WO2023243019A1 - 光半導体集積回路 - Google Patents

光半導体集積回路 Download PDF

Info

Publication number
WO2023243019A1
WO2023243019A1 PCT/JP2022/024035 JP2022024035W WO2023243019A1 WO 2023243019 A1 WO2023243019 A1 WO 2023243019A1 JP 2022024035 W JP2022024035 W JP 2022024035W WO 2023243019 A1 WO2023243019 A1 WO 2023243019A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
input
semiconductor integrated
integrated circuit
output terminals
Prior art date
Application number
PCT/JP2022/024035
Other languages
English (en)
French (fr)
Inventor
雅之 高橋
雄一郎 伊熊
陽介 雛倉
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/024035 priority Critical patent/WO2023243019A1/ja
Publication of WO2023243019A1 publication Critical patent/WO2023243019A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Definitions

  • the present invention relates to an optical semiconductor integrated circuit, and more specifically to a terminal arrangement that enables optical and electrical inspection.
  • optical communication modules and devices In recent years, the scope of application of optical communication modules and devices is not limited to long-distance communication, but is also used for links between data centers, between mobile phone base stations, between edge routers, etc., and the demand for them is increasing. Automatic wafer-level inspection is also required for optical semiconductor integrated circuit chips including optical circuits used in optical communication modules in order to eliminate defective chips before the module assembly process and increase yield.
  • Non-patent Document 1 Non-Patent Document 1, Non-Patent Document 1).
  • Patent Document 2 Non-patent Document 1, Non-Patent Document 1, Non-Patent Document 2).
  • optical input/output terminals such as grating couplers are placed on the chip and used as optical input/output probes.
  • Optical semiconductor integrated circuits require inspection using an optical input/output probe and an electrical probe simultaneously.
  • Inspection methods compatible with optical probes do not have chip terminal layouts that correspond to electrical probe cards, so only DC probes and RF probes can be used, and the number of electrical terminals is limited to about 10-20. (Non-patent Document 3).
  • One aspect of the present invention is an optical semiconductor integrated circuit in which an optical circuit and an electric circuit are mixed, the circuit including a plurality of electrical input/output terminals arranged around at least one chip area, and a plurality of electrical input/output terminals arranged around at least one of the chip areas.
  • This is an optical semiconductor integrated circuit having one or more optical input/output terminals arranged in one periphery where the optical input/output terminals are not arranged.
  • the present invention realizes efficient wafer-level inspection of optical semiconductor integrated circuits.
  • the optical semiconductor integrated circuit of the present disclosure realizes efficient wafer level inspection by including electrical input/output terminals arranged around the chip and optical input/output terminals in the periphery where no electrical input/output terminals are arranged.
  • FIG. 1 is a diagram illustrating the terminal arrangement for automatic testing in a semiconductor integrated circuit.
  • the semiconductor integrated circuit chip 100 has a plurality of electrical input/output terminals 101 arranged at the periphery of the chip area in order to support automatic testing. These terminals 101 are also called pads, and a corresponding cantilever, which will be described later, is in contact with each pad.
  • the cantilever enters from outside the chip area in four directions 10a to 10d corresponding to the four sides of the chip area and comes into contact with the electrical input/output terminals.
  • FIG. 2 is a diagram showing how a semiconductor integrated circuit is measured with a probe card.
  • a probe card is an instrument used for electrical testing of LSI chips, and is an interface that electrically connects an LSI tester, which is a measuring device, and an electrical input/output terminal, that is, a pad 101, located within the chip area of a wafer.
  • FIG. 2 shows the top surface of the probe card 1 testing the chip area 10 of a semiconductor integrated circuit on the left, and the cross section of the probe card 1 near the chip area under testing on the right.
  • FIG. 2 only a single semiconductor integrated circuit on a wafer is extracted and drawn as a chip region 10. Note that the probe card performs wafer level testing, so it is tested before it is cut into chips.
  • the probe card 1 has a large number of probes (probes), and presses the probes onto pads to realize electrical contact.
  • Cantilever type probes as shown in Figure 2, are widely used as probes, and by pressing multiple cantilevers 2 against pads with a predetermined pressure, stable electrical connections can be made with the electrical circuits inside the chip. It will be done.
  • the entire wafer is moved by a transport unit (not shown) that holds the wafer, and different chip areas are sequentially inspected.
  • As the optical input/output terminal it is necessary to use a tipped fiber, a lensed fiber, a single mode fiber, a polarization maintaining fiber, or a fiber array of a combination thereof as an optical input/output probe.
  • FIG. 3 is a diagram showing a terminal arrangement configuration of an optical semiconductor integrated circuit according to Embodiment 1 of the present disclosure.
  • the optical semiconductor integrated circuit chip 200 is an integrated circuit that includes both optical circuit elements and electric circuit elements, and is manufactured on a Si substrate wafer, for example.
