring structure It may include forming triple frame nanoparticles with nanogaps by etching them in an aqueous solution to remove the upper and lower regions.
  • the gold single frame may have a structure in which a gold thin film is formed on a platinum single frame having a closed loop structure.
  • the Kirkendall process may be performed in an aqueous solution containing trivalent gold ions, a reducing agent, and a stabilizer.
  • the etching may be performed in an aqueous solution containing trivalent gold ions and a stabilizer.
  • the gold-silver alloy layer may be transformed into a gold thin film layer during the etching process.
  • another embodiment of the present invention provides triple frame nanoparticles.
  • the triple frame nanoparticles are characterized in that they are manufactured by the triple frame nanoparticle manufacturing method described above.
  • the triple frame nanoparticles may be connected by at least one gold bridge.
  • the spacing between nanogaps of the triple frame nanoparticles may be 7 nm to 23 nm.
  • the diameter of the triple frame nanoparticle may be 148 nm to 194 nm.
  • the triple frame nanoparticles have a symmetrical geometry, and through the symmetrical geometry, Raman scattering of light of near-infrared wavelengths in all directions may be possible.
  • another embodiment of the present invention provides a substrate for surface-enhanced Raman scattering.
  • the substrate for surface-enhanced Raman scattering according to an embodiment of the present invention may include triple-frame nanoparticles manufactured by the triple-frame nanoparticle production method described above.
  • triple frame nanoparticles in which multiple nanoparticles are integrated in one space can be manufactured by forming a thin film layer by the Kirkendall process and performing a sophisticated chemical reaction in an aqueous solution.
  • the triple frame nanoparticles have a larger hot spot area than existing single or double nanostructures, so the Raman signal of single particle surface-enhanced Raman scattering is increased by 15 times, increasing the resolution of the single particle surface-enhanced Raman signal. There is an effect that can dramatically improve.
  • the single particle surface-enhanced Raman scattering signal detected from the triple frame nanoparticle has high reproducibility and has the effect of showing uniform Raman signal and high resolution regardless of the direction of light.
  • Figure 1 is a schematic diagram showing triple frame nanoparticles and their manufacturing method according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing a method for manufacturing triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the etching process of triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 4 is a plan view showing triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a triple frame nanoparticle according to an embodiment of the present invention.
  • Figure 6 is an SEM image of (C) a single frame nanoparticle made of platinum, (D) a first ring structure, (E) a second ring structure, and (F) a triple frame nanoparticle according to an embodiment of the present invention.
  • Figure 7 is a visible-near-infrared optical spectrum graph of platinum single-frame nanoparticles, first ring structures, second ring structures, and triple-frame nanoparticles according to an embodiment of the present invention.
  • Figure 8 is a TEM image and an EDS mapping image of (A, B) gold-platinum-gold triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram and graph showing the near-field electromagnetic field aggregation effect through measuring the spacing and surface enhanced Raman scattering of gold-platinum-gold triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram and graph showing the characteristics of gold-gold-gold triple frame nanoparticles and the near-field electromagnetic field aggregation effect through surface-enhanced Raman scattering measurement according to an embodiment of the present invention.
  • Figure 1 is a schematic diagram showing triple frame nanoparticles and their manufacturing method according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing a method for manufacturing triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the etching process of triple frame nanoparticles according to an embodiment of the present invention.
  • the triple frame nanoparticle manufacturing method includes preparing a single frame (100, 110) made of gold or platinum with a closed loop structure (S100);
  • Gold nanoparticles are formed on the first ring structures 200 and 210, and the silver thin film layer is transformed into gold-silver alloy layers 301 and 311 spaced apart from the single frame by performing a Kirkendall process.
  • the first step may include preparing a single frame (100, 110) made of gold or platinum. (S100)
  • the gold single frame 110 can be prepared by concentrically growing a gold thin film on the platinum single frame 100.
  • the single frame according to an embodiment of the present invention can use platinum as a starting material, and the reason why platinum was selected as a starting material is because platinum has high structural stability and can be used as an excellent internal support.
  • the second step may include concentrically growing silver nanoparticles on the single frames 100 and 110 to form first ring structures 200 and 210 in which silver thin film layers 201 and 211 are formed. (S200)
  • concentric growth means that when nanoparticles grow along a closed-loop single frame, growth progresses on both the inner and outer boundaries of the closed-loop single frame, thereby forming a closed-loop type. It can refer to a growth method in which nanoparticles grow non-selectively and evenly along a single frame.
  • the concentric growth occurs when the potential applied during the reduction reaction is higher than both the surface energy of the inner boundary (E inner -boundary) and the surface energy of the outer boundary (E outer -boundary).
  • a reduction reaction may occur at both the internal and external boundaries to form a silver thin film.
  • CTAC hexadecyltrimethylammonium chloride
  • a silver precursor containing Ag + , NaOH, and AA ascorbic acid
  • the platinum single frame 100 is added to a solution containing silver and concentric growth is performed to form a silver thin film layer, thereby forming the first ring structure 200.
  • the detailed method of forming the silver thin film layer will be described later in the following examples.
  • the first ring structure 210 is formed by forming the silver thin film layer in the same manner as in the case of forming the silver thin film on the platinum single frame 100. can do.
  • the reason for forming the silver thin film layer on the platinum single frame is to create a second ring structure through the Kirkendall process between the silver thin film layer and the gold thin film layer subsequently stacked thereon.
  • gold nanoparticles are formed on the first ring structure, and the silver thin film layer is transformed into a gold-silver alloy layer spaced apart from the single frame by performing a Kirkendall process, based on the single frame.
  • This may include forming a gold-silver alloy layer in which the thickness of the layers formed on the inner and outer sides is thicker than the thickness of the layers formed on the upper and lower sides to form a second ring structure.
  • the second ring structure includes preparing a mixed solution containing gold ions, a reducing agent, and a surfactant consisting of CTAC (hexadecyltrimethylammonium chloride); It can be manufactured by performing the step of adding the first ring structure to the mixed solution.
  • CTAC hexadecyltrimethylammonium chloride
  • the solution providing trivalent gold ions is preferably HAuCl 4 ⁇ nH2O or HAuCl 4 solution, but is not limited thereto.
  • Figure 3 is a schematic diagram of the etching process of triple frame nanoparticles according to an embodiment of the present invention.
  • the gold-silver alloy layers 301 and 311 have empty spaces formed on the single frames 100 and 110, and the gold-silver alloy layers 301 and 311 are formed on the inner and outer sides of the single frame.
  • the thickness of the silver alloy layer may be thicker than the thickness of the gold-silver alloy layer formed on the upper and lower sides.
  • a galvanic substitution reaction involves a metal ion having a higher reduction potential than itself.
  • a galvanic substitution reaction proceeds, for example, a reaction shown in Scheme 1 or Scheme 2 below.
  • the X is a halogen element.
  • the Kirkendall process refers to the effect on movement at the interface between metal atoms, and the direction in which the alloy moves is in a direction that minimizes surface energy. That is, in an alloy where silver and gold are mixed, the surface energy of silver is smaller than that of gold, so the silver inside the mixture moves to the surface.
  • the second ring structure of the present invention is a gold-silver alloy layer with an empty space formed on the single frame (100, 110). (301,311) can be formed.
  • the fourth step may include forming triple frame nanoparticles with nanogaps by etching them in an aqueous solution to remove the upper and lower regions of the gold-silver alloy layer of the second ring structure (S400).
  • CTAC hexadecyltrimethylammonium chloride
  • the gold-silver alloy layer of the second ring structures 301 and 311 has a characteristic in which the thickness of the gold-silver alloy layer formed on the inner and outer sides is thicker than the thickness of the gold-silver alloy layer formed on the upper and lower sides. .
  • the inner, outer, upper, and lower sides of the gold-silver alloy layer can all be etched at the same speed, and the gold-silver alloy layer formed on the upper and lower sides is formed on the inner and outer sides. Because it is thinner than the gold-silver alloy layer formed on the side, the gold-silver alloy layer on the upper and lower sides is etched and removed, and the gold-silver alloy layer on the inner and outer sides is etched at the same rate and remains. .
  • the gold-silver alloy layer of FIG. 3(a) formed with a non-uniform thickness can be uniformly etched using the following Chemical Formulas 1 and 2.
  • the oxidation rate of silver is faster and the rate of reduction of gold is slower, making it possible to etch the gold-silver alloy layer of the entire second ring frame.
  • triple frame nanoparticles having a gold-platinum-gold structure can be ultimately formed as shown in FIG. 3(d).
  • the gold-silver alloy layer on the inner and outer sides remains and the upper and lower sides remain.
  • the gold-silver alloy layer can be etched to form triple frame nanoparticles.
  • the frames remaining on the inside can become internal frames (401 and 411), and the frames remaining on the outside can become external frames (403 and 413).
  • the upper and lower sides of the existing gold-silver alloy layer are etched, and the inner frame and outer frame are residual after a certain portion of the gold-silver alloy layer is etched, so the inner frame and outer frame are based on the ring frame. It may be a single-walled tube shape with a curved structure bent outward.
