WO2023243451A1 - Power converter control device and control method - Google Patents

Power converter control device and control method Download PDF

Info

Publication number
WO2023243451A1
WO2023243451A1 PCT/JP2023/020695 JP2023020695W WO2023243451A1 WO 2023243451 A1 WO2023243451 A1 WO 2023243451A1 JP 2023020695 W JP2023020695 W JP 2023020695W WO 2023243451 A1 WO2023243451 A1 WO 2023243451A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power converter
output
gate
semiconductor switching
Prior art date
Application number
PCT/JP2023/020695
Other languages
French (fr)
Japanese (ja)
Inventor
徹郎 児島
高志 伊君
直樹 栗原
比呂 中山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023243451A1 publication Critical patent/WO2023243451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter control device and control method.
  • the output voltage command is normalized with the DC power supply voltage to obtain a modulated wave.
  • the semiconductor switching element is driven by PWM control that outputs a pulse obtained by comparing this modulated wave and a carrier wave.
  • delay elements of detection timing include delay time due to an output current input circuit such as an output current sensor, an LPF circuit for noise removal, and an A/D converter. Furthermore, the operation delay time of the gate circuit that drives the semiconductor switching element and the semiconductor switching element itself can also be seen as the delay time of the detection timing. Therefore, it is necessary to consider both delay times in the same way.
  • Patent Document 1 and Patent Document 2 are known as techniques for accurately detecting the output current with respect to such detection timing delay elements.
  • Patent Document 3 and Patent Document 4 are known as gate circuits for driving a semiconductor switching element including such a plurality of gate terminals. Both technologies achieve low loss by providing a predetermined delay time within the gate circuit and completing the transition between the steady mode and the transient mode during this delay time.
  • Patent Document 1 assumes a delay time of about several ⁇ s, but the technique described in Patent Document 4 causes an operation delay of about 60 ⁇ s.
  • the output current is detected after being delayed by the operation delay time from the timing of the peaks and troughs of the carrier.
  • the operation delay time is as short as several ⁇ s, there is no problem, but if the operation delay time becomes long as in the technique described in Patent Document 4, the output current value detected within the control cycle cannot be used. In that case, the control cycle is carried over to the next control cycle, leading to an increase in dead time and affecting the responsiveness of the current feedback control.
  • the output current can be detected accurately, but the actual operation delay time may vary due to individual variations in semiconductor switching elements, current dependence of the operation delay time, etc. Therefore, errors may occur.
  • Patent Document 2 in order to avoid the influence of such variations in operation delay time, the output current is reduced for a period shorter than the period of peaks and troughs of the carrier, that is, shorter than a half period of the carrier. is sampled multiple times and the average value of these is used for current feedback control.
  • Patent Document 2 does not disclose the specific length of the sampling period and the timing of starting sampling.
  • the sampling period is shorter than the carrier half cycle, if the operation delay time is as short as a few ⁇ s, the sampling period will be symmetrical with respect to the timing of the peaks and troughs of the carrier.
  • the switching ripples are approximately symmetrical (the magnitude is the same but the sign is opposite) centering on the timing of the peak and valley of the carrier. Therefore, the magnitude of the output current can be accurately determined by canceling out the effects of switching ripples.
  • Another object of the present invention is to provide a technique that suppresses dead time and improves the responsiveness of current feedback control.
  • one of the representative power converter control devices of the present invention is a current detection device that detects the output current of a power converter that converts DC power into AC power using a semiconductor switching element.
  • current control means for generating an output voltage command of the power converter through current control based on the output of the current detection means; PWM control means for outputting a gate command for the semiconductor switching element based on the output voltage command;
  • the current detecting means is equipped with a gate driver circuit that generates a gate signal for turning on and off the element with an operation delay from the gate command, and the current detecting means uses the output of the current sensor provided on the output side of the power converter as an input signal, and controls the sampling period.
  • the current integrating section calculates the current integrated value for each integration period, the current controlling means performs current control based on the current integrated value, and the current detecting means, the current controlling means, and the PWM controlling means operate in synchronization. It is something to do.
  • FIG. 1 is a diagram showing an example of an AC motor drive device configured using a power converter control device according to the present invention
  • FIG. 2 is a diagram showing a detailed configuration of a current detection means in the control device shown in FIG. 1.
  • FIG. FIG. 2 is a diagram showing a detailed configuration of rotational coordinate conversion means in the control device shown in FIG. 1.
  • FIG. 2 is a diagram showing a detailed configuration of current control means in the control device shown in FIG. 1.
  • FIG. FIG. 2 is a diagram showing an example of a current waveform when an AC motor is driven using a conventional technique (operation delay time: less than 1 ⁇ s).
  • FIG. 2 is a diagram showing an example of a current waveform when an AC motor is driven using a conventional technique (operation delay time: 60 ⁇ s).
  • FIG. 2 is a diagram showing an example of a current waveform when an AC motor is driven using an embodiment of the present invention (operation delay time: 60 ⁇ s).
  • FIG. 3 is a diagram showing a difference in current waveform of an AC motor depending on whether or not there is an operation delay of a semiconductor switching element. It is a figure which shows the operating waveform of each element which comprises a control apparatus when an AC motor is driven using the control apparatus of the power converter which concerns on this invention.
  • FIG. 1 is a diagram showing an example of an AC motor drive device configured using a power converter control device according to the present invention.
  • a smoothing capacitor 10 that smoothes DC power supplied by a DC voltage source (not shown) and a bridge circuit configured by connecting semiconductor switching elements 11 and 12, 13 and 14, and 15 and 16 in series are connected in parallel. connected to form a power converter.
  • the AC output terminal of this bridge circuit is connected to an AC motor (MOTOR) 18, and a current sensor 17 detects the output current from the AC output terminal to the AC motor (MOTOR) 18.
  • the semiconductor switching elements 11 to 16 have two gate terminals (dual gates), and can switch between a mode for reducing conduction loss and a mode for reducing switching loss using two gate signals.
  • the output currents iu, iv, and iw detected by the current sensor 17 are input to a low-pass filter (LPF) circuit 20 that reduces surge noise and the like. Then, the output of the low-pass filter (LPF) circuit 20 is sampled using the A/D converter 21.
  • LPF low-pass filter
  • the current detection means 22 inputs iuf, ivf, and iwf output from the A/D converter 21 and the trigger signal Trig, and outputs the output current integrated values ius, ivs, iws and the number of integrations N.
  • the rotational coordinate conversion means 23 outputs a trigger signal Trig to the current detection means 22, reads the output current integrated values ius, ivs, iws and the number of integrations N from the A/D converter 21, calculates the output current average value, and calculates the rotational coordinate conversion means 23. Coordinate transformation is performed to output detected current values Id and Iq on the d/q axes.
  • the current control means (ACR) 24 performs current control using the detected current values Id and Iq on the d/q axes, generates a voltage vector, and then performs static coordinate transformation to obtain AC voltage commands vup, vvp, and vwp. Output.
  • the PWM control means 25 inputs the AC voltage commands vup, vvp, and vwp, normalizes them with the DC power supply voltage, compares them with a carrier wave, and performs PWM control to prevent short-circuiting between the upper arm and the lower arm that constitute the power converter.
  • Gate commands (Gpu to Gnw) are output by managing the non-wrapping time and minimum pulse width for prevention.
  • the gate driver (GD) circuit 26 receives gate commands (Gpu to Gnw) and generates first and second gate signals (Gpu1, 2 to Gnw1, 2) that drive the semiconductor switching elements 11 to 16.
  • the time constant of the low-pass filter (LPF) circuit 20 is about several ⁇ s to 10 ⁇ s, and the sampling period of the A/D converter 21 and the current detection means 22 is also about several ⁇ s.
  • the rotational coordinate conversion means 23, the current control means (ACR) 24, and the PWM control means 25 perform processing in the same PWM control period, which varies depending on the carrier frequency, but is generally on the order of several hundred ⁇ s to several ms.
  • the non-wrap time and minimum pulse width in the PWM control means 25 are both about several ⁇ s to 10 ⁇ s.
  • the gate driver (GD) circuit 26 When the gate driver (GD) circuit 26 generates the first and second gate signals from the gate command, a delay of about several ⁇ s to several tens of ⁇ s occurs.
  • the sum of the detection delay time up to the current detection means including the time constant of the low-puff filter (LPF) circuit 20 and the delay time in the gate driver (GD) circuit 26 is the main factor in the operation delay time.
  • the sampling period of the A/D converter 21 must be sufficiently short for the sum of .
  • FIG. 2 is a diagram showing a detailed configuration of the current detection means 22 in the control device 19 shown in FIG.
  • the current detection means 22 is synchronized with the A/D converter 21 and performs calculations at a sampling period of about several ⁇ s, so the processing is executed by hardware such as an integrated circuit such as ASIC or FPGA.
  • the signals input to the current detection means 22 are the output current detection values iuf, ivf, iwf sampled by the A/D converter 21 and the trigger signal Trig.
  • the trigger signal Trig is written every PWM control period by software that executes the rotational coordinate conversion means 23.
  • the write detection circuit 30 turns on the switches 39 to 42 (“set” in FIG. 2) at the timing when the output request is written to the trigger signal Trig, and buffers the contents of the delay elements (Z ⁇ 1 ) 35 to 38. After copying to (buf) 43 to 46, delay elements (Z ⁇ 1 ) 35 to 38 are cleared to zero (“clear” in FIG. 2).
  • Adders 31 to 33 and delay elements (Z ⁇ 1 ) 35 to 37 are used to configure an integration circuit for output current detection values iuf, ivf, and iwf. Furthermore, the adder 34 and the delay element (Z ⁇ 1 ) 38 constitute a counter that counts the number of integrations.
  • the outputs of the buffers (buf) 43 to 46 are output current integrated values ius, ivs, iws and the number of integrations N.
  • FIG. 3 is a diagram showing a detailed configuration of the rotational coordinate conversion means 23 in the control device 19 shown in FIG. 1.
  • the rotational coordinate conversion means 23 executes processing using software in a PWM control period. After writing an output request (request) to the trigger signal Trig only once during the PWM control period, the current detection means 22 is accessed to read the output current integrated values ius, ivs, iws and the number of integrations N.
  • the dividers 50 to 52 use the number of integrations N to obtain the average output current value of each of the output current integrated values ius, ivs, and iws.
  • the rotating coordinate converter 53 uses this output current average value to obtain the d/q axis current detection values Id and Iq.
  • FIG. 4 is a diagram showing a detailed configuration of the current control means (ACR) 24 in the control device 19 shown in FIG. 1.
  • the current control means (ACR) 24 executes processing using software in a PWM control period.
  • the PI controllers 60 and 61 for the d/q axes receive as input the d/q axis current command values Idp and Iqp and the d/q axis current detection values Id and Iq outputted by the rotational coordinate conversion means 23, respectively.
  • current control is performed to determine voltage operation amounts dVd and dVq on the d/q axes.
  • a voltage vector calculator (VECT) 62 inputs the voltage operation amounts dVd and dVq of the d/q axes and obtains voltage commands Vdp and Vqp of the d/q axes.
  • the stationary coordinate converter 63 obtains three-phase AC voltage commands vup, vvp, and vwp from the d/q-axis voltage commands Vdp, Vqp.
  • the present invention allows the sum of the detection delay time up to the current detection means and the operation delay time generated in the gate driver (GD) circuit 26 to be larger than the non-wrap period and minimum pulse width of the semiconductor switching element. Even if the current detection error is large, the current detection error can be reduced.
  • a gate driver (GD) circuit 26 is provided outside the power converter control device 19, and current detection errors can be reduced even when the operation delay time varies from individual to individual and changes slowly depending on temperature conditions and the like. Even if the operation delay time is unknown in the first place, it can be handled.
  • GD gate driver
  • a power converter using a semiconductor switching element having a plurality of gate signals was used as an example of the present invention, but a power converter using a general semiconductor switching element having a single gate signal is also applicable.
  • the gate driver circuits used to drive them are also required to have high breakdown voltages.As a result, the delay time of the insulation circuits that transmit gate signals tends to increase.
  • the embodiment of the present invention is an effective means.
  • FIG. 5 is a diagram showing an example of a current waveform when an AC motor is driven using a conventional technique.
  • the operation delay time of the semiconductor switching element is less than 1 ⁇ s.
  • the d/q-axis current detection values Id and Iq are affected by switching ripples and are approximately vertically symmetrical about the steady value of the d/q-axis current command value shown by the dotted line. It is vibrating.
  • the detected current values Id and Iq on the d/q axes are passed through a low-pass filter of approximately the electrical time constant (primary time constant) of the AC motor.
  • Id and Iq are shown as Id(LPF) and Iq(LPF). Note that the means for generating Id (LPF) and Iq (LPF) are not shown in the drawings because they are outside the scope of the present invention. As far as Id (LPF) and Iq (LPF) are concerned, it can be seen that the current detection values Id and Iq on the d/q axes do not regularly generate detection errors.
  • FIG. 6 is a diagram showing an example of a current waveform when an AC motor is driven using the conventional technology.
  • the operation delay time of the semiconductor switching element is 60 ⁇ s.
  • FIG. 6 unlike the case in FIG. 5, when looking at the q-axis current detection value Iq and Iq (LPF), it can be seen that a detection error has occurred on the q-axis current side. As a result, if current feedback control is enabled, a torque error will occur. On the other hand, it can be seen that no detection error occurs on the d-axis current side.
  • FIG. 7 is a diagram showing an example of a current waveform when an AC motor is driven using an embodiment of the present invention.
  • the operation delay time of the semiconductor switching element is 60 ⁇ s, as in the case of FIG.
  • FIG. 8 is a diagram showing the difference in current waveform of an AC motor depending on whether or not there is an operation delay of the semiconductor switching element.
  • current feedback control is disabled and feedforward control is performed.
  • the period from t1 to t2 has a downward slope, and during this period, pulses are raised in all three phases of UVW.
  • the period from t2 to t3 has an upward slope, and during this period, the pulses of all three phases of UVW fall.
  • the dotted lines are the voltage and current waveforms when there is no operation delay
  • the solid lines are the voltage and current waveforms when the operation delay is 60 ⁇ s. Since the three-phase AC voltages vu, vv, and vw are equally delayed, the detected value (A/D converted value) iuf of the U-phase current is also equally delayed.
  • times t1, t2, and t3 are the beginning of each PWM control cycle, and the output current is detected at these timings.
  • the detected value (A/D conversion value) iuf of the U-phase current the symbols shown in FIG. This is the detected value. Since the time rate of change di/dt of the current is negative, the detected current value appears to be small due to the operation delay.
  • FIG. 9 is a diagram showing operating waveforms of each element constituting the power converter control device according to the present invention when an AC motor is driven.
  • times t1, t2, and t3 indicate the beginning of each PWM control cycle.
  • the rotational coordinate conversion means 23 (FIGS. 1 and 3) writes an output request to the trigger signal Trig for the current detection means 22 (FIGS. 1 and 2).
  • the rising edge of the trigger signal Trig is simply used as an output request.
  • the current detection means 22 (FIGS. 1 and 2) receives a rising edge that is an output request of the trigger signal Trig, it turns on the switches 39 to 42 and transfers the contents of the delay elements 35 to 38 to the buffers 43 to 43. 46, and then clear the delay elements 35 to 38 to zero.
  • the counter shown in FIG. 9 is the output of the delay element 38 shown in FIG. 2, and indicates the number of integrations.
  • the counter value n1 immediately before time t1 is written into the buffer 46 as the number of integrations N, and the value n1 is held until time t2 when the next trigger signal Trig is written.
  • the counter increases from zero at a constant rate and reaches zero again at time t2.
  • the value n2 of the counter immediately before time t2 is written into the buffer 46 as the number of integrations N, and the value n2 is held until time t3.
  • the integrated value (integrator) shown in FIG. 9 is the output of the delay element 35 shown in FIG. 2, and is the integrated value of the U-phase current detection value (A/D conversion value) iuf.
  • the integrated value s1 immediately before time t1 is written into the buffer 43 as the U-phase current integrated value ius, and the value s1 is held until time t2.
  • the integrated value integrates the U-phase current detection value (A/D conversion value) iuf from zero, and becomes zero again at time t2.
  • the integrated value s2 immediately before time t2 is written into the buffer 43 as the U-phase current integrated value ius, and the value s2 is held until time t3 when the next trigger signal Trig is written. Further, although not shown in FIG. 9, the current integrated values of the V phase and W phase are also the same as in the case of the U phase described above.
  • the rotational coordinate conversion means 23 (FIGS. 1 and 3) is executed by software, after executing the dividers 50 to 52 shown in FIG. Find the q-axis current detection values Id and Iq. From this point on, the software uses the previously determined d/q axis current detection values Id and Iq to control the current by the current control means (ACR) 24 (Figs. 1 and 4) and the PWM control means 25 (Fig. 1). PWM control is performed sequentially. However, these series of software processes must be completed within the PWM control period.
  • the current detection means 22 (FIGS. 1 and 2), which performs high-speed sampling and integration, is implemented in hardware.
  • the rotational coordinate conversion means 23 (FIGS. 1 and 3), the current control means (ACR) 24 (FIGS. 1 and 4), the PWM control means 25 (FIG. 1), etc. perform sophisticated calculations that require processing time. Run in software.
  • the current detection means 22 for which high speed and timing are important, in hardware, it is possible to suppress the need to pay attention to timing in software processing. For example, as long as an output request is written to the trigger signal Trig at the beginning of each PWM control cycle, the three-phase current integrated values ius, ivs, iws and the number of integrations N can be set at any timing within the PWM control cycle. All you have to do is read it out.
  • the present invention is particularly useful for control using such a microcomputer.