  • the optical semiconductor integrated circuit chip 200 shown in FIG. 3 shows the top surface of a single chip area, and during wafer level inspection, is one area on a wafer before being cut into individual chips. There are no limitations to the functions realized by the optical semiconductor integrated circuit chip 200, and all of the following drawings show terminals necessary for wafer-level inspection.
  • the optical semiconductor integrated circuit chip 200 includes a plurality of electrical input/output terminals 201 around at least one of the chip areas.
  • the electrical input/output terminals may be arranged in a U-shape around the three sides as shown in FIG.
  • the optical semiconductor integrated circuit chip 200 further includes an optical input/output terminal 202 on one side where no electrical input/output terminal is arranged.
  • the optical input/output terminal 202 may be a grating coupler formed on the substrate.
  • the grating coupler is connected from a portion where a rectangular grating is formed to a waveguide having a width of approximately 350 to 600 nm through a tapered waveguide expansion region.
  • This waveguide is connected to optical circuit elements such as an optical modulator and a photodiode within the chip, and allows light to be input and output in the grating using an external optical input/output probe.
  • optical circuit elements such as an optical modulator and a photodiode within the chip
  • the cantilever was inserted from four directions: top, bottom, left, and right.
  • the cantilever can enter the electrical input/output terminals arranged in a U-shape from three directions 10a to 10c.
  • an optical input/output probe is inserted in the direction 20 toward one periphery of the optical semiconductor integrated circuit 200 from outside the chip area and optically coupled to the optical input/output terminal 202 to perform optical inspection.
  • the optical semiconductor integrated circuit of the present disclosure is an optical semiconductor integrated circuit 200 in which an optical circuit and an electric circuit are mixed, and includes a plurality of electrical input/output terminals 201 arranged around at least one of the chip areas, and a plurality of electrical input/output terminals 201 disposed around at least one of the chip areas. It can be implemented as having one or more optical input/output terminals 202 arranged around one periphery where no electrical input/output terminals are arranged.
  • FIG. 4 is a diagram showing the configuration of a probe card suitable for an optical semiconductor integrated circuit.
  • the optical probe 3 can penetrate into the chip area through the cut area. Inspection using the optical input/output probe 3 is made possible by adjusting the probe card into a U-shape that can accommodate the three sides of the optical semiconductor integrated circuit.
  • the number of electrical terminals can be increased to 100 by providing electrical input/output terminals arranged on a maximum of three sides and an optical input/output terminal 202 on one side where no electrical input/output terminals are arranged. It becomes possible to automatically inspect wafer-level optical semiconductor integrated circuits on a much larger scale. For example, it is suitable for an optical semiconductor integrated circuit equipped with a large number of optical transmitting/receiving circuits that are incorporated into an optical communication module.
  • FIG. 5 is a diagram showing a terminal arrangement configuration of an optical semiconductor integrated circuit according to Embodiment 2 of the present disclosure.
  • the optical semiconductor integrated circuit 300 of the second embodiment includes a plurality of Mach-Zehnder interferometer (MZI) type modulators as optical circuits.
  • FIG. 5 schematically shows an example including four MZI modulators 303.
  • the MZI modulator includes a modulation electrode formed between a high frequency electrical signal input terminal 304 and a high frequency electrical signal output terminal 305.
  • the optical semiconductor integrated circuit 300 includes a plurality of electrical input/output terminals on at least one periphery, and in the example of FIG. 5, a plurality of electrical input/output terminals 301 on three sides.
  • a high frequency electrical signal input terminal 304 of the MZI modulator is arranged around one.
  • An optical input/output terminal 302 is further provided in one periphery where no electrical input/output terminal is arranged.
  • the optical input/output terminal 302 may be a grating coupler formed on the substrate.
  • the high-frequency signal input terminal 304 of the electrode of the MZI modulator By placing the high-frequency signal input terminal 304 of the electrode of the MZI modulator near the periphery of the chip, it is possible to shorten the physical distance from the drive circuit of the MZI modulator when the chip is mounted on a module board or the like. can. By shortening the connection distance, high frequency loss due to the connection between the drive circuit and the MZI modulator can be reduced, and the high frequency performance of the modulator can be improved.
  • cantilevers can be inserted into the electrical input/output terminals arranged in a U-shape from three directions 10a to 10c.
  • An optical input/output probe is inserted in the direction 20 from outside the chip area toward one periphery of the optical semiconductor integrated circuit 300 and optically coupled to the optical input/output terminal 302 to perform optical inspection.
  • the optical input/output terminal 302 is provided in one periphery where no electrical input/output terminal is arranged, wafer level automation of the optical semiconductor integrated circuit equipped with the MZI type modulator is possible. Tests can be carried out.
  • the electrical input/output terminals 301 and 304 do not need to be located on all three sides of the chip periphery. Electrical input/output terminals may be present inside the chip.