  • the triple frame nanoparticle has a closed loop structure and includes ring frames 402 and 412 made of gold or platinum; Gold inner frames 401 and 411 in the shape of a single-walled tube located inside the ring frame and having a closed loop structure and a curved surface structure bent outward with respect to the ring frame; and a gold outer frame (403, 413) located outside the ring frame, having a closed loop structure and a single-wall tube shape having a curved surface structure bent outward with respect to the ring frame, between the ring frame and the inner frame. And there may be a nano gap between the ring frame and the external frame.
  • triple-frame nanoparticles in which multiple nanoparticles are integrated in one space can be manufactured by forming a thin film layer by the Kirkendall process in an aqueous solution and performing a sophisticated chemical reaction in the aqueous solution.
  • the single particle surface-enhanced Raman scattering signal detected from the triple frame nanoparticle has high reproducibility, the Raman signal is uniform regardless of the direction of light, and can exhibit high resolution.
  • Figure 4 is a plan view showing triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a triple frame nanoparticle according to an embodiment of the present invention.
  • triple frame nanoparticles can be manufactured by the triple frame nanoparticle manufacturing method described above, and have a closed loop structure and ring frames 402 and 412 made of gold or platinum. ); Gold inner frames 401, 411 in the shape of a single-walled tube, located inside the ring frame, have a closed loop structure, and have a curved surface structure bent outward with respect to the ring frame; And a gold outer frame (403, 413) located outside the ring frame, has a closed loop structure, and has a single-wall tube shape with a curved surface structure bent outward with respect to the ring frame, and the ring frame (402, 412) and the inner frames 401 and 411, and between the ring frames 402 and 412 and the outer frames 403 and 413, there is a nano gap.
  • the inner frames 401 and 411 and the outer frames 403 and 413 may be connected by at least one gold bridge.
  • the triple frame nanoparticle according to an embodiment of the present invention includes a ring frame 402.
  • the ring frame may be in the form of a ring with a closed loop structure and may be made of gold (412) or platinum (402).
  • the ring frame is made of gold 412, it may have a structure in which a gold thin film is grown on a single platinum frame.
  • platinum of the ring frame according to an embodiment of the present invention can be used as a starting material, and the reason why platinum was selected as a starting material is that platinum has high structural stability and can be used as an excellent internal support.
  • the ring frames 402 and 412 may have a diameter of 100 nm to 110 nm.
  • the ring frame 402 made of platinum may have a diameter of 100 nm to 110 nm
  • the ring frame 412 made of gold may have a diameter of 100 nm to 110 nm.
  • the diameter may be 110 nm to 120 nm.
  • triple frame nanoparticle may include gold internal frames 401 and 411.
  • the gold inner frame is located inside the ring frame, has a closed loop structure, and may be in the shape of a single-walled tube having a curved structure bent outward with respect to the ring frame.
  • the gold inner frame has a circular structure and a hollow structure is formed inside.
  • the gold inner frame is located inside the ring frame, has a closed loop structure, and has a single-wall tube shape with a curved surface structure bent outward with respect to the ring frame.
  • the spacing of the nano gap between the ring frames 402 and 412 and the internal frames 401 and 411 may be 7 nm to 23 nm.
  • the gap between the inner frame and the ring frame is formed by the Kirkendall process, and the size of the nanogap of the triple frame nanoparticle can be adjusted by adjusting the thickness of the silver thin film layer in the silver thin film layer forming step (S200).
  • the size of the nano gap of the triple frame nanoparticle 410 including the gold ring frame 412 is the nano gap of the triple frame nanoparticle 400 including the platinum ring frame 402. You can see that it is smaller than the size of .
  • triple frame nanoparticle may include gold outer frames 401 and 411.
  • the gold outer frame is located outside the ring frame, has a closed loop structure, and has a single-walled tube shape with a curved surface structure bent outward with respect to the ring frame. .
  • the spacing of the nano gap between the ring frames 402 and 412 and the internal frames 401 and 411 may be 7 nm to 23 nm.
  • the gap between the ring frames (402, 412) and the inner frames (401, 411) is the ring frame (402) , 412) and the outer frames 403 and 413 may have the same spacing.
  • the thickness of the outer frame 403 of the triple frame nanoparticle 400 including a platinum ring frame is 15 nm, and the outer frame of the triple frame nanoparticle 410 including a gold ring frame ( 413) can be confirmed to be 15 nm thick.
  • Figure 5 is a schematic diagram showing the cross-sectional structure of the triple frame nanoparticle according to an embodiment of the present invention when viewed from the side.
  • the diameter of the triple frame nanoparticle including the platinum ring frame is 154 nm
  • the diameter of the triple frame nanoparticle including the gold ring frame is 156 nm.
  • the cross-sectional diameter of the platinum single frame 402 is 15 nm and the cross-sectional diameter of the gold single frame 412 is 20 nm, it is confirmed that the cross-sectional diameter of the gold single frame 412 is 5 nm thicker than that of the platinum single frame 402. can do.
  • the inner frames 401 and 411 and the outer frames 403 and 413 have a single-walled tube shape with a curved surface structure bent outward with respect to the ring frame.
  • the hollow size between the inner frames 401 is 24 nm
  • the ring frame 412 is made of gold
  • the hollow size between the inner frames 402 is 24 nm. can do.
  • the spacing between the ring frame and the inner frame may be the same as the spacing between the ring frame and the outer frame.
  • the gap between the inner frame or outer frame of the triple frame nanoparticle including the platinum ring frame and the ring frame is 10 nm
  • the inner frame or outer frame of the triple frame nanoparticle including the gold ring frame is 10 nm. It can be seen that the gap between and ring frame is 8nm.
  • the spacing of the nano gap between the ring frame 402 and the internal frame 401 is the nano gap between the ring frame 402 and the internal frame 401 when the ring frame is gold. It can be seen that it is relatively larger than the interval of .
  • triple-frame nanoparticles when the ring frame is gold may have better near-field aggregation properties than triple-frame nanoparticles when the ring frame is platinum.
  • the thickness of the internal frame can control the concentration of gold ions in the aqueous solution, the concentration of the gold ion reducing agent, and the time of the process (S300) of growing gold ions on the silver thin film layer.
  • the specific method is described in the description of the triple frame nanoparticle manufacturing method. This will be described later.
  • the surface-enhanced Raman scattering substrate may include triple-frame nanoparticles manufactured by a triple-frame nanoparticle manufacturing method.
  • the triple frame nanoparticle forms two circular hot spots that can maximize the near-field electromagnetic field, allowing it to display a high-resolution single particle surface-enhanced Raman signal regardless of the direction of light.
  • the single particle surface enhanced Raman efficiency can be increased by more than 15 times compared to the existing double nanoring structure.
  • CCTAC Hexadecyltrimethylammonium chloride
  • 20 ⁇ L of 50 mM sodium hydroxide 20 ⁇ L of 50 mM sodium hydroxide
  • 200 ⁇ L of 0.2 mM silver nitrate solution were added to the platinum single frame as a metal nanoparticle stabilizer
  • 40 ⁇ L of 10 mM ascorbic acid was added to the vial.
  • the solution was maintained at 30°C for 30 minutes to form a silver thin film, thereby forming the first ring structure.
  • the second ring structure was added to a mixed solution containing 0.5 ml of 0.1 M hexadecyltrimethylammonium chloride (CTAC) aqueous solution as a metal nanoparticle stabilizer and 100 ⁇ l of 0.2 mM HAuCl 4 aqueous solution as a gold precursor and maintained at 30°C for 15 minutes. It was etched to form a triple frame structure.
  • CAC hexadecyltrimethylammonium chloride
  • the second ring structure was added to a mixed solution containing 0.5 ml of 0.1 M hexadecyltrimethylammonium chloride (CTAC) aqueous solution as a metal nanoparticle stabilizer and 300 ⁇ l of 0.2 mM HAuCl 4 aqueous solution as a gold precursor and maintained at 30°C for 15 minutes. It was etched to form a triple frame structure.
  • CAC hexadecyltrimethylammonium chloride
  • Figure 6 is an SEM image of (C) a single frame nanoparticle made of platinum, (D) a first ring structure, (E) a second ring structure, and (F) a triple frame nanoparticle according to an embodiment of the present invention.
  • FIG. 6 (D) it can be seen that silver nanoparticles grow concentrically on the single frame nanoparticle made of platinum to form a silver thin film layer, and referring to FIG. 6 (E), the silver thin film layer It can be confirmed that gold nanoparticles are formed spaced apart from the single frame, forming a second ring structure transformed into a gold-silver alloy layer.
  • Figure 6 (F) shows that the upper and lower regions of the gold-silver alloy layer of the second ring structure were removed to form triple frame nanoparticles with nanogaps.
  • Figure 7 is a visible-near-infrared optical spectrum graph of platinum single-frame nanoparticles, first ring structures, second ring structures, and triple-frame nanoparticles according to an embodiment of the present invention.
