WO2023242930A1 - 送信指向性制御装置及び送信指向性制御方法 - Google Patents

送信指向性制御装置及び送信指向性制御方法 Download PDF

Info

Publication number
WO2023242930A1
WO2023242930A1 PCT/JP2022/023694 JP2022023694W WO2023242930A1 WO 2023242930 A1 WO2023242930 A1 WO 2023242930A1 JP 2022023694 W JP2022023694 W JP 2022023694W WO 2023242930 A1 WO2023242930 A1 WO 2023242930A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
axis
phase
weighting
phase gradient
Prior art date
Application number
PCT/JP2022/023694
Other languages
English (en)
French (fr)
Inventor
穂乃花 伊藤
健 平賀
斗煥 李
宏礼 芝
淳 増野
裕文 笹木
康徳 八木
知哉 景山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/023694 priority Critical patent/WO2023242930A1/ja
Publication of WO2023242930A1 publication Critical patent/WO2023242930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form

Definitions

  • the present invention relates to a transmission directivity control device and a transmission directivity control method.
  • phased array antennas are often used because they do not use mechanical moving parts, have high durability and followability, and are suitable for making antennas smaller and lighter.
  • a phased array antenna uses a variable delay circuit or a variable attenuator circuit connected to multiple antenna elements arranged on a line or a plane, digital signal processing, etc. to generate RF (Radio Frequency) power that is fed to each antenna element. ; radio frequency) beam steering is performed electronically by controlling the phase and amplitude of the signal (hereinafter, controlling the phase and amplitude is referred to as weighting).
  • RF Radio Frequency
  • Phased array antennas that perform weighting using analog circuits are often used in fifth-generation mobile communication systems and millimeter-wave wireless LAN (Local Area Network) systems that use millimeter wave bands.
  • millimeter-wave wireless LAN Local Area Network
  • the phased array antenna requires weighting in order to perform two-dimensional beam steering using a two-dimensional array antenna in which antenna elements are arranged in a planar manner.
  • Non-Patent Document 1 discloses a 256-element phased array antenna used in a 5th generation mobile communication base station in the 28 GHz band. For example, when the radio frequency increases by about 10 times, such as 300 GHz, the free space propagation loss increases by 100 times, and it is thought that tens of thousands of antenna elements will be required.
  • the free space wavelength is 1 mm, so the spacing between antenna elements is generally half the wavelength, that is, 0.5 mm.
  • the phase shifter circuit it is difficult to install the phase shifter circuit near the antenna elements at intervals equivalent to the intervals between the antenna elements.
  • phase shifters in order to configure a circuit that forms a plurality of beams (multi-beam forming circuit), phase shifters as many as the number of beams must be arranged in parallel, which is expected to be even more difficult.
  • Non-Patent Document 2 discloses a method of performing two-dimensional beam steering using a passive circuit.
  • the circuit needs to be assembled three-dimensionally, and implementation in high frequency bands requires waveguides, mass production is difficult, and it is difficult to respond to multi-element implementation.
  • Non-Patent Document 3 proposes a method of converting a signal into light and weighting it using an optical circuit.
  • Patent Document 1 discloses a three-dimensional optical circuit that performs two-dimensional beam steering using a wavelength dispersion line.
  • Non-Patent Document 4 discloses a method using a loop configuration in which a phase shifter is repeatedly reused while converting the optical wavelength.
  • Non-Patent Document 5 discloses a one-dimensional (within one plane) phase shift circuit performed by a planar phase shift circuit and a FBG (fiber bragg gratings) reflection line whose delay time differs depending on the optical wavelength. ), a means is disclosed for implementing two-dimensional beam steering by allowing beam steering in the direction of a plane orthogonal to the plane performed by an FBG reflection line.
  • Patent Document 2 discloses a multi-beam forming means using wavelength multiplexing.
  • An object of the present invention is to provide a transmission directivity control device that can be created more easily.
  • One aspect of the present invention includes: a demultiplexer that demultiplexes an optical signal into a first optical signal and a second optical signal; a first changeover switch that outputs the first optical signal from one of a plurality of terminals; a second selector switch that outputs the second optical signal from one of a plurality of terminals; and a second selector switch that outputs the second optical signal from one of a plurality of terminals; a weighting unit that gives the second optical signal a phase gradient in a second axis that varies depending on the output terminal of the first changeover switch and that is orthogonal to the first axis;
  • the transmission directivity control device includes a photomixing section that photomixes the first optical signal to which a slope has been applied and the second optical signal to which a phase slope has been applied.
  • One aspect of the present invention includes a demultiplexing step of demultiplexing an optical signal into a first optical signal and a second optical signal, and a first switching step of outputting the first optical signal from one of a plurality of terminals. a second switching step of outputting the second optical signal from one of a plurality of terminals; and a second switching step of outputting the second optical signal from one of a plurality of terminals; a weighting step of giving the second optical signal a phase gradient in a second axis that is different depending on the terminal output in the second switching step and perpendicular to the first axis;
  • the present invention is a transmission directivity control method including a photomixing step of photomixing the first optical signal to which a slope has been applied and the second optical signal to which a phase slope has been applied.
  • a transmission directivity control device can be provided more easily.
  • FIG. 1 is a diagram showing a configuration example of a transmission directivity control device 1 according to a first embodiment.
  • FIG. 3 is a diagram showing an example of the configuration of an antenna element 171.
  • FIG. 3 is a diagram showing an example of the configuration of an antenna element 171.
  • FIG. 3 is a flowchart showing the operation of the transmission directivity control device 1 according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a transmission directivity control device 1 according to a second embodiment.
  • 12 is a flowchart showing the operation of the transmission directivity control device 1 according to the second embodiment.
  • 5 is a diagram showing an example of the relationship between the wavelength of an optical signal input to a demultiplexer 13 and an antenna element 171 with which the optical signal is multiplexed.
  • FIG. 3 is a diagram showing an example of the configuration of an antenna element 171.
  • FIG. 3 is a diagram showing an example of the configuration of an antenna element 171.
  • FIG. 3 is a flowchart
  • FIG. 1 is a diagram showing a configuration example of a transmission directivity control device 1 according to the first embodiment.
  • the transmission directivity control device 1 includes a light source 11, an optical modulator 12, a branching filter 13, a first changeover switch 14, a second changeover switch 15, a weighting section 16, a photomixing section 17, and a control section 18.
  • Light source 11 outputs light to optical modulator 12 .
  • the optical modulator 12 generates an optical signal by modulating input light.
  • the demultiplexer 13 demultiplexes the optical signal input from the optical modulator 12.
  • the demultiplexer 13 demultiplexes the optical signal into a carrier wave and a sideband wave.
  • the carrier wave LH is expressed by equation (1)
  • the sideband wave LS is expressed by equation (2) or equation (3).
  • Equation (2) represents the upper sideband wave
  • Equation (3) represents the lower sideband wave
  • the branching filter 13 branches the carrier wave and the sideband wave and outputs them to the first changeover switch 14 and the second changeover switch 15, respectively.
  • the duplexer 13 is, for example, an AWG (Arrayed Waveguide Grating).
  • the branching filter 13 includes a distributor 131 and an SSB (single side-band) modulator 132, and may generate a carrier wave LH and a sideband wave LS .
  • the splitter 131 splits the input optical signal into two optical signals.
  • the SSB modulator 132 suppresses the carrier wave component of one of the two optical signals and converts it into a sideband. This allows the distributor 131 and the SSB modulator 132 to generate carrier waves and sideband waves.
  • the branching filter 13 may include a splitter 131 and two optical comb filters 133 having periodic pass characteristics to generate a carrier wave LH and a sideband wave LS .
  • the splitter 131 splits the input optical signal into two optical signals.
  • One optical comb filter 133 passes only light of a plurality of wavelengths with different carrier waves from one optical signal, and another optical comb filter 133 passes light of a plurality of wavelengths with different carrier waves from another optical signal. only pass through.
  • the demultiplexer 13 includes a divider 131 and an SSB modulator 132, or when it includes a divider 131 and an optical comb filter 133, optical signals of two or more different wavelengths can be demultiplexed into a carrier wave and a sideband wave. Can be done.
  • the first changeover switch 14 has three output terminals.
  • the first selector switch 14 outputs the carrier wave to the weighting section 16 from one of the output terminals.
  • the second changeover switch 15 has three output terminals.
  • the second changeover switch 15 outputs the sideband wave to the weighting section 16 from one of the output terminals.
  • the first changeover switch 14 and the second changeover switch 15 have a duplexer, and determine the output terminal for outputting the carrier wave or sideband wave depending on the wavelength of the input carrier wave or sideband wave.
  • the wavelength of the carrier wave or sideband wave input to the first changeover switch 14 and the second changeover switch 15 is changed, for example, by the control unit 18 controlling the light source 11.
  • control unit 18 may control the first changeover switch 14 and the second changeover switch 15 to switch the output terminal that outputs the carrier wave or the sideband wave.
  • the first changeover switch 14 and the second changeover switch 15 are realized by, for example, optical switches.
  • the weighting unit 16 has six input terminals and six output terminals. For example, a carrier wave is input to the first input terminal of the weighting section 16 from the first output terminal of the first changeover switch 14 . A carrier wave is input to the second input terminal of the weighting section 16 from the second output terminal of the first changeover switch 14 . A carrier wave is input to the third input terminal of the weighting section 16 from the third output terminal of the first changeover switch 14 . A sideband wave is input to the fourth input terminal of the weighting section 16 from the first output terminal of the second changeover switch 15 . A sideband wave is inputted from the second output terminal of the second changeover switch 15 to the fifth input terminal of the weighting section 16 . A sideband wave is inputted from the third output terminal of the second changeover switch 15 to the sixth input terminal of the weighting section 16 .