  • electrical input/output terminals include terminals necessary for inspection and mounting terminals necessary for assembly when actually modularizing, and terminals used only for mounting may be placed at any position.
  • the terminal on the high frequency signal output side of the MZI modulator is a mounted terminal that does not require probing during inspection, so it may be placed near the optical input/output terminal 302 such as a grating coupler.
  • FIG. 6 is a diagram showing a terminal arrangement configuration of an optical semiconductor integrated circuit according to Embodiment 3 of the present disclosure.
  • An optical semiconductor integrated circuit 400 according to the third embodiment includes a plurality of photodiodes as optical circuits.
  • FIG. 6 schematically shows an example including four photodiodes 403.
  • Photodiode 403 includes a photodiode element 405 and a high frequency electrical signal output terminal 404 from which a detection signal is extracted.
  • the physical distance from the photodiode to the amplification circuit for the electrical signal output from the photodiode can be shortened when the chip is mounted on a module or the like. Can be done.
  • high frequency loss due to the connection between the amplifier circuit and the photodiode can be reduced, and high frequency performance can be improved.
  • cantilevers can be inserted into the electrical input/output terminals arranged in a U-shape from three directions 10a to 10c.
  • An optical input/output probe is inserted in the direction 20 from outside the chip area toward one periphery of the optical semiconductor integrated circuit 400 and optically coupled to the optical input/output terminal 402 to perform optical inspection.
  • the optical semiconductor integrated circuit including a plurality of photodiodes is It becomes possible to perform automatic wafer level inspection.
  • FIG. 7 is a diagram showing a terminal arrangement configuration of an optical semiconductor integrated circuit according to Embodiment 4 of the present disclosure.
  • the optical semiconductor integrated circuit 500 of the fourth embodiment shows a configuration example in which the electrical input/output terminal and the optical input/output terminal are close to each other.
  • the optical semiconductor integrated circuit 500 includes a plurality of electrical input/output terminals on at least one periphery, and in the example of FIG. 7, it includes a plurality of electrical input/output terminals 501 on three sides. Furthermore, an electric input/output terminal 504a arranged parallel to the electric input/output terminal on the upper side and an electric input/output terminal 504 arranged parallel to the electric input/output terminal on the lower side are provided inside the chip area. By leaving a certain distance between the two rows of electrical input/output terminals, the cantilever can enter the two rows simultaneously or separately from the directions 10a and 10c.
  • the optical semiconductor integrated circuit 500 further includes an optical input/output terminal 502 on one side where no electrical input/output terminal is arranged.
  • the optical input/output terminal 502 may be a grating coupler formed on the substrate.
  • an optical input/output probe can be inserted in the direction 20 from outside the chip area and optically coupled to the optical input/output terminal 502 to perform optical inspection.
  • the distance between the optical input/output terminal 502 and the adjacent electrical input/output terminals 503a and 504a becomes an issue.
  • FIG. 8 is a diagram illustrating optical measurement using an array type optical input/output probe.
  • FIG. 8(a) shows the structure of an array type optical input/output probe 510.
  • the optical input/output probe 510 includes a base member 513 in which a plurality of grooves are formed at intervals of the fiber array, and a lid member 512 that sandwiches and fixes the fiber array 511.
  • the lid member 512 needs to have a thickness of at least about 200 ⁇ m.
  • FIG. 8(b) shows how an optical measurement is performed using an array type optical input/output probe 510.
  • a cross section perpendicular to the wafer substrate including the optical input/output terminal 502 in FIG. 7 and an electrical input/output terminal 504a for inspection adjacent thereto is shown.
  • the optical input/output terminal 502 a grating coupler manufactured by silicon photonics technology using a silicon substrate will be considered.
  • the beam output from such a grating coupler 502 has a wavelength of 1550 ⁇ m in the communication wavelength band, and when the surface height from the wafer is 150 ⁇ m, it has a spread of about 100 ⁇ m in the horizontal direction as shown in FIG. 8(b).
  • the cantilever can be inserted without interference. Can be done.
  • a spatial margin of about 50 ⁇ m is required in the direction in which the electrical input/output terminal 504a exists. It's for a reason.
  • the cantilever type probe and the optical output probe can be connected. Automatic wafer level inspection of optical semiconductor integrated circuits can be performed without interference.
  • the electrical input/output terminals do not need to be located on all three sides of the chip periphery. Electrical input/output terminals may be present inside the chip.
  • the electrical input/output terminals include terminals necessary for inspection and mounting terminals necessary when actually modularizing, and terminals used only during mounting may be placed at arbitrary positions.
  • the present invention can be used for optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本開示の光半導体集積回路は、チップ周辺部に配置された電気入出力端子と、電気入出力端子が配置されない周辺の光入出力端子を備えることで、効率的なウェハレベル検査を実現する。光半導体集積回路チップは、チップ領域の少なくとも1つの周辺部に複数の電気入出力端子を備える。電気入出力端子は、3辺の周辺部にコの字型に配置されていても良い。光半導体集積回路チップは、電気入出力端子が配置されていない1辺に、さらに光入出力端子を備える。光入出力端子は、基板上に形成されたグレーティングカプラであり得る。