  • Figure 8 is a TEM image and an EDS mapping image of (A, B) gold-platinum-gold triple frame nanoparticles according to an embodiment of the present invention.
  • the diameter of the gold-platinum-gold triple frame nanoparticle according to an embodiment of the present invention is 165 nm.
  • Figure 9 is a schematic diagram and graph showing the near-field electromagnetic field aggregation effect through measuring the spacing and surface enhanced Raman scattering of gold-platinum-gold triple frame nanoparticles according to an embodiment of the present invention.
  • Figure 9 (A) is a schematic diagram showing the spacing of triple frame nanoparticles with a gold-platinum-gold structure
  • Figure 9 (B) is a SEM image, TEM, of triple frame nanoparticles with a gold-platinum-gold structure
  • Figure 9(C) is a histogram of size information of triple frame nanoparticles with a gold-platinum-gold structure
  • Figure 9(D) is a surface-enhanced Raman measurement of triple frame nanoparticles with a gold-platinum-gold structure. It is a spectrum graph.
  • Figure 10 is a schematic diagram and graph showing the characteristics of gold-gold-gold triple frame nanoparticles and the near-field electromagnetic field aggregation effect through surface-enhanced Raman scattering measurement according to an embodiment of the present invention.
  • Figure 10(A) is a schematic diagram showing the manufacturing method of gold-gold-gold triple frame nanoparticles
  • Figure 10(B) is a schematic diagram showing the size of the nanogap interval of triple frame nanoparticles containing a gold single frame. and a graph
  • Figure 10 (C) is an SEM image that confirms the actual shape of the triple frame nanoparticle containing a gold single frame
  • Figure 10 (D) is a graph showing the wavelength of the triple frame nanoparticle containing a gold single frame. This is a graph showing the visible-near-infrared optical spectrum.
  • Figure 10 (E) is a TEM image (top) and EDS mapping image (bottom) that can confirm the microstructure and element distribution of the triple frame nanoparticles containing the gold single frame
  • Figure 10 (F) is This is a graph showing the single particle surface enhanced Raman scattering signal of triple frame nanoparticles with a gold-gold-gold structure.
  • the manufacturing method of gold-gold-gold triple frame nanoparticles can be confirmed as a schematic diagram, and referring to FIG. 10 (B), the size of the nano gap of the triple frame nanoparticle is 7 nm. to 9 nm, the diameter of the gold single frame is 22 nm to 28 nm, and the thickness of the external frame is 12 nm to 14 nm.
  • the triple frame nanoparticle according to an embodiment of the present invention forms two nanogaps.
  • the triple frame nanoparticles are made of gold because they show a peak at 518 nm.
  • the triple frame nanoparticles contain gold, silver, and platinum through the graph located in the lower part of FIG. 10 (E), and the upper part of FIG. 10 (F) It can be confirmed that a gap structure has been formed through the TEM image located in .
  • the gold-gold-gold structured triple frame nanoparticles exhibit a surface-enhanced Raman scattering signal at the single particle level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 일 실시 예에 따른 삼중 프레임 나노입자 및 이의 제조방법을 제공할 수 있으며, 커켄달 공정에 의한 박막층 형성 및 수용액 상에서 정교한 화학반응을 하여 한 공간 내에 다중 나노 입자들이 집적된 삼중 프레임 나노입자를 제조할 수 있다. 또한, 상기 삼중 프레임 나노입자는 핫 스팟 공간(hot spot area)이 기존 단일 또는 이중 나노 구조체에 비해 많이 형성되어 단일 입자 표면증강라만산란의 라만신호가 15배 증가되어 단일 입자 표면증강라만신호의 해상도를 극적으로 향상시킬 수 있는 효과가 있다.

Description

삼중 프레임 나노입자 및 이의 제조방법
본 발명은 삼중 프레임 나노입자에 관한 것으로, 보다 상세하게는 커켄달 효과 및 수용액 식각 방법을 이용한 삼중 프레임 나노입자의 합성방법 및 삼중 프레임 나노입자를 이용한 표면 증강 라만 산란 분석 방법에 관한 것이다.
귀금속 나노입자(금, 은, 구리 나노입자)는 상기 귀금속 나노입자에서 나타나는 국소 표면 플라즈몬 공명 현상으로 인해 귀금속 나노입자들은 표면 증강 라만 산란 기법에 자주 이용되고 있다. 상기 표면 증강 라만 산란 기법은 단일 분자 단위의 검지를 가능하게 하는 초민감 분석 기법으로서 생명과학, 화학물질 생산, 환경 관리 등의 분야에 널리 쓰이고 있다.
이때, 핫 스팟이라고도 불리는 귀금속 나노입자 사이의 좁은 갭 사이에서 귀금속 나노입자 근처의 전자기장이 극대화되어 결과적으로 목표 분자의 라만 산란 신호를 증폭시킬 수 있다.
귀금속 나노입자로부터 핫 스팟을 만들기 위해 입자 간에 갭을 가지도록 나노입자를 제어하거나 단일 입자 내에 갭을 가지거나 거친 표면을 가지거나 다공성 구조를 가지는 입자를 합성하는데, 특히, 입자 내부에 갭을 가지게 하는 입자의 합성은 핫 스팟의 균일한 크기 조절이 가능하기 때문에 표면 증강 라만 분석에 응용했을 때 민감도와 재현성이 좋아진다.
입자 내에 갭이 있도록 나노입자를 합성하기 위해 황 작용기를 가진 DNA 또는 고분자를 이용한다. 또는, 다공성 구조를 가지는 입자들은 고밀도의 핫 스팟을 가져 표면 증강 라만 산란 분석법에 사용되거나 넓은 부피 대비 표면적을 가져 촉매에 이용될 수 있고, 플라즈마 식각 방법, 산을 이용한 탈합금부식 방법, 갈바닉 치환 반응 방법을 이용해 다공성 구조가 합성될 수 있다.
금속 나노입자의 모양의 변화는 금속 나노입자의 전기적, 광학적 특성의 변화로 이어질 수 있으므로 금속 나노입자의 모양을 다양하게 합성하는 연구가 활발하다.
특히 나노프레임 구조는 나노입자 구조체에 비해 넓은 표면적을 가지고 외부에서 조사해주는 빛과 상호작용을 원활히 할 수 있으므로 촉매, 표면 증강 라만 산란, 의료 분야에 많이 이용되고 있으며, 상기 나노 프레임 구조를 합성하기 위해서는 리소그래피, 갈바닉 치환 방법이 주로 사용된다.
<선행기술문헌> 대한민국 공개특허번호 제 10-2018-0065493 호
상기와 같은 종래 기술의 문제점을 해결하기 위하여 본 발명이 이루고자 하는 기술적 과제는, 삼중 프레임 나노입자 및 이의 제조방법을 제공하는 것이다.
또한, 상기 삼중 프레임 나노입자는 내부 간격과 모양을 정교하게 제어 가능하므로, 빛과의 상호작용을 극대화하여 바이오 및 화학물질 검출과 같은 응용 연구에 활용될 수 있는 표면증강 라만산란 기판을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 실시예는 삼중 프레임 나노입자 제조방법을 제공한다.
본 발명의 일 실시예에 따른 삼중 프레임 나노입자 제조방법은, 폐루프 구조를 갖는 금 또는 백금으로 구성된 단일 프레임을 준비하는 단계; 상기 단일 프레임 상에 은 나노입자를 동심 성장(concentric growth)하여 은 박막층이 형성된 제1 링 구조체를 형성하는 단계; 상기 제1링 구조체 상에 금 나노입자를 형성하되 커켄달(Kirkendall) 공정을 수행하여 상기 은 박막층을 상기 단일프레임과 이격된 금-은 합금층으로 변형시키되, 상기 단일 프레임을 기준으로 내부측과 외부측에 형성된 층의 두께가 상부측과 하부측에 형성된 층의 두께보다 두꺼운 금-은 합금층이 형성되어 제 2 링 구조체를 형성하는 단계;및 상기 제 2 링 구조체의 금-은 합금층의 상부측과 하부측 영역이 제거되도록 수용액에서 식각하여 나노갭을 가지는 삼중 프레임 나노입자를 형성하는 단계를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따라 상기 금 또는 백금으로 구성된 단일 프레임을 준비하는 단계에서, 상기 금 단일 프레임은 폐루프 구조를 갖는 백금 단일 프레임 상에 금 박막이 형성된 구조를 가질 수 있다.
또한, 본 발명의 일 실시 예에 따라 상기 제2링 구조체를 형성하는 단계에서, 상기 커켄달 공정은 금 3가 이온, 환원제 및 안정제를 함유하는 수용액에서 수행될 수 있다.
또한, 본 발명의 일 실시 예에 따라 상기 삼중 프레임 나노입자를 형성하는 단계에서, 상기 식각은 금 3가 이온 및 안정제를 함유하는 수용액에서 수행될 수 있다.
또한, 본 발명의 일 실시 예에 따라 상기 삼중 프레임 나노입자를 형성하는 단계에서, 상기 식각되는 과정에서 금-은 합금층은 금 박막층으로 변형될 수 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 일 실시예는 삼중 프레임 나노입자를 제공한다.