Abstract

In order to reduce an error of an output current detection value caused by the influence of a delay time of an output current in an input circuit and an operation delay time of a semiconductor switching element, and to enhance responsiveness of current feedback control, the present invention comprises: a current detection means that detects an output current of a power convertor for converting DC power into AC power by using a semiconductor switching element; a current control means that generates an output voltage command through current control based on the output of the current detection means; a PWM control means that outputs a gate command with respect to the semiconductor switching element on the basis of the output voltage command; and a gate driver circuit that generates, with an operation delay, a gate signal for on-off driving the semiconductor switching element from the gate command. The current detection means has a current integration unit that calculates a current integrated value in an integration time period for each sampling cycle by using an output of a current sensor as an input signal. The current control means performs current control on the basis of the current integrated value. The current detection means, the current control means, and the PWM control means operate in synchronization with one another.

Description

電力変換器の制御装置および制御方法Power converter control device and control method
 本発明は、電力変換器の制御装置および制御方法に関する。 The present invention relates to a power converter control device and control method.
 一般的に、半導体スイッチング素子を用いた電力変換器が、直流電力を交流電力、あるいは交流電力を直流電力に変換する際には、出力電圧指令を直流電源電圧で正規化して変調波を求め、この変調波と搬送波とを比較して求めたパルスを出力するPWM制御によって半導体スイッチング素子を駆動している。 Generally, when a power converter using semiconductor switching elements converts DC power to AC power or AC power to DC power, the output voltage command is normalized with the DC power supply voltage to obtain a modulated wave. The semiconductor switching element is driven by PWM control that outputs a pulse obtained by comparing this modulated wave and a carrier wave.
 この電力変換器を交流電動機に接続して、交流電動機のトルク制御すなわち電流制御を行う場合、電力変換器の出力電流を正確に把握する必要がある。しかし、電力変換器の出力電流は、スイッチングのたびに激しく増減を繰り返すため(電流の時間変化率di/dtが大きいため)、検出のタイミングが僅かに遅れただけで大きな検出誤差が生じ、出力電流を正確に把握することが難しい。そして、出力電流に検出誤差を生じると、トルク精度の低下をもたらすことになる。 When this power converter is connected to an AC motor to perform torque control, that is, current control of the AC motor, it is necessary to accurately grasp the output current of the power converter. However, since the output current of a power converter repeats rapid increases and decreases each time it is switched (because the time rate of change di/dt of the current is large), even a slight delay in the detection timing causes a large detection error, and the output It is difficult to accurately determine the current. If a detection error occurs in the output current, this will result in a decrease in torque accuracy.
 従来、検出タイミングの遅延要素としては、出力電流センサ、ノイズ除去用のLPF回路、A/D変換器などの出力電流の入力回路による遅延時間などがある。また、半導体スイッチング素子を駆動するゲート回路や半導体スイッチング素子自体の動作遅延時間も、検出タイミングの遅延時間として見える。そのため、両方の遅延時間については、同様に考慮する必要がある。 Conventionally, delay elements of detection timing include delay time due to an output current input circuit such as an output current sensor, an LPF circuit for noise removal, and an A/D converter. Furthermore, the operation delay time of the gate circuit that drives the semiconductor switching element and the semiconductor switching element itself can also be seen as the delay time of the detection timing. Therefore, it is necessary to consider both delay times in the same way.
 このような検出タイミングの遅延要素に対して、正確に出力電流を検出するための技術として、特許文献1および特許文献2に記載された技術が知られている。 The techniques described in Patent Document 1 and Patent Document 2 are known as techniques for accurately detecting the output current with respect to such detection timing delay elements.
 一方で、近年、半導体スイッチング素子に複数のゲート端子を設けた新しい半導体スイッチング素子が開発されている。この素子では、複数のゲート信号の組み合わせにより、導通状態での導通損失を低減するための定常モードと、導通状態から遮断状態あるいはその逆方向への遷移時のスイッチング損失を低減するための過渡モードを切り替えることにより、従来の半導体スイッチング素子に対して大幅な損失低下を図るものである。 On the other hand, in recent years, new semiconductor switching elements have been developed in which a semiconductor switching element is provided with a plurality of gate terminals. This device uses a combination of multiple gate signals to create a steady mode to reduce conduction loss in the conduction state, and a transient mode to reduce switching loss when transitioning from the conduction state to the cutoff state or vice versa. By switching, the loss can be significantly reduced compared to conventional semiconductor switching elements.
 このような複数のゲート端子を備えた半導体スイッチング素子を駆動するためのゲート回路として、特許文献3および特許文献4に記載された技術が知られている。いずれの技術も、ゲート回路内で所定の遅延時間を設け、この遅延時間の間に定常モードと過渡モード間の遷移を済ませることで低損失化を実現している。 The techniques described in Patent Document 3 and Patent Document 4 are known as gate circuits for driving a semiconductor switching element including such a plurality of gate terminals. Both technologies achieve low loss by providing a predetermined delay time within the gate circuit and completing the transition between the steady mode and the transient mode during this delay time.
特開2016-72991号公報Japanese Patent Application Publication No. 2016-72991 特開2018-113754号公報Japanese Patent Application Publication No. 2018-113754 特開2015-204723号公報JP2015-204723A 特開2019-103286号公報JP2019-103286A
 ところが、上記した複数のゲート端子を備えた半導体スイッチング素子およびゲート回路を用いた電力変換器に対して、特許文献1に記載の技術を適用すると、出力電流検出に誤差が生じてしまう。特許文献1に記載の技術では、数μs程度の遅延時間を想定しているが、特許文献4に記載の技術では、60μs程度の動作遅延が生じる。 However, if the technique described in Patent Document 1 is applied to a power converter using a semiconductor switching element and a gate circuit having a plurality of gate terminals described above, an error will occur in output current detection. The technique described in Patent Document 1 assumes a delay time of about several μs, but the technique described in Patent Document 4 causes an operation delay of about 60 μs.
 一般に、出力電圧が上昇するにつれてキャリアの山と谷のタイミングの近傍でスイッチングすることが多くなり、キャリアの山と谷のタイミングから動作遅延時間の間にスイッチングを行う場合が生じる。もしもこの場合のスイッチングを行ってしまうと、電圧印加による電流の時間変化率が大きくなるので、出力電流検出誤差そのものが大きくなること、また、一相だけスイッチングした状態であるかあるいは二相スイッチングした状態であるかによって電流変化の方向と大きさが不規則に変わるため、予見が困難であることから、特許文献1に記載の技術では、出力電流検出誤差を補正し切れないことになる。ただし、動作遅延時間が数μs程度と短く、半導体スイッチング素子の最小パルス幅よりも短い場合には、このような懸念は生じない。 In general, as the output voltage increases, switching is often performed near the timing of carrier peaks and troughs, and switching may occur between the timing of carrier peaks and troughs and the operation delay time. If switching is performed in this case, the rate of change of current over time due to voltage application will increase, so the output current detection error itself will increase, and if only one phase is switched or two phases are switched. Since the direction and magnitude of current change change irregularly depending on the state, it is difficult to predict, so the technique described in Patent Document 1 cannot fully correct the output current detection error. However, if the operation delay time is as short as several microseconds, which is shorter than the minimum pulse width of the semiconductor switching element, such concerns do not arise.
 一方、特許文献2に記載の第1~4の実施形態は、キャリアの山と谷のタイミングから動作遅延時間分だけ遅らせて出力電流検出を行うものである。しかし、動作遅延時間が数μs程度と短ければ問題はないが、特許文献4に記載の技術のように動作遅延時間が長くなると、制御サイクル内で検出した出力電流値を使用することができない。その場合、次の制御サイクルまで持ち越すことになるため、無駄時間の増加に繋がり、電流フィードバック制御の応答性に影響を与える。また、動作遅延時間の見積もりに誤差が無ければ正確に出力電流を検出することができるが、半導体スイッチング素子の個体ばらつきや動作遅延時間の電流依存性等により、実際の動作遅延時間が変動し得るため、誤差を生じる場合がある。 On the other hand, in the first to fourth embodiments described in Patent Document 2, the output current is detected after being delayed by the operation delay time from the timing of the peaks and troughs of the carrier. However, if the operation delay time is as short as several μs, there is no problem, but if the operation delay time becomes long as in the technique described in Patent Document 4, the output current value detected within the control cycle cannot be used. In that case, the control cycle is carried over to the next control cycle, leading to an increase in dead time and affecting the responsiveness of the current feedback control. In addition, if there is no error in the estimation of the operation delay time, the output current can be detected accurately, but the actual operation delay time may vary due to individual variations in semiconductor switching elements, current dependence of the operation delay time, etc. Therefore, errors may occur.
