WO2023241685A1 - 一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品 - Google Patents

一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品 Download PDF

Info

Publication number
WO2023241685A1
WO2023241685A1 PCT/CN2023/100632 CN2023100632W WO2023241685A1 WO 2023241685 A1 WO2023241685 A1 WO 2023241685A1 CN 2023100632 W CN2023100632 W CN 2023100632W WO 2023241685 A1 WO2023241685 A1 WO 2023241685A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
arm
driving member
robotic arm
state
Prior art date
Application number
PCT/CN2023/100632
Other languages
English (en)
French (fr)
Inventor
陈永胜
唐明勇
王兴
鲁白
沈徽
Original Assignee
上海商汤智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海商汤智能科技有限公司 filed Critical 上海商汤智能科技有限公司
Publication of WO2023241685A1 publication Critical patent/WO2023241685A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion

Definitions

  • Embodiments of the present disclosure relate to the field of robots, and in particular, to a robotic arm driving structure, an arm-type robot, a driving method, a storage medium, and a computer program product.
  • the arm robot is a programmable bionic machine with functions similar to human arms. It is widely used in industrial manufacturing, medical treatment, aerospace, entertainment services and other fields.
  • the mechanical arm of the arm robot may interact with the human body during operation. Or collision with obstacles, causing personal injury or mechanical damage, so corresponding human-machine collaboration solutions are needed to protect the human body and the robotic arm.
  • Embodiments of the present disclosure provide a mechanical arm driving structure, an arm-type robot, a driving method, a storage medium and a computer program product. By collecting the working parameters of the driving parts, it is determined whether the mechanical arm has collided, and the way to achieve human-machine collaboration is more convenient. There is no need to set up a dedicated force feedback sensor, thus reducing costs.
  • Embodiments of the present disclosure provide a robotic arm driving structure, including a driving member, a transmission mechanism, a monitoring unit and a control unit.
  • the transmission mechanism is transmission connected between the driving member and the robotic arm and is used to transmit the driving force of the driving member to the robotic arm. , and transmit the external force received by the mechanical arm to the driving part;
  • the monitoring unit is set on the driving part, and the monitoring unit is configured to collect the working parameters of the driving part, and the working parameters change with the external force;
  • the control unit is electrically connected to the driving part and the monitoring unit, and controls The unit is configured to control the driving state of the driving member based on the operating parameters.
  • the driving force is provided by the driving member, and there is a gap between the driving member and the mechanical arm.
  • a transmission mechanism is provided.
  • the transmission mechanism can transmit the driving force generated by the driving member to the robotic arm, thereby driving the movement of the robotic arm.
  • the transmission mechanism can also transmit the external force from the mechanical arm to the driving part.
  • the driving part is provided with a monitoring unit and a control unit that are electrically connected together. The monitoring unit can collect the working parameters of the driving part, and the working parameters follow the above-mentioned external force.
  • the monitoring unit transmits the collected working parameters to the control unit.
  • the control unit can judge whether the mechanical arm is affected by the working parameters based on the working parameters.
  • External force that is, whether the robotic arm collides with the human body or an obstacle, and the control unit is electrically connected to the driving component.
  • the control unit determines that the robotic arm collides based on the working parameters, the control unit controls the driving component to change the driving state, such as pausing the driving component.
  • the driving force output avoids further interaction between the robotic arm and the human body or obstacles, thereby protecting the human body and the robotic arm.
  • the robotic arm driving structure of the present disclosure determines whether the robotic arm collides by collecting the working parameters of the driving parts. , the way to achieve human-machine collaboration is more convenient, and there is no need to set up a dedicated force feedback sensor, thus reducing costs.
  • Embodiments of the present disclosure provide an arm-type robot.
  • the arm-type robot includes a base, a plurality of mechanical arms and a mechanical arm driving structure.
  • the plurality of mechanical arms are rotatably connected in turn to form a mechanical arm group, and the mechanical arm group is close to a machine at one end of the base.
  • the arm is rotatably connected to the base, and multiple robotic arm drive structures and multiple robotic arms are arranged in one-to-one correspondence.
  • the arm-type robot determines whether the robot arm has collided by collecting the working parameters of the driving part through the mechanical arm drive structure, and realizes human-machine collaboration in a more convenient manner without the need to set up a dedicated force feedback sensor, thus reducing the cost of the robot arm. cost.
  • an intelligent module is also included.
  • the mechanical arm driving structure is electrically connected to the intelligent module.
  • the intelligent module is configured to: control the driving part to drive the movement of the robotic arm through the transmission mechanism; monitor the work of the driving part. Parameters; control the driving status of the driving part according to the working parameters.
  • Embodiments of the present disclosure provide a method for driving a robotic arm, which includes the following steps: controlling a driving component to drive the robotic arm to move through a transmission mechanism; monitoring the working parameters of the driving component; judging whether there is a collision in the robotic arm based on the working parameters; and controlling the driving component based on the judgment result. drive status.
  • the mechanical arm driving method provided by the embodiment of the present disclosure can be applied to the arm-type robot of the embodiment of the present disclosure, and therefore has the same technical effect, that is, by collecting the working parameters of the driving part, it is determined whether the mechanical arm collides, thereby realizing human-machine collaboration.
  • the method is more convenient and does not require a dedicated force feedback sensor, thus reducing costs.
  • the driving state includes an enabled state and a disabled state; the robot arm driving method further includes: when the driving member is in the enabled state, controlling the output end of the driving member to drive The mechanical arm moves; when the driving member is in a disabled state, the output end of the driving member is controlled to follow the movement of the mechanical arm.
  • a robotic arm driving method includes: comparing working parameters with preset parameters to determine whether there is a collision with the robotic arm.
  • a robotic arm driving method includes: determining that the robotic arm has a collision when the working parameter is greater than a preset parameter.
  • a method for driving a robotic arm includes: when it is determined that there is a collision with the robotic arm, controlling the driving member to switch from an enabled state to a disabled state.
  • the robotic arm driving method includes: determining whether the collision of the robotic arm ends; and controlling the driving state of the driving member according to whether the collision ends. .
  • the robot arm driving method includes: when the collision ends, controlling the driving member to switch from a disabled state to an enabled state.
  • the robotic arm driving method includes: recording the position parameter of the robotic arm before controlling the driving member to switch from the enabled state to the disabled state; After switching to the enabled state, drive the robotic arm to move to the position recorded by the position parameter.
  • the robotic arm driving method includes: continuously monitoring the driving member to obtain continuous working parameters.
  • the robot arm driving method before the step of comparing the working parameters and the preset parameters, includes: determining the value of the preset parameter based on the performance parameters of the driving component.
  • Embodiments of the present disclosure provide a computer-readable storage medium.
  • Computer-executable instructions are stored on the computer-readable storage medium.
  • the robotic arm driving method of the embodiment of the disclosure is implemented.
  • An embodiment of the present disclosure provides a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the computer program is read by a computer and implements the robot arm driving method of the embodiment of the present disclosure.
  • Figure 1 is a schematic structural diagram of an arm-type robot provided by an embodiment of the present disclosure
  • Figure 2 is a partial cross-sectional view from a first perspective of an arm-type robot provided by an embodiment of the present disclosure
  • Figure 3 is a partial cross-sectional view of an arm-type robot provided by an embodiment of the present disclosure from a second perspective;
  • Figure 4 is a schematic flowchart of a robotic arm driving method provided by an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of a robotic arm driving method provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of a robotic arm driving method provided by an embodiment of the present disclosure
  • Figure 7 is a schematic flowchart of a robotic arm driving method provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic flowchart of a robotic arm driving method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a robotic arm driving method provided by an embodiment of the present disclosure.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • Embodiments of the present disclosure provide an arm-type robot.
  • the arm-type robot is a programmable bionic machine with functions similar to human arms. It is widely used in industrial manufacturing, medical treatment, aerospace, entertainment services and other fields.
  • Industrial mid-arm robots can be used for assembly line production, assembly, spraying, etc.
  • firefighting mid-arm robots can replace humans to perform rescue operations in high-risk environments
  • medical mid-arm robots can assist people with disabilities to grab needed items, etc.
  • arm-type robots can be used for human-machine games, bionic toys, etc.
  • an arm-type robot provided by an embodiment of the present disclosure includes a base 1, a plurality of robotic arms and a plurality of robotic arm drive structures.
  • the plurality of robotic arms are rotatably connected in turn to form a robotic arm group, and the robotic arm group is close to one end of the base 1
  • the robotic arm is rotatably connected to the base 1, and multiple robotic arm drive structures and multiple robotic arms are arranged in one-to-one correspondence.