  • the weighting unit 16 applies a phase slope ⁇ H1 to the carrier wave input to the first input terminal, and outputs the carrier wave from the first output terminal, the second output terminal, and the third output terminal.
  • the weighting unit 16 applies a phase slope ⁇ H2 to the carrier wave input to the second input terminal, and outputs the carrier wave from the first output terminal, the second output terminal, and the third output terminal.
  • the weighting unit 16 applies a phase gradient ⁇ H3 to the carrier wave input to the third input terminal, and outputs the carrier wave from the first output terminal, the second output terminal, and the third output terminal.
  • the weighting unit 16 when an optical signal is input to the first input terminal, the weighting unit 16 outputs the optical signal to which no phase is added from the first output terminal, and outputs the optical signal to which the phase ⁇ H1 is added to the second output terminal.
  • An optical signal with a phase of 2 ⁇ H1 is output from the third output terminal.
  • the weighting unit 16 when an optical signal is input to the second input terminal, the weighting unit 16 outputs the optical signal to which no phase is added from the first output terminal, and outputs the optical signal to which the phase ⁇ H2 is added to the second output terminal.
  • An optical signal with a phase of 2 ⁇ H2 is output from the third output terminal.
  • the weighting unit 16 when an optical signal is input to the third input terminal, the weighting unit 16 outputs the optical signal to which no phase is added from the first output terminal, and outputs the optical signal to which the phase ⁇ H3 is added to the second output terminal.
  • An optical signal with a phase of 2 ⁇ H3 is output from the third output terminal.
  • the optical signal input to the first input terminal is given a phase gradient of 0, ⁇ H1 , 2 ⁇ H1
  • the optical signal input to the second input terminal is given a phase gradient of 0, ⁇ H2 , 2 ⁇ H2 . is given, and phase gradients of 0, ⁇ H3 and 2 ⁇ H3 are given to the optical signal input to the third input terminal.
  • the phase tilt is 0 degrees, 45 degrees, 90 degrees, 0 degrees, 90 degrees, 180 degrees, etc.
  • the weighting unit 16 does not need to output an optical signal to which no phase is imparted, and for example, the phase gradients to be imparted may be ⁇ , 2 ⁇ , or 3 ⁇ .
  • the carrier wave LH outputted from the weighting unit 16 and to which a phase gradient is applied is expressed by equation (4).
  • the weighting unit 16 applies a phase slope ⁇ v1 to the carrier wave input to the fourth input terminal, and outputs the carrier wave from the fourth output terminal, the fifth output terminal, and the sixth output terminal.
  • the weighting unit 16 applies a phase slope ⁇ v2 to the carrier wave input to the fifth input terminal, and outputs the carrier wave from the fourth output terminal, the fifth output terminal, and the sixth output terminal.
  • the weighting unit 16 applies a phase slope ⁇ v3 to the carrier wave input to the sixth input terminal, and outputs the carrier wave from the fourth output terminal, the fifth output terminal, and the sixth output terminal.
  • the weighting unit 16 when an optical signal is input to the fourth input terminal, the weighting unit 16 outputs the optical signal to which no phase is added from the fourth output terminal, and outputs the optical signal to which the phase ⁇ V1 is added to the fifth output terminal.
  • An optical signal with a phase of 2 ⁇ V1 is output from the sixth output terminal.
  • the weighting unit 16 when an optical signal is input to the fifth input terminal, the weighting unit 16 outputs the optical signal to which no phase is added from the fourth output terminal, and outputs the optical signal to which the phase ⁇ V2 is added to the fifth output terminal.
  • An optical signal with a phase of 2 ⁇ V2 is output from the sixth output terminal.
  • the weighting unit 16 when an optical signal is input to the sixth input terminal, the weighting unit 16 outputs the optical signal to which no phase is added from the fourth output terminal, and outputs the optical signal to which the phase ⁇ V3 is added to the fifth output terminal.
  • An optical signal with a phase of 2 ⁇ V3 is output from the sixth output terminal.
  • the optical signal input to the fourth input terminal is given a phase gradient of 0, ⁇ V1 , 2 ⁇ V1
  • the optical signal input to the fifth input terminal is given a phase gradient of 0, ⁇ V2 , 2 ⁇ V2 .
  • phase gradients of 0, ⁇ V3 and 2 ⁇ V3 are given to the optical signal input to the sixth input terminal. More specifically, the phase tilt is 0 degrees, 45 degrees, 90 degrees, 0 degrees, 90 degrees, 180 degrees, etc.
  • the photomixing section 17 includes a plurality of antenna elements 171.
  • the plurality of antenna elements form a two-dimensional array antenna with three rows and three columns.
  • An optical signal having a phase gradient ⁇ Hi on the first axis and a phase gradient ⁇ vj on the second axis is input to the antenna element 171 installed in the i-th row and j-th column. That is, the first output terminal of the weighting unit 16 outputs the carrier wave to which the phase gradient ⁇ H1 is applied to the antenna element 171 in the first row.
  • the second output terminal of the weighting unit 16 outputs the carrier wave to which the phase slope ⁇ H2 is applied to the second row of antenna elements 171.
  • the third output terminal of the weighting unit 16 outputs the carrier wave to which the phase gradient ⁇ H3 is applied to the antenna element 171 in the third row.
  • the fourth output terminal of the weighting unit 16 outputs a sideband wave to which a phase slope ⁇ V1 is applied to the first row of antenna elements 171.
  • the fifth output terminal of the weighting unit 16 outputs a sideband wave to which a phase slope ⁇ V2 is applied to the second row of antenna elements 171.
  • the sixth output terminal of the weighting unit 16 outputs a sideband wave to which a phase slope ⁇ V3 is applied to the antenna element 171 in the third row.
  • the photomixing section 17 generates an electromagnetic wave having a frequency that is the difference between the carrier wave and the sideband wave.
  • FIG. 2 is a diagram showing an example of the configuration of the antenna element 171.
  • the antenna element 171 includes a multiplexer 1711, a square law detection section 1712, and an antenna 1713.
  • the multiplexer 1711 multiplexes the carrier wave and sideband wave input from the weighting section 16.
  • the combined optical signal is represented by L H +L S.
  • the multiplexer 1711 is, for example, an AWG.
  • the square law detection section 1712 converts the multiplexed optical signal into an RF signal.
  • the square law detection section 1712 is, for example, a photodiode.
  • Antenna 1713 outputs only components in a predetermined RF frequency band that depends on the output frequency characteristics of square law detection section 1712.
  • the output v RF_ij from the antenna 1713 is obtained by extracting the RF band from (L H +L S ) 2 , and is proportional to equation (6).
  • phase slope of the output of the antenna element 171 in the i-th row and j-th column is ⁇ vj - ⁇ Hi .
  • FIG. 3 is a diagram showing an example of the configuration of the antenna element 171.
  • a mirror 1714 may be used instead of the multiplexer 1711 to multiplex the optical signal to which the phase has been imparted by the weighting section 16 and the optical signal to which the phase has been imparted by the weighting section 16.
  • FIG. 4 is a flowchart showing the operation of the transmission directivity control device 1 according to the first embodiment.
  • the optical modulator 12 modulates the light output from the light source 11 to generate an optical signal (step S10).
  • the demultiplexer 13 demultiplexes the optical signal input from the optical modulator 12 into a carrier wave and a sideband wave (step S11).
  • the first changeover switch 14 outputs the carrier wave to the weighting section 16 from one of the plurality of terminals (step S12-1).
  • the second selector switch 15 outputs the sideband wave to the weighting section 16 from one of the plurality of terminals (step S12-2).
  • the weighting unit 16 gives the carrier wave a phase gradient in the first axis (step S13-1).
  • the weighting unit 16 gives a phase gradient in the second axis to the sideband wave (step S13-2).
  • the photomixing unit 17 photomixes the carrier wave and the sideband wave in each antenna element 171 (step S14).
  • the photomixed optical signal is output from antenna 1713 as an RF signal.
  • FIG. 5 is a diagram showing the configuration of the weighting section 16 according to the first embodiment.
  • the weighting unit 16 according to the first embodiment includes a first axis weighting circuit 161 and a second axis weighting circuit 162.
  • the first axis weighting circuit 161 imparts a phase slope ⁇ Hi to the carrier wave input from the first selector switch 14 and outputs the carrier wave to the photomixing section 17 .
  • the first axis weighting circuit 161 applies a phase slope ⁇ H1 to the carrier wave input to the first input terminal of the weighting unit 16, and outputs the carrier wave from the first output terminal, the second output terminal, and the third output terminal.
  • the first axis weighting circuit 161 applies a phase slope ⁇ H2 to the carrier wave input to the second input terminal of the weighting unit 16, and outputs the carrier wave from the first output terminal, the second output terminal, and the third output terminal.
  • the first axis weighting circuit 161 applies a phase slope ⁇ H3 to the carrier wave input to the third input terminal of the weighting unit 16, and outputs the carrier wave from the first output terminal, the second output terminal, and the third output terminal.
  • the second axis weighting circuit 162 imparts a phase slope ⁇ vj to the sideband wave input from the second changeover switch 15 and outputs it to the photomixing section 17 .
  • the second axis weighting circuit 162 applies a phase slope ⁇ v1 to the carrier wave input to the fourth input terminal of the weighting unit 16, and outputs the carrier wave from the fourth output terminal, the fifth output terminal, and the sixth output terminal.
  • the second axis weighting circuit 162 applies a phase slope ⁇ v2 to the carrier wave input to the fifth input terminal of the weighting unit 16, and outputs the carrier wave from the fourth output terminal, the fifth output terminal, and the sixth output terminal.
  • the second axis weighting circuit 162 applies a phase slope ⁇ v3 to the carrier wave input to the sixth input terminal of the weighting unit 16, and outputs the carrier wave from the fourth output terminal, the fifth output terminal, and the sixth output terminal.
  • the first axis weighting circuit 161 and the second axis weighting circuit 162 impart a phase gradient to the optical signal using a delay line, a high dispersion line, a resonant ring, a matrix circuit, etc.
  • matrix circuits include Butler Matrix and Blass Matrix.
  • the transmission directivity control device 1 includes the duplexer 13, the first changeover switch 14, the second changeover switch 15, the weighting section 16, and the photomixing section 17.
  • the transmission directivity control device 1 weights each axis using an optical circuit and performs beam steering electronically.
  • the number of elements in the weighting circuit is proportional to the square of the number M of antenna elements.