상기 삼중 프레임 나노입자는 상술한 삼중 프레임 나노입자 제조방법에 의해 제조된 것을 특징으로 한다.
상기 삼중 프레임 나노입자는 적어도 하나의 금 브릿지에 의해 연결될 수 있다.
또한, 본 발명의 일 실시예에 따라 상기 삼중 프레임 나노입자의 나노갭의 간격은 7nm 내지 23nm 일 수 있다.
또한, 본 발명의 일 실시예에 따라 상기 삼중 프레임 나노입자의 직경은 148nm 내지 194nm 일 수 있다.
또한, 본 발명의 일 실시예에 따라 상기 삼중 프레임 나노입자는 대칭적인 기하구조를 가지고, 상기 대칭적인 기하구조를 통하여 모든 방향의 근적외선 파장의 빛에 대해서 라만산란이 가능할 수 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 일 실시예는 표면증강 라만산란용 기판을 제공한다.
본 발명의 일 실시예에 따른 표면증강 라만산란용 기판은, 상술한 삼중 프레임 나노입자 제조방법에 의해 제조된 삼중프레임 나노입자를 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 커켄달 공정에 의한 박막층 형성 및 수용액 상에서 정교한 화학반응을 하여 한 공간 내에 다중 나노 입자들이 집적된 삼중 프레임 나노입자를 제조할 수 있다.
또한, 상기 삼중 프레임 나노입자는 핫 스팟 공간(hot spot area)이 기존 단일 또는 이중 나노 구조체에 비해 많이 형성되어 단일 입자 표면증강라만산란의 라만신호가 15배 증가되어 단일 입자 표면증강라만신호의 해상도를 극적으로 향상시킬 수 있는 효과가 있다.
또한, 상기 삼중 프레임 나노입자로부터 검출된 단일 입자 표면증강라만산란신호는 높은 재현성이 있고 빛의 방향에 관계없이 라만신호가 균일하며 높은 해상도를 나타낼 수 있는 효과가 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도1은 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자 및 이의 제조방법을 나타낸 모식도이다.
도2는 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자의 제조방법을 나타내는 순서도이다.
도3은 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자의 식각 과정에 대한 모식도이다.
도4는 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자를 나타내는 평면도이다.
도 5는 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자를 나타내는 단면도이다.
도 6 은 본 발명의 일 실시 예에 따른 (C) 백금으로 구성된 단일 프레임 나노입자, (D) 제1 링 구조체, (E) 제 2 링 구조체, (F) 삼중 프레임 나노입자의 SEM 이미지이다.
도 7 은 본 발명의 일 실시 예에 따른 백금 단일 프레임 나노입자, 제1 링 구조체, 제 2 링 구조체, 삼중 프레임 나노입자의 가시광선-근적외선 광학 스펙트럼 그래프이다.
도 8 은 본 발명의 일 실시 예에 따른 (A,B) 금-백금-금 삼중 프레임 나노입자의 TEM 이미지 및 EDS 맵핑 이미지이다.
도 9 는 본 발명의 일 실시 예에 따른 금-백금-금 삼중 프레임 나노입자의 간격 및 표면 증강 라만 산란 측정을 통한 근거리장 전자기장 응집 효과를 확인 할 수 있는 모식도 및 그래프이다.
도10은 본 발명의 일 실시 예에 따른 금-금-금 삼중프레임 나노입자의 특성 및 표면 증강 라만 산란 측정을 통한 근거리장 전자기장 응집 효과를 확인 할 수 있는 모식도 및 그래프이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자를 상세히 설명하기로 한다.
이하 첨부된 도면을 참고하여 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자 제조방법을 상세히 설명하기로 한다.
도1 내지 도3을 참조하여, 삼중 프레임 나노입자 제조방법을 설명한다.
도1은 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자 및 이의 제조방법을 나타낸 모식도이다.
도2는 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자의 제조방법을 나타내는 순서도이다.
도3은 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자의 식각 과정에 대한 모식도이다.
본 발명의 일 실시 예에 따른 삼중 프레임 나노입자 제조방법은 폐루프 구조를 갖는 금 또는 백금으로 구성된 단일 프레임(100,110)을 준비하는 단계(S100);
상기 단일 프레임(100,110) 상에 은 나노입자를 동심 성장(concentric growth)하여 은 박막층(201,211)이 형성된 제1 링 구조체(200,210)를 형성하는 단계(S200);
상기 제1링 구조체(200,210) 상에 금 나노입자를 형성하되 커켄달(Kirkendall) 공정을 수행하여 상기 은 박막층을 상기 단일 프레임과 이격된 금-은 합금층(301,311)으로 변형시키되, 상기 단일 프레임을 기준으로 내부측과 외부측에 형성된 층의 두께가 상부측과 하부측에 형성된 층의 두께보다 두꺼운 금-은 합금층(301,311)이 형성되어 제 2링 구조체(300,310)를 형성하는 단계(S300);및
상기 제 2 링 구조체(300,310)의 금-은 합금층(301,311)의 상부측과 하부측 영역이 제거되도록 수용액에서 식각하여 나노갭을 가지는 삼중 프레임 나노입자(400,410)를 형성하는 단계 (S400)를 포함할 수 있다.
첫째 단계에서, 금 또는 백금으로 구성된 단일 프레임(100,110)을 준비하는 단계를 포함할 수 있다. (S100)
이때, 상기 금으로 구성된 단일 프레임의 경우, 백금 단일 프레임(100) 상에 금 박막을 동심성장하는 단계를 수행하여 상기 금 단일 프레임(110)을 준비할 수 있다.
즉, 본 발명의 일 실시 예에 따른 단일 프레임은 백금을 시작 물질로 할 수 있으며, 상기 백금을 시작 물질로 선정한 이유는 백금은 구조적 안정성이 높으므로 우수한 내부지지체로 이용할 수 있기 때문이다.
둘째 단계에서, 상기 단일 프레임(100,110) 상에 은 나노입자를 동심 성장(concentric growth)하여 은 박막층(201,211)이 형성된 제1 링 구조체(200,210)를 형성하는 단계를 포함할 수 있다. (S200)
본 명세서에서, “동심성장(concentric growth)”이라 함은, 폐루프형 단일 프레임을 따라 나노입자가 성장할 때, 상기 폐루프형 단일 프레임의 내부경계면과 외부경계면 모두에서 성장이 진행하여 폐루프형 단일 프레임을 따라 나노입자가 비선택적으로 고르게 성장하는 성장방식을 의미할 수 있다.
이때, 상기 동심 성장(concentric growth)은 환원반응을 진행할 때 가해지는 전위가, 내부경계면의 표면에너지(Einner-boundary)와 외부경계면의 표면에너지(Eouter-boundary) 모두보다 높은 경우에는, 상기 내부경계면과 외부경계면 모두에서 환원반응이 진행하여 은 박막이 형성될 수 있다.
예를 들면, 본 발명의 일 실시 예에 따라, 백금 단일 프레임(100) 상에 은 박막을 형성하는 경우 CTAC(hexadecyltrimethylammonium chloride), Ag+을 포함하는 은 전구체물질, NaOH, A.A(ascorbic acid)를 함유하는 용액에 상기 백금 단일 프레임(100)을 투입하며 동심 성장을 수행하여 은 박막층을 형성할 수 있으므로 제1 링 구조체(200)를 형성할 수 있다. 이때, 자세한 은 박막층 형성 방법은 하기 실시 예에서 후술하기로 한다.
또한, 금 단일 프레임(110) 상에 은 박막을 형성하는 경우에도 상기 백금 단일 프레임(100) 상에 은 박막을 형성하는 경우와 동일한 방법으로 은 박막층을 형성하여 제1링 구조체(210)를 형성할 수 있다.
이때, 상기 백금 단일 프레임 상에 은 박막층을 형성하는 이유는 은 박막층과 이후 그 위에 쌓이는 금 박막층 사이의 커켄달 공정을 통해 제2 링 구조체를 만들기 위함이다.
셋째 단계에서, 상기 제1링 구조체 상에 금 나노입자를 형성하되 커켄달(Kirkendall) 공정을 수행하여 상기 은 박막층을 상기 단일프레임과 이격된 금-은 합금층으로 변형시키되, 상기 단일 프레임을 기준으로 내부측과 외부측에 형성된 층의 두께가 상부측과 하부측에 형성된 층의 두께보다 두꺼운 금-은 합금층이 형성되어 제 2 링 구조체를 형성하는 단계를 포함할 수 있다. (S300)
상기 제2링 구조체는 금 이온, 환원제 및 CTAC (hexadecyltrimethylammonium chloride)로 구성된 계면활성제를 함유하는 혼합 용액을 제조하는 단계; 상기 혼합 용액에 제1링 구조체를 투입하는 단계를 수행하여 제조할 수 있다.
금 3가 이온을 제공하는 용액은 HAuCl4·nH2O 또는 HAuCl4 용액인 것인 것이 바람직하나, 이에 제한되는 것은 아니다.