  • the arm robot is a two-degree-of-freedom arm robot.
  • the two-degree-of-freedom arm robot includes a base 1 and two mechanical arms.
  • the two mechanical arms are a big arm member 2 and a small arm member 3.
  • the first end of the big arm member 2 is rotatably connected to the base 1.
  • the second end of the arm member 2 is rotatably connected to the first end of the small arm member 3.
  • the second end of the small arm member 3 is a free end and is used to install an actuator 7.
  • the actuator 7 can be a mechanical claw, a suction cup, etc.
  • the two-degree-of-freedom arm robot is equipped with two sets of mechanical arm drive structures.
  • the two sets of mechanical arm drive structures are the big arm drive structure 4 and the small arm drive structure 5.
  • the big arm drive structure 4 is provided between the big arm member 2 and the base 1 and is used to drive the movement of the big arm member 2.
  • the small arm driving structure 5 is provided between the small arm member 3 and the big arm member 2 and is used to drive the movement of the small arm member 3.
  • an intelligent module 6 is also included.
  • the robotic arm driving structure is electrically connected to the intelligent module 6.
  • the intelligent module 6 is configured to: control the driving parts in the robotic arm driving structure to be driven through the transmission mechanism.
  • the robot arm moves; the intelligent module 6 is also configured to monitor the working parameters of the driving part; and control the driving state of the driving part according to the working parameters.
  • the intelligent module 6 determines whether the robot arm has collided by collecting the working parameters of the driving parts, making human-machine collaboration more convenient and eliminating the need to set up a dedicated force feedback sensor, thus reducing costs.
  • the intelligent module 6 can also be configured for planning The movement path of the robotic arm, control of movement speed, etc.
  • the embodiments of the present disclosure do not limit the working parameters and driving status.
  • the working parameters are related to the stress state of the mechanical arm.
  • the working parameters can be used as a basis for judging whether a collision occurs in the mechanical arm.
  • the working parameters are different according to the type of driving parts. , may be parameters such as voltage, current, torque, etc., and the working parameter and the external force can be positively correlated, or the two can be negatively correlated.
  • the working parameter is the working voltage of the driving part, and the working voltage and the external force are positively correlated.
  • the intelligent module 6 determines that the robot arm collides with the human body or an obstacle.
  • the intelligent module 6 determines that the robotic arm collides with the human body or an obstacle, the intelligent module 6 controls the driving part to change the working state, for example, suspends the driving force output of the driving part, thereby protecting the human body and the robotic arm.
  • human-machine collaboration is achieved by installing a six-dimensional force sensor on the base or execution end of an arm robot.
  • the force sensor collects the force on the robotic arm and transmits it to the control unit for processing. Analysis, and then the control unit controls the robot arm to stop moving based on the analysis results.
  • the above-mentioned human-machine collaboration solution requires setting up force sensors and analyzing the force.
  • the implementation method is complicated, and setting up force sensors results in high costs.
  • the robotic arm driving structure may be the above-mentioned big arm driving structure 4 or small arm driving structure 5.
  • the robotic arm driving structure includes a driving member, Transmission mechanism, monitoring unit and control unit, the driving part is the boom drive motor 41 and the small arm drive motor 51 shown in Figures 2 and 3, and the transmission part is the boom transmission mechanism 42 shown in Figures 2 and 3 and the small arm transmission mechanism 52.
  • the monitoring unit and the control unit are integrated in the intelligent module 6.
  • the transmission mechanism is transmission connected between the driving part and the robotic arm, and is used to transmit the driving force of the driving part to the robotic arm, and to transmit the driving force of the robotic arm.
  • the external force received is transmitted to the driving part;
  • the monitoring unit in the intelligent module 6 is set on the driving part, and the monitoring unit in the intelligent module 6 is configured to collect the working parameters of the driving part, and the working parameters change with the external force;
  • the control unit in the intelligent module 6 Electrically connected to the driving part and the monitoring unit in the intelligent module 6, the control unit in the intelligent module 6 is configured to control the driving state of the driving part according to the working parameters.
  • the boom drive structure 4 provided by the embodiment of the present disclosure provides driving force by a boom drive motor 41.
  • a boom transmission mechanism 42 is provided between the boom drive motor 41 and the boom member 2.
  • the boom transmission mechanism 42 can drive the boom.
  • the driving force generated by the arm drive motor 41 is transmitted to the boom member 2 to drive the movement of the boom member 2.
  • the boom transmission mechanism 42 can also transmit the external force from the boom member 2 to the boom drive motor 41 .
  • the boom driving motor 41 is provided with a monitoring unit and a control unit integrated in the intelligent module 6.
  • the monitoring unit in the intelligent module 6 can collect the working parameters of the boom driving motor 41, and the working parameters follow the above-mentioned external force changes.
  • the working parameters of the boom driving motor 41 will change accordingly.
  • the working parameter is the working current of the boom driving motor 41, and the working current will It increases as the external force exerted by the human body or obstacles on the boom member 2 increases.
  • the monitoring unit in the intelligent module 6 transmits the collected working parameters to the control unit in the intelligent module 6.
  • the control unit in the intelligent module 6 can determine whether the boom member 2 is subject to external force based on the working parameters, that is, the boom member 2 Whether it collides with the human body or an obstacle, for example, when the operating current of the boom drive motor 41 exceeds the preset current, the intelligent The control unit in module 6 determines that the boom member 2 has encountered a collision.
  • control unit in the intelligent module 6 is electrically connected to the boom drive motor 41.
  • the control unit in the intelligent module 6 determines that the boom member 2 collides according to the working parameters
  • the control unit in the intelligent module 6 controls the boom drive.
  • the motor 41 changes the driving state, for example, suspends the driving force output of the boom driving motor 41 to avoid further interaction between the boom component 2 and the human body or obstacles, thereby protecting the human body and the boom component 2 .
  • the drive structure of the boom member 2 in the embodiment of the present disclosure determines whether the boom member 2 has collided by collecting the working parameters of the boom drive motor 41, making it more convenient to realize human-machine collaboration without the need to set up a dedicated force feedback sensor. Thus reducing costs.
  • the driving state includes an enabled state and a disabled state
  • the control unit in the intelligent module 6 is configured to: when the driving member is in the enabled state, control the driving member The output end drives the movement of the robotic arm; when the driving member is in a disabled state, the output end of the driving member is controlled to follow the movement of the robotic arm.
  • the driving member when the driving member is in the enabled state, the driving member outputs normally.
  • the driving member in the enabled state drives the transmission mechanism to move and then drives the mechanical arm to move. That is, the control unit in the intelligent module 6 controls the output end of the driving member.
  • the end follows the movement of the robotic arm.
  • the external force exerted by the human body or obstacles on the robotic arm can drive the robotic arm to move freely, causing the robotic arm to avoid the human body or obstacles, thus protecting the human body.
  • the output shaft of the driving part follows the movement of the robotic arm.
  • the robot arm can move freely and external forces are removed, reducing the possibility of damage to the robot arm due to force.
  • the boom drive motor 41 in the enabled state causes its output shaft to rotate under the action of electromagnetism, and drives the boom member 2 to move through the boom transmission mechanism 42.
  • the boom in the disabled state The drive motor 41 is shut down and the braking device is closed, and the rotor of the boom drive motor 41 is in a freely rotating state, so that the output end of the boom drive motor 41 can follow the movement of the boom member 2, and the free movement of the boom member 2 is The human body or obstacles are avoided to protect the human body.
  • the output shaft of the boom drive motor 41 moves freely with the boom member 2, and the external force is removed, thereby reducing the possibility of the boom member 2 being damaged by force.
  • the working parameters are positively related to the external force
  • the control unit in the intelligent module 6 stores preset parameters; when the working parameters are higher than the preset parameters, the intelligent module 6
  • the control unit in the intelligent module 6 determines that the robot arm collides with the human body, etc., and the control unit in the intelligent module 6 controls the driver to switch from the enabled state to the disabled state.
  • the robot arm promptly avoids the human body, etc., and is free through the output end of the driver. Movement removes external forces and protects the human body and robotic arms.
  • the embodiment of the present disclosure does not limit the type of the driving member.
  • the driving member outputs a linear driving force
  • the driving member may be a hydraulic cylinder, an electric telescopic rod, etc.
  • the driving member outputs a rotational torque
  • the driving member may be an angle cylinder, a motor, etc., where the motor may be a servo motor, a stepper motor, etc.
  • the driving member is a stepper motor
  • the speed of the stepper motor is low, so the required transmission ratio of the transmission mechanism is also low, making the reverse driving capability of the transmission mechanism better.
  • Good that is, it is easier to transmit the external force received when the robot arm collides to the driving part.