Description

光半導体集積回路
 本発明は、光半導体集積回路に関し、より具体的には光学的および電気的検査を可能とする端子配置に関する。
 近年、光通信モジュール、デバイスの適用範囲は長距離通信に限らず、データセンタ間、携帯電話の基地局間、エッジルータ間のリンク等にも用いられ、その需要は高まっている。光通信モジュールに用いられる光回路を含む光半導体集積回路チップにおいても、不良チップをモジュール組み立て工程前に排除して、歩留まりを上げるため、ウェハレベルの自動検査が求められている。
 光回路を含まない半導体集積回路では、低コストなカンチレバー型プローブカードを用いて、広くウェハレベル自動検査が行なわれている。端子数が数10から数100以上備えるような半導体集積回路チップのウェハレベル自動検査においては、低コストに作製が可能なカンチレバー型プローブカードを用いることが一般的である(非特許文献1、非特許文献2)。
H. Iwai, A. Nakayama, N. Itoga and K. Omata, "Cantilever type probe card for at-speed memory test on wafer," 23rd IEEE VLSI Test Symposium (VTS'05), 2005, pp. 85-89, doi: 10.1109/VTS.2005.34. 株式会社精研, プローブカード(垂直型・カンチレバー型)の特長・比較, [online], [令和4年6月1日検索],インターネット<URL:https://www.seiken.co.jp/semiconductor/probecard.html> C. B. Sia et al., "Test Setup Optimization and Automation for Accurate Silicon Photonics Wafer Acceptance Production Tests," 2020 IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS), 2020, pp. 1-4, doi: 10.1109/ICMTS48187.2020.9107907.
 光通信デバイスに含まれる光半導体集積回路のウェハレベル自動検査では、電気的な検査に加えて、光学的な検査を行う必要がある。光学的な検査のため、グレーティングカプラなどの光学的な入出力端子をチップ上に配置して、光入出力プローブとして用いている。光半導体集積回路では、光入出力プローブおよび電気プローブを同時に用いた検査が必要である。一般的なカンチレバー型プローブカードの場合、構造上、光入出力プローブを光半導体集積回路ウェハにコンタクトさせる領域を設けることができず、ウェハレベルの自動検査を行うことができない。光プローブに対応した検査方法も、電気プローブカードには対応するチップ端子のレイアウトとなっておらず、DCプローブやRFプローブのみしか用いることができず、電気の端子数も10-20程度に限られている(非特許文献3)。
 本発明の1つの態様は、光回路と電気回路が混在した光半導体集積回路であって、チップ領域の少なくとも1つの周辺に配置された複数の電気入出力端子と、前記複数の電気入出力端子が配置されていない1つの周辺に配置された1つ以上の光入出力端子とを備えた光半導体集積回路である。
 本発明により、光半導体集積回路の効率的なウェハレベル検査を実現する。
半導体集積回路における自動検査用の端子配置を説明する図である。 半導体集積回路をプローブカードで測定する様子を示した図である。 本開示の実施形態1の光半導体集積回路の端子配置構成を示す図である。 光半導体集積回路に適合したプローブカードの構成を示した図である。 本開示の実施形態2の光半導体集積回路の端子配置構成を示す図である。 本開示の実施形態3の光半導体集積回路の端子配置構成を示す図である。 本開示の実施形態4の光半導体集積回路の端子配置構成を示す図である。 アレイタイプの光入出力プローブによる光学測定を説明する図である。
 本開示の光半導体集積回路は、チップ周辺部に配置された電気入出力端子と、電気入出力端子が配置されない周辺の光入出力端子を備えることで、効率的なウェハレベル検査を実現する。光半導体集積回路おける、効率的なウェハレベルの自動検査を可能とする端子配置を提案する。以下の説明では、まず半導体集積回路における自動検査用の電気端子の配置構成を説明し、その後、本開示の光半導体集積回路における電気入出力端子および光入出力端子の配置構成を説明する。