  • the number of elements in the weighting circuit is proportional to 2 ⁇ M. Therefore, complexity caused by an increase in antennas can be suppressed.
  • the transmission directivity control device 1 performs phase shifting using an analog circuit, the number of analog-to-digital converters can be significantly reduced compared to a fully digitally controlled array antenna that performs phase shifting using digital signal processing. Can be done.
  • the transmission directivity control device 1 performs phase shifting through analog processing of optical signals, it is used not only for beam scanning when emitting radio waves, but also for emitting light in spatial optical wireless communication (FSO communication), etc. The actual beam scanning can be applied to circuits that are implemented electronically rather than mechanically driven.
  • FIG. 6 is a diagram showing a configuration example of the weighting section 16 according to the second embodiment.
  • the weighting section 16 according to the second embodiment includes a multiplexer 163, a weighting circuit 164, and a demultiplexer 165.
  • the weighting section 16 according to the second embodiment includes three multiplexers 163-1, 163-2, and 163-3.
  • the weighting section 16 according to the second embodiment includes three demultiplexers 165-1, 165-2, and 165-3.
  • the multiplexer 163 multiplexes the carrier wave and sideband wave input from the first changeover switch 14 and the second changeover switch 15.
  • the multiplexer 163-1 multiplexes the carrier wave input to the first input terminal and the sideband wave input to the fourth input terminal.
  • the multiplexer 163-2 multiplexes the carrier wave input to the second input terminal and the sideband wave input to the fifth input terminal.
  • the multiplexer 163-3 multiplexes the carrier wave input to the third input terminal and the sideband wave input to the sixth input terminal.
  • the multiplexer 163 outputs the optical signal to the corresponding terminal of the weighting circuit 164.
  • the multiplexer 163-1 outputs the multiplexed optical signal to the first input terminal of the weighting circuit 164.
  • the multiplexer 163-2 outputs the multiplexed optical signal to the second terminal of the weighting circuit 164.
  • the multiplexer 163-3 outputs the multiplexed optical signal to the third terminal of the weighting circuit 164.
  • the multiplexer 163 When an optical signal is input from only one of the first changeover switch 14 and the second changeover switch 15, the multiplexer 163 outputs the input optical signal to the weighting circuit 164.
  • the multiplexer 163 is, for example, an AWG.
  • the weighting circuit 164 imparts a phase gradient in a first axis, which is a certain axis in space, to the carrier wave included in the optical signal inputted from the multiplexer 163 and outputs it to the demultiplexer 165 .
  • the weighting circuit 164 applies different phase slopes to the carrier wave depending on the terminal to which the optical signal is input, and outputs the carrier wave to the demultiplexer 165 .
  • the weighting circuit 164 applies a phase slope ⁇ H1 to the carrier wave input to the first input terminal, and outputs the carrier wave to the branching filters 165-1, 165-2, and 165-3.
  • the weighting circuit 164 applies a phase slope ⁇ H2 to the carrier wave input to the second input terminal, and outputs the carrier wave to the branching filters 165-1, 165-2, and 165-3.
  • the weighting circuit 164 imparts a phase slope ⁇ H3 to the carrier wave input to the third input terminal, and outputs it to the branching filters 165-1, 165-2, and 165-3.
  • the weighting circuit 164 imparts a phase gradient in a second axis perpendicular to the first axis to the sideband included in the optical signal input from the multiplexer 163 and outputs the sideband to the demultiplexer 165 .
  • the weighting circuit 164 imparts different phase slopes to the sideband waves depending on the terminal into which the optical signal is input, and outputs the sideband waves to the demultiplexer 165 .
  • the weighting circuit 164 applies a phase slope ⁇ v1 to the sideband wave input to the first input terminal, and outputs it to the branching filters 165-1, 165-2, and 165-3.
  • the weighting circuit 164 applies a phase slope ⁇ v2 to the sideband wave input to the second input terminal, and outputs it to the branching filters 165-1, 165-2, and 165-3.
  • the weighting circuit 164 applies a phase slope ⁇ v3 to the sideband wave input to the third input terminal, and outputs it to the branching filters 165-1, 165-2, and 165-3.
  • the weighting circuit 164 imparts a phase gradient to the optical signal using a delay line, a high dispersion line, a resonant ring, a matrix circuit, etc.
  • matrix circuits include Butler Matrix and Blass Matrix.
  • the demultiplexer 165 demultiplexes the optical signal output from the weighting circuit 164 according to the carrier wave and sideband wavelengths.
  • the demultiplexer 165-1 demultiplexes the optical signal to which the phase gradients ⁇ H1 and ⁇ v1 are applied.
  • the demultiplexer 165-2 demultiplexes the optical signal to which the phase gradients ⁇ H2 and ⁇ v2 are applied.
  • the demultiplexer 165-3 demultiplexes the optical signal to which the phase gradients ⁇ H3 and ⁇ v3 are applied.
  • the duplexer 165 is, for example, an AWG.
  • the demultiplexer 165 outputs the demultiplexed carrier wave and sideband wave to the photomixing section 17.
  • the duplexer 165-1 outputs a carrier wave having a phase slope from a first output terminal, and outputs a sideband wave having a phase slope from a fourth output terminal.
  • the duplexer 165-2 outputs a carrier wave having a phase slope from a second output terminal, and outputs a sideband wave having a phase slope from a fifth output terminal.
  • the duplexer 165-3 outputs a carrier wave having a phase slope from a third output terminal, and outputs a sideband wave having a phase slope from a sixth output terminal.
  • the transmission directivity control device 1 according to the first embodiment has two weighting circuits, whereas the transmission directivity control device 1 according to the second embodiment has one weighting circuit. We are prepared. Therefore, the number of weighting circuits can be reduced, and a transmission directivity control device that achieves the same effect with fewer elements can be configured.
  • FIG. 7 is a diagram showing an example of the relationship between the wavelength of the optical signal input to the demultiplexer 13 and the antenna element 171 to which the optical signal is multiplexed.
  • the difference between adjacent wavelengths (for example, the difference between ⁇ 1 and ⁇ 2 or the difference between ⁇ 2 and ⁇ 3) is set to be larger than the wavelength corresponding to the frequency difference between the carrier wave and the sideband of the optical signal.
  • the first changeover switch 14 outputs the carrier waves with wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 to the first input terminal of the weighting unit 16, and outputs the carrier waves with wavelengths ⁇ 4, ⁇ 5, and ⁇ 6 to the second input terminal of the weighting unit 16.
  • the carrier waves of wavelengths ⁇ 7, ⁇ 8, and ⁇ 9 are outputted to the third input terminal of the weighting section 16.
  • the second changeover switch 15 outputs the sideband waves with wavelengths ⁇ 1, ⁇ 4, and ⁇ 7 to the fourth input terminal of the weighting unit 16, and outputs the sideband waves with wavelengths ⁇ 2, ⁇ 5, and ⁇ 8 to the fourth input terminal of the weighting unit 16.
  • the sideband waves of wavelengths ⁇ 3, ⁇ 6, and ⁇ 9 are outputted to the sixth input terminal of the weighting section 16.
  • the first changeover switch 14 and the second changeover switch 15 have, for example, a duplexer and are configured to distribute the wavelengths.
  • the carrier wave is input to the first input terminal of the weighting section 16 and a phase gradient is imparted to the optical signal of wavelength ⁇ 1
  • the sideband wave is input to the fourth input terminal of the weighting section 16 and a phase gradient is imparted to the optical signal.
  • two optical signals are multiplexed at nine antenna elements 171.
  • the carrier wave is input to the first terminal of the weighting unit 16 and a phase slope is added to it
  • the sideband wave is input to the fifth terminal of the weighting unit 16 and a phase slope is applied to it
  • the two Optical signals are multiplexed at nine antenna elements 171.
  • the phase slope given to the optical signal can be changed and transmitted from the antenna element 171.
  • the transmission directivity control device 1 may include a plurality of light sources 11 and an optical modulator 12, and a demultiplexer 13 may demultiplex the plurality of optical signals into carrier waves and sideband waves, respectively.
  • the first changeover switch 14 outputs the first optical signal from one of the plurality of terminals for each of the plurality of optical signals.
  • the second changeover switch 15 outputs a second optical signal from one of the plurality of terminals for each of the plurality of optical signals.
  • the weighting unit 16 applies a phase slope in the first axis to the first optical signal and a phase slope in the second axis to the second optical signal for each of the plurality of optical signals.
  • the photomixing unit 17 photomixes a first optical signal to which a phase gradient has been applied and a second optical signal to which a phase slope has been applied, for each of the plurality of optical signals.
  • the antenna element 171 can transmit signals in directions based on the respective optical signals, and can perform an operation of transmitting multi-beams.
  • the weighting circuit has three input terminals and three output terminals, and the array antenna included in the photomixing section 17 has antenna elements arranged in three rows and three columns, but the present invention is not limited to this.
  • the array antenna may have two rows, four or more rows, two columns, or four or more columns.
  • the array antenna does not have to be configured with square antenna elements such as 3 rows and 3 columns or 4 rows and 4 columns.
  • the input terminal and output terminal of the weighting circuit may change depending on the number of rows and columns of antenna elements included in the array antenna.
  • the demultiplexer 13 first demultiplexes the optical signal into a carrier wave and a sideband wave, but the invention is not limited to this, and demultiplexes the optical signal into a first optical signal and a second optical signal.
  • the demultiplexer 13 may demultiplex the optical signal into an upper band wave and a lower band wave, and output them to the first changeover switch 14 and the second changeover switch 15, respectively.
  • the demultiplexer 13 is a splitter that splits an optical signal into two optical signals, an SSB converter that converts one optical signal into an upper sideband, and another optical signal into a lower sideband.
  • An SSB converter may be provided, and the upper sideband and lower sideband may be output to the first changeover switch 14 and the second changeover switch 15, respectively.
  • 1 Transmission directivity control device 11 Light source, 12 Optical modulator, 13 Demultiplexer, 14 First changeover switch, 15 Second changeover switch, 16 Weighting unit, 161 First axis weighting circuit, 162 Second axis weight attaching circuit, 163 multiplexer, 164 weighting circuit, 165 demultiplexer, 17 photomixing section, 171 antenna element, 1711 multiplexer, 1712 square law detection section, 1713 antenna, 1714 mirror