 更に、特許文献2に記載の第5の実施形態は、このような動作遅延時間のばらつきの影響を避けるため、キャリアの山と谷の周期以下、すなわちキャリア半周期よりも短い期間にわたり、出力電流を複数回サンプリングし、これらの平均値を電流フィードバック制御に用いるものである。ここで、特許文献2には、具体的なサンプリング期間の長さおよびサンプリング開始のタイミングが開示されていない。 Furthermore, in the fifth embodiment described in Patent Document 2, in order to avoid the influence of such variations in operation delay time, the output current is reduced for a period shorter than the period of peaks and troughs of the carrier, that is, shorter than a half period of the carrier. is sampled multiple times and the average value of these is used for current feedback control. Here, Patent Document 2 does not disclose the specific length of the sampling period and the timing of starting sampling.
 しかし、図面から察するに、たとえサンプリング期間がキャリア半周期よりも短くても、動作遅延時間が数μs程度と短ければ、キャリアの山と谷のタイミングを中心にして左右対称となるようにサンプリング期間を取ることにより、スイッチングリップルは、キャリアの山と谷のタイミングを中心にして概ね左右反対称(大きさは同じで符号が逆)である。そのため、スイッチングリップルの影響を相殺して正確に出力電流の大きさを求めることができる。 However, as can be seen from the drawing, even if the sampling period is shorter than the carrier half cycle, if the operation delay time is as short as a few μs, the sampling period will be symmetrical with respect to the timing of the peaks and troughs of the carrier. As a result, the switching ripples are approximately symmetrical (the magnitude is the same but the sign is opposite) centering on the timing of the peak and valley of the carrier. Therefore, the magnitude of the output current can be accurately determined by canceling out the effects of switching ripples.
 一方、動作遅延時間が長くなると対称とはみなせず、誤差を生じてしまう。また、制御演算をキャリアの山と谷の周期の先頭から開始しようとすると、平均値をただちに使用することができず、キャリア半周期の約1/2だけ待たされることになる。これも無駄時間の増加に繋がり、フィードバック制御の応答性に影響を与える。 On the other hand, if the operation delay time becomes long, it cannot be considered symmetrical and an error will occur. Furthermore, if the control calculation is to be started from the beginning of the cycle of peaks and troughs of the carrier, the average value cannot be used immediately and it will have to wait for about 1/2 of the carrier half cycle. This also leads to an increase in dead time and affects the responsiveness of feedback control.
 そこで、本発明では、電力変換器の制御装置において、電力変換器の出力電流を検出する入力回路での遅延時間や半導体スイッチング素子の動作遅延時間の影響による出力電流検出値の誤差を低減し、また、無駄時間を抑制して電流フィードバック制御の応答性を高める技術を提供することを目的とする。 Therefore, in the present invention, in a power converter control device, the error in the output current detection value due to the influence of the delay time in the input circuit that detects the output current of the power converter and the operation delay time of the semiconductor switching element is reduced, Another object of the present invention is to provide a technique that suppresses dead time and improves the responsiveness of current feedback control.
 上記した課題を解決するため、代表的な本発明の電力変換器の制御装置の一つは、半導体スイッチング素子を用いて直流電力を交流電力に変換する電力変換器の出力電流を検出する電流検出手段と、電流検出手段の出力に基づく電流制御により電力変換器の出力電圧指令を生成する電流制御手段と、出力電圧指令に基づいて半導体スイッチング素子に対するゲート指令を出力するPWM制御手段と、半導体スイッチング素子をオンオフ駆動するゲート信号をゲート指令から動作遅延を伴って生成するゲートドライバ回路とを備え、電流検出手段は、電力変換器の出力側に設けた電流センサの出力を入力信号として、サンプリング周期毎の積算期間の電流積算値を求める電流積算部を有し、電流制御手段は、電流積算値に基づいて電流制御を行い、電流検出手段と電流制御手段とPWM制御手段とは同期して動作するものである。 In order to solve the above-mentioned problems, one of the representative power converter control devices of the present invention is a current detection device that detects the output current of a power converter that converts DC power into AC power using a semiconductor switching element. current control means for generating an output voltage command of the power converter through current control based on the output of the current detection means; PWM control means for outputting a gate command for the semiconductor switching element based on the output voltage command; The current detecting means is equipped with a gate driver circuit that generates a gate signal for turning on and off the element with an operation delay from the gate command, and the current detecting means uses the output of the current sensor provided on the output side of the power converter as an input signal, and controls the sampling period. The current integrating section calculates the current integrated value for each integration period, the current controlling means performs current control based on the current integrated value, and the current detecting means, the current controlling means, and the PWM controlling means operate in synchronization. It is something to do.
 本発明によれば、出力電流の入力回路での遅延時間や半導体スイッチング素子の動作遅延時間の影響による出力電流検出値の誤差を低減することができる。また、無駄時間を抑制して電流フィードバック制御の応答性を高めることができる。
 上記した以外の課題、構成および効果は、以下の発明を実施するための形態における説明により明らかにされる。
According to the present invention, it is possible to reduce errors in the detected output current value due to the influence of the delay time of the output current in the input circuit and the operation delay time of the semiconductor switching element. Moreover, the responsiveness of current feedback control can be improved by suppressing dead time.
Problems, configurations, and effects other than those described above will be made clear by the description in the following detailed description.
本発明に係る電力変換器の制御装置を用いて交流電動機の駆動装置を構成した一例を示す図である。1 is a diagram showing an example of an AC motor drive device configured using a power converter control device according to the present invention; FIG. 図1に示す制御装置の中の電流検出手段の詳細な構成を示す図である。2 is a diagram showing a detailed configuration of a current detection means in the control device shown in FIG. 1. FIG. 図1に示す制御装置の中の回転座標変換手段の詳細な構成を示す図である。FIG. 2 is a diagram showing a detailed configuration of rotational coordinate conversion means in the control device shown in FIG. 1. FIG. 図1に示す制御装置の中の電流制御手段の詳細な構成を示す図である。2 is a diagram showing a detailed configuration of current control means in the control device shown in FIG. 1. FIG. 従来技術を用いて交流電動機を駆動した場合の電流波形の一例を示す図(動作遅延時間:1μs未満)である。FIG. 2 is a diagram showing an example of a current waveform when an AC motor is driven using a conventional technique (operation delay time: less than 1 μs). 従来技術を用いて交流電動機を駆動した場合の電流波形の一例を示す図(動作遅延時間:60μs)である。FIG. 2 is a diagram showing an example of a current waveform when an AC motor is driven using a conventional technique (operation delay time: 60 μs). 本発明の実施例を用いて交流電動機を駆動した場合の電流波形の一例を示す図(動作遅延時間:60μs)である。FIG. 2 is a diagram showing an example of a current waveform when an AC motor is driven using an embodiment of the present invention (operation delay time: 60 μs). 半導体スイッチング素子の動作遅延の有無による交流電動機の電流波形の差を示す図である。FIG. 3 is a diagram showing a difference in current waveform of an AC motor depending on whether or not there is an operation delay of a semiconductor switching element. 本発明に係る電力変換器の制御装置を用いて交流電動機を駆動した場合の制御装置を構成する各要素の動作波形を示す図である。It is a figure which shows the operating waveform of each element which comprises a control apparatus when an AC motor is driven using the control apparatus of the power converter which concerns on this invention.
 以下、本発明の実施例を、図面を用いて説明する。なお、この実施例により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to this example. In addition, in the description of the drawings, the same parts are denoted by the same reference numerals.
 図1は、本発明に係る電力変換器の制御装置を用いて交流電動機の駆動装置を構成した一例を示す図である。
 図示しない直流電圧源が供給する直流電力を平滑化する平滑化コンデンサ10と、半導体スイッチング素子11と12、13と14および15と16をそれぞれ直列に接続して構成されるブリッジ回路とが並列に接続されて電力変換器を構成する。このブリッジ回路の交流出力端子を交流電動機(MOTOR)18に接続し、交流出力端子から交流電動機(MOTOR)18への出力電流を電流センサ17が検出する。
FIG. 1 is a diagram showing an example of an AC motor drive device configured using a power converter control device according to the present invention.
A smoothing capacitor 10 that smoothes DC power supplied by a DC voltage source (not shown) and a bridge circuit configured by connecting semiconductor switching elements 11 and 12, 13 and 14, and 15 and 16 in series are connected in parallel. connected to form a power converter. The AC output terminal of this bridge circuit is connected to an AC motor (MOTOR) 18, and a current sensor 17 detects the output current from the AC output terminal to the AC motor (MOTOR) 18.