 図1は、半導体集積回路における自動検査用の端子配置を説明する図である。半導体集積回路チップ100は、自動検査に対応するために、チップ領域の周辺部に複数の電気入出力端子101が配置されている。これらの端子101はパッドとも呼ばれ、各パッド上に、後述する対応するカンチレバーが接触する。カンチレバーは、チップ領域の外からチップ領域の4辺に対応する4方向10a~10dに侵入し、電気入出力端子と接触する。
 図2は、半導体集積回路をプローブカードで測定する様子を示した図である。プローブカードは、LSIチップの電気検査に用いられる器具であって、測定機であるLSIテスタと、ウェハのチップ領域内にある電気入出力端子、すなわちパッド101との間を電気的に接続するインタフェースとして機能する。図2は、左側に半導体集積回路のチップ領域10を検査しているプローブカード1の上面を示し、右側に検査中のプローブカード1のチップ領域近傍の断面を示している。図2においては、ウェハ上の単一の半導体集積回路のみを、チップ領域10として抜き出して描いている。プローブカードは、ウェハレベルでの検査を実施するので、チップに切出される前で検査されることに留意されたい。
 プローブカード1は多数のプローブ(探針)を有しており、プローブをパッド上に押し当てて、電気的な接触を実現する。プローブとしては、図2に示したようにカンチレバー型のものが広く利用されており、複数のカンチレバー2を所定の圧力でパッドに押し当てることで、チップ内の電気回路と安定した電気接続が得られる。ウェハを保持している図示しない搬送部によってウェハ全体を移動させて、順次、異なるチップ領域を検査する。
 図1に示したような端子配置の半導体集積回路のチップ領域10を、図2のカンチレバー型プローブカード1で検査する構成は、光半導体集積回路の光入出力端子による測定を同時に実施できるものとはなっていない。光入出力端子としては、先球ファイバ、レンズドファイバ、シングルモードファイバ、偏波保持ファイバ、またはこれらを組み合わせたファイバアレイを光入出力プローブとして用いる必要がある。
 本開示の光半導体集積回路は、広く利用されているプローブカードによる電気的測定と、光入出力端子と光入出力プローブによる光学的測定を同時に実施できる端子構成を提供する。
[実施形態1]
 図3は、本開示の実施形態1の光半導体集積回路の端子配置構成を示す図である。光半導体集積回路チップ200は、光回路要素と電気回路要素の両方を含む集積回路であって、一例を挙げればSi基板のウェハ上に作製される。図3に示した光半導体集積回路チップ200は、単一のチップ領域の上面を示しており、ウェハレベルの検査時には、個別のチップに切出される前のウェハ上の1つの領域である。光半導体集積回路チップ200で実現される機能には何ら限定が無く、以下の全ての図面では、ウェハレベルの検査に必要な端子を示す。
 光半導体集積回路チップ200は、チップ領域の少なくとも1つの周辺に複数の電気入出力端子201を備える。電気入出力端子は、図3のように3辺の周辺部にコの字型に配置されていても良い。光半導体集積回路チップ200は、電気入出力端子が配置されていない1辺に、さらに光入出力端子202を備える。光入出力端子202は、基板上に形成されたグレーティングカプラであり得る。グレーティングカプラは、矩形状のグレーティングが形成された部分から、テーパ状の導波路拡大領域を経て、幅350-600nm程度の導波路へ接続される。この導波路は、チップ内の光変調器やフォトダイオードなどの光回路要素と接続されており、グレーティングにおいて、外部の光入出力プローブによって光を入出力可能となる。図3以降の各図では、グレーティング領域および導波路拡大領域を、模式的に三角形で示している。
 図2に示したプローブカード1では、上下左右の4方向からカンチレバーを侵入させていた。これに対して図3に示したような端子配置にすると、コの字型状に配置された電気入出力端子に対して3方向10a~10cからカンチレバーを侵入させることができる。同時に、チップ領域の外から光半導体集積回路200の1つの周辺へ向かう方向20に光入出力プローブを侵入させ、光入出力端子202と光結合させて、光学的検査を実施できる。
 したがって本開示の光半導体集積回路は、光回路と電気回路が混在した光半導体集積回路200であって、チップ領域の少なくとも1つの周辺に配置された複数の電気入出力端子201と、前記複数の電気入出力端子が配置されていない1つの周辺に配置された1つ以上の光入出力端子202とを備えたものとして実施できる。