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

光信号を第一光信号と第二光信号とに分波する分波器と、空間上のある軸である第一軸における位相傾斜を前記第一光信号に付与する第一軸位相傾斜付与部と、前記第二光信号に前記第一軸と垂直である第二軸における位相傾斜を付与する第二軸位相傾斜付与部と、位相傾斜が付与された前記第一光信号と、位相傾斜が付与された前記第二光信号とをフォトミキシングする出力部と、を備える送信指向性制御装置。

Description

送信指向性制御装置及び送信指向性制御方法
 本発明は、送信指向性制御装置及び送信指向性制御方法に関する。
 無線通信の高速化と大容量化を実現する手段として、ミリ波帯以上の高周波帯の活用が進展している。電波の空間伝搬損は周波数が高くなるに従い増大するため(例えば自由空間伝搬損は周波数の2乗に比例して増大する)、こうした高周波帯では多くの場合高い利得を持つアンテナが使用される。高利得のアンテナは必ず高い指向性を持つため、そのビームの方向を無線通信の相手局に合わせることが必要であり、相手局の方向が動的な場合は、ビームの方向を動的に制御する手段、すなわちビームステアリングの適用が必須となる。また、無線通信に限らず、例えばレーダ、イメージングや無線電力伝送といった用途においても、アンテナにおけるビームステアリングの実施が必要とされている。
 ビームステアリングの手段として、アンテナの方角を機械的に制御する方法、アンテナから放射された電波を可動式のレンズや反射鏡で屈折または反射させて制御する方法などが考案され使用されている。また、機械的な可動部分を使用しないため耐久性や移動の追従性が高く、アンテナの小型・軽量化に適したフェーズドアレーアンテナが多く用いられている。
 フェーズドアレーアンテナは、線上または面上に複数配置されたアンテナ素子に接続された可変遅延回路や可変減衰器回路、ディジタル信号処理等の手段を用いて、各アンテナ素子に給電されるRF(Radio Frequency;無線周波数)信号の位相と振幅を制御(以下、位相と振幅の制御を重みづけと呼ぶ)することにより電子的にビームステアリングを行う。
 ミリ波帯を使用する第5世代移動通信システムやミリ波帯無線LAN(Local Area Network)システム等では、アナログ回路で重みづけを行うタイプのフェーズドアレーアンテナが多く使用されている。
 多くの無線通信システムにおいて無線通信の相手局が存在する範囲は、2次元平面内ではなく、3次元空間内で変化するため、例えば方位角と仰角のように2軸でのビームステアリングが必要である。そのため、フェーズドアレーアンテナには、面的にアンテナ素子を配置した2次元アレーアンテナを用いて2次元のビームステアリングを行うための重みづけが必要である。
 例えば、非特許文献1は28GHz帯での第5世代移動通信用基地局に使用する256素子のフェーズドアレーアンテナを開示する。例えば、300GHzなど無線周波数が約10倍になると、自由空間の伝播損は100倍となり、数万個のアンテナ素子が必要になると考えられる。
 無線周波数が300GHzの場合、自由空間波長は1mmであるため、アンテナ素子の間隔は波長の半分、つまり0.5mmとすることが一般的である。このとき、アンテナ素子の間隔と同等の間隔で、アンテナ素子の近傍に移相器回路を設置することは難しい。また、複数のビームを形成する回路(マルチビーム形成回路)を構成するには、ビーム数と同数の移相器を並列して配置しなければならず、さらに困難となることが想定される。
 アンテナ素子の数に応じた移相器回路を実装するのではなく、固定移相量を持つ受動回路を使用してその入力端子を切り替えて使用する方式がある。例えば、非特許文献2は受動回路を使用して2次元のビームステアリングを行う方式を開示する。しかし、回路を立体的に組み上げる必要があり、高周波数帯での実装は導波管で構成する必要があるため量産が難しく、また、多素子化への対応が難しい。
 非特許文献3は、信号を光に変換し、光回路により重みづけを行う方法を提案する。光回路により重みづけを行う方法としては、特許文献1は、波長分散線路を利用して2次元のビームステアリングを行う立体的な光回路を開示する。非特許文献4は、光波長を変換しながら移相器を反復再利用するループ構成を用いる方法を開示する。非特許文献5は、平面構成の移相回路と、光波長に依存して遅延時間が異なるFBG(fiber bragg gratings)反射線路を組み合わせて、平面構成の移相回路によって行う1次元(1平面内)のビームステアリングに加えて、FBG反射線路により行う前記平面と直交する平面の方向でのビームステアリングを可能にして、2次元ビームステアリングを実施する手段を開示する。特許文献2は、波長多重を用いたマルチビーム形成手段を開示する。
 しかしながら、上記開示された装置や方法においては、周波数の増大に伴い立体構造の製造が難しいことや部品点数が莫大な数になるといった欠点がある。
特開2004-023400号公報 特開2007-165956号公報
渡辺 光, 宇賀 晋介, 中溝 英之, 堤 恒次, 新庄 真太郎, 栗山 侑, 第5世代移動通信基地局向けミリ波アンテナ・RFフロントエンド技術, 電子情報通信学会 通信ソサイエティマガジン, 2020, 14 巻, 3 号, p. 222-231. Dong-Hun KIM  Jiro HIROKAWA  Makoto ANDO, "One-Body 2-D Beam-Switching Butler Matrix with Waveguide Short-Slot 2-Plane Couplers," IEICE TRANSACTIONS on Electronics, Vol.E100-C, No.10, pp.884-892 C. Tsokos et al., "Analysis of a Multibeam Optical Beamforming Network Based on Blass Matrix Architecture," in Journal of Lightwave Technology, vol. 36, no. 16, pp. 3354-3372, 15 Aug.15, 2018. Y. Liu and J. Klamkin, "Scalable Integrated Photonics Beamforming Circuits," 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), 2020, pp. 1-3. B. Ortega, J. Mora and R. Chulia, "Optical Beamformer for 2-D Phased Array Antenna With Subarray Partitioning Capability," in IEEE Photonics Journal, vol. 8, no. 3, pp. 1-9, June 2016
 本発明の目的は、より簡易に作成することができる送信指向性制御装置を提供することにある。
 本発明の一態様は、光信号を第一光信号と第二光信号とに分波する分波器と、前記第一光信号を複数の端子のいずれかより出力する第一切替スイッチと、前記第二光信号を複数の端子のいずれかより出力する第二切替スイッチと、前記第一光信号を、出力された前記第一切替スイッチの端子により異なり、空間上のある軸である第一軸における位相傾斜を付与し、前記第二光信号を、出力された前記第一切替スイッチの端子により異なり、前記第一軸と直交する第二軸における位相傾斜を付与する重みづけ部と、位相傾斜が付与された前記第一光信号と、位相傾斜が付与された前記第二光信号とをフォトミキシングするフォトミキシング部と、を備える送信指向性制御装置である。