 半導体スイッチング素子11~16は、2つのゲート端子(デュアルゲート)を持ち、2つのゲート信号を用いて導通損失を低減するモードまたはスイッチング損失を低減するモードを切り替えることができる。 The semiconductor switching elements 11 to 16 have two gate terminals (dual gates), and can switch between a mode for reducing conduction loss and a mode for reducing switching loss using two gate signals.
 電力変換器の制御装置19(図1の破線で囲まれた部分)では、電流センサ17が検出した出力電流iu、ivおよびiwを、サージノイズなどを低減するローパスフィルタ(LPF)回路20に入力し、ローパスフィルタ(LPF)回路20の出力をA/D変換器21を用いてサンプリングする。 In the power converter control device 19 (the part surrounded by the broken line in FIG. 1), the output currents iu, iv, and iw detected by the current sensor 17 are input to a low-pass filter (LPF) circuit 20 that reduces surge noise and the like. Then, the output of the low-pass filter (LPF) circuit 20 is sampled using the A/D converter 21.
 電流検出手段22は、A/D変換器21が出力するiuf、ivfおよびiwfと、トリガ信号Trigとを入力して、出力電流積算値ius、ivs、iwsおよび積算回数Nを出力する。 The current detection means 22 inputs iuf, ivf, and iwf output from the A/D converter 21 and the trigger signal Trig, and outputs the output current integrated values ius, ivs, iws and the number of integrations N.
 回転座標変換手段23は、電流検出手段22にトリガ信号Trigを出力し、A/D変換器21から出力電流積算値ius、ivs、iwsおよび積算回数Nを読み込んで出力電流平均値を求め、回転座標変換を行ってd/q軸の電流検出値Id、Iqを出力する。 The rotational coordinate conversion means 23 outputs a trigger signal Trig to the current detection means 22, reads the output current integrated values ius, ivs, iws and the number of integrations N from the A/D converter 21, calculates the output current average value, and calculates the rotational coordinate conversion means 23. Coordinate transformation is performed to output detected current values Id and Iq on the d/q axes.
 電流制御手段(ACR)24は、d/q軸の電流検出値Id、Iqを用いて電流制御を行い、電圧ベクトルを生成した後、静止座標変換を行って交流電圧指令vup、vvpおよびvwpを出力する。 The current control means (ACR) 24 performs current control using the detected current values Id and Iq on the d/q axes, generates a voltage vector, and then performs static coordinate transformation to obtain AC voltage commands vup, vvp, and vwp. Output.
 PWM制御手段25は、交流電圧指令vup、vvpおよびvwpを入力し、直流電源電圧で正規化した後に搬送波と比較してPWM制御を行い、電力変換器を構成する上アームと下アームとの短絡防止のための非ラップ時間および最小パルス幅の管理を行ってゲート指令(Gpu~Gnw)を出力する。 The PWM control means 25 inputs the AC voltage commands vup, vvp, and vwp, normalizes them with the DC power supply voltage, compares them with a carrier wave, and performs PWM control to prevent short-circuiting between the upper arm and the lower arm that constitute the power converter. Gate commands (Gpu to Gnw) are output by managing the non-wrapping time and minimum pulse width for prevention.
 ゲートドライバ(GD)回路26は、ゲート指令(Gpu~Gnw)を入力し、半導体スイッチング素子11~16を駆動する第1および第2のゲート信号(Gpu1,2~Gnw1,2)を生成する。 The gate driver (GD) circuit 26 receives gate commands (Gpu to Gnw) and generates first and second gate signals (Gpu1, 2 to Gnw1, 2) that drive the semiconductor switching elements 11 to 16.
 ここで、ローパスフィルタ(LPF)回路20の時定数は数μsから10μs程度、A/D変換器21および電流検出手段22のサンプリング周期も数μs程度、である。 Here, the time constant of the low-pass filter (LPF) circuit 20 is about several μs to 10 μs, and the sampling period of the A/D converter 21 and the current detection means 22 is also about several μs.
 一方、回転座標変換手段23、電流制御手段(ACR)24およびPWM制御手段25は、同一のPWM制御周期で処理を行い、キャリア周波数によって変わるが、概ね数百μsから数msのオーダーである。 On the other hand, the rotational coordinate conversion means 23, the current control means (ACR) 24, and the PWM control means 25 perform processing in the same PWM control period, which varies depending on the carrier frequency, but is generally on the order of several hundred μs to several ms.
 また、PWM制御手段25における非ラップ時間および最小パルス幅は、いずれも数μsから10μs程度である。ゲートドライバ(GD)回路26がゲート指令から第1および第2のゲート信号を生成する際、数μsから数十μs程度の遅延が生じる。 Furthermore, the non-wrap time and minimum pulse width in the PWM control means 25 are both about several μs to 10 μs. When the gate driver (GD) circuit 26 generates the first and second gate signals from the gate command, a delay of about several μs to several tens of μs occurs.
 ここで、ローパフフィルタ(LPF)回路20の時定数を含む電流検出手段までの検出遅延時間およびゲートドライバ(GD)回路26での遅延時間の和が、主たる動作遅延時間の要因であり、これらの合計に対して、A/D変換器21のサンプリング周期は十分に短くなくてはならない。 Here, the sum of the detection delay time up to the current detection means including the time constant of the low-puff filter (LPF) circuit 20 and the delay time in the gate driver (GD) circuit 26 is the main factor in the operation delay time. The sampling period of the A/D converter 21 must be sufficiently short for the sum of .
 図2は、図1に示す制御装置19の中の電流検出手段22の詳細な構成を示す図である。
 電流検出手段22は、A/D変換器21と同期し、数μs程度のサンプリング周期で演算するため、ASICやFPGAなどの集積回路によるハードウェアでもって処理を実行する。電流検出手段22に入力される信号は、A/D変換器21がサンプリングした出力電流検出値iuf、ivf、iwfおよびトリガ信号Trigである。
FIG. 2 is a diagram showing a detailed configuration of the current detection means 22 in the control device 19 shown in FIG.
The current detection means 22 is synchronized with the A/D converter 21 and performs calculations at a sampling period of about several μs, so the processing is executed by hardware such as an integrated circuit such as ASIC or FPGA. The signals input to the current detection means 22 are the output current detection values iuf, ivf, iwf sampled by the A/D converter 21 and the trigger signal Trig.
 トリガ信号Trigは、回転座標変換手段23を実行するソフトウェアによって、PWM制御周期ごとに書き込まれる。書き込み検出回路30は、トリガ信号Trigに出力要求が書き込まれたタイミングで、スイッチ39~42をオンにし(図2では、「set」)、遅延素子(Z-1)35~38の内容をバッファ(buf)43~46にコピーした後に、遅延素子(Z-1)35~38をゼロクリア(図2では、「clear」)する。 The trigger signal Trig is written every PWM control period by software that executes the rotational coordinate conversion means 23. The write detection circuit 30 turns on the switches 39 to 42 (“set” in FIG. 2) at the timing when the output request is written to the trigger signal Trig, and buffers the contents of the delay elements (Z −1 ) 35 to 38. After copying to (buf) 43 to 46, delay elements (Z −1 ) 35 to 38 are cleared to zero (“clear” in FIG. 2).
 加算器31~33と遅延素子(Z-1)35~37を用いて、出力電流検出値iuf、ivfおよびiwfの積算回路を構成する。また、加算器34と遅延素子(Z-1)38を用いて、積算回数をカウントするカウンタを構成する。
 バッファ(buf)43~46それぞれの出力が、出力電流積算値ius、ivs、iwsおよび積算回数Nとなる。
Adders 31 to 33 and delay elements (Z −1 ) 35 to 37 are used to configure an integration circuit for output current detection values iuf, ivf, and iwf. Furthermore, the adder 34 and the delay element (Z −1 ) 38 constitute a counter that counts the number of integrations.
The outputs of the buffers (buf) 43 to 46 are output current integrated values ius, ivs, iws and the number of integrations N.
 図3は、図1に示す制御装置19の中の回転座標変換手段23の詳細な構成を示す図である。
 回転座標変換手段23は、PWM制御周期でソフトウェアにより処理を実行する。PWM制御周期中に、トリガ信号Trigに出力要求(request)を一度だけ書き込んだ後、電流検出手段22にアクセスして、出力電流積算値ius、ivs、iwsおよび積算回数Nを読み込む。
FIG. 3 is a diagram showing a detailed configuration of the rotational coordinate conversion means 23 in the control device 19 shown in FIG. 1. As shown in FIG.
The rotational coordinate conversion means 23 executes processing using software in a PWM control period. After writing an output request (request) to the trigger signal Trig only once during the PWM control period, the current detection means 22 is accessed to read the output current integrated values ius, ivs, iws and the number of integrations N.
 除算器50~52は、積算回数Nを用いて出力電流積算値ius、ivsおよびiwsそれぞれの出力電流平均値を求める。
 回転座標変換器53は、この出力電流平均値を用いてd/q軸の電流検出値Id、Iqを求める。
The dividers 50 to 52 use the number of integrations N to obtain the average output current value of each of the output current integrated values ius, ivs, and iws.
The rotating coordinate converter 53 uses this output current average value to obtain the d/q axis current detection values Id and Iq.
 図4は、図1に示す制御装置19の中の電流制御手段(ACR)24の詳細な構成を示す図である。
 電流制御手段(ACR)24は、PWM制御周期でソフトウェアにより処理を実行する。d/q軸のPI制御器60、61は、d/q軸の電流指令値Idp、Iqpと、回転座標変換手段23が出力したd/q軸の電流検出値Id、Iqとをそれぞれ入力とし、電流制御を行ってd/q軸の電圧操作量dVd、dVqを求める。
FIG. 4 is a diagram showing a detailed configuration of the current control means (ACR) 24 in the control device 19 shown in FIG. 1. As shown in FIG.
The current control means (ACR) 24 executes processing using software in a PWM control period. The PI controllers 60 and 61 for the d/q axes receive as input the d/q axis current command values Idp and Iqp and the d/q axis current detection values Id and Iq outputted by the rotational coordinate conversion means 23, respectively. , current control is performed to determine voltage operation amounts dVd and dVq on the d/q axes.
 電圧ベクトル演算器(VECT)62は、d/q軸の電圧操作量dVd、dVqを入力して、d/q軸の電圧指令Vdp、Vqpを求める。