  • the stepper motor will lose step and slip, thereby removing the external force and protecting the stepper motor.
  • the holding torque of the stepper motor used to drive the boom member 2 is 0.3 Newton ⁇ meter (N ⁇ m), and the length of the boom member 2 is 0.28 meters (metre, m), the length of the small arm member 3 is 0.215m.
  • the small arm member 3 is folded relative to the big arm member 2 and moves with the big arm member 2.
  • the interaction force generated by the collision between the arm robot and the human body is the largest. Calculation shows that the force is 5 Newtons (N), that is, when the force during a collision exceeds 5N, the stepper motor used to drive the boom member 2 will lose step and slip, and the external force will be removed and the collision will occur.
  • the maximum force is within the safe range of 0N to 150N for the collision force between the arm robot and the human body.
  • the maximum force generated when the robotic arm of the embodiment of the present disclosure comes into contact with the human body is 5N, which is far less than the value stipulated in the safety standards. , therefore the safety during human-computer interaction is greatly improved.
  • the working current of the stepper motor can be selected as the working parameter.
  • the output of the stepper motor is blocked, and the working parameters of the stepper motor are also affected. That is, the operating current will increase.
  • the control unit in the intelligent module 6 determines that a collision has occurred between the robotic arm and the human body.
  • the control unit controls the driving part to switch from the enabled state to the disabled state.
  • the robotic arm promptly avoids the human body and the like, and allows the motor output shaft to move freely to remove external forces and protect the human body and the robotic arm.
  • the robot arm driving structure also includes a position recording module.
  • the big arm driving structure 4 includes a position recording module
  • the small arm driving structure 5 also includes a position recording module.
  • the position recording module is configured to record the position parameters of the robotic arm.
  • the boom drive motor 41 switches from the enabled state to the disabled state
  • the boom drive motor 41 switches from the enabled state to the disabled state.
  • the position recording module in structure 4 records the current position parameters of the boom member 2, where the position parameters may be the coordinates of the boom member 2 relative to the base 1.
  • the position recording module records the relative position coordinates of the robotic arm; for another example, the position recording module takes pictures of the current robotic arm and obtains the position of the robotic arm through picture recognition.
  • the boom drive structure 4 is taken as an example.
  • the position recording module of the boom drive structure 4 includes an encoder, and the encoder is integrated into the driving component such as a stepper motor, that is, the encoder is configured In the boom drive motor 41, the position information of the robotic arm can be easily obtained. After the external force is removed, the boom drive motor 41 restores the boom member 2 to the previous position according to the position information obtained by the encoder, so that the boom Component 2 continues to move to the target position.
  • the embodiments of the present disclosure do not limit the transmission mechanism.
  • the transmission mechanism may be a gear mechanism, a worm gear, a chain transmission mechanism, a belt transmission mechanism, etc.
  • the transmission mechanism includes a first transmission member, a second transmission member and a third transmission member that are sequentially connected to each other.
  • the first transmission member is fixedly connected to the output end of the driving member
  • the third transmission member is fixedly connected to the output end of the driving member.
  • the second transmission member is connected between the first transmission member and the third transmission member, and the third transmission member is used to fixedly connect the mechanical arm.
  • the transmission ratio of the first transmission member and the second transmission member does not exceed 5:1.
  • the smaller transmission force makes the reverse driving capability of the transmission rod mechanism better, and more It is beneficial for the transmission mechanism to transmit the external force received when the mechanical arm collides to the driving part.
  • the transmission mechanism is a synchronous belt mechanism.
  • belt transmission There are many types of belt transmission. According to different transmission principles, they are divided into friction belt transmission and synchronous belt transmission. Friction belt transmission Transmission relies on the friction between the belt and the pulley.
  • the synchronous belt is provided with meshing teeth on the belt and the pulley, and the transmission is performed through the meshing of the teeth. Therefore, the synchronous belt transmission has higher accuracy.
  • synchronous belt transmission is selected as the transmission mechanism.
  • the first transmission member and the third transmission member in the transmission mechanism are both pulleys, the second transmission member is a synchronous belt, and the second transmission member is a pulley. It is sleeved on the first transmission member and the third transmission member, and the radial size of the first transmission member is smaller than the radial size of the third transmission member.
  • an arm-type robot in a possible implementation of the embodiment of the present disclosure, includes a big arm member 2 and a small arm member 3, and two sets of mechanical arm driving structures are provided correspondingly, wherein the big arm driving structure 4 is provided between the big arm member 2 and the base 1 and is used to drive the movement of the big arm member 2.
  • the small arm driving structure 5 is provided between the small arm member 3 and the big arm member 2 and is used to drive the movement of the small arm member 3.
  • the boom driving structure 4 includes a boom driving motor 41 and a boom transmission mechanism 42.
  • the boom transmission mechanism 42 includes a boom driving pulley 421, a boom driven pulley 422, a boom rotating shaft 423, and a boom synchronization device.
  • Belt 424 in which the radial size of the boom driving pulley 421 is smaller than the radial size of the boom driven pulley 422, the boom driving motor 41 is fixed on the base 1, and the boom driving pulley 421 is fixed on the boom driving motor On the output shaft of 41, the big arm driven pulley 422 is fixed on the boom shaft 423.
  • One end of the boom shaft 423 is rotatably connected to the base 1 through bearings, etc.
  • the other end of the boom shaft 423 is fixedly connected to the first end of the boom member 2.
  • the boom timing belt 424 One end is sleeved on the boom driving pulley 421, and the other end is sleeved on the boom driven pulley 422.
  • the boom driving motor 41 drives the boom driving pulley 421 to rotate, and the boom driving pulley 421 is synchronized by the boom.
  • the belt 424 drives the boom driven pulley 422 to rotate, and the boom driven pulley 422 drives the boom member 2 to rotate through the boom rotating shaft 423, so that the second end of the boom member 2 moves to different positions.
  • the arm drive structure 5 includes an arm drive motor 51 and an arm transmission mechanism 52.
  • the arm transmission mechanism 52 includes an arm driving pulley 521, an arm driven pulley 522, an arm rotating shaft 523, and an arm synchronous belt 524.
  • the radial size of the forearm driving pulley 521 is smaller than the radial size of the forearm driven pulley 522.
  • the forearm drive motor 51 is fixed on the first end of the big arm member 2, and the forearm driving pulley 521 is fixed on the small arm driven pulley 522.
  • the small arm driven pulley 522 is fixed on the small arm rotating shaft 523.
  • One end of the small arm rotating shaft 523 and the big arm member 2 are rotatably connected through bearings, etc., and the other end of the small arm rotating shaft 523 is fixed.
  • one end of the forearm synchronous belt 524 is sleeved on the forearm driving pulley 521, and the other end is sleeved on the forearm driven pulley 522.
  • the forearm drive motor 51 drives the forearm.
  • the arm driving pulley 521 rotates, the forearm driving pulley 521 drives the forearm driven pulley 522 to rotate through the forearm synchronous belt 524, and the forearm driven pulley 522 drives the forearm member 3 to rotate through the forearm rotating shaft 523, so that The second end of the arm member 3 moves to a different position.
  • the boom rotating shaft 423 and the small arm rotating shaft 523 can be used as rotating shafts or transmission shafts.
  • the boom member 2 and the base 1 are rotatably connected through the boom rotating shaft 423
  • the small arm member 3 and the boom member 2 are rotatably connected through the arm rotating shaft 523.
  • the boom rotating shaft 423 and the small arm rotating shaft 523 bear both torque and bending moment; when the big arm rotating shaft 423 and the small arm rotating shaft 523 are used as transmission shafts Bottom, the big arm member 2 and the base 1 are rotatably connected through bearings, etc., the big arm member 2 is directly supported by the base 1, the small arm member 3 and the big arm member 2 are rotatably connected through bearings, etc., and the small arm member 3 is supported by the big arm.
  • Component 2 provides direct support, and the small arm rotating shaft 523 and the big arm rotating shaft 423 only bear torque.
  • the embodiment of the present disclosure does not limit the structures of the base 1, the boom member 2 and the small arm member 3.
  • the boom member 2 has a shell structure
  • the small arm driving structure 5 is provided on the shell of the big arm member 2.
  • the small arm component 3 is also a shell structure, which can not only reduce the weight of the robotic arm and reduce the required driving power, but also provide protection for other internal components.
  • the embodiment of the present disclosure does not limit the layout of the boom driving structure 4 and the small arm driving structure 5.
  • the boom driving motor 41 is provided near the base 1 On one side of the boom member 2, the output shaft of the boom drive motor 41 runs downward through the base 1, the boom drive pulley 421 and the boom synchronous belt 424 They are all arranged on the side of the base 1 away from the boom driving motor 41.