도3를 참조하여 제2링 구조체(300,310)에 대해 자세히 설명하도록 한다.
도3은 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자의 식각 과정에 대한 모식도이다.
상기 도3(a)을 참조하면, 상기 금-은 합금층(301,311)은 상기 단일 프레임(100,110)상에 빈공간이 형성된 것을 확인할 수 있으며, 상기 단일 프레임의 내부측과 외부측에 형성된 금-은 합금층의 두께가 상부측과 하부측에 형성된 금-은 합금층의 두께보다 두꺼울 수 있다.
이때, 상기 단일 프레임상에 빈 공간을 형성하면서 금-은 합금층을 형성하기 위해서는 갈바닉 치환반응과 커켄달 공정이 수행되어야 하는데, 상기 갈바닉 치환 반응은 금속이 자신보다 높은 환원전위를 가지는 금속 이온을 만날 때 일어나는 전기화학 반응으로, 은에 Au3+ 양이온 또는 Pt4+ 양이온을 첨가하는 경우 갈바닉 치환반응이 진행하게 되고, 예를 들어, 하기 반응식1 또는 하기 반응식2와 같은 반응이 진행하게 된다.
[반응식1]
3Ag(s)+AuX-(aq) → Au(s)+ 3Ag+(aq)+4X-(aq)
상기 X는 할로겐원소인 것이다.
[반응식2]
4Ag(s)+Pt4+(aq) → Pt(s)+4Ag+(aq)
상기 갈바닉 치환반응을 이용하는 경우에는, Ag(s)가 3당량 산화되어 용해되어 나가는 동안, Au(s)는 오로지 1당량만이 환원된다. 즉, 상기 갈바닉 치환반응이 진행함에 따라, 은의 산화속도가 더 빠르기 때문에, 전체 금속혼합물에서는 빈자리가 생기게 되며, 궁극적으로는 구멍들이 생기게 되어 빈공간 구조를 형성할 수 있게 된다.
또한, 커켄들(Kirkendall) 공정이라 함은, 금속 원자가 사이의 계면에서의 이동에 대한 효과를 의미하며, 합금이 이동하는 방향은 표면에너지를 최소화하는 방향으로 이동한다는 것을 의미한다. 즉, 은과 금이 혼합된 합금에서는, 은의 표면에너지가 금보다 더 작기 때문에, 혼합물의 내부에 있는 은은 표면으로 이동하게 됨을 의미한다.
상기 갈바닉 치환반응과 커켄들효과를 함께 생각해 보면, 은과 금이 혼합된 합금에서는, 은은 금이온에 의해 갈바닉 치환반응을 통해 지속적으로 용해되어 나가고, 그자리에는 금 나노입자들이 차지하게 될 것인데, 이때 커켄들 효과에 의해 금 나노입자들은 다시 합금의 중심부로 이동하고, 합금의 내부에 있던 은 원자들은 합금의 표면으로 이동하게 된다.
이렇게 합금의 표면으로 이동한 은 원자들은 다시 갈바닉 치환반응을 진행할 수 있게 될 것이며, 이 반응이 반복되어 본 발명의 제2링 구조체는 단일 프레임(100,110)상에 빈공간이 형성된 금-은 합금층(301,311)을 형성할 수 있게 된다.
넷째 단계에서, 상기 제 2 링 구조체의 금-은 합금층의 상부측과 하부측 영역이 제거되도록 수용액에서 식각하여 나노갭을 가지는 삼중 프레임 나노입자를 형성하는 단계를 포함할 수 있다.(S400)
상기 삼중 프레임 나노입자는 및 CTAC (hexadecyltrimethylammonium chloride)로 구성된 계면활성제와 금 이온을 함유하는 혼합용액을 제조하는 단계; 상기 혼합 용액에 상기 제2링 구조체를 투입하여 식각하는 단계를 포함할 수 있다.
상기 제 2 링 구조체(301,311)의 금-은 합금층은 상기 내부측과 외부측에 형성된 금-은 합금층의 두께가 상부측과 하부측에 형성된 금-은 합금층의 두께보다 두꺼운 특성이 있다.
이때, 상기 식각과정에 의해 금-은 합금층의 내부측, 외부측, 상부측 및 하부측 모두 동일한 속도로 식각될 수 있는데, 상부측과 하부측에 형성된 금-은 합금층은 내부측과 외부측에 형성된 금-은 합금층보다 두께가 얇기 때문에 상부측과 하부측의 금-은 합금층은 식각되어 제거되고 내부측과 외부측의 금-은 합금층은 동일한 속도로 식각되어 잔류할 수 있다.
상기 도 3를 참조하여 자세히 설명하면, 도 3(a)의 두께가 불균일하게 형성된 금-은 합금층은 하기 화학식 1 및 화학식 2에 의해 균일하게 식각 될 수 있다.
[화학식 1]
2Au(s)+AuCl4 -(aq)+2Cl-(aq) → 3AuCl2 - (aq)
[화학식 2]
3Ag(s)+AuCl4 - (aq)→ Au(s)+3Ag+(aq)+4Cl-(aq)
상기 수용액에 의한 식각반응을 이용하는 경우, 상기 화학식 1을 참조하면, Au(s)가 2당량 산화되어 용해되는 것을 확인할 수 있다. 또한, 상기 화학식 2를 참조하면, Ag(s)가 3당량 산화되어 용해되어 나가는 동안, Au(s)는 오로지 1당량만이 환원된다.
즉, 상기 산화 환원 반응이 진행함에 따라서, 은의 산화 속도가 더 빠르고, 금이 환원되는 속도가 느리기 때문에 전체 제2링 프레임의 금-은 합금층을 식각할 수 있게 된다.
상기 도 3(b), 도 3(c) 에서와 같이 계속적으로 식각하는 경우 최종적으로 도3(d)에서처럼 금-백금-금 구조를 가지는 삼중 프레임 나노입자를 형성할 수 있다.
이때, 상기 식각 과정에서 식각에 필요한 금 이온의 농도, 식각을 수행하는 온도, 식각을 수행하는 시간을 동시에 조절한 경우, 내부측과 외부측의 금-은 합금층은 잔류하고 상부측과 하부측의 금-은 합금층은 식각되어 삼중 프레임 나노입자가 형성될 수 있다.
이로써, 내부측에 잔류하는 프레임은 내부프레임(401,411)이 되고, 외부측에 잔류하는 프레임은 외부프레임(403,413)이 될 수 있다.
상기 도 2를 참조하면, 기존에 금-은 합금층에서 상부측과 하부측이 식각되고 상기 내부프레임과 외부프레임은 일정부분 식각되고 나서 잔류한 것이기 때문에 상기 내부프레임과 외부프레임은 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상일 수 있다.
따라서, 상기 삼중 프레임 나노입자는 폐루프 구조를 갖고 금 또는 백금으로 구성된 링 프레임(402,412); 상기 링 프레임 내부에 위치되어 폐루프 구조이며 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상의 금 내부 프레임(401,411); 및 상기 링 프레임 외부에 위치되어 폐루프 구조이며 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상의 금 외부 프레임(403,413)을 포함하고, 상기 링 프레임과 내부 프레임 사이 및 상기 링 프레임과 외부 프레임 사이에는 나노 갭을 가질 수 있다.
따라서, 상기 삼중 프레임 나노입자의 제조방법에 의해, 수용액 내에서 커켄달 공정에 의한 박막층 형성 및 수용액 상에서 정교한 화학반응을 하여 한 공간 내에 다중 나노 입자들이 집적된 삼중 프레임 나노입자를 제조할 수 있다.
또한, 삼중 프레임 나노입자의 제조방법에 의해, 상기 삼중 프레임 나노입자내에 핫 스팟 공간(hot spot area)이 기존 단일 또는 이중 나노 구조체에 비해 많이 형성되어 단일 입자 표면증강라만산란의 라만신호가 15배 증가되어 단일 입자 표면증강라만신호의 해상도를 극적으로 향상시킬 수 있는 효과가 있다.
또한, 상기 삼중 프레임 나노입자로부터 검출된 단일 입자 표면증강라만산란신호는 높은 재현성이 있고 빛의 방향에 관계없이 라만신호가 균일하며 높은 해상도를 나타낼 수 있다.
도 4 내지 도5를 참조하여, 삼중 프레임 나노입자를 설명한다.
상기 도4는 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자를 나타내는 평면도이다.
또한, 도5는 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자를 나타내는 단면도이다.
도4를 참조하면, 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자는 상술한 삼중 프레임 나노입자 제조방법에 의해 제조될 수 있으며, 폐루프 구조를 갖고 금 또는 백금으로 구성된 링 프레임(402, 412); 상기 링 프레임 내부에 위치되어 폐루프 구조이며 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상의 금 내부 프레임(401, 411); 및 상기 링 프레임 외부에 위치되어 폐루프 구조이며 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상의 금 외부 프레임(403, 413)을 포함하고 상기 링 프레임(402, 412)과 내부 프레임(401, 411) 사이 및 상기 링 프레임(402, 412)과 외부 프레임(403, 413) 사이에는 나노 갭을 가지는 것을 특징으로 한다.