 本発明の一態様は、光信号を第一光信号と第二光信号とに分波する分波ステップと、前記第一光信号を複数の端子のいずれかより出力する第一切替ステップと、前記第二光信号を複数の端子のいずれかより出力する第二切替ステップと、前記第一光信号を、前記第一切替ステップにおいて出力された端子により異なり、空間上のある軸である第一軸における位相傾斜を付与し、前記第二光信号を、前記第二切替ステップにおいて出力された端子により異なり、前記第一軸と直交する第二軸における位相傾斜を付与する重みづけステップと、位相傾斜が付与された前記第一光信号と、位相傾斜が付与された前記第二光信号とをフォトミキシングするフォトミキシングステップと、を有する送信指向性制御方法である。
 本発明によれば、より簡易に送信指向性制御装置を提供することができる。
第1の実施形態に係る送信指向性制御装置1の構成例を示す図である。 アンテナ素子171の構成の一例を示す図である。 アンテナ素子171の構成の一例を示す図である。 第1の実施形態に係る送信指向性制御装置1の動作を示すフローチャートである。 第2の実施形態に係る送信指向性制御装置1の構成例を示す図である。 第2の実施形態に係る送信指向性制御装置1の動作を示すフローチャートである。 分波器13に入力される光信号の波長と、光信号が合波されるアンテナ素子171の関係例を示す図である。
 以下、図面を参照して本発明の実施形態について説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施の形態に限られるわけではない。
 図1は、第1の実施形態に係る送信指向性制御装置1の構成例を示す図である。
 送信指向性制御装置1は、光源11、光変調器12、分波器13、第一切替スイッチ14、第二切替スイッチ15、重みづけ部16、フォトミキシング部17及び制御部18を備える。
 光源11は光変調器12に光を出力する。光変調器12は、入力される光を変調することで光信号を生成する。分波器13は、光変調器12より入力される光信号を分波する。分波器13は、光信号を搬送波と側帯波に分波する。以下の説明において、搬送波Lを式(1)、側帯波Lを式(2)又は式(3)により表す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 式(2)は上側帯波であり、式(3)は下側帯波を表す。分波器13は、搬送波及び側帯波を分岐し、それぞれ第一切替スイッチ14及び第二切替スイッチ15に出力する。分波器13は、例えばAWG(Arrayed waveguide grating)である。
 分波器13は、分配器131及びSSB(single side-band)変調器132を備え、搬送波Lと側帯波Lとを生成してもよい。分配器131は、入力される光信号を2つの光信号に分配する。SSB変調器132は、2つの光信号のうち一方の光信号の搬送波成分を抑圧し、側帯波に変換する。これにより、分配器131及びSSB変調器132は、搬送波及び側帯波を生成することができる。
 また、分波器13は、分配器131と周期的な通過特性を有する光コムフィルタ133を2つ備え、搬送波Lと側帯波Lとを生成してもよい。分配器131は、入力される光信号を2つの光信号に分配する。1つの光コムフィルタ133は、1つの光信号から搬送波の異なる複数の波長の光のみを通過させ、もう1つの光コムフィルタ133は、もう1つの光信号から側帯波の異なる複数の波長の光のみを通過させる。分波器13が分配器131並びにSSB変調器132を備える場合、及び分配器131並びに光コムフィルタ133を備える場合、異なる2つ以上の波長の光信号を搬送波と側帯波とに分波することができる。
 第一切替スイッチ14は、出力端子を3つ有する。第一切替スイッチ14は、いずれかの出力端子から搬送波を重みづけ部16に出力する。第二切替スイッチ15は、出力端子を3つ有する。第二切替スイッチ15は、いずれかの出力端子から側帯波を重みづけ部16に出力する。例えば、第一切替スイッチ14及び第二切替スイッチ15は分波器を有し、入力される搬送波又は側帯波の波長により、搬送波又は側帯波を出力する出力端子を決定する。第一切替スイッチ14及び第二切替スイッチ15に入力される搬送波又は側帯波の波長は、例えば制御部18が光源11を制御することで、変化される。また、例えば、制御部18は、第一切替スイッチ14及び第二切替スイッチ15を制御することで、搬送波又は側帯波を出力する出力端子を切り替えてもよい。第一切替スイッチ14及び第二切替スイッチ15は例えば光スイッチにより実現される。
 重みづけ部16は、入力端子を6つ有し、出力端子を6つ有する。例えば、重みづけ部16の第1入力端子には、第一切替スイッチ14の第1出力端子から搬送波が入力される。重みづけ部16の第2入力端子には、第一切替スイッチ14の第2出力端子から搬送波が入力される。重みづけ部16の第3入力端子には、第一切替スイッチ14の第3出力端子から搬送波が入力される。重みづけ部16の第4入力端子には、第二切替スイッチ15の第1出力端子から側帯波が入力される。重みづけ部16の第5入力端子には、第二切替スイッチ15の第2出力端子から側帯波が入力される。重みづけ部16の第6入力端子には、第二切替スイッチ15の第3出力端子から側帯波が入力される。
 重みづけ部16は、第一切替スイッチ14から入力された搬送波に、空間上のある軸である第一軸における位相傾斜φHi(i=1、2、3)を付与し、フォトミキシング部17に出力する。重みづけ部16は、第1入力端子に入力された搬送波に位相傾斜φH1を付与し、第1出力端子、第2出力端子及び第3出力端子から出力する。重みづけ部16は、第2入力端子に入力された搬送波に位相傾斜φH2を付与し、第1出力端子、第2出力端子及び第3出力端子から出力する。重みづけ部16は、第3入力端子に入力された搬送波に位相傾斜φH3を付与し、第1出力端子、第2出力端子及び第3出力端子から出力する。
 例えば、重みづけ部16は、第1入力端子に光信号が入力された場合は、位相を付与しない光信号を第1出力端子から出力し、位相φH1を付与した光信号を第2出力端子から出力し、位相2φH1を付与した光信号を第3出力端子から出力する。例えば、重みづけ部16は、第2入力端子に光信号が入力された場合は、位相を付与しない光信号を第1出力端子から出力し、位相φH2を付与した光信号を第2出力端子から出力し、位相2φH2を付与した光信号を第3出力端子から出力する。例えば、重みづけ部16は、第3入力端子に光信号が入力された場合は、位相を付与しない光信号を第1出力端子から出力し、位相φH3を付与した光信号を第2出力端子から出力し、位相2φH3を付与した光信号を第3出力端子から出力する。つまり、第1入力端子に入力された光信号には0、φH1、2φH1という位相傾斜が付与され、第2入力端子に入力された光信号には0、φH2、2φH2という位相傾斜が付与され、第3入力端子に入力された光信号には0、φH3、2φH3という位相傾斜が付与される。より具体的には、位相傾斜は0度、45度、90度や0度、90度、180度などである。
 重みづけ部16は、位相を付与しない光信号を出力する必要はなく、例えば、付与する位相傾斜はφ、2φ、3φであってもよい。
 重みづけ部16から出力される、位相傾斜が付与された搬送波Lは、式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 重みづけ部16は、第二切替スイッチ15から入力された側帯波に、第一軸と直交する第二軸における位相傾斜φvj(j=1、2、3)を付与し、フォトミキシング部17に出力する。重みづけ部16は、第4入力端子に入力された搬送波に位相傾斜φv1を付与し、第4出力端子、第5出力端子及び第6出力端子から出力する。重みづけ部16は、第5入力端子に入力された搬送波に位相傾斜φv2を付与し、第4出力端子、第5出力端子及び第6出力端子から出力する。重みづけ部16は、第6入力端子に入力された搬送波に位相傾斜φv3を付与し、第4出力端子、第5出力端子及び第6出力端子から出力する。