 静止座標変換器63は、d/q軸の電圧指令Vdp、Vqpより三相交流電圧指令vup、vvpおよびvwpを求める。
A voltage vector calculator (VECT) 62 inputs the voltage operation amounts dVd and dVq of the d/q axes and obtains voltage commands Vdp and Vqp of the d/q axes.
The stationary coordinate converter 63 obtains three-phase AC voltage commands vup, vvp, and vwp from the d/q-axis voltage commands Vdp, Vqp.
 本発明は、以上の構成により、電流検出手段までの検出遅延時間とゲートドライバ(GD)回路26で発生する動作遅延時間との和が、半導体スイッチング素子の非ラップ期間や最小パルス幅に対して大きい場合においても、電流検出誤差を低減することができる。 With the above configuration, the present invention allows the sum of the detection delay time up to the current detection means and the operation delay time generated in the gate driver (GD) circuit 26 to be larger than the non-wrap period and minimum pulse width of the semiconductor switching element. Even if the current detection error is large, the current detection error can be reduced.
 また、電力変換器の制御装置19の外部にゲートドライバ(GD)回路26があり、動作遅延時間が個体でばらつき、温度条件などによって緩やかに変動する場合でも、電流検出誤差を低減できる。そもそも動作遅延時間が不明の場合でも、対応可能である。 In addition, a gate driver (GD) circuit 26 is provided outside the power converter control device 19, and current detection errors can be reduced even when the operation delay time varies from individual to individual and changes slowly depending on temperature conditions and the like. Even if the operation delay time is unknown in the first place, it can be handled.
 以上では、本発明の実施例として、複数のゲート信号を有する半導体スイッチング素子を用いた電力変換器を用いたが、単一のゲート信号を有する一般的な半導体スイッチング素子を用いた電力変換器にも適用可能である。特に、半導体スイッチング素子が高耐圧になると、これを駆動するためのゲートドライバ回路にも高耐圧が求められることから、結果として、ゲート信号を伝える絶縁回路の遅延時間が長くなる傾向にあるため、本発明の実施例は有効な手段である。 In the above, a power converter using a semiconductor switching element having a plurality of gate signals was used as an example of the present invention, but a power converter using a general semiconductor switching element having a single gate signal is also applicable. In particular, when semiconductor switching elements have high breakdown voltages, the gate driver circuits used to drive them are also required to have high breakdown voltages.As a result, the delay time of the insulation circuits that transmit gate signals tends to increase. The embodiment of the present invention is an effective means.
 図5は、従来技術を用いて交流電動機を駆動した場合の電流波形の一例を示す図である。ここで、半導体スイッチング素子の動作遅延時間は、1μs未満の場合である。
 特許文献1に記載の技術を用いて、PWM制御周期の先頭で出力電流をサンプリングし、PWM制御周期での移動平均値を求め、これを回転座標変換してd/q軸の電流検出値Id、Iqを求めた場合に対応する。
FIG. 5 is a diagram showing an example of a current waveform when an AC motor is driven using a conventional technique. Here, the operation delay time of the semiconductor switching element is less than 1 μs.
Using the technology described in Patent Document 1, the output current is sampled at the beginning of the PWM control cycle, a moving average value in the PWM control cycle is obtained, and this is converted into rotational coordinates to obtain the d/q axis current detection value Id. , Iq is calculated.
 なお、電流検出誤差を調べるため、電流フィードバック制御を無効化し、フィードフォワード制御としている。モータ定数などの誤差もないので、d/q軸の電流指令値Idp、Iqpを比較することにより、電流検出誤差を調べることができる。 In addition, in order to investigate the current detection error, current feedback control was disabled and feedforward control was used. Since there is no error in the motor constant, etc., the current detection error can be investigated by comparing the d/q-axis current command values Idp and Iqp.
 ただし、発生トルクの僅かな差異により加速度が変わってしまうと、図6および図7に示す例と比較するのが難しくなるため、時刻t0まで速度ゼロとし、時刻t0から加速度一定で交流電動機の速度を引き上げるようにした。 However, if the acceleration changes due to a slight difference in the generated torque, it will be difficult to compare with the examples shown in FIGS. I tried to raise it.
 図5に示すとおり、従来技術によるd/q軸の電流検出値Id、Iqは、スイッチングリップルの影響を受け、点線で示すd/q軸の電流指令値の定常値を中心として、概ね上下対称に振動している。ここで、定常的には検出誤差が生じていないことを明示するために、d/q軸の電流検出値Id、Iqに交流電動機の電気時定数(一次時定数)程度のローパスフィルタを通したId、Iqを、Id(LPF)、Iq(LPF)として示す。なお、Id(LPF)とIq(LPF)の生成手段自体は、本発明の対象外であるため図面には図示していない。Id(LPF)、Iq(LPF)を見る限り、d/q軸の電流検出値Id、Iqは、定常的には検出誤差を生じていないことが分かる。 As shown in Fig. 5, the d/q-axis current detection values Id and Iq according to the conventional technology are affected by switching ripples and are approximately vertically symmetrical about the steady value of the d/q-axis current command value shown by the dotted line. It is vibrating. Here, in order to clearly show that there is no detection error occurring on a steady basis, the detected current values Id and Iq on the d/q axes are passed through a low-pass filter of approximately the electrical time constant (primary time constant) of the AC motor. Id and Iq are shown as Id(LPF) and Iq(LPF). Note that the means for generating Id (LPF) and Iq (LPF) are not shown in the drawings because they are outside the scope of the present invention. As far as Id (LPF) and Iq (LPF) are concerned, it can be seen that the current detection values Id and Iq on the d/q axes do not regularly generate detection errors.
 図6は、図5の場合と同様に、従来技術を用いて交流電動機を駆動した場合の電流波形の一例を示す図である。ここで、半導体スイッチング素子の動作遅延時間は、60μsの場合である。 Similar to the case of FIG. 5, FIG. 6 is a diagram showing an example of a current waveform when an AC motor is driven using the conventional technology. Here, the operation delay time of the semiconductor switching element is 60 μs.
 図6では、図5の場合と異なり、q軸電流検出値IqおよびIq(LPF)を見ると、q軸電流側には検出誤差が生じていることが分かる。この結果、電流フィードバック制御を有効にすると、逆にトルク誤差が生じることになる。一方、d軸電流側には検出誤差が生じていないことが分かる。 In FIG. 6, unlike the case in FIG. 5, when looking at the q-axis current detection value Iq and Iq (LPF), it can be seen that a detection error has occurred on the q-axis current side. As a result, if current feedback control is enabled, a torque error will occur. On the other hand, it can be seen that no detection error occurs on the d-axis current side.
 図7は、本発明の実施例を用いて交流電動機を駆動した場合の電流波形の一例を示す図である。ここで、半導体スイッチング素子の動作遅延時間は、図6の場合と同様に60μsの場合である。 FIG. 7 is a diagram showing an example of a current waveform when an AC motor is driven using an embodiment of the present invention. Here, the operation delay time of the semiconductor switching element is 60 μs, as in the case of FIG.
 図7に示すId(LPF)およびIq(LPF)を見ると、本発明の効果によりd/q軸の電流検出値Id、Iqの両方ともに検出誤差を生じていないことが分かる。 Looking at Id (LPF) and Iq (LPF) shown in FIG. 7, it can be seen that due to the effects of the present invention, no detection error occurs in both the d/q axis current detection values Id and Iq.
 図8は、半導体スイッチング素子の動作遅延の有無による交流電動機の電流波形の差を示す図である。ここで、電流波形の差を調べるために、電流フィードバック制御を無効化し、フィードフォワード制御としている。 FIG. 8 is a diagram showing the difference in current waveform of an AC motor depending on whether or not there is an operation delay of the semiconductor switching element. Here, in order to examine the difference in current waveforms, current feedback control is disabled and feedforward control is performed.
 搬送波(Carrier)について、t1~t2の区間は下り勾配であり、この期間はUVWの三相共にパルスを立ち上げる。一方、t2~t3の区間は上り勾配であり、この期間はUVWの三相共にパルスを立ち下げる。 Regarding the carrier wave (Carrier), the period from t1 to t2 has a downward slope, and during this period, pulses are raised in all three phases of UVW. On the other hand, the period from t2 to t3 has an upward slope, and during this period, the pulses of all three phases of UVW fall.
 図8に示す波形の内で、点線が、動作遅延無しの場合の電圧および電流の波形であり、実線が、動作遅延60μsの場合の電圧および電流の波形である。三相交流電圧vu、vvおよびvwが等しく遅延するため、U相電流の検出値(A/D変換値)iufも等しく遅延している。ここで、時刻t1、t2およびt3は、各PWM制御周期の先頭であり、このタイミングで出力電流の検出を行う。 Among the waveforms shown in FIG. 8, the dotted lines are the voltage and current waveforms when there is no operation delay, and the solid lines are the voltage and current waveforms when the operation delay is 60 μs. Since the three-phase AC voltages vu, vv, and vw are equally delayed, the detected value (A/D converted value) iuf of the U-phase current is also equally delayed. Here, times t1, t2, and t3 are the beginning of each PWM control cycle, and the output current is detected at these timings.
 また、U相電流の検出値(A/D変換値)iufにおいて、図8に示す符号で、×印が動作遅延無しの場合の電流検出値であり、◇印が動作遅延60μsの場合の電流検出値である。電流の時間変化率di/dtが負のため、動作遅延によって電流検出値が小さくなったように見える。 In addition, in the detected value (A/D conversion value) iuf of the U-phase current, the symbols shown in FIG. This is the detected value. Since the time rate of change di/dt of the current is negative, the detected current value appears to be small due to the operation delay.