이때, 상기 내부 프레임(401, 411)과 외부 프레임(403, 413)은 적어도 하나의 금 브릿지에 의해 연결될 수 있다.
먼저, 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자는 링 프레임(402)을 포함한다.
상기 링 프레임은 폐루프 구조를 갖는 고리 형태일 수 있으며, 금(412) 또는 백금(402)으로 구성 될 수 있다.
이때, 상기 링 프레임이 금(412)로 구성된 경우 백금 단일 프레임 상에 금 박막이 성장된 구조를 가질 수 있다.
즉, 본 발명의 일 실시 예에 따른 링 프레임의 백금을 시작 물질로 할 수 있으며, 상기 백금을 시작 물질로 선정한 이유는 백금은 구조적 안정성이 높으므로 우수한 내부지지체로 이용할 수 있기 때문이다.
상기 링 프레임(402, 412)의 직경은 100 nm 내지 110 nm일 수 있으며, 구체적으로 백금으로 구성된 링 프레임(402)의 직경은 100 nm 내지 110 nm일 수 있으며, 금으로 구성된 링 프레임(412)의 직경은 110 nm 내지 120 nm일 수 있다.
또한, 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자는 금 내부 프레임(401, 411)을 포함할 수 있다.
상기 금 내부 프레임은 상기 링 프레임 내부에 위치되어 폐루프 구조이며 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상일 수 있다.
도 4를 참조하면, 상기 삼중 프레임 나노입자(400, 410)를 위에서 내려다 봤을 때, 금 내부 프레임은 원형인 구조이며 내부에 중공이 형성된 형태인 것을 확인 할 수 있다.
또한, 도의 측면 단면도를 참조하면, 금 내부 프레임은 상기 링 프레임 내부에 위치되어 폐루프 구조이며 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상인 것을 확인할 수 있다.
이때, 상기 링 프레임(402, 412)과 상기 내부 프레임(401, 411) 사이 나노 갭의 간격은 7nm 내지 23nm 일 수 있다.
상기 내부 프레임과 링 프레임 사이의 간격은 커켄달 공정에 의해 형성된 것으로서 상기 은 박막층 형성단계(S200)에서 은 박막층의 두께를 조절하면 상기 삼중 프레임 나노입자의 나노갭의 크기를 조절할 수 있다.
또한, 상기 도 5를 참조하면, 금 링 프레임(412)을 포함하는 삼중 프레임 나노입자(410)의 나노 갭의 크기가 백금 링 프레임(402)을 포함하는 삼중 프레임 나노입자(400)의 나노 갭의 크기보다 작은 것을 확인할 수 있다.
또한, 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자는 금 외부 프레임(401, 411)을 포함할 수 있다.
상기 도5의 측면 단면도를 참조하면, 금 외부 프레임은 상기 링 프레임 외부에 위치되어 폐루프 구조이며 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상인 것을 확인할 수 있다.
이때, 상기 링 프레임(402, 412)과 상기 내부 프레임(401, 411) 사이 나노 갭의 간격은 7nm 내지 23nm 일 수 있다.
본 발명의 일 실시 예에 따른 상기 삼중 프레임 나노입자(400, 410)는 대칭적인 기하구조를 가지고 있으므로, 상기 링 프레임(402, 412)과 내부프레임(401, 411) 간격은 상기 링프레임(402, 412)과 외부 프레임(403, 413) 간격이 같을 수 있다.
또한, 도5를 참조하면, 백금 링 프레임을 포함하는 삼중 프레임 나노입자(400)의 외부 프레임(403)의 두께는 15nm 이고, 금 링 프레임을 포함하는 삼중 프레임 나노입자(410)의 외부 프레임(413)의 두께는 15nm 인 것을 확인 할 수 있다.
도5는 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자를 측면에서 바라봤을 때, 나노입자의 단면 구조를 확인할 수 있는 모식도이다.
상기 도5를 참조하면, 백금 링 프레임을 포함하는 삼중 프레임 나노입자의 직경은 154nm 이고, 금 링 프레임을 포함하는 삼중 프레임 나노입자의 직경은 156nm 인 것을 확인 할 수 있다.
또한, 백금 단일 프레임(402)의 단면 직경은 15nm이고, 금 단일 프레임(412)의 단면 직경은 20nm 이므로, 금 단일 프레임(412)의 단면 직경은 백금 단일 프레임(402) 보다 5nm 더 두꺼운 것을 확인 할 수 있다.
또한, 상기 내부 프레임(401, 411)과 외부 프레임(403,413)은 상기 링 프레임을 기준으로 바깥쪽 방향으로 굽어진 곡면 구조를 갖는 단일벽 튜브 형상인 것을 확인 할 수 있다.
이때, 상기 링 프레임(402)이 백금으로 구성된 경우 내부프레임(401) 사이의 중공 크기가 24nm 이고, 링 프레임(412)이 금으로 구성된 경우 내부프레임(402) 사이의 중공 크기가 24nm 인 것을 확인 할 수 있다.
이때, 상기 삼중 프레임 나노입자는 대칭적인 기하구조를 가지고 있으므로, 상기 링 프레임과 내부프레임 간격은 상기 링프레임과 외부 프레임 간격이 같을 수 있다.
상기 도5를 참조하면, 백금 링 프레임을 포함하는 삼중 프레임 나노입자의 내부프레임 또는 외부프레임과 링 프레임 사이의 간격은 10nm 이고, 상기 금 링 프레임을 포함하는 삼중 프레임 나노입자의 내부프레임 또는 외부프레임과 링 프레임 사이의 간격은 8nm 인 것을 확인 할 수 있다.
이때, 상기 링 프레임이 백금인 경우 상기 링 프레임(402)과 상기 내부 프레임(401) 사이 나노 갭의 간격은 상기 링 프레임이 금인 경우 상기 링 프레임(402)과 상기 내부 프레임(401) 사이 나노 갭의 간격보다 상대적으로 큰 것을 확인할 수 있다.
따라서, 상기 링 프레임이 금인 경우의 삼중 프레임 나노입자는 링 프레임이 백금인 경우의 삼중 프레임 나노입자보다 근거리장을 응집하는 특성 이 우수할 수 있다.
상기 내부 프레임의 두께는 수용액 상의 금 이온의 농도, 금 이온 환원제의 농도, 금 이온을 은 박막층 위에 성장시키는 과정(S300)의 시간을 조절할 수 있으며 구체적인 방법은 삼중 프레임 나노입자 제조방법에 관한 설명에서 후술하기로 한다.
또한, 본 발명의 일 실시 예에 따라 표면증강 라만산란 기판을 설명한다.
상기 표면증강 라만산란 기판은 삼중 프레임 나노입자 제조방법에 의해 제조된 삼중프레임 나노입자를 포함할 수 있다.
이처럼, 삼중 프레임 나노입자는 근거리 전자기장을 극대화 시킬 수 있는 원형 핫스팟이 두개가 형성되어 빛의 방향에 상관없이 높은 해상도의 단일 입자 표면증강라만신호를 나타낼 수 있다.
이러한 단일 입자 표면증강라만신호는 상기 내부 프레임과 외부 프레임 사이의 거리가 감소됨에 따라서 단일 입자 표면증강라만효율이 기존의 이중 나노링 구조체에 비해 15배 이상 증강 될 수 있다.
제조예1
먼저, 110 nm직경의 백금으로 구성된 단일 프레임을 준비하였다.
다음으로, 상기 백금 단일 프레임을 금속 나노입자 안정제로 0.1 M Hexadecyltrimethylammonium chloride(CTAC) 0.5 mL, 50 mM 수산화나트륨, 20 μL, 0.2 mM 질산은 용액 200 μL 을 바이알에 첨가하고, 10 mM 아스코르브산 40 μL를 첨가한 후, 용액을 30℃로 30분 동안 유지시켜 은 박막을 형성하여 제1링 구조체를 형성하였다.
다음으로, 금속 나노입자 안정제로 0.1 M hexadecyltrimethylammonium chloride(CTAC) 수용액 0.5 ml 에 10 mM 아스코르브산 25 ㎕, 금 전구체로 0.2 mM HAuCl4 수용액 25㎕ 을 30 °C 온도에서 15 분간 커켄달 공정을 수행하여 제2링 구조체를 형성하였다.
다음으로, 제2링 구조체를 금속 나노입자 안정제로 0.1 M hexadecyltrimethylammonium chloride(CTAC) 수용액 0.5 ml 에, 금 전구체로 0.2 mM HAuCl4 수용액 100㎕ 을 함유하는 혼합 용액에 투입하여 30℃ 에서 15 분 동안 유지시켜 삼중 프레임 구조체를 형성하도록 식각하였다.
제조예2
먼저, 110 nm직경의 백금으로 구성된 단일 프레임을 준비하였다.