 例えば、重みづけ部16は、第4入力端子に光信号が入力された場合は、位相を付与しない光信号を第4出力端子から出力し、位相φV1を付与した光信号を第5出力端子から出力し、位相2φV1を付与した光信号を第6出力端子から出力する。例えば、重みづけ部16は、第5入力端子に光信号が入力された場合は、位相を付与しない光信号を第4出力端子から出力し、位相φV2を付与した光信号を第5出力端子から出力し、位相2φV2を付与した光信号を第6出力端子から出力する。例えば、重みづけ部16は、第6入力端子に光信号が入力された場合は、位相を付与しない光信号を第4出力端子から出力し、位相φV3を付与した光信号を第5出力端子から出力し、位相2φV3を付与した光信号を第6出力端子から出力する。つまり、第4入力端子に入力された光信号には0、φV1、2φV1という位相傾斜が付与され、第5入力端子に入力された光信号には0、φV2、2φV2という位相傾斜が付与され、第6入力端子に入力された光信号には0、φV3、2φV3という位相傾斜が付与される。より具体的には、位相傾斜は0度、45度、90度や0度、90度、180度などである。
 重みづけ部16から出力される、位相傾斜が付与された側帯波Lは、式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 フォトミキシング部17は、複数のアンテナ素子171を備える。複数のアンテナ素子は3行3列の2次元のアレーアンテナを形成する。第i行第j列に設置されたアンテナ素子171には、第一軸において位相傾斜φHi及び第二軸において位相傾斜φvjが付与された光信号が入力される。つまり、重みづけ部16の第1出力端子は第1行のアンテナ素子171に位相傾斜φH1が付与された搬送波を出力する。重みづけ部16の第2出力端子は第2行のアンテナ素子171に位相傾斜φH2が付与された搬送波を出力する。重みづけ部16の第3出力端子は第3行のアンテナ素子171に位相傾斜φH3が付与された搬送波を出力する。重みづけ部16の第4出力端子は第1列のアンテナ素子171に位相傾斜φV1が付与された側帯波を出力する。重みづけ部16の第5出力端子は第2列のアンテナ素子171に位相傾斜φV2が付与された側帯波を出力する。重みづけ部16の第6出力端子は第3列のアンテナ素子171に位相傾斜φV3が付与された側帯波を出力する。
 フォトミキシング部17は、搬送波と側帯波との差の周波数の電磁波を発生させる。図2は、アンテナ素子171の構成の一例を示す図である。アンテナ素子171は、合波器1711、二乗検波部1712、アンテナ1713を備える。合波器1711は、重みづけ部16から入力された搬送波と側帯波とを合波する。合波された光信号はL+Lで表される。合波器1711は、例えばAWGである。
 二乗検波部1712は、合波された光信号をRF信号に変換する。二乗検波部1712は例えばフォトダイオードである。アンテナ1713は、二乗検波部1712の出力周波数特性に依存した所定のRF周波数帯域の成分のみを出力する。つまり、アンテナ1713からの出力vRF_ijは(L+LからRF帯を取り出したものであり、式(6)に比例する。
Figure JPOXMLDOC01-appb-M000006
 よって、第i行第j列のアンテナ素子171の出力の位相傾斜はφvjHiである。
 図3は、アンテナ素子171の構成の一例を示す図である。アンテナ素子171において、合波器1711の代わりにミラー1714を用いて重みづけ部16により位相付与された光信号と、重みづけ部16により位相付与された光信号とを合波してもよい。
 図4は、第1の実施形態に係る送信指向性制御装置1の動作を示すフローチャートである。光変調器12が光源11から出力された光を変調し、光信号を生成する(ステップS10)。その後、分波器13は光変調器12から入力された光信号を搬送波と側帯波に分波する(ステップS11)。第一切替スイッチ14は、搬送波を複数の端子のいずれかより重みづけ部16に出力する(ステップS12-1)。第二切替スイッチ15は、側帯波を複数の端子のいずれかより重みづけ部16に出力する(ステップS12-2)。重みづけ部16は、搬送波に第一軸における位相傾斜を付与する(ステップS13-1)。重みづけ部16は、側帯波に第二軸における位相傾斜を付与する(ステップS13-2)。フォトミキシング部17は、各アンテナ素子171において搬送波と側帯波とをフォトミキシングする(ステップS14)。フォトミキシングされた光信号は、アンテナ1713からRF信号として出力される。
 図5は、第1の実施形態に係る重みづけ部16の構成を示す図である。第1の実施形態に係る重みづけ部16は、第一軸重みづけ回路161及び第二軸重みづけ回路162を備える。
 第一軸重みづけ回路161は、第一切替スイッチ14から入力された搬送波に、位相傾斜φHiを付与し、フォトミキシング部17に出力する。第一軸重みづけ回路161は、重みづけ部16の第1入力端子に入力された搬送波に位相傾斜φH1を付与し、第1出力端子、第2出力端子及び第3出力端子から出力する。第一軸重みづけ回路161は、重みづけ部16の第2入力端子に入力された搬送波に位相傾斜φH2を付与し、第1出力端子、第2出力端子及び第3出力端子から出力する。第一軸重みづけ回路161は、重みづけ部16の第3入力端子に入力された搬送波に位相傾斜φH3を付与し、第1出力端子、第2出力端子及び第3出力端子から出力する。
 第二軸重みづけ回路162は、第二切替スイッチ15から入力された側帯波に、位相傾斜φvjを付与し、フォトミキシング部17に出力する。第二軸重みづけ回路162は、重みづけ部16の第4入力端子に入力された搬送波に位相傾斜φv1を付与し、第4出力端子、第5出力端子及び第6出力端子から出力する。第二軸重みづけ回路162は、重みづけ部16の第5入力端子に入力された搬送波に位相傾斜φv2を付与し、第4出力端子、第5出力端子及び第6出力端子から出力する。第二軸重みづけ回路162は、重みづけ部16の第6入力端子に入力された搬送波に位相傾斜φv3を付与し、第4出力端子、第5出力端子及び第6出力端子から出力する。
 第一軸重みづけ回路161及び第二軸重みづけ回路162は、遅延線路、高分散線路、共振リング、行列回路などにより光信号に位相傾斜を付与する。行列回路は、例えばバトラー行列(Butler Matrix)やブラス回路(Blass Matrix)である。
 以上より、送信指向性制御装置1は、分波器13、第一切替スイッチ14、第二切替スイッチ15、重みづけ部16、フォトミキシング部17を備える。送信指向性制御装置1は、光回路により1つの軸ごとに重みづけを行い、電子的にビームステアリングを行う。2つの軸の重みづけを1つの重みづけ回路により一括で行う場合、重みづけ回路の要素数は、アンテナ素子の数Mの2乗に比例する。しかし、本実施形態においては、1つの軸ごとに重みづけを行う場合、重みづけ回路の要素数は、2√Mに比例する。そのため、アンテナ増加に伴う複雑化を抑制することができる。
 また、送信指向性制御装置1は、アナログ回路による移相を行うことから、全てディジタル信号処理で移相を行うフルディジタル制御のアレーアンテナに比べてアナログ‐ディジタル変換器の数を大幅に減らすことができる。
 また、送信指向性制御装置1は、光信号のアナログ処理で移相を行っているため、電波を放射する際のビーム走査だけでなく、空間光無線通信(FSO通信)等において光を放射する際のビーム走査を、機械駆動ではなく電子的に実施する回路に応用することができる。
(第2の実施形態)
 図6は、第2の実施形態に係る重みづけ部16の構成例を示す図である。第2の実施形態に係る重みづけ部16は、合波器163、重みづけ回路164、分波器165を備える。第2の実施形態に係る重みづけ部16は、3つの合波器163-1、163-2及び163-3を備える。第2の実施形態に係る重みづけ部16は、3つの分波器165-1、165-2及び165-3を備える。