 図9は、本発明に係る電力変換器の制御装置を用いて交流電動機を駆動した場合に、この制御装置を構成する各要素の動作波形を示す図である。ここで、時刻t1、t2およびt3は、各PWM制御周期の先頭を示している。 FIG. 9 is a diagram showing operating waveforms of each element constituting the power converter control device according to the present invention when an AC motor is driven. Here, times t1, t2, and t3 indicate the beginning of each PWM control cycle.
 各PWM制御周期の先頭で、回転座標変換手段23(図1および図3)は、電流検出手段22(図1および図2)に対するトリガ信号Trigに、出力要求(request)を書き込む。本実施例では、単純にトリガ信号Trigの立ち上がりエッジを出力要求(request)とする。電流検出手段22(図1および図2)は、トリガ信号Trigの出力要求(request)である立ち上がりエッジを受け取ると、スイッチ39~42をオンにして、遅延素子35~38の内容をバッファ43~46にコピーし、その後遅延素子35~38をゼロクリアする。 At the beginning of each PWM control period, the rotational coordinate conversion means 23 (FIGS. 1 and 3) writes an output request to the trigger signal Trig for the current detection means 22 (FIGS. 1 and 2). In this embodiment, the rising edge of the trigger signal Trig is simply used as an output request. When the current detection means 22 (FIGS. 1 and 2) receives a rising edge that is an output request of the trigger signal Trig, it turns on the switches 39 to 42 and transfers the contents of the delay elements 35 to 38 to the buffers 43 to 43. 46, and then clear the delay elements 35 to 38 to zero.
 図9に示すカウンタ(counter)は、図2に示す遅延素子38の出力であり、積算回数を示す。時刻t1において、時刻t1直前のカウンタの値n1が、バッファ46に積算回数Nとして書き込まれ、次のトリガ信号Trigが書き込まれる時刻t2までその値n1を保持する。t1~t2の区間において、カウンタ(counter)は、ゼロから一定のレートで増加し、時刻t2で再びゼロになる。時刻t2直前のカウンタの値n2が、バッファ46に積算回数Nとして書き込まれ、時刻t3までその値n2を保持する。 The counter shown in FIG. 9 is the output of the delay element 38 shown in FIG. 2, and indicates the number of integrations. At time t1, the counter value n1 immediately before time t1 is written into the buffer 46 as the number of integrations N, and the value n1 is held until time t2 when the next trigger signal Trig is written. In the interval from t1 to t2, the counter increases from zero at a constant rate and reaches zero again at time t2. The value n2 of the counter immediately before time t2 is written into the buffer 46 as the number of integrations N, and the value n2 is held until time t3.
 図9に示す積算値(integrator)は、図2に示す遅延素子35の出力であり、U相電流検出値(A/D変換値)iufの積算値である。時刻t1において、時刻t1直前の積算値s1が、バッファ43にU相電流積算値iusとして書き込まれ、時刻t2までその値s1を保持する。t1~t2の区間において、積算値は、ゼロからU相電流検出値(A/D変換値)iufを積算し、時刻t2で再びゼロになる。時刻t2直前の積算値の値s2がバッファ43にU相電流積算値iusとして書き込まれ、次のトリガ信号Trigが書き込まれる時刻t3までその値s2を保持する。また、図9では省略しているが、V相およびW相の電流積算値についても、上記したU相の場合と同様である。 The integrated value (integrator) shown in FIG. 9 is the output of the delay element 35 shown in FIG. 2, and is the integrated value of the U-phase current detection value (A/D conversion value) iuf. At time t1, the integrated value s1 immediately before time t1 is written into the buffer 43 as the U-phase current integrated value ius, and the value s1 is held until time t2. In the interval from t1 to t2, the integrated value integrates the U-phase current detection value (A/D conversion value) iuf from zero, and becomes zero again at time t2. The integrated value s2 immediately before time t2 is written into the buffer 43 as the U-phase current integrated value ius, and the value s2 is held until time t3 when the next trigger signal Trig is written. Further, although not shown in FIG. 9, the current integrated values of the V phase and W phase are also the same as in the case of the U phase described above.
 回転座標変換手段23(図1および図3)は、ソフトウェアで実行するため、図3に示す除算器50~52を同時ではなく順番に逐次実行した後、回転座標変換器53を用いてd/q軸電流検出値Id、Iqを求める。これ以降もソフトウェアにより、先に求めたd/q軸電流検出値Id、Iqを用いて、電流制御手段(ACR)24(図1および図4)による電流制御、PWM制御手段25(図1)によるPWM制御を順次行っていく。ただし、これら一連のソフトウェア処理は、PWM制御周期内に完了しなくてはならない。 Since the rotational coordinate conversion means 23 (FIGS. 1 and 3) is executed by software, after executing the dividers 50 to 52 shown in FIG. Find the q-axis current detection values Id and Iq. From this point on, the software uses the previously determined d/q axis current detection values Id and Iq to control the current by the current control means (ACR) 24 (Figs. 1 and 4) and the PWM control means 25 (Fig. 1). PWM control is performed sequentially. However, these series of software processes must be completed within the PWM control period.
 本発明の実施例において、高速サンプリングおよび積算を行う電流検出手段22(図1および図2)は、ハードウェアで実行する。一方で、回転座標変換手段23(図1および図3)、電流制御手段(ACR)24(図1および図4)、PWM制御手段25(図1)などは、処理時間の要する高度な演算をソフトウェアで実行する。 In an embodiment of the invention, the current detection means 22 (FIGS. 1 and 2), which performs high-speed sampling and integration, is implemented in hardware. On the other hand, the rotational coordinate conversion means 23 (FIGS. 1 and 3), the current control means (ACR) 24 (FIGS. 1 and 4), the PWM control means 25 (FIG. 1), etc. perform sophisticated calculations that require processing time. Run in software.
 ここで、高速性およびタイミングが重要とある電流検出手段22をハードウェアで実行することにより、ソフトウェアの処理はタイミングに注意を払う必要性を抑制することができる。例えば、各PWM制御周期の先頭で、トリガ信号Trigに出力要求(request)を書き込みさえすれば、三相の電流積算値ius、ivs、iwsおよび積算回数Nは、PWM制御周期内の任意のタイミングで読み出せばよいことになる。 Here, by executing the current detection means 22, for which high speed and timing are important, in hardware, it is possible to suppress the need to pay attention to timing in software processing. For example, as long as an output request is written to the trigger signal Trig at the beginning of each PWM control cycle, the three-phase current integrated values ius, ivs, iws and the number of integrations N can be set at any timing within the PWM control cycle. All you have to do is read it out.
 近年では、キャッシュメモリを搭載したマイコンが増加し、平均的には高い処理能力を有する一方で、キャッシュミスヒット時など最悪の場合に処理タイミングを保証することが難しくなっている。このようなマイコンを使用した制御に対して、本発明は特に有用である。 In recent years, the number of microcomputers equipped with cache memory has increased, and while they have high processing power on average, it has become difficult to guarantee processing timing in the worst case, such as when a cache miss occurs. The present invention is particularly useful for control using such a microcomputer.
 以上、本発明の実施例について説明したが、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the present invention.
10 平滑化コンデンサ、11~16 半導体スイッチング素子、17 電流センサ、18 交流電動機(MOTOR)、19 電力変換器の制御装置、20 ローパスフィルタ(LPF)回路、21 A/D変換器、22 電流検出手段、23 回転座標変換手段、24 電流制御手段(ACR)、25 PWM制御手段、26 ゲートドライバ(GD)回路、30 書き込み検出回路、31~34 加算器、35~38 遅延素子(Z-1)、39~42 スイッチ、43~46 バッファ(buf)、50~52 除算器、53 回転座標変換器、60,61 d/q軸のPI制御器、62 電圧ベクトル演算器(VECT)、63 静止座標変換器Gpu,Gpu,Gpw ゲートドライバ回路へのゲート指令(上アーム)、Gnu,Gnu,Gnw ゲートドライバ回路へのゲート指令(下アーム)、Gpu1,Gpv1,Gpw1 半導体スイッチング素子への第1のゲート信号(上アーム)、Gnu1,Gnv1,Gnw1 半導体スイッチング素子への第1のゲート信号(下アーム)、Gpu2,Gpv2,Gpw2 半導体スイッチング素子への第2のゲート信号(上アーム)、Gnu2,Gnv2,Gnw2 半導体スイッチング素子への第2のゲート信号(下アーム)、Idp,Iqp d/q軸の電流指令値、Id,Iq d/q軸の電流検出値、Id(LPF)、Iq(LPF) d/q軸の電流検出値(LPF出力)、iu,iv,iw 電力変換器の出力電流、iuf,ivf,iwf 出力電流のA/D変換値、ius,ivs,iws 出力電流積算値、N 積算回数、Trig トリガ信号、Vdp,Vqp d/q軸の電圧指令、dVd,dVq d/q軸の電圧操作量、vup,vvp,vwp 三相交流電圧指令、vu,vv,vw 三相交流電圧 10 smoothing capacitor, 11 to 16 semiconductor switching element, 17 current sensor, 18 AC motor (MOTOR), 19 power converter control device, 20 low-pass filter (LPF) circuit, 21 A/D converter, 22 current detection means , 23 rotational coordinate conversion means, 24 current control means (ACR), 25 PWM control means, 26 gate driver (GD) circuit, 30 write detection circuit, 31 to 34 adder, 35 to 38 delay element (Z -1 ), 39-42 Switch, 43-46 Buffer (buf), 50-52 Divider, 53 Rotating coordinate converter, 60, 61 d/q axis PI controller, 62 Voltage vector calculator (VECT), 63 Stationary coordinate conversion Gpu, Gpu, Gpw Gate command to the gate driver circuit (upper arm), Gnu, Gnu, Gnw Gate command to the gate driver circuit (lower arm), Gpu1, Gpv1, Gpw1 First gate signal to the semiconductor switching element (upper arm), Gnu1, Gnv1, Gnw1 First gate signal to semiconductor switching element (lower arm), Gpu2, Gpv2, Gpw2 Second gate signal to semiconductor switching element (upper arm), Gnu2, Gnv2, Gnw2 Second gate signal to semiconductor switching element (lower arm), Idp, Iqp d/q axis current command value, Id, Iq d/q axis current detection value, Id (LPF), Iq (LPF) d/ Q-axis current detection value (LPF output), iu, iv, iw Power converter output current, iuf, ivf, iwf A/D conversion value of output current, ius, ivs, iws Output current integrated value, N Number of integrations , Trig trigger signal, Vdp, Vqp d/q axis voltage command, dVd, dVq d/q axis voltage operation amount, vup, vvp, vwp three-phase AC voltage command, vu, vv, vw three-phase AC voltage