 図4は、光半導体集積回路に適合したプローブカードの構成を示した図である。図2に示した半導体集積回路のためのプローブカード1の一辺を切り取った形状とすることで、切り取られた領域を通して、光プローブ3をチップ領域へ侵入させることができる。光半導体集積回路の3辺に対応可能なコの字型形状にプローブカードを調整することで、光入出力プローブ3による検査を可能とする。図3に示したように、最大で3辺に配置された電気入出力端子と、電気入出力端子が配置されていない1辺に光入出力端子202を備えることで、電気端子数が100を越えるような大規模な光半導体集積回路のウェハレベル自動検査が可能となる。例えば、光通信モジュールに組み込まれるような多数の光送受信回路を備えた光半導体集積回路に好適である。
 図3では、3つの周辺に電気入出力端子が配置され、残りの1つの周辺に光入出力プローブ202を備えている例を示した。光入出力プローブの位置はこれに限られず、方向10a、10bに対応する2つの周辺に電気入出力端子が配置されていれば、方向10cに対応する辺に光入出力端子を備えることもできる。この場合、図3の方向10cに光入出力プローブを侵入させることになる。さらに別の例として、方向10bに対応する1つの周辺のみに電気入出力端子が配置されていれば、方向10aに対応する辺に光入出力端子を備えることもできる。この場合は、方向10aに光入出力プローブを侵入させることになる。
 したがって電気入出力端子201は、図3のようにチップ周辺部の3辺すべてに有る必要はない。また電気入出力端子は、図3に示したようなチップ周辺部だけでなく、チップ領域の内側に存在しても良い。電気入出力端子には、検査時に必要な端子と、装置基板などに搭載してモジュール化する際に必要な実装端子があり、実装時にのみ使用する端子は任意の位置に配置されていて良い。
[実施形態2]
 図5は、本開示の実施形態2の光半導体集積回路の端子配置構成を示す図である。実施形態2の光半導体集積回路300は、光回路として複数のマッハツェンダ干渉計(MZI:Mach-Zehnder interferometer)型変調器を含む場合を示す。図5では模式的に4つのMZI型変調器303を含む例を示している。MZI型変調器は、高周波電気信号入力端子304と高周波電気信号出力端子305の間に形成された変調電極を含む。
 光半導体集積回路300は、少なくとも1つの周辺に複数の電気入出力端子を備え、図5の例では、3辺に複数の電気入出力端子301を備える。電気入出力端子の内で、1つの周辺にはMZI型変調器の高周波電気信号入力端子304が配置されている。電気入出力端子が配置されていない1つの周辺に、さらに光入出力端子302を備える。光入出力端子302は、基板上に形成されたグレーティングカプラであり得る。
 MZI型変調器の電極の高周波信号入力端子304をチップ周辺部に配置することで、チップをモジュール基板などに実装した際に、MZI型変調器の駆動回路との物理的距離を短くすることができる。接続距離の短縮化によって、駆動回路とMZI型変調器の間の接続による高周波的損失を小さくし、変調器の高周波性能を向上させることができる。
 光半導体集積回路300では、コの字型状に配置された電気入出力端子に対して、3方向10a~10cからカンチレバーを侵入させることができる。チップ領域の外から光半導体集積回路300の1つの周辺へ向かう方向20に、光入出力プローブを侵入させ、光入出力端子302と光結合して、光学的検査を実施できる。実施形態1の光半導体集積回路と同様に、電気入出力端子が配置されていない1つの周辺に光入出力端子302を備えているため、MZI型変調器を備える光半導体集積回路のウェハレベル自動検査を行うことができる。
 電気入出力端子301、304はチップ周辺部の3辺すべてにある必要はない。電気入出力端子はチップの内側に存在しても良い。光半導体集積回路においては、電気入出力端子には検査に必要な端子と、実際にモジュール化する際の組立に必要な実装端子があり、実装にのみ使用する端子については任意の位置で良い。MZI型変調器の高周波信号出力側の端子は、検査時にプロービングする必要がない実装端子であるので、グレーティングカプラなどの光入出力端子302の近く配置されていても良い。
[実施形態3]
 図6は、本開示の実施形態3の光半導体集積回路の端子配置構成を示す図である。実施形態3の光半導体集積回路400は、光回路として複数のフォトダイオードを含む場合を示す。図6では模式的に4つのフォトダイオード403を含む例を示している。フォトダイオード403は、フォトダイオード素子405と検出信号を取り出す高周波電気信号出力端子404とを含む。
 光半導体集積回路400は、少なくとも1つの周辺に複数の電気入出力端子を備え、図6の例では、3辺に複数の電気入出力端子401を備える。これらの電気入出力端子の内で、1辺の周辺部にはフォトダイオードの高周波電気信号出力端子404が配置されている。電気入出力端子が配置されていない1辺に、さらに光入出力端子402を備える。光入出力端子402は、基板上に形成されたグレーティングカプラであり得る。