 合波器163は、第一切替スイッチ14及び第二切替スイッチ15から入力された搬送波と側帯波とを合波する。合波器163-1は、第1入力端子に入力された搬送波と第4入力端子に入力された側帯波を合波する。合波器163-2は、第2入力端子に入力された搬送波と第5入力端子に入力された側帯波を合波する。合波器163-3は、第3入力端子に入力された搬送波と第6入力端子に入力された側帯波を合波する。合波器163は、重みづけ回路164の対応する端子に光信号を出力する。合波器163-1は、重みづけ回路164の第1入力端子に合波した光信号を出力する。合波器163-2は、重みづけ回路164の第2端子に合波した光信号を出力する。合波器163-3は、重みづけ回路164の第3端子に合波した光信号を出力する。合波器163は、第一切替スイッチ14及び第二切替スイッチ15のどちらか一方のみから光信号が入力された場合、入力された光信号を重みづけ回路164に出力する。合波器163は、例えばAWGである。
 重みづけ回路164は、合波器163より入力される光信号に含まれる搬送波に、空間上のある軸である第一軸における位相傾斜を付与し、分波器165に出力する。重みづけ回路164は、光信号が入力された端子により異なる位相傾斜を搬送波に付与し、分波器165に出力する。例えば、重みづけ回路164は、第1入力端子に入力された搬送波に位相傾斜φH1を付与し、分波器165-1、165-2及び165-3に出力する。重みづけ回路164は、第2入力端子に入力された搬送波に位相傾斜φH2を付与し、分波器165-1、165-2及び165-3に出力する。重みづけ回路164は、第3入力端子に入力された搬送波に位相傾斜φH3を付与し、分波器165-1、165-2及び165-3に出力する。
 重みづけ回路164は、合波器163より入力される光信号に含まれる側帯波に、第一軸と直交する第二軸における位相傾斜を付与し、分波器165に出力する。重みづけ回路164は、光信号が入力された端子により異なる位相傾斜を側帯波に付与し、分波器165に出力する。例えば、重みづけ回路164は、第1入力端子に入力された側帯波に位相傾斜φv1を付与し、分波器165-1、165-2及び165-3に出力する。重みづけ回路164は、第2入力端子に入力された側帯波に位相傾斜φv2を付与し、分波器165-1、165-2及び165-3に出力する。重みづけ回路164は、第3入力端子に入力された側帯波に位相傾斜φv3を付与し、分波器165-1、165-2及び165-3に出力する。
 重みづけ回路164は、遅延線路、高分散線路、共振リング、行列回路などにより光信号に位相傾斜を付与する。行列回路は、例えばバトラー行列(Butler Matrix)やブラス回路(Blass Matrix)である。
 分波器165は、重みづけ回路164から出力される光信号を、搬送波と側帯波の波長により分波する。分波器165-1は、位相傾斜φH1及びφv1が付与された光信号を分波する。分波器165-2は、位相傾斜φH2及びφv2が付与された光信号を分波する。分波器165-3は、位相傾斜φH3及びφv3が付与された光信号を分波する。分波器165は、例えばAWGである。
 分波器165は、分波した搬送波と側帯波とをフォトミキシング部17に出力する。分波器165-1は、第1出力端子から位相傾斜を付与した搬送波を出力し、第4出力端子から位相傾斜を付与した側帯波を出力する。分波器165-2は、第2出力端子から位相傾斜を付与した搬送波を出力し、第5出力端子から位相傾斜を付与した側帯波を出力する。分波器165-3は、第3出力端子から位相傾斜を付与した搬送波を出力し、第6出力端子から位相傾斜を付与した側帯波を出力する。
 以上より、第1の実施形態に係る送信指向性制御装置1は重みづけ回路を2つ備えているのに対し、第2の実施形態に係る送信指向性制御装置1は重みづけ回路を1つ備えている。そのため、重みづけ回路の数を減らすことができ、より少ない要素で同様の効果を奏する送信指向性制御装置を構成することができる。
(波長に基づく切替方法)
 第1の実施形態において、第一切替スイッチ14及び第二切替スイッチ15が入力される光信号の波長により、光信号を出力する重みづけ部の出力端子を切り替える場合の実施例を説明する。図7は、分波器13に入力される光信号の波長と、光信号が合波されるアンテナ素子171の関係例を示す図である。隣り合う波長の差(例えば、λ1とλ2との差やλ2とλ3の差)は、光信号の搬送波と側帯波の周波数差に対応する波長より大きくなるように設定される。
 例えば、第一切替スイッチ14は、波長λ1、λ2及びλ3の搬送波は重みづけ部16の第1入力端子に出力し、波長λ4、λ5及びλ6の搬送波は重みづけ部16の第2入力端子に出力し、波長λ7、λ8及びλ9の搬送波は重みづけ部16の第3入力端子に出力する。また、例えば、第二切替スイッチ15は、波長λ1、λ4及びλ7の側帯波は重みづけ部16の第4入力端子に出力し、波長λ2、λ5及びλ8の側帯波は重みづけ部16の第5入力端子に出力し、波長λ3、λ6及びλ9の側帯波は重みづけ部16の第6入力端子に出力する。第一切替スイッチ14及び第二切替スイッチ15は、例えば分波器を有し、上記波長を振り分けるように構成される。
 これにより、波長λ1の光信号は、搬送波が重みづけ部16の第1入力端子に入力され位相傾斜が付与され、側帯波が重みづけ部16の第4入力端子に入力され位相傾斜が付与され、2つの光信号が9つのアンテナ素子171において合波される。また、波長λ2の光信号は、搬送波が重みづけ部16の第1端子に入力され位相傾斜が付与され、側帯波が重みづけ部16の第5端子に入力され位相傾斜が付与され、2つの光信号が9つのアンテナ素子171において合波される。以上のように、分波器13に入力される光信号の波長により、光信号に付与する位相傾斜を変化させ、アンテナ素子171から送信することができる。
 また、送信指向性制御装置1は複数の光源11及び光変調器12を備え、分波器13が複数の光信号をそれぞれ搬送波と側帯波とに分波してもよい。このとき、第一切替スイッチ14は、複数の光信号ごとに、第一光信号を複数の端子のいずれかより出力する。第二切替スイッチ15は、複数の光信号ごとに、第二光信号を複数の端子のいずれかより出力する。重みづけ部16は、複数の光信号ごとに、第一光信号に第一軸における位相傾斜を付与し、第二光信号に第二軸における位相傾斜を付与する。フォトミキシング部17は、複数の光信号ごとに、位相傾斜が付与された第一光信号と、位相傾斜が付与された第二光信号とをフォトミキシングする。これにより、アンテナ素子171は、それぞれの光信号に基づく方向に信号を送信することができ、マルチビームを送信する動作を行うことができる。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 例えば、上述した実施形態では重みづけ回路の入力端子及び出力端子は3つであり、フォトミキシング部17に含まれるアレーアンテナは3行3列のアンテナ素子を有するが、これに限られない。例えば、アレーアンテナは2行でもよく、4行以上であってもよく、2列であっても、4列以上であってもよい。また、アレーアンテナは3行3列や4行4列のように正方のアンテナ素子により構成されなくてもよい。重みづけ回路の入力端子及び出力端子は、アレーアンテナに含まれるアンテナ素子の行数及び列数により変化してもよい。
 上述した実施形態では、最初に分波器13は光信号を搬送波と側帯波とに分波するがこれに限られず、第一光信号と第二光信号とに分波する。例えば、分波器13は光信号を上側帯波と下側帯波とに分波し、それぞれを第一切替スイッチ14と第二切替スイッチ15とに出力してもよい。例えば、分波器13は光信号を2つの光信号に分配する分配器と、1つの光信号を上側帯波に変換するSSB変換器と、もう1つの光信号を下側波帯に変換するSSB変換器とを備え、上側帯波及び下側波帯をそれぞれ第一切替スイッチ14と第二切替スイッチ15に出力してもよい。
1 送信指向性制御装置、11 光源、12 光変調器、13 分波器、14 第一切替スイッチ、15 第二切替スイッチ、16 重みづけ部、161 第一軸重みづけ回路、162 第二軸重みづけ回路、163 合波器、164 重みづけ回路、165 分波器、17 フォトミキシング部、171 アンテナ素子、1711 合波器、1712 二乗検波部、1713 アンテナ、1714 ミラー