Claims (9)

  1.  半導体スイッチング素子を用いて直流電力を交流電力に変換する電力変換器の出力電流を検出する電流検出手段と、
     前記電流検出手段の出力に基づく電流制御により前記電力変換器の出力電圧指令を生成する電流制御手段と、
     前記出力電圧指令に基づいて前記半導体スイッチング素子に対するゲート指令を出力するPWM制御手段と、
     前記半導体スイッチング素子をオンオフ駆動するゲート信号を前記ゲート指令から動作遅延を伴って生成するゲートドライバ回路と
    を備え、
     前記電流検出手段は、前記電力変換器の出力側に設けた電流センサの出力を入力信号として、サンプリング周期毎の積算期間の電流積算値を求める電流積算部を有し、
     前記電流制御手段は、前記電流積算値に基づいて前記電流制御を行い、
     前記電流検出手段と前記電流制御手段と前記PWM制御手段とは同期して動作する
    ことを特徴とする電力変換器の制御装置。
    Current detection means for detecting an output current of a power converter that converts DC power to AC power using a semiconductor switching element;
    Current control means that generates an output voltage command of the power converter by current control based on the output of the current detection means;
    PWM control means for outputting a gate command to the semiconductor switching element based on the output voltage command;
    a gate driver circuit that generates a gate signal for driving the semiconductor switching element on and off from the gate command with an operation delay;
    The current detection means has a current integration unit that uses the output of a current sensor provided on the output side of the power converter as an input signal to obtain an integrated current value in an integration period for each sampling period,
    The current control means performs the current control based on the current integrated value,
    A control device for a power converter, wherein the current detection means, the current control means, and the PWM control means operate in synchronization.
  2.  請求項1に記載の電力変換器の制御装置であって、
     前記電流積算部のサンプリング周期は、前記電流センサの出力から前記電流検出手段までの検出遅延の時間と前記ゲートドライバ回路の前記動作遅延の時間との和よりも短い
    ことを特徴とする電力変換器の制御装置。
    The power converter control device according to claim 1,
    A power converter characterized in that the sampling period of the current integration section is shorter than the sum of the detection delay time from the output of the current sensor to the current detection means and the operation delay time of the gate driver circuit. control device.
  3.  請求項1または請求項2に記載の電力変換器の制御装置であって、
     前記電流センサの出力から前記電流検出手段までの検出遅延の時間と前記ゲートドライバ回路の前記動作遅延の時間との和が、前記半導体スイッチング素子の最小パルス幅よりも長い
    ことを特徴とする電力変換器の制御装置。
    A control device for a power converter according to claim 1 or 2,
    Power conversion characterized in that the sum of the detection delay time from the output of the current sensor to the current detection means and the operation delay time of the gate driver circuit is longer than the minimum pulse width of the semiconductor switching element. device control device.
  4.  請求項1から請求項3のいずれか1項に記載の電力変換器の制御装置であって、
     前記電流検出手段による処理態様は、ハードウェアで実行され、
     前記電流制御手段および前記PWM制御手段による処理態様は、ソフトウェアで実行される
    ことを特徴とする電力変換器の制御装置。
    A control device for a power converter according to any one of claims 1 to 3,
    The processing mode by the current detection means is executed by hardware,
    A control device for a power converter, characterized in that processing by the current control means and the PWM control means is executed by software.
  5.  請求項1から請求項4のいずれか1項に記載の電力変換器の制御装置であって、
     前記半導体スイッチング素子は、デュアルゲートを有する半導体素子である
    ことを特徴とする電力変換器の制御装置。
    A control device for a power converter according to any one of claims 1 to 4,
    A control device for a power converter, wherein the semiconductor switching element is a semiconductor element having dual gates.
  6.  請求項1から請求項5のいずれか1項に記載の電力変換器の制御装置であって、
     前記電流積算部は、前記積算期間の電流積算値を求める積算回路と、前記積算期間の積算回数を数えるカウンタと、前記電流積算値および前記積算回数を記憶するバッファとを備え、出力要求を受け取る毎に当該出力要求の受け取り時点のサンプリング周期の前回周期終了時点の電流積算値および積算回数を前記バッファに書き込むと共に、当該電流積算値および当該積算回数をゼロクリアして前記積算回路および前記カウンタの動作を新たに開始し、
     前記電流検出手段は、前記バッファから読み出した前記電流積算値および前記積算回数に基づいて前記積算期間の電流平均値を求め、
     前記電流制御手段は、前記電流平均値を用いて前記電流制御を行う
    ことを特徴とする電力変換器の制御装置。
    A control device for a power converter according to any one of claims 1 to 5,
    The current integration unit includes an integration circuit that calculates a current integration value in the integration period, a counter that counts the number of integrations in the integration period, and a buffer that stores the current integration value and the number of integrations, and receives an output request. At each time, the current integrated value and the number of integrations at the end of the previous sampling cycle at the time of receiving the output request are written into the buffer, and the current integrated value and the number of integrations are cleared to zero to operate the integration circuit and the counter. start anew,
    The current detection means calculates a current average value for the integration period based on the current integration value and the number of integrations read from the buffer,
    A control device for a power converter, wherein the current control means performs the current control using the average current value.
  7.  直流電力を交流電力に変換する電力変換器を構成する半導体スイッチング素子がゲート指令から動作遅延を伴ったゲート信号によりオンオフ駆動される電力変換器の制御方法であって、
     前記電力変換器の出力電流を、前記電力変換器の出力側に設けた電流センサの出力をサンプリング周期毎の積算期間の電流積算値として検出し、併せて前記積算期間の積算回数を求め、
     前記電流積算値および前記積算回数に基づいて前記積算期間の電流平均値を求め、
     前記電流平均値を用いた電流制御により前記電力変換器の出力電圧指令を生成し、
     前記出力電圧指令に基づいてPWM制御により前記ゲート指令を生成し、
     生成した前記ゲート指令からゲートドライバにより前記ゲート信号を生成する
    ことを特徴とする電力変換器の制御方法。
    A method for controlling a power converter in which a semiconductor switching element constituting a power converter that converts DC power into AC power is turned on and off by a gate signal with an operation delay from a gate command, the method comprising:
    Detecting the output current of the power converter by detecting the output of a current sensor provided on the output side of the power converter as a current integrated value in an integration period for each sampling period, and also determining the number of integrations in the integration period,
    Determining a current average value for the integration period based on the current integration value and the number of integrations,
    Generate an output voltage command of the power converter by current control using the average current value,
    generating the gate command by PWM control based on the output voltage command;
    A method for controlling a power converter, characterized in that the gate signal is generated by a gate driver from the generated gate command.
  8.  請求項7に記載の電力変換器の制御方法であって、
     前記サンプリング周期は、前記電流センサによる検出遅延の時間と前記ゲートドライバが前記ゲート指令から前記ゲート信号を生成する際に伴う動作遅延の時間との和よりも短い
    ことを特徴とする電力変換器の制御方法。
    A method for controlling a power converter according to claim 7,
    The power converter is characterized in that the sampling period is shorter than the sum of the detection delay time by the current sensor and the operation delay time accompanying when the gate driver generates the gate signal from the gate command. Control method.
  9.  請求項7または請求項8に記載の電力変換器の制御方法であって、
     前記電流センサによる検出遅延の時間と前記ゲートドライバが前記ゲート指令から前記ゲート信号を生成する際に伴う動作遅延の時間との和を、前記半導体スイッチング素子の最小パルス幅よりも長くする
    ことを特徴とする電力変換器の制御方法。
    A method for controlling a power converter according to claim 7 or 8, comprising:
    The sum of the detection delay time by the current sensor and the operation delay time accompanying when the gate driver generates the gate signal from the gate command is made longer than the minimum pulse width of the semiconductor switching element. A method for controlling a power converter.
PCT/JP2023/020695 2022-06-17 2023-06-02 Power converter control device and control method WO2023243451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022098204 2022-06-17
JP2022-098204 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243451A1 true WO2023243451A1 (en) 2023-12-21