  • the output shaft of the small arm driving motor 51 is coaxially arranged with the boom rotating shaft 423.
  • the small arm driving motor 51 is arranged on the side of the boom member 2 away from the base 1. .
  • the transmission mechanism also includes The tensioner wheel is against the synchronous belt to tighten the synchronous belt to ensure the normal transmission of the synchronous belt and reduce the occurrence of slipping.
  • the boom transmission mechanism 42 includes a boom tensioning wheel 425.
  • the boom tensioning wheel 425 is arranged along the boom synchronous belt 424.
  • the arm tensioning wheel 425 squeezes both sides of the arm timing belt 424 toward the middle.
  • the arm transmission mechanism 52 includes the arm tensioning wheel 525.
  • the arm tensioning wheel 525 is arranged along the line of the arm timing belt 524, and
  • the forearm tensioning wheel 525 is arranged at a position where the forearm timing belt 524 is close to the forearm driven wheel.
  • embodiments of the disclosure provide a robotic arm driving method, which can be applied to the arm-type robot and the robotic arm driving structure provided by the embodiment of the disclosure.
  • the execution subject of the robotic arm driving method is the control unit in the above-mentioned intelligent module 6 .
  • the robotic arm driving method includes the following steps:
  • S401 Control the driving part to drive the movement of the robotic arm through the transmission mechanism
  • the working parameters can be the working current, working voltage, working torque and other parameters of the driving part.
  • the detection of the working parameters can be obtained through sensors set on the driving part such as the motor, or by collecting and analyzing the operating parameters of the motor driver. Obtaining, determining whether there is a collision, and controlling the driving member can be achieved with reference to the above embodiments of the robotic arm driving structure.
  • the driving state includes an enabled state and a disabled state; the robot arm driving method further includes: when the driving member is in the enabled state, controlling the output end of the driving member to drive The mechanical arm moves; when the driving member is in a disabled state, the output end of the driving member is controlled to follow the movement of the mechanical arm.
  • the robotic arm driving method includes step S501: comparing working parameters and preset parameters to determine whether there is a collision with the robotic arm. It should be noted that step S403 of determining whether there is a collision with the robotic arm according to the working parameters may adopt the implementation of step S501.
  • the preset parameters are parameters set according to safety requirements.
  • the preset parameter can be 0.3N ⁇ m.
  • the working parameter is greater than 0.3N ⁇ m, it is judged that the robot arm has a collision.
  • step S501 when the working parameter is greater than the preset In the case of parameters, it is determined that there is a collision with the robotic arm. If the working parameters are less than or equal to the preset parameters, it is determined that there is no collision with the robotic arm. If there is no collision with the robotic arm, steps S402 and S501 are executed in a loop.
  • the robotic arm driving method includes step S502: when it is determined that there is a collision with the robotic arm, control the driving member to switch from the enabled state to the disabled state, In order to control the output end of the driving part to follow the movement of the robotic arm, thereby protecting the human body and the robotic arm.
  • step S404 of controlling the driving state of the driving member according to the judgment result may adopt the implementation of step S502.
  • the robot arm driving method includes:
  • S601 Determine whether the collision of the robotic arm is over
  • S602 Control the driving state of the driving member according to whether the collision ends.
  • the embodiment of the present disclosure does not limit the determination method in step S601 of determining whether the collision of the robotic arm is over, such as visual recognition, human judgment, etc.
  • the control unit determines whether the collision object is separated from the robotic arm through program analysis, and the mechanical Whether the arm will collide again after it resumes motion;
  • the driving component is a stepper motor
  • the control unit is the feedback system of the motor itself
  • the working parameter is the locked-rotor torque of the motor
  • the preset The parameter is the holding torque of the motor.
  • step S601 can adopt the implementation of step S701.
  • the step S701 of determining whether the collision of the robotic arm is over includes two results, namely, determining whether the collision of the robotic arm is over. , or it is determined that the robot arm collision has not ended. If it is determined that the robot arm collision has ended, step S701 is repeatedly executed.
  • the robot arm driving method includes step S702: when the collision ends, control the driving member to switch from a disabled state to an enabled state. It should be noted that step S602 of controlling the driving state of the driving member according to whether the collision ends may adopt the implementation of step S702.
  • step S501 of comparing the working parameters with the preset parameters to determine whether there is a collision with the robotic arm the process includes:
  • S801 Determine the value of the preset parameter based on the performance parameters of the driver.
  • the performance parameters of the driving part can be the power parameters, current parameters, voltage parameters, torque, driving force parameters, etc. of the driving part.
  • the preset parameter can be set to 5N. In the working parameters That is, when the driving force exceeds 5N, it can be determined that the robot arm has collided.
  • the robot arm driving method includes: before the driving member switches from the enabled state to the disabled state step S502:
  • S902 Drive the robotic arm to move to the position recorded by the position parameter.
  • the position parameter may be the coordinate of the boom member 2 relative to the base 1.
  • the boom drive motor 41 changes from the enabled state to the Switch to the disabled state, and the boom member 2 moves with the external force.
  • the boom drive motor 41 switches from the disabled state to the enabled state.
  • the boom member 2 is at the position corresponding to the second coordinate.
  • the driving motor 41 drives the boom member 2 to move from the position corresponding to the second coordinate to the position corresponding to the first coordinate, thereby returning the boom member 2 to its original position.
  • the robotic arm driving method includes: continuously monitoring the driving member to obtain continuous operating parameters.
  • the writing order of each step does not mean a strict execution order and does not constitute any limitation on the implementation process.
  • the specific execution order of each step should be based on its function and possible The internal logic is determined.
  • the robotic arm driving structure, robotic arm, driving method, storage medium and computer program product provided by the embodiments of the present disclosure can determine whether the robotic arm has collided by collecting the working parameters of the driving part, such as collecting the operation of the stepper motor of the robotic arm.
  • the driving part is controlled to enter a disabled state, the robotic arm promptly avoids the human body, etc., and allows the output shaft of the stepper motor to move freely.
  • the external force is removed to protect the human body and the robotic arm, improving their safety.
  • this method of human-machine collaboration is easier to implement without the need to set up a dedicated force feedback sensor, thus reducing costs.
  • modules integrated in the embodiments of the present application are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the computer-readable storage medium can be a volatile storage medium or a volatile storage medium.
  • Non-volatile storage media are examples of non-volatile storage media.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects.
  • embodiments of the present application may employ programs implemented on one or more computer-readable storage media embodying computer-executable instructions therein.
  • storage media include U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk storage, CD-ROM, optical memory, etc. .
  • embodiments of the present disclosure also provide a computer-readable storage medium in which computer-executable instructions are stored.
  • the steps in the robot arm driving method of the embodiment of the present disclosure are implemented.
  • the processor It can be the control unit in the above-mentioned intelligent module 6.
  • inventions of the present disclosure provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the computer program is read by a computer and implements the robotic arm driving method of the embodiment of the disclosure.