Claims (8)

  1.  光信号を第一光信号と第二光信号とに分波する分波器と、
     前記第一光信号を複数の端子のいずれかより出力する第一切替スイッチと、
     前記第二光信号を複数の端子のいずれかより出力する第二切替スイッチと、
     前記第一光信号に、出力された前記第一切替スイッチの端子により異なり、空間上のある軸である第一軸における位相傾斜を付与し、前記第二光信号に、出力された前記第二切替スイッチの端子により異なり、前記第一軸と直交する第二軸における位相傾斜を付与する重みづけ部と、
     位相傾斜が付与された前記第一光信号と、位相傾斜が付与された前記第二光信号とをフォトミキシングするフォトミキシング部と、
     を備える送信指向性制御装置。
  2.  前記重みづけ部は、
     前記第一軸における位相傾斜を前記第一光信号に付与する第一軸位相傾斜付与部と、
     前記第二軸における位相傾斜を前記第二光信号に付与する第二軸位相傾斜付与部と、
     を備える請求項1に記載の送信指向性制御装置。
  3.  前記重みづけ部は、
     前記第一切替スイッチから入力される前記第一光信号と、前記第二切替スイッチから入力される前記第二光信号とを合波する合波器と、
     前記合波された光信号に含まれる前記第一光信号に、空間上のある軸である第一軸における位相傾斜を付与し、前記合波された光信号に含まれる前記第二光信号に、前記第一軸と垂直である第二軸における位相傾斜を付与する重みづけ回路と、
     前記重みづけ回路から出力される光信号を分波する分波器と、
     を備える請求項1に記載の送信指向性制御装置。
  4.  前記第一光信号及び前記第二光信号に付与される位相傾斜は、前記第一光信号及び前記第二光信号の波長に基づく、
     請求項1に記載の送信指向性制御装置。
  5.  前記分波器は、複数の光信号をそれぞれ第一光信号と第二光信号とに分波し、
     前記第一切替スイッチは、前記複数の光信号ごとに、前記第一光信号を複数の端子のいずれかより出力し、
     前記第二切替スイッチは、前記複数の光信号ごとに、前記第二光信号を複数の端子のいずれかより出力し、
     前記重みづけ部は、前記複数の光信号ごとに、前記第一光信号に前記第一軸における位相傾斜を付与し、前記第二光信号に前記第二軸における位相傾斜を付与し、
     前記フォトミキシング部は、前記複数の光信号ごとに、位相傾斜が付与された前記第一光信号と、位相傾斜が付与された前記第二光信号とをフォトミキシングする、
     請求項4に記載の送信指向性制御装置。
  6.  前記第一光信号及び前記第二光信号は、搬送波及び側帯波又は上側帯波及び下側帯波である、
     請求項1に記載の送信指向性制御装置。
  7.  前記分波器は、分配器とSSB(single side-band)変調器を備え、
     前記分配器は、入力される光信号を2つの光信号に分配し、
     前記SSB変調器は、前記2つの光信号のうち1つの光信号を側帯波に変換する、
     請求項6に記載の送信指向性制御装置。
  8.  光信号を第一光信号と第二光信号とに分波する分波ステップと、
     前記第一光信号を複数の端子のいずれかより出力する第一切替ステップと、
     前記第二光信号を複数の端子のいずれかより出力する第二切替ステップと、
     前記第一光信号を、前記第一切替ステップにおいて出力された端子により異なり、空間上のある軸である第一軸における位相傾斜を付与し、前記第二光信号を、前記第二切替ステップにおいて出力された端子により異なり、前記第一軸と直交する第二軸における位相傾斜を付与する重みづけステップと、
     位相傾斜が付与された前記第一光信号と、位相傾斜が付与された前記第二光信号とをフォトミキシングするフォトミキシングステップと、
     を有する送信指向性制御方法。
PCT/JP2022/023694 2022-06-13 2022-06-13 送信指向性制御装置及び送信指向性制御方法 WO2023242930A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023694 WO2023242930A1 (ja) 2022-06-13 2022-06-13 送信指向性制御装置及び送信指向性制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023694 WO2023242930A1 (ja) 2022-06-13 2022-06-13 送信指向性制御装置及び送信指向性制御方法

Publications (1)

Publication Number Publication Date
WO2023242930A1 true WO2023242930A1 (ja) 2023-12-21

Family

ID=89192643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023694 WO2023242930A1 (ja) 2022-06-13 2022-06-13 送信指向性制御装置及び送信指向性制御方法

Country Status (1)

Country Link
WO (1) WO2023242930A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983221A (ja) * 1995-09-18 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> アレイアンテナ用給電回路
JPH09116500A (ja) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> アナログ信号処理回路
JP2004023400A (ja) * 2002-06-14 2004-01-22 Mitsubishi Electric Corp 光制御アレーアンテナ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983221A (ja) * 1995-09-18 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> アレイアンテナ用給電回路
JPH09116500A (ja) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> アナログ信号処理回路
JP2004023400A (ja) * 2002-06-14 2004-01-22 Mitsubishi Electric Corp 光制御アレーアンテナ装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU YUAN, KLAMKIN JONATHAN: "Scalable Integrated Photonics Beamforming Circuits", ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE/INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS 2020 (ACP/IPOC), OPTICA PUBLISHING GROUP, WASHINGTON, D.C., 1 January 2020 (2020-01-01), Washington, D.C., XP093117259, ISBN: 978-1-943580-82-8, DOI: 10.1364/ACPC.2020.T3E.2 *
ORTEGA BEATRIZ; MORA JOSE; CHULIA RUBEN: "Optical Beamformer for 2-D Phased Array Antenna With Subarray Partitioning Capability", IEEE PHOTONICS JOURNAL, IEEE, USA, vol. 8, no. 3, 1 June 2016 (2016-06-01), USA , pages 1 - 9, XP011610050, DOI: 10.1109/JPHOT.2016.2550323 *

Similar Documents

Publication Publication Date Title
EP3400629B1 (en) Transmitting and receiving apparatuses and methods for a phased array antenna
JP3564077B2 (ja) 光制御フェーズドアレイアンテナの位相制御装置および光制御フェーズドアレイアンテナ・システム
WO2019095490A1 (zh) 基于阵列波导光栅的光载无线通信波束赋形装置及其方法
JP4632444B2 (ja) 光制御アレイアンテナ装置
US9748648B2 (en) Distributed feeding device for antenna beamforming
EP1218967A1 (en) Phased array antenna beamformer
CN113451775B (zh) 光控射频相控阵集成控制系统以及波束形成方法
Subbaraman et al. Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna
Ortega et al. Optical beamformer for 2-D phased array antenna with subarray partitioning capability
JP4475592B2 (ja) 光制御型アレーアンテナ装置
Belkin et al. Design and optimization of photonics-based beamforming networks for ultra-wide mm Wave-band antenna arrays
CN114157391A (zh) 波束赋形装置及其波束赋形方法
WO2023242930A1 (ja) 送信指向性制御装置及び送信指向性制御方法
JP7323826B2 (ja) 無線送信システム、無線受信システム、基地局装置、及び無線通信システム、並びに無線送信方法、及び無線受信方法
WO2023242931A1 (ja) 送信指向性制御装置及び送信指向性制御方法
CN116865900A (zh) 一种全光同时多频段多波束相控阵发射机及其方法
WO2023242932A1 (ja) 送信指向性制御装置及び送信指向性制御方法
Vidal et al. Novel photonic true-time-delay beamformer based on the free-spectral-range periodicity of arrayed waveguide gratings and fiber dispersion
WO2023242913A1 (ja) 送信指向性制御装置、および制御方法
WO2023242921A1 (ja) 送信指向性制御装置、送信システム及び送信指向性制御方法
WO2023242920A1 (ja) 受信指向性制御装置及び受信指向性制御方法
JP2005521077A (ja) Awgおよび分散性光媒質の異なるセクションに基づく多重遅延線
WO2022244045A1 (ja) 無線通信方法及び無線通信システム
WO2023145692A1 (ja) Mimo信号処理デバイス及び光無線通信システム
WO2022244057A1 (ja) 無線通信方法及び無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946750

Country of ref document: EP

Kind code of ref document: A1