Family

ID=89191089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020695 WO2023243451A1 (en) 2022-06-17 2023-06-02 Power converter control device and control method

Country Status (1)

Country Link
WO (1) WO2023243451A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238637A (en) * 2005-02-25 2006-09-07 Toshiba Corp Inverter apparatus
JP2012110074A (en) * 2010-11-15 2012-06-07 Toshiba Corp Current detection device and motor control device
JP2017127046A (en) * 2016-01-12 2017-07-20 三菱電機株式会社 Power converter control device
JP2018113754A (en) * 2017-01-10 2018-07-19 株式会社デンソー Controller for ac motor
JP2019161720A (en) * 2018-03-08 2019-09-19 株式会社日立製作所 Inverter device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238637A (en) * 2005-02-25 2006-09-07 Toshiba Corp Inverter apparatus
JP2012110074A (en) * 2010-11-15 2012-06-07 Toshiba Corp Current detection device and motor control device
JP2017127046A (en) * 2016-01-12 2017-07-20 三菱電機株式会社 Power converter control device
JP2018113754A (en) * 2017-01-10 2018-07-19 株式会社デンソー Controller for ac motor
JP2019161720A (en) * 2018-03-08 2019-09-19 株式会社日立製作所 Inverter device

Similar Documents

Publication Publication Date Title
US9543851B2 (en) Matrix converter
JP6045765B1 (en) Power conversion device and vehicle drive system using the same
JPH05292753A (en) Current detecting method for pwm inverter
TW200924366A (en) Matrix converter
JP6449129B2 (en) Power converter
JP6211377B2 (en) PWM converter control device and dead time compensation method thereof, PWM inverter control device and dead time compensation method thereof
JP6579195B2 (en) Power control method and power control apparatus
WO2023243451A1 (en) Power converter control device and control method
JP2001292580A (en) Method and apparatus for detecting missing phase of output and inverter
JP4149709B2 (en) Control device for voltage source inverter
WO2008115579A1 (en) Audible noise reduction for single current shunt platform
JPH07163189A (en) Pwm controller for motor
US11757394B2 (en) Motor control device and motor system
CN114175487B (en) power conversion device
JP7354953B2 (en) Control device and program for power conversion equipment
WO2017010142A1 (en) Power conversion device
WO2020059815A1 (en) Motor control device, motor system, and inverter control method
JP2011109848A (en) Motor drive control device
JP6471670B2 (en) Power control method and power control apparatus
JP2011015566A (en) Controller of power converter
US20220321037A1 (en) Inverter control method and inverter controller
JPH06351255A (en) Control circuit for pwm control inverter
WO2023037589A1 (en) Inverter control device
EP4254778A1 (en) Operation control system and air conditioner, operation control method, and operation control program
JP6458683B2 (en) Power control method and power control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823744

Country of ref document: EP

Kind code of ref document: A1