 フォトダイオードの電極の高周波信号出力端子404をチップ周辺部に配置することで、チップをモジュール等に実装した際に、フォトダイオードから出力された電気信号の増幅回路までの物理的距離を短くすることができる。電気配線の短縮化により、増幅回路とフォトダイオードの間の接続による高周波的損失を小さくし、高周波性能を向上させることができる。
 光半導体集積回路400では、コの字型状に配置された電気入出力端子に対して、3方向10a~10cからカンチレバーを侵入させることができる。チップ領域の外から光半導体集積回路400の1つの周辺へ向かう方向20に、光入出力プローブを侵入させ、光入出力端子402と光結合させて、光学的検査を実施できる。実施形態1、実施形態2の光半導体集積回路と同様に、電気入出力端子が配置されていない1辺に光入出力端子402を備えているため、複数のフォトダイオードを備える光半導体集積回路のウェハレベル自動検査を行うことが可能となる。
 電気入出力端子はチップ周辺部の3辺すべてにある必要はない。電気入出力端子はチップの内側に存在しても良い。光半導体集積回路においては、電気的な入出力端子には検査に必要な端子と、実際にモジュール化する際に必要な実装端子があり、実装時にのみ使用する端子については任意の位置に配置されていて良い。
[実施形態4]
 図7は、本開示の実施形態4の光半導体集積回路の端子配置構成を示す図である。実施形態4の光半導体集積回路500は、電気入出力端子および光入出力端子が近接する場合の構成例を示す。
 光半導体集積回路500は、少なくとも1つの周辺に複数の電気入出力端子を備え、図7の例では、3辺に複数の電気入出力端子501を備える。さらに、チップ領域のより内側に、上辺の電気入出力端子に平行に配置された電気入出力端子504aと、下辺の電気入出力端子に平行に配置された電気入出力端子504とを備える。2列の電気入出力端子の間に一定の距離を取ることで、2列を同時にまたは別々に、方向10a、10cからカンチレバーを侵入させることができる。光半導体集積回路500は、電気入出力端子が配置されていない1辺に、さらに光入出力端子502を備える。光入出力端子502は、基板上に形成されたグレーティングカプラであり得る。
 本実施形態の光半導体集積回路500でも、チップ領域の外から方向20に光入出力プローブを侵入させ、光入出力端子502と光結合させて、光学的検査を実施できる。光半導体集積回路500の端子配置では、光入出力端子502と、近接する電気入出力端子503a、504aとの間の距離が問題になる。
 図8は、アレイタイプの光入出力プローブによる光学測定を説明する図である。図8の(a)は、アレイタイプの光入出力プローブ510の構造を示す。光入出力プローブ510は、ファイバアレイの間隔で複数の溝が形成されたベース部材513と、ファイバアレイ511を挟み込んで固定するリッド部材512を備える。リッド部材512は、少なくとも200μm程度の厚みが必要である。
 図8の(b)は、アレイタイプの光入出力プローブ510によって、光学測定を実施する様子を示す。図7における光入出力端子502とこれに近接する検査用の電気入出力端子504aとを含むウェハ基板に垂直な断面を示している。ここで光入出力端子502として、シリコン基板を利用したシリコンフォトニクス技術によって作製されたグレーティングカプラを考える。このようなグレーティングカプラ502から出力されるビームは、通信波長帯の1550μmで、ウェハからの表面高さ150μmの場合、図8の(b)で左右方向に100μm程度の広がりを持つ。すなわち、光入出力プローブ510のコア中心の延長上にある、光入出力の中心点505に対し、近接する電気入出力端子504aが250μm程度離れていれば、干渉することなくカンチレバーを侵入させることができる。光入出力プローブ510の位置を、グレーティングカプラから出力されたビームと最大の光学的結合が得られるように走査する際に、電気入出力端子504aが存在する方向に50μm程度の空間マージンが必要なためである。
 再び図7を参照すれば、光入出力端子502の結合中心位置505から、最も近接する電気入出力端子まで250μm以上離れるように各端子を配置することで、カンチレバー型プローブと光出力プローブとが干渉せず、光半導体集積回路のウェハレベル自動検査を行うことができる。
 本実施形態の光半導体集積回路でも、電気入出力端子はチップ周辺部の3辺すべてにある必要はない。電気入出力端子はチップの内側に存在しても良い。電気的な入出力端子は検査に必要な端子と、実際にモジュール化する際に必要な実装端子があり、実装時にのみ使用する端子については任意の位置に配置されていて良い。
 本発明は、光通信に利用できる。