Abstract

一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品,该机械臂驱动结构包括驱动件、传动机构、监测单元和控制单元,传动机构传动连接在驱动件和机械臂之间,用于将驱动件的驱动力传递至机械臂,以及将机械臂受到的外力传递至驱动件;监测单元设置在驱动件上,监测单元配置为采集驱动件的工作参数,工作参数跟随外力变化;控制单元电联接于驱动件和监测单元,控制单元配置为根据工作参数控制驱动件的驱动状态,该机械臂驱动结构用于驱动机械臂运动。

Description

一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品
相关申请的交叉引用
本公开实施例基于申请号为202210682955.4、申请日为2022年06月16、申请名称为“一种机械臂驱动结构、臂型机器人及驱动方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开实施例涉及机器人领域,尤其涉及一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品。
背景技术
臂型机器人是一种可编程的,具有类似人体手臂功能的仿生机械,广泛应用于工业制造、医学治疗、航空航天、娱乐服务等领域,臂型机器人的机械臂在运行过程中可能会与人体或障碍物碰撞,造成人身伤害或机械损坏,因此需要相应的人机协作方案保护人体和机械臂。
发明内容
本公开实施例提供一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品,通过采集驱动件工作参数的方式判断机械臂是否发生碰撞,实现人机协作的方式更加便捷,且无需设置专用的力反馈传感器,从而降低了成本。
本公开实施例提供一种机械臂驱动结构,包括驱动件、传动机构、监测单元和控制单元,传动机构传动连接在驱动件和机械臂之间,用于将驱动件的驱动力传递至机械臂,以及将机械臂受到的外力传递至驱动件;监测单元设置在驱动件上,监测单元配置为采集驱动件的工作参数,工作参数跟随外力变化;控制单元电联接于驱动件和监测单元,控制单元配置为根据工作参数控制驱动件的驱动状态。
本公开实施例提供的机械臂驱动结构,由驱动件提供驱动力,驱动件和机械臂之间 设置有传动机构,传动机构可以将驱动件产生的驱动力传递到机械臂,从而驱动机械臂运动,而在机械臂碰撞人体或障碍物的情况下,人体或障碍物会施加给机械臂外力,传动机构也可以将该外力从机械臂传递至驱动件,此外,驱动件上设置有电联接在一起的监测单元和控制单元,监测单元可以采集驱动件的工作参数,该工作参数跟随上述的外力变化,在传动机构将外力传递到驱动件的情况下,驱动件的工作参数会发生相应变化,监测单元将采集到的工作参数传输至控制单元,控制单元根据工作参数即可判断机械臂是否受到外力,也即机械臂是否碰撞人体或障碍物,且控制单元电联接于驱动件,在控制单元根据工作参数判定机械臂发生碰撞的情况下,控制单元控制驱动件改变驱动状态,例如暂停驱动件的驱动力输出,避免机械臂和人体或障碍物的进一步相互作用,从而对人体和机械臂进行了保护,本公开的机械臂驱动结构,通过采集驱动件工作参数的方式判断机械臂是否发生碰撞,实现人机协作的方式更加便捷,且无需设置专用的力反馈传感器,从而降低了成本。
本公开实施例提供一种臂型机器人,该臂型机器人包括底座、多个机械臂和机械臂驱动结构,多个机械臂依次可旋转连接形成机械臂组,且机械臂组靠近底座一端的机械臂可旋转连接于底座,多个机械臂驱动结构和多个机械臂一一对应设置。
本公开实施例提供的臂型机器人,通过机械臂驱动结构采集驱动件工作参数的方式判断机械臂是否发生碰撞,实现人机协作的方式更加便捷,且无需设置专用的力反馈传感器,从而降低了成本。
在本公开实施例的一种可能的实现方式中,还包括智能模块,机械臂驱动结构电联接于智能模块,智能模块配置为:控制驱动件通过传动机构驱动机械臂运动;监测驱动件的工作参数;根据工作参数控制驱动件的驱动状态。
本公开实施例提供一种机械臂驱动方法,包括以下步骤:控制驱动件通过传动机构驱动机械臂运动;监测驱动件的工作参数;根据工作参数判断机械臂是否存在碰撞;根据判断结果控制驱动件的驱动状态。
本公开实施例提供的机械臂驱动方法,可应用于本公开实施例的臂型机器人,因此具有相同的技术效果,即通过采集驱动件工作参数的方式判断机械臂是否发生碰撞,实现人机协作的方式更加便捷,且无需设置专用的力反馈传感器,从而降低了成本。
在本公开实施例的一种可能的实现方式中,驱动状态包括使能状态和失能状态;机械臂驱动方法还包括:在驱动件处于使能状态的情况下,控制驱动件的输出端驱动机械臂运动;在驱动件处于失能状态的情况下,控制驱动件的输出端跟随机械臂运动。
在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括:将工作参数和预设参数进行大小比较,判断机械臂是否存在碰撞。
在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括:在工作参数大于预设参数的情况下,判定机械臂存在碰撞。
在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括:在判定机械臂存在碰撞的情况下,控制驱动件由使能状态切换为失能状态。
在本公开实施例的一种可能的实现方式中,在控制驱动件为失能状态的步骤之后,机械臂驱动方法包括:判断机械臂的碰撞是否结束;根据碰撞是否结束控制驱动件的驱动状态。
在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括:在碰撞结束的情况下,控制驱动件由失能状态切换为使能状态。
在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括:在控制驱动件由使能状态切换为失能状态之前,记录机械臂的位置参数;在控制驱动件由失能状态切换为使能状态之后,驱动机械臂运动至位置参数所记录的位置。
在本公开实施例的一种可能的实现方式中,在监测驱动件的工作参数的步骤中,机械臂驱动方法包括:对驱动件进行持续监测,得到连续的工作参数。
在本公开实施例的一种可能的实现方式中,在将工作参数和预设参数进行大小比较的步骤之前,机械臂驱动方法包括:根据驱动件的性能参数确定预设参数的值。
本公开实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机可执行指令,计算机可执行指令被处理器执行时实现本公开实施例的机械臂驱动方法。
本公开实施例提供一种计算机程序产品,计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,计算机程序被计算机读取并实现本公开实施例的机械臂驱动方法。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图进行说明,此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1为本公开实施例提供的一种臂型机器人的结构示意图;
图2为本公开实施例提供的一种臂型机器人在第一视角下的局部剖切图;
图3为本公开实施例提供的一种臂型机器人在第二视角下的局部剖切图;
图4为本公开实施例提供的一种机械臂驱动方法的流程示意图;
图5为本公开实施例提供的一种机械臂驱动方法的流程示意图;
图6为本公开实施例提供的一种机械臂驱动方法的流程示意图;
图7为本公开实施例提供的一种机械臂驱动方法的流程示意图;
图8为本公开实施例提供的一种机械臂驱动方法的流程示意图;
图9为本公开实施例提供的一种机械臂驱动方法的流程示意图。
附图标记:
1-底座;2-大臂构件;3-小臂构件;4-大臂驱动结构;41-大臂驱动电机;42-大臂传动机构;421-大臂主动带轮;422-大臂从动带轮;423-大臂转轴;424-大臂同步带;425-大臂张紧轮;5-小臂驱动结构;51-小臂驱动电机;52-小臂传动机构;521-小臂主动带轮;522-小臂从动带轮;523-小臂转轴;524-小臂同步带;525-小臂张紧轮;6-智能模块;7-执行器。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成 冲突就可以相互结合。
本公开实施例提供了一种臂型机器人,臂型机器人是一种可编程的,具有类似人体手臂功能的仿生机械,广泛应用于工业制造、医学治疗、航空航天、娱乐服务等领域,例如在工业中臂型机器人可以用作流水线生产,进行装配、喷涂等工作;在消防中臂型机器人可以代替人工在高危环境下实施救援等;医疗中臂型机器人可以辅助残障人士抓取所需物品等;娱乐生活中臂型机器人可用于人机对弈,仿生玩具等。