다음으로, 상기 백금 단일 프레임을 금속 나노입자 안정제로 50 mM Hexadecyltrimethylammonium bromide(CTAB) 0.5 mL, 금 전구체로 1 mM HAuCl4 수용액 40㎕, 100 mM 아스코르브산 40 μL를 첨가한 후, 용액을 30℃로 30분 동안 유지시켜 금 박막을 형성하여 금 단일 프레임을 형성하였다.
다음으로, 상기 금 단일 프레임을 금속 나노입자 안정제로 0.1 M Hexadecyltrimethylammonium chloride(CTAC) 0.5 mL, 50 mM 수산화나트륨 40 μL, 0.2 mM 질산은 용액 360 μL 을 바이알에 첨가하고, 10 mM 아스코르브산 80 μL를 첨가한 후, 용액을 30℃로 30분 동안 유지시켜 은 박막을 형성하여 제1링 구조체를 형성하였다.
다음으로, 금속 나노입자 안정제로 0.1 M hexadecyltrimethylammonium chloride(CTAC) 수용액 0.5 ml 에 10 mM 아스코르브산 25 ㎕, 금 전구체로 0.2 mM HAuCl4 수용액 25㎕ 을 30 °C 온도에서 15 분간 커켄달 공정을 수행하여 제2링 구조체를 형성하였다.
다음으로, 제2링 구조체를 금속 나노입자 안정제로 0.1 M hexadecyltrimethylammonium chloride(CTAC) 수용액 0.5 ml 에, 금 전구체로 0.2 mM HAuCl4 수용액 300㎕ 을 함유하는 혼합 용액에 투입하여 30℃ 에서 15 분 동안 유지시켜 삼중 프레임 구조체를 형성하도록 식각하였다.
실험예
도 6 은 본 발명의 일 실시 예에 따른 (C) 백금으로 구성된 단일 프레임 나노입자, (D) 제1 링 구조체, (E) 제 2 링 구조체, (F) 삼중 프레임 나노입자의 SEM 이미지이다.
상기 도 6 (D)를 참조하면, 상기 백금으로 구성된 단일 프레임 나노입자 상에 은 나노입자가 동심 성장하여 은 박막층이 형성된 것을 확인 할 수 있고, 도 6 (E) 를 참조하면, 상기 은 박막층의 단일 프레임과 이격되어 금 나노입자가 형성되어 금-은 합금층으로 변형된 제 2 링 구조체가 형성된 것을 확인 할 수 있다.
또한, 도 6 (F)는 상기 제 2 링 구조체의 금-은 합금층의 상부측과 하부측 영역이 제거되어 나노갭을 가지는 삼중 프레임 나노입자가 형성된 것을 확인 할 수 있다.
도 7 은 본 발명의 일 실시 예에 따른 백금 단일 프레임 나노입자, 제1 링 구조체, 제 2 링 구조체, 삼중 프레임 나노입자의 가시광선-근적외선 광학 스펙트럼 그래프이다.
상기 도 7을 참조하면, 상기 385파장에서 피크가 형성되었으므로 상기 백금으로 구성된 단일 프레임 나노입자 상에 은 박막층이 형성된 것을 확인 할 수 있고, 420nm 파장에서 피크가 형성되었으므로 상기 은 박막층 상에 금 나노입자가 형성된 것을 확인 할 수 있다.
또한, 1060nm 파장에서 피크가 형성되었으므로, 금-백금-금 삼중 프레임 나노입자가 형성된 것을 확인 할 수 있다.
도 8 은 본 발명의 일 실시 예에 따른 (A,B) 금-백금-금 삼중 프레임 나노입자의 TEM이미지 및 EDS 맵핑 이미지이다.
도 8 (A)를 참조하면, 본 발명의 일 실시 예에 따른 금-백금-금 삼중 프레임 나노입자의 직경이 165nm 인 것을 확인 할 수 있다.
또한, 도 8 (B)를 참조하면 금(Au)이 76%, 은(Ag)이 19%, 백금(Pt)이 5% 함유된 것을 확인 할 수 있다.
도 9 는 본 발명의 일 실시 예에 따른 금-백금-금 삼중 프레임 나노입자의 간격 및 표면 증강 라만 산란 측정을 통한 근거리장 전자기장 응집 효과 확인 할 수 있는 모식도 및 그래프이다.
상기 도 9 (A) 는 금-백금-금 구조의 삼중 프레임 나노입자의 간격을 확인 할 수 있는 모식도이고, 도 9 (B)는 금-백금-금 구조의 삼중 프레임 나노입자의 SEM 이미지, TEM 이미지이고, 도 9(C)는 금-백금-금 구조의 삼중 프레임 나노입자의 크기 정보에 대한 히스토그램이고, 도 9(D)는 금-백금-금 구조의 삼중 프레임 나노입자의 표면 증강 라만 측정 스펙트럼 그래프이다.
상기 도 9의 도 9(A, B, C)를 참조하면, 금-백금-금 구조의 삼중 프레임 나노입자의 크기가 조절 되는 것을 확인 할 수 있고, 삼중 프레임 나노입자의 나노 갭의 크기는 9nm 내지 23nm 이고, 삼중 프레임의 직경이 148nm 내지 194nm 이고, 외부 프레임의 두께가 13nm 내지 20nm 인 것을 확인 할 수 있다. 도 9의 도 9(D)를 참조하면, 금-백금-금 구조의 삼중 프레임 나노입자가 단일 입자 수준에서 근거리장 응집효과가 있어 단일 입자 수준에서 표면 증강 라만 산란 신호를 나타내는 것을 확인 할 수 있다.
도10은 본 발명의 일 실시 예에 따른 금-금-금 삼중프레임 나노입자의 특성 및 표면 증강 라만 산란 측정을 통한 근거리장 전자기장 응집 효과 확인 할 수 있는 모식도 및 그래프이다.
도 10(A)는 금-금-금 삼중 프레임 나노입자의 제조방법을 나타내는 모식도이고, 도10 (B)는 금 단일 프레임을 포함하는 삼중 프레임 나노입자의 나노 갭 간격의 크기를 확인할 수 있는 모식도 및 그래프이고, 도10 (C)는 금 단일 프레임을 포함하는 삼중 프레임 나노입자의 실제 형상을 확인할 수 있는 SEM이미지이고, 도10 (D)는 금 단일 프레임을 포함하는 삼중 프레임 나노입자의 파장에 따른 가시광선-근적외선 광학 스펙트럼을 나타내는 그래프이다.
또한, 도10 (E)는 상기 금 단일 프레임을 포함하는 삼중 프레임 나노입자의 미세구조 및 원소 분포를 확인 할 수 있는 TEM이미지(상부) 및 EDS 맵핑 이미지(하부)이고, 도 10 (F)는 금-금-금 구조의 삼중 프레임 나노입자의 단일 입자 표면 증강 라만 산란 신호를 확인 할 수 있는 그래프이다.
상기 도 10 (A)을 참조하면, 금-금-금 삼중 프레임 나노입자의 제조방법을 모식도로 확인 할 수 있고, 도 10 (B)를 참조하면, 삼중 프레임 나노입자의 나노 갭의 크기는 7nm 내지 9nm 이고, 금 단일 프레임의 직경이 22nm 내지 28nm 이고, 외부 프레임의 두께가 12nm 내지 14nm 인 것을 확인 할 수 있다.
또한, 상기 도10 (C)를 참조하면, 본 발명의 일 실시 예에 따른 삼중 프레임 나노입자는 2개의 나노 갭을 형성한 것을 확인할 수 있다.
또한, 상기 도10 (D)를 참조하면, 삼중 프레임 나노입자는 518 nm 에서 피크를 나타내므로 금으로 이루어졌다는 것을 확인할 수 있다.
또한, 상기 도 10 (E) 를 참조하면, 도10 (E) 하부에 위치된 그래프를 통해 상기 삼중 프레임 나노입자는 금, 은 및 백금이 함유된 것을 확인 할 수 있고, 도 10 (F) 상부에 위치된 TEM 이미지를 통해 갭 구조가 형성 된 것을 확인 할 수 있다.
또한, 상기 도 10 (F) 를 참조하면, 금-금-금 구조의 삼중 프레임 나노입자가 단일 입자 수준에서 표면 증강 라만 산란 신호를 나타내는 것을 확인 할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
100: 백금 단일 프레임
110, 111: 금 단일 프레임
200,210: 제1링 구조체
201, 211: 은 박막층
300,310: 제2링 구조체
301, 311: 금 박막층
400, 410: 삼중 프레임 나노입자
401, 411: 내부 프레임
402, 412: 링 프레임
403, 413: 외부 프레임

Claims (11)

  1. 폐루프 구조를 갖는 금 또는 백금으로 구성된 단일 프레임을 준비하는 단계;
    상기 단일 프레임 상에 은 나노입자를 동심 성장(concentric growth)하여 은
    박막층이 형성된 제1 링 구조체를 형성하는 단계;
    상기 제1링 구조체 상에 금 나노입자를 형성하되 커켄달(Kirkendall) 공정을
    수행하여 상기 은 박막층을 상기 단일프레임과 이격된 금-은 합금층으로 변형시키되, 상기 단일 프레임을 기준으로 내부측과 외부측에 형성된 층의 두께가 상부측과 하부측에 형성된 층의 두께보다 두꺼운 금-은 합금층이 형성되어 제 2 링 구조체를 형성하는 단계;및
    상기 제 2 링 구조체의 금-은 합금층의 상부측과 하부측 영역이 제거되도록 수용액에서 식각하여 나노갭을 가지는 삼중 프레임 나노입자를 형성하는 단계를 포함하는 것을 특징으로 하는 삼중 프레임 나노입자 제조방법
  2. 제1항에 있어서,
    상기 금 또는 백금으로 구성된 단일 프레임을 준비하는 단계에서,
    상기 금 단일 프레임은 폐루프 구조를 갖는 백금 단일 프레임 상에 금 박막
    이 형성된 구조를 갖는 것을 특징으로 하는 삼중 프레임 나노입자 제조방법.