Claims (6)

  1.  光回路と電気回路が混在した光半導体集積回路であって、
     チップ領域の少なくとも1つの周辺に配置された複数の電気入出力端子と、
     前記複数の電気入出力端子が配置されていない1つの周辺に配置された1つ以上の光入出力端子と
     を備えた光半導体集積回路。
  2.  前記光回路は、マッハツェンダ干渉計型変調器を含み、
     前記マッハツェンダ干渉計型変調器の高周波信号入力端子が配置された側ではない前記チップ領域の周辺に、前記1つ以上の光入出力端子を備えた
     請求項1に記載の光半導体集積回路。
  3.  前記光回路は、フォトダイオードを含み、
     前記フォトダイオードの高周波信号出力端子が配置された側ではない前記チップ領域の周辺に、前記1つ以上の光入出力端子を備えた
     請求項1に記載の光半導体集積回路。
  4.  前記1つ以上の光入出力端子の配置された辺に直交する辺に沿って配置された前記電気入出力端子の内で、最も前記1つ以上の光入出力端子に近接する電気入出力端子と、前記光入出力端子の光入出力点までの距離は、250μm以上である
     請求項1に記載の光半導体集積回路。
  5.  前記光入出力端子は、前記チップ領域の外側に向かって光を入出力できるグレーティングカプラである請求項1乃至4いずれかに記載の光半導体集積回路。
  6.  シリコンフォトニクス技術によって作製された請求項1乃至4いずれかに記載の光半導体集積回路。
     
PCT/JP2022/024035 2022-06-15 2022-06-15 光半導体集積回路 WO2023243019A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024035 WO2023243019A1 (ja) 2022-06-15 2022-06-15 光半導体集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024035 WO2023243019A1 (ja) 2022-06-15 2022-06-15 光半導体集積回路

Publications (1)

Publication Number Publication Date
WO2023243019A1 true WO2023243019A1 (ja) 2023-12-21

Family

ID=89192498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024035 WO2023243019A1 (ja) 2022-06-15 2022-06-15 光半導体集積回路

Country Status (1)

Country Link
WO (1) WO2023243019A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528129A (ja) * 2004-03-08 2007-10-04 シオプティカル インコーポレーテッド ウエハレベルでの光−電子テスト装置および方法
JP2020072345A (ja) * 2018-10-30 2020-05-07 富士通オプティカルコンポーネンツ株式会社 光送受信器、これを用いた光トランシーバモジュール、及び光送受信器の試験方法
WO2020255191A1 (ja) * 2019-06-17 2020-12-24 日本電信電話株式会社 光回路ウェハ
US20210033643A1 (en) * 2018-04-09 2021-02-04 Carl Zeiss Smt Gmbh Electro-optical circuit board for contacting photonic integrated circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528129A (ja) * 2004-03-08 2007-10-04 シオプティカル インコーポレーテッド ウエハレベルでの光−電子テスト装置および方法
US20210033643A1 (en) * 2018-04-09 2021-02-04 Carl Zeiss Smt Gmbh Electro-optical circuit board for contacting photonic integrated circuits
JP2020072345A (ja) * 2018-10-30 2020-05-07 富士通オプティカルコンポーネンツ株式会社 光送受信器、これを用いた光トランシーバモジュール、及び光送受信器の試験方法
WO2020255191A1 (ja) * 2019-06-17 2020-12-24 日本電信電話株式会社 光回路ウェハ

Similar Documents

Publication Publication Date Title
CA2558483C (en) Wafer-level opto-electronic testing apparatus and method
US10274395B2 (en) Semiconductor device and wafer with reference circuit and related methods
CN111123447B (zh) 光收发器、使用其的光收发器模块及光收发器的测试方法
US9453723B1 (en) Method for testing a photonic integrated circuit including a device under test
JP2020516932A (ja) ウエハのプローブおよび検査を可能にするシリコンフォトニクス構造
JPWO2014112077A1 (ja) 光配線チップとその検査方法、および光受信器
CN100570386C (zh) 晶片级光电测试装置及方法
CN112740384B (zh) 检查方法和检查系统
WO2023243019A1 (ja) 光半導体集積回路
JPS6231136A (ja) 光半導体素子の評価装置
Hu et al. Fully automated in-line optical test system: Advanced materials & photonics
US20230384520A1 (en) Managing characterization of optical couplers in an integrated circuit
TWI773248B (zh) 半導體結構及其形成方法
US20230063481A1 (en) Intelligent Wafer-Level Testing of Photonic Devices
US12044725B2 (en) Inspection device and method
JP7222425B2 (ja) 光回路ウェハ
JP7406004B2 (ja) 高周波コンポーネント、とくには検査対象シリコンフォトニクスデバイスを検査するための検査装置
JP7143948B2 (ja) 光検査回路および光検査方法
US6057918A (en) Laser testing probe
WO2024023969A1 (ja) 検査用パターンおよびそれを備えた半導体集積回路
WO2024116388A1 (ja) 光回路の測定回路、光回路の測定方法
Chen et al. Characterization of Silicon Photonics Modulator Integration and High Efficiency Testing Platform
CN116387282A (zh) 测试结构及测试方法
JPH07335702A (ja) プローブカード
JPH0425765A (ja) 光受信回路評価用ウェハプローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946837

Country of ref document: EP

Kind code of ref document: A1