参照图1,本公开实施例提供的臂型机器人包括底座1、多个机械臂和多个机械臂驱动结构,多个机械臂依次可旋转连接形成机械臂组,且机械臂组靠近底座1一端的机械臂可旋转连接于底座1,多个机械臂驱动结构和多个机械臂一一对应设置。
需要说明的是,本公开实施例对臂型机器人的自由度不作不限制,参照图2和图3,在本公开实施例一种可能的实现方式中,臂型机器人为两自由度臂型机器人,该两自由度臂型机器人包括底座1和两个机械臂,两个机械臂分别为大臂构件2和小臂构件3,大臂构件2的第一端可旋转连接在底座1上,大臂构件2的第二端与小臂构件3的第一端可旋转连接,小臂构件3的第二端为自由端,用于安装执行器7,执行器7可以为机械爪、吸盘等。
相应地,两自由度臂型机器人设置有两套机械臂驱动结构,参照图2和图3,两套机械臂驱动结构分别为大臂驱动结构4和小臂驱动结构5,其中大臂驱动结构4设置在大臂构件2和底座1之间,用于驱动大臂构件2运动,小臂驱动结构5设置在小臂构件3和大臂构件2之间,用于驱动小臂构件3运动。
在本公开实施例的一种可能的实现方式中,还包括智能模块6,机械臂驱动结构电联接于智能模块6,智能模块6配置为:控制机械臂驱动结构中的驱动件通过传动机构驱动机械臂运动;智能模块6还配置为监测驱动件的工作参数;根据工作参数控制驱动件的驱动状态。智能模块6通过采集驱动件工作参数的方式判断机械臂是否发生碰撞,实现人机协作的方式更加便捷,且无需设置专用的力反馈传感器,从而降低了成本,此外智能模块6还可配置为规划机械臂的运动路径,控制运动速度等。
本公开实施例对工作参数和驱动状态不作限制,工作参数和机械臂的受力状态有关,工作参数可作为判断机械臂是否发生碰撞依据,在本公开实施例中,工作参数根据驱动件类型不同,可能为电压、电流、转矩等参数,且工作参数和外力两者可以正相关,两者也可以负相关,例如,工作参数为驱动件的工作电压,工作电压和外力呈正相关,当驱动件的工作电压超过预设电压时,智能模块6断定机械臂和人体或障碍物发生碰撞。
在智能模块6判定机械臂和人体或障碍物发生碰撞的情况下,智能模块6控制驱动件改变工作状态,例如暂停驱动件的驱动力输出,从而对人体和机械臂进行了保护。
相关技术中通过在臂型机器人底座或执行端安装六维力传感器的方式实现人机协作,机械臂接触到人体或障碍物时,力传感器对机械臂受力进行采集,并传至控制单元进行分析,然后控制单元根据分析结果控制机械臂停止运动。上述人机协作方案需要设置力传感器,并对受力进行分析,实现方式复杂,且设置力传感器导致成本较高。
因此,本公开实施例提供一种机械臂驱动结构,该机械臂驱动结构可以为上述大臂驱动结构4或小臂驱动结构5,参照图2和图3,该机械臂驱动结构包括驱动件、传动机构、监测单元和控制单元,驱动件即图2和图3中所示的大臂驱动电机41和小臂驱动电机51,传动件即图2和图3中所示的大臂传动机构42和小臂传动机构52,监测单元和控制单元则集成在智能模块6中,传动机构传动连接在驱动件和机械臂之间,用于将驱动件的驱动力传递至机械臂,以及将机械臂受到的外力传递至驱动件;智能模块6中的监测单元设置在驱动件上,智能模块6中的监测单元配置为采集驱动件的工作参数,工作参数跟随外力变化;智能模块6中的控制单元电联接于驱动件和智能模块6中的监测单元,智能模块6中的控制单元配置为根据工作参数控制驱动件的驱动状态。
由于小臂驱动结构5的作用机理与大臂驱动结构4的作用机理相同,为便于描述,后续以大臂驱动结构4为例作说明。
本公开实施例提供的大臂驱动结构4,由大臂驱动电机41提供驱动力,大臂驱动电机41和大臂构件2之间设置有大臂传动机构42,大臂传动机构42可以将大臂驱动电机41产生的驱动力传递到大臂构件2,从而驱动大臂构件2运动,而在大臂构件2碰撞人体或障碍物的情况下,人体或障碍物会施加给大臂构件2外力,大臂传动机构42也可以将该外力从大臂构件2传递至大臂驱动电机41。
此外,大臂驱动电机41上设置有集成于智能模块6中的监测单元和控制单元,智能模块6中的监测单元可以采集大臂驱动电机41的工作参数,该工作参数跟随上述的外力变化,在大臂传动机构42将外力传递到大臂驱动电机41的情况下,大臂驱动电机41的工作参数会发生相应变化,例如,工作参数为大臂驱动电机41的工作电流,该工作电流会随着人体或障碍对大臂构件2的施加的外力增大而增大。
智能模块6中的监测单元将采集到的工作参数传输至智能模块6中的控制单元,智能模块6中的控制单元根据工作参数即可判断大臂构件2是否受到外力,也即大臂构件2是否碰撞人体或障碍物,例如,当大臂驱动电机41的工作电流超过预设电流时,智能 模块6中的控制单元判定大臂构件2遭遇碰撞。
且智能模块6中的控制单元电联接于大臂驱动电机41,在智能模块6中的控制单元根据工作参数判定大臂构件2发生碰撞的情况下,智能模块6中的控制单元控制大臂驱动电机41改变驱动状态,例如暂停大臂驱动电机41的驱动力输出,避免大臂构件2和人体或障碍物的进一步相互作用,从而对人体和大臂构件2进行了保护。
本公开实施例的大臂构件2驱动结构,通过采集大臂驱动电机41工作参数的方式判断大臂构件2是否发生碰撞,实现人机协作的方式更加便捷,且无需设置专用的力反馈传感器,从而降低了成本。
在本公开实施例的一种可能的实现方式中,驱动状态包括使能状态和失能状态;智能模块6中的控制单元配置为:在驱动件处于使能状态的情况下,控制驱动件的输出端驱动机械臂运动;在驱动件处于失能状态的情况下,控制驱动件的输出端跟随机械臂运动。
具体地,在驱动件处于使能状态的情况下,驱动件正常输出,使能状态下的驱动件带动传动机构运动进而驱动机械臂运动,即智能模块6中的控制单元控制驱动件的输出端驱动机械臂运动;在驱动件处于失能状态的情况下,驱动件不再对传动机构及机械臂施力,机械臂可以自由运动的状态,即智能模块6中的控制单元控制驱动件的输出端跟随机械臂运动,此时人体或障碍物施加给机械臂的外力,可以带动机械臂自由运动,使得机械臂对人体或障碍物进行避让,从而对人体进行保护,同时驱动件的输出轴随机械臂自由运动,也将外力卸去,降低了机械臂受力损坏的可能性。
以大臂驱动结构4为例,使能状态下的大臂驱动电机41在电磁作用下使得其输出轴旋转,并通过大臂传动机构42带动大臂构件2运动,失能状态下的大臂驱动电机41关停且制动装置关闭,大臂驱动电机41的转子处于可自由旋转的状态,以使大臂驱动电机41的输出端可跟随大臂构件2运动,大臂构件2自由运动对人体或障碍物进行避让,从而对人体进行保护,同时大臂驱动电机41的输出轴随大臂构件2自由运动,也将外力卸去,降低了大臂构件2受力损坏的可能性。
在本公开实施例的一种可能的实现方式中,工作参数和外力成正相关,智能模块6中的控制单元内存储有预设参数;在工作参数高于预设参数的情况下,智能模块6中的控制单元判定机械臂和人体等发生碰撞,智能模块6中的控制单元控制驱动件由使能状态切换为失能状态,机械臂及时对人体等进行避让,并通过驱动件的输出端自由运动将外力卸去,对人体和机械臂进行保护。
需要说明的是,本公开实施例对驱动件的类型不作限制,在本公开实施例一种可能的实现方式中,驱动件输出直线驱动力,驱动件可以为液压缸、电动伸缩杆等;在本公开实施例另一种可能的实现方式中,驱动件输出旋转力矩,驱动件可以为转角气缸、电机等,其中电机可以为伺服电机、步进电机等。
在本公开实施例的一种可能的实现方式中,驱动件为步进电机,步进电机的转速较低,因此所需的传动机构传动比也较低,使得传动机构的反向驱动能力更好,即更容易将机械臂碰撞时受到的外力传递到驱动件,此外,在外力超过步进电机的保持力矩的情况下,步进电机会失步打滑,从而卸掉外力,保护了步进电机自身以及传动机构等。
在本公开实施例一种可选的实现方式中,大臂构件2驱动用步进电机的保持力矩为0.3牛顿×米(N·m),大臂构件2的长度尺寸为0.28米(metre,m),小臂构件3的长度尺寸为0.215m,小臂构件3相对大臂构件2折叠,并随大臂构件2运动,此时臂型机器人和人体等碰撞产生的相互作用力最大,通过计算可知该作用力为5牛顿(newton,N),也即在碰撞时的作用力超过5N的情况下,用于驱动大臂构件2的步进电机将会失步打滑,卸掉外力,碰撞时的最大作用力在臂型机器人与人体的碰撞力安全范围0N~150N之内,本公开实施例的机械臂和人体等接触时产生的作用力最大为5N,远小于安全标准所规定的值,因此人机互动过程中安全性大幅提高。
在本公开实施例一种可选的实现方式中,可以选择步进电机的工作电流作为工作参数,在机械臂与人体碰撞的情况下,步进电机的输出受阻,步进电机的工作参数也即工作电流会升高,在该工作电流超过智能模块6中的控制单元中所存储的预设值的情况下,智能模块6中的控制单元判定机械臂和人体等发生碰撞,智能模块6中的控制单元控制驱动件由使能状态切换为失能状态,机械臂及时对人体等进行避让,并使电机输出轴自由运动将外力卸去,对人体和机械臂进行保护。