  3. 제1항에 있어서,
    상기 제2링 구조체를 형성하는 단계에서,
    상기 커켄달 공정은 금 3가 이온, 환원제 및 안정제를 함유하는 수용액에서
    수행되는 것을 특징으로 하는 삼중 프레임 나노입자 제조방법.
  4. 제1항에 있어서,
    상기 삼중 프레임 나노입자를 형성하는 단계에서,
    상기 식각은 금 3가 이온 및 안정제를 함유하는 수용액에서 수행되는 것을
    특징으로 하는 삼중 프레임 나노입자 제조방법.
  5. 제1항에 있어서,
    상기 삼중 프레임 나노입자를 형성하는 단계에서,
    상기 식각되는 과정에서 금-은 합금층은 금 박막층으로 변형되는 것을 특징
    으로 하는 삼중 프레임 나노입자 제조방법.
  6. 제1항의 삼중 프레임 나노입자 제조방법에 의해 제조된 것을 특징으로 하는
    삼중 프레임 나노입자.
  7. 제6항에 있어서,
    상기 삼중 프레임 나노입자는 적어도 하나의 금 브릿지에 의해 연결된 것을
    특징으로 하는 삼중 프레임 나노입자.
  8. 제6항에 있어서,
    상기 삼중 프레임 나노입자의 나노갭의 간격은 7nm 내지 23nm 인 것을 특징
    으로 하는 삼중 프레임 나노입자.
  9. 제6항에 있어서,
    상기 삼중 프레임 나노입자의 직경은 148nm 내지 194nm인 것을 특징으로 하
    는 삼중 프레임 나노입자.
  10. 제6항에 있어서,
    상기 삼중 프레임 나노입자는 대칭적인 기하구조를 가지고, 상기 대칭적인
    기하구조를 통하여 모든 방향의 근적외선 파장의 빛에 대해서 라만산란이 가능한 것을 특징으로 하는 삼중 프레임 나노입자.
  11. 제1항의 삼중 프레임 나노입자 제조방법에 의해 제조된 삼중프레임 나노입자를 포함하는 것을 특징으로 하는 표면증강 라만산란용 기판.
PCT/KR2023/008356 2022-06-17 2023-06-16 삼중 프레임 나노입자 및 이의 제조방법 WO2023244068A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0074132 2022-06-17
KR1020220074132A KR20230173408A (ko) 2022-06-17 2022-06-17 삼중 프레임 나노입자 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023244068A1 true WO2023244068A1 (ko) 2023-12-21

Family

ID=89191695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008356 WO2023244068A1 (ko) 2022-06-17 2023-06-16 삼중 프레임 나노입자 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20230173408A (ko)
WO (1) WO2023244068A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532881B1 (ko) * 2014-08-11 2015-06-30 성균관대학교산학협력단 백금 프레임이 내부에 위치한 금 구조물 합성 방법 및 백금 프레임이 내부에 위치한 금 구조물을 포함한 화학적/바이오 센서
KR20190085495A (ko) * 2018-01-10 2019-07-18 서울대학교산학협력단 탈합금화 기반의 플라즈모닉 내부 나노갭 나노입자, 이의 제조방법 및 이의 용도
KR102260209B1 (ko) * 2020-01-28 2021-06-02 성균관대학교산학협력단 단일 또는 이중 프레임 나노 입자 합성 방법, 및 이에 의해 제조된 단일 또는 이중 프레임 나노 입자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180065493A (ko) 2016-12-08 2018-06-18 한국과학기술원 다공성 금속유기구조체를 이용하여 나노 크기의 이종 촉매가 결착된 금속산화물 나노튜브 및 이를 이용한 가스센서용 부재, 가스센서 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532881B1 (ko) * 2014-08-11 2015-06-30 성균관대학교산학협력단 백금 프레임이 내부에 위치한 금 구조물 합성 방법 및 백금 프레임이 내부에 위치한 금 구조물을 포함한 화학적/바이오 센서
KR20190085495A (ko) * 2018-01-10 2019-07-18 서울대학교산학협력단 탈합금화 기반의 플라즈모닉 내부 나노갭 나노입자, 이의 제조방법 및 이의 용도
KR102260209B1 (ko) * 2020-01-28 2021-06-02 성균관대학교산학협력단 단일 또는 이중 프레임 나노 입자 합성 방법, 및 이에 의해 제조된 단일 또는 이중 프레임 나노 입자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE SOOHYUN, LEE SUNGWOO, SON JIWOONG, KIM JAE‐MYOUNG, LEE JUNGHWA, YOO SUNGJAE, HADDADNEZHAD MOHAMMADNAVID, SHIN JIEUN, KIM JEONG: "Web‐above‐a‐Ring (WAR) and Web‐above‐a‐Lens (WAL): Nanostructures for Highly Engineered Plasmonic‐Field Tuning and SERS Enhancement", SMALL, WILEY, HOBOKEN, USA, vol. 17, no. 31, 1 August 2021 (2021-08-01), Hoboken, USA, pages 2101262, XP093041254, ISSN: 1613-6810, DOI: 10.1002/smll.202101262 *
YOO SUNGJAE, GO SUNGEUN, SON JIWOONG, KIM JEONGWON, LEE SOOHYUN, HADDADNEZHAD MOHAMMADNAVID, HILAL HAJIR, KIM JAE-MYOUNG, NAM JWA-: "Au Nanorings with Intertwined Triple Rings", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 143, no. 37, 22 September 2021 (2021-09-22), pages 15113 - 15119, XP093118771, ISSN: 0002-7863, DOI: 10.1021/jacs.1c05189 *

Also Published As

Publication number Publication date
KR20230173408A (ko) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2017209474A1 (ko) 화학환원법을 이용한 코어-쉘 구조의 은 코팅 구리 나노 와이어의 제조방법
Pettinger et al. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy
Nguyen et al. Synthesis of thin and highly conductive DNA‐based palladium nanowires
Wei et al. Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering
WO2018062646A2 (ko) 다공성 실리카에 내포된 금 나노입자 초격자 및 이의 제조방법
WO2010024564A2 (ko) 금속박편의 제조방법
WO2023244068A1 (ko) 삼중 프레임 나노입자 및 이의 제조방법
EP1996753B1 (de) Metallische nanodrähte mit einer hülle aus oxid und herstellungsverfahren derselben
WO2010098633A2 (ko) 자성 나노 입자 배열, 이의 제조방법 및 이를 이용한 자기저장매체
WO2020180029A1 (ko) 금속 입자가 담지된 메조다공성 중공형 유기실리카 나노/마이크로 입자, 및 이의 제조방법
WO2014133310A1 (ko) 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법
TW201908701A (zh) 拉曼光譜載板及其製造方法
DE19732431A1 (de) Verfahren zum Herstellen eines sich verjüngenden Wellenleiters
Moise et al. On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure
WO2013191309A1 (ko) 나노 구조를 갖는 금속산화물반도체 가스센서 및 그 제조방법
WO2016114546A1 (ko) 전기선 폭발법 및 광소결을 통한 하이브리드 금속 패턴의 제조방법 및 이로부터 제조된 하이브리드 금속 패턴
Mehla et al. Readily tunable surface plasmon resonances in gold nanoring arrays fabricated using lateral electrodeposition
Kordás et al. Laser-assisted selective deposition of nickel patterns on porous silicon substrates
Barbillon Application of novel plasmonic nanomaterials on SERS
WO2023033615A1 (ko) 다공성구조를 가지는 프레임 나노입자의 합성방법 및 이를 이용한 표면증강 라만산란 분석방법
WO2014196806A1 (ko) 금속 나노입자
JP3163190B2 (ja) 酸化膜の製造方法と製造装置
WO2019147056A1 (ko) 모서리 첨예도 지수가 조절된 금속 나노큐브의 제조방법
WO2023113556A1 (ko) 이차원 또는 삼차원 나노큐브 자가조립체, 및 이의 제조 방법
WO2024090877A1 (ko) 삼차원 이중 프레임 나노 구조체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824281

Country of ref document: EP

Kind code of ref document: A1