由于驱动件进入失能状态后并不会对机械臂进行限位,此时机械臂自由运动会导致机械臂的运行轨迹错乱,在驱动件恢复到使能状态下,难以使机械臂继续运动到目标位置,在本公开实施例的一种可能的实现方式中,机械臂驱动结构还包括位置记录模块,例如,大臂驱动结构4包括位置记录模块,小臂驱动结构5同样包括位置记录模块。在驱动件由使能状态切换为失能状态的情况下,位置记录模块配置为记录机械臂的位置参数,例如,当大臂驱动电机41由使能状态切换为失能状态时,大臂驱动结构4中的位置记录模块记录下当前大臂构件2的位置参数,其中,位置参数可以为大臂构件2相对底座1的坐标。
本公开实施例对位置记录模块的形式不作限制,例如,位置记录模块对机械臂的相对位置坐标进行记录;又例如,位置记录模块拍摄当前机械臂的画面,通过图片识别获得机械臂位置,以大臂驱动结构4为例,在本公开实施例一种可能的实现方式中,大臂驱动结构4的位置记录模块包括编码器,编码器集成在驱动件如步进电机中,即编码器设置在大臂驱动电机41中,可以方便的获得机械臂的位置信息,在外力撤去后,大臂驱动电机41根据编码器所获得的位置信息将大臂构件2恢复到之前的位置,以便大臂构件2继续运动到目标位置。
需要说明的是,本公开实施例对传动机构不作限制,例如传动机构可以为齿轮机构、蜗轮蜗杆、链传动机构、带传动机构等。
在本公开实施例的一种可能的实现方式中,传动机构包括依次传动连接的第一传动件、第二传动件和第三传动件,第一传动件固定连接于驱动件的输出端,第二传动件连接在第一传动件和第三传动件之间,第三传动件用于固定连接机械臂。
在本公开实施例的一种可能的实现方式中,第一传动件和第二传动件的传动比不超过5:1,较小的传动力使得传动杆机构的反向驱动能力较好,更利于传动机构将机械臂碰撞时受到的外力传递到驱动件。
在本公开实施例的一种可能的实现方式中,传动机构为同步带机构,带传动的类型有多种形式,根据传动原理的不同分为摩擦型带传动和同步带传动,摩擦型带传动依靠带与带轮之间的摩擦来进行传动,同步带则是在带和带轮上设置啮合齿,通过两者的齿啮合来进行传动,因此同步带传动具有更高的精度。
在本公开实施例一种可能的实现方式中,选择同步带传动作为传动机构,传动机构中的第一传动件和第三传动件均带轮,第二传动件为同步带,第二传动件套设在第一传动件和第三传动件上,且第一传动件的径向尺寸小于第三传动件的径向尺寸。
参照图2和图3,在本公开实施例的一种可能的实现方式中,臂型机器人包括大臂构件2和小臂构件3,对应设置有两套机械臂驱动结构,其中大臂驱动结构4设置在大臂构件2和底座1之间,用于驱动大臂构件2运动,小臂驱动结构5设置在小臂构件3和大臂构件2之间,用于驱动小臂构件3运动。
具体地,大臂驱动结构4包括大臂驱动电机41和大臂传动机构42,大臂传动机构42包括大臂主动带轮421、大臂从动带轮422、大臂转轴423和大臂同步带424,其中大臂主动带轮421的径向尺寸小于大臂从动带轮422的径向尺寸,大臂驱动电机41固定在底座1上,大臂主动带轮421固定在大臂驱动电机41的输出轴上,大臂从动带轮 422固定在大臂转轴423上,大臂转轴423的一端和底座1通过轴承等可旋转连接,大臂转轴423的另一端固定连接于大臂构件2的第一端,大臂同步带424的一端套设在大臂主动带轮421上,另一端套设在大臂从动带轮422上,大臂驱动电机41带动大臂主动带轮421旋转,大臂主动带轮421通过大臂同步带424带动大臂从动带轮422旋转,大臂从动带轮422通过大臂转轴423带动大臂构件2旋转,以使大臂构件2的第二端运动到不同位置。
小臂驱动结构5包括小臂驱动电机51和小臂传动机构52,小臂传动机构52包括小臂主动带轮521、小臂从动带轮522、小臂转轴523和小臂同步带524,其中小臂主动带轮521的径向尺寸小于小臂从动带轮522的径向尺寸,小臂驱动电机51固定在大臂构件2的第一端上,小臂主动带轮521固定在小臂驱动电机51的输出轴上,小臂从动带轮522固定在小臂转轴523上,小臂转轴523的一端和大臂构件2通过轴承等可旋转连接,小臂转轴523的另一端固定连接于小臂构件3的第一端,小臂同步带524的一端套设在小臂主动带轮521上,另一端套设在小臂从动带轮522上,小臂驱动电机51带动小臂主动带轮521旋转,小臂主动带轮521通过小臂同步带524带动小臂从动带轮522旋转,小臂从动带轮522通过小臂转轴523带动小臂构件3旋转,以使小臂构件3的第二端运动到不同位置。
其中,大臂转轴423和小臂转轴523既可以作为转轴使用也可以作为传动轴使用,在作为转轴使用的情况下,大臂构件2和底座1通过大臂转轴423可旋转连接,小臂构件3和大臂构件2通过小臂转轴523可旋转连接,大臂转轴423和小臂转轴523既承受转矩,又承受弯矩;在大臂转轴423和小臂转轴523作为传动轴使用的情况下,大臂构件2和底座1通过轴承等可旋转连接,大臂构件2由底座1直接提供支撑,小臂构件3和大臂构件2通过轴承等可旋转连接,小臂构件3由大臂构件2提供直接支撑,小臂转轴523和大臂转轴423仅承受转矩。
需要说明的是,本公开实施例对底座1、大臂构件2和小臂构件3的结构不作限制,例如大臂构件2为壳体结构,小臂驱动结构5设置在大臂构件2的壳体内,小臂构件3同样为壳体结构,既能减轻机械臂的重量,降低所需的驱动功率,又能对内部的其他构件提供保护。
此外,本公开实施例对大臂驱动结构4和小臂驱动结构5的布局不作限制,可选地,在本公开实施例一种可能的实现方式中,大臂驱动电机41设置在底座1靠近大臂构件2一侧,大臂驱动电机41的输出轴向下贯穿底座1,大臂主动带轮421和大臂同步带424 均设置在底座1远离大臂驱动电机41的一侧,小臂驱动电机51的输出轴则和大臂转轴423同轴设置,小臂驱动电机51设置在大臂构件2远离底座1的一侧。
由于同步带为挠性结构,在使用过程中会被拉长变形,在传动过程中会出现打滑等情况影响机械臂精度,在本公开实施例的一种可能的实现方式中,传动机构还包括张紧轮,张紧轮抵靠在同步带上,以将同步带张紧,确保同步带正常传动,减少打滑现象的出现。
参照图2和图3,大臂传动机构42包括大臂张紧轮425,大臂张紧轮425设置在大臂同步带424的沿线上,大臂张紧轮425有两个,两个大臂张紧轮425将大臂同步带424的两侧朝中间挤压,小臂传动机构52包括小臂张紧轮525,小臂张紧轮525设置在小臂同步带524的沿线上,且小臂张紧轮525设置在小臂同步带524靠近小臂从动轮的位置。
此外,本公开实施例提供一种机械臂驱动方法,可运用于本公开实施例提供的臂型机器人和机械臂驱动结构,该机械臂驱动方法的执行主体为上述智能模块6中的控制单元。参照图4,机械臂驱动方法包括以下步骤:
S401:控制驱动件通过传动机构驱动机械臂运动;
S402:监测驱动件的工作参数;
S403:根据工作参数判断机械臂是否存在碰撞;
S404:根据判断结果控制驱动件的驱动状态。
其中,工作参数可以为驱动件的工作电流、工作电压、工作转矩等参数,工作参数的检测可通过设置在驱动件如电机的传感器获得,又或者,通过对电机驱动器的运行参数进行采集分析获得,是否碰撞的判断,以及对驱动件的控制可参照上述机械臂驱动结构的实施例实现。
在本公开实施例的一种可能的实现方式中,驱动状态包括使能状态和失能状态;机械臂驱动方法还包括:在驱动件处于使能状态的情况下,控制驱动件的输出端驱动机械臂运动;在驱动件处于失能状态的情况下,控制驱动件的输出端跟随机械臂运动。
参照图5,在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括步骤S501:将工作参数和预设参数进行大小比较,以判断机械臂是否存在碰撞。需要说明的是,根据工作参数判断机械臂是否存在碰撞的步骤S403可采用步骤S501的实施方式。
其中,预设参数为根据安全需求设置的参数,例如,当工作参数采用工作转矩时,预设参数可以为0.3N·m,当工作参数大于0.3N·m时,判断机械臂存在碰撞。
在本公开实施例的一种可能的实现方式中,在步骤S501中,在工作参数大于预设 参数的情况下,判定机械臂存在碰撞,在工作参数小于等于预设参数的情况下,判定机械臂不存在碰撞,在机械臂不存在碰撞的情况下,循环执行步骤S402和步骤S501。
参照图5,在本公开实施例的一种可能的实现方式中,在机械臂驱动方法包括步骤S502:在判定机械臂存在碰撞的情况下,控制驱动件由使能状态切换为失能状态,以便控制驱动件的输出端跟随机械臂运动,从而对人体和机械臂进行保护。
需要说明的是,根据判断结果控制驱动件的驱动状态的步骤S404可采用步骤S502的实施方式。
参照图6,在本公开实施例的一种可能的实现方式中,在控制驱动件由使能状态切换为失能状态的步骤S502之后,机械臂驱动方法包括:
S601:判断机械臂的碰撞是否结束;
S602:根据碰撞是否结束控制驱动件的驱动状态。
本公开实施例对判断机械臂的碰撞是否结束的步骤S601中的判断方法不作限制,例如视觉识别,人为判断等,可选地,在本公开实施例的一种可能的实现方式中,还设置有摄像头等部件,在控制驱动件由使能状态切换为失能状态后启动摄像头,摄像头将机械臂相关图像实时传递到控制单元,控制单元过程序分析判断碰撞物是否和机械臂分离,以及机械臂恢复运动后是否会再次碰撞;在本公开实施例另一种可能的实现方式中,驱动件为步进电机,控制单元为电机自身的反馈系统,工作参数为电机的堵转力矩,预设参数为电机的保持力矩,在堵转力矩大于保持力矩的情况下,步进电机失步打滑进入失能状态,在堵转力矩小于保持力矩的情况下,步进电机的反馈系统判定机械臂碰撞结束,步进电机恢复驱动力输出。
参照图7,在本公开实施例的一种可能的实现方式中,上述步骤S601可采用步骤S701的实施方式,判断机械臂的碰撞是否结束的步骤S701包括两种结果,即判定机械臂碰撞结束,或判定机械臂碰撞未结束,在判定机械臂碰撞结束的情况下,重复执行步骤S701。
在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括步骤S702:在碰撞结束的情况下,控制驱动件由失能状态切换为使能状态。需要说明的是,根据碰撞是否结束控制驱动件的驱动状态的步骤S602可采用步骤S702的实施方式。
参照图8,在本公开实施例的一种可能的实现方式中,在将工作参数和预设参数进行比较,以判断机械臂是否存在碰撞的步骤S501之前,包括:
S801:根据驱动件的性能参数确定预设参数的值。
其中,驱动件的性能参数可以为驱动件的功率参数、电流参数、电压参数、转矩、驱动力参数等,例如,驱动件的驱动力为5N,可以设置预设参数为5N,在工作参数即驱动力超过5N的情况下,可判定机械臂发生了碰撞。
参照图9,在本公开实施例的一种可能的实现方式中,机械臂驱动方法包括:在驱动件由使能状态切换为失能状态步骤S502之前:
S901:记录机械臂的位置参数;
在驱动件由失能状态切换为使能状态步骤S702之后:
S902:驱动机械臂运动至位置参数所记录的位置。
其中,位置参数可以为大臂构件2相对底座1的坐标,例如,在检测到碰撞的情况下,记录大臂构件2当前位置为第一坐标,此时,大臂驱动电机41由使能状态切换为失能状态,大臂构件2随外力运动,当碰撞结束后,大臂驱动电机41由失能状态切换为使能状态,此时大臂构件2处于第二坐标对应的位置,大臂驱动电机41将驱动大臂构件2由第二坐标对应的位置移动到第一坐标对应的位置,从而将大臂构件2归位。
在本公开实施例的一种可能的实现方式中,在监测驱动件的工作参数步骤S402中,机械臂驱动方法包括:对驱动件进行持续监测,以获得连续的工作参数。
本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
本公开实施例提供的机械臂驱动结构、机械臂、驱动方法、存储介质及及计算机程序产品,通过采集驱动件工作参数的方式判断机械臂是否发生碰撞,例如采集机械臂的步进电机的工作电流,当工作电流大于预设电流时,在控制单元判断机械臂发生碰撞的情况下,控制驱动件进入失能状态,机械臂及时对人体等进行避让,并使步进电机的输出轴自由运动将外力卸去,对人体和机械臂进行保护,提高了其安全性,且这一人机协作的方式更加易于实现,无需设置专用的力反馈传感器,从而降低了成本。
本申请实施例集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读存储介质中,计算机可读存储介质可以为易失性存储介质或非易失性存储介质。基于这样的理解,本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可执行指令的计算机可读存储介质上实施的计 算机程序产品的形式,存储介质包括U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘存储器、CD-ROM、光学存储器等。
相应地,本公开实施例还提供一种计算机可读存储介质,其中存储有计算机可执行指令,计算机可执行指令用处理器执行时实现本公开实施例的机械臂驱动方法中的步骤,处理器可以为上述智能模块6中的控制单元。
此外,本公开实施例提供一种计算机程序产品,计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,计算机程序被计算机读取并实现本公开实施例的机械臂驱动方法。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (23)

  1. 一种机械臂驱动结构,包括:
    驱动件;
    传动机构,传动连接在所述驱动件和机械臂之间,用于将所述驱动件的驱动力传递至机械臂,以及将机械臂受到的外力传递至所述驱动件;
    监测单元,设置在所述驱动件上,所述监测单元配置为采集所述驱动件的工作参数,所述工作参数跟随所述外力变化;
    控制单元,电联接于所述驱动件和所述监测单元,所述控制单元配置为根据所述工作参数控制所述驱动件的驱动状态。
  2. 根据权利要求1所述的机械臂驱动结构,其中,所述驱动状态包括使能状态和失能状态,所述控制单元配置为:
    在所述驱动件处于使能状态的情况下,控制所述驱动件的输出端驱动机械臂运动;
    在所述驱动件处于失能状态的情况下,控制所述驱动件的输出端跟随机械臂运动。
  3. 根据权利要求2所述的机械臂驱动结构,其中,所述工作参数和所述外力成正相关,所述控制单元内存储有预设参数;
    在所述工作参数高于所述预设参数的情况下,所述控制单元控制所述驱动件由使能状态切换为所述失能状态。
  4. 根据权利要求3所述的机械臂驱动结构,其中,所述驱动件为步进电机,所述工作参数为所述步进电机的工作电流。
  5. 根据权利要求3所述的机械臂驱动结构,其中,还包括位置记录模块,在所述驱动件由使能状态切换为所述失能状态的情况下,所述位置记录模块配置为记录机械臂的位置参数。
  6. 根据权利要求1~5中任一项所述的机械臂驱动结构,其中,所述传动机构包括依次传动连接的第一传动件、第二传动件和第三传动件,所述第一传动件固定连接于所述驱动件的输出端,所述第三传动件用于固定连接机械臂。
  7. 根据权利要求6所述的机械臂驱动结构,其中,所述第一传动件和所述第二传动件的传动比不超过5:1。
  8. 根据权利要求7所述的机械臂驱动结构,其中,所述传动机构为同步带机构, 所述第一传动件和所述第三传动件均为带轮,所述第二传动件为同步带,所述第二传动件套设在所述第一传动件和所述第三传动件上,且所述第一传动件的径向尺寸小于所述第三传动件的径向尺寸。
  9. 根据权利要求8所述的机械臂驱动结构,其中,所述传动机构还包括张紧轮,所述张紧轮抵靠在所述同步带上,将所述同步带张紧。
  10. 一种臂型机器人,包括:
    底座;
    多个机械臂,依次可旋转连接形成机械臂组,且所述机械臂组靠近所述底座一端的机械臂可旋转连接于所述底座;
    权利要求1~9中任一项所述的机械臂驱动结构,所述机械臂驱动结构为多个,且多个所述机械臂驱动结构和多个所述机械臂一一对应设置。
  11. 根据权利要求10所述的臂型机器人,其中,还包括智能模块,所述机械臂驱动结构电联接于所述智能模块,所述智能模块配置为:
    控制驱动件通过传动机构驱动机械臂运动;
    监测所述驱动件的工作参数;
    根据所述工作参数控制所述驱动件的驱动状态。
  12. 一种机械臂驱动方法,包括以下步骤:
    控制驱动件通过传动机构驱动机械臂运动;
    监测所述驱动件的工作参数;
    根据所述工作参数判断所述机械臂是否存在碰撞;
    根据判断结果控制所述驱动件的驱动状态。
  13. 根据权利要求12所述的机械臂驱动方法,其中,所述驱动状态包括使能状态和失能状态;所述方法还包括:
    在所述驱动件处于所述使能状态的情况下,控制所述驱动件的输出端驱动所述机械臂运动;
    在所述驱动件处于所述失能状态的情况下,控制所述驱动件的输出端跟随所述机械臂运动。
  14. 根据权利要求13所述的机械臂驱动方法,其中,所述方法还包括:
    将所述工作参数和预设参数进行大小比较,判断所述机械臂是否存在碰撞。
  15. 根据权利要求14所述的机械臂驱动方法,其中,所述方法还包括:
    在所述工作参数大于所述预设参数的情况下,判定所述机械臂存在碰撞。
  16. 根据权利要求15所述的机械臂驱动方法,其中,所述方法还包括:
    在判定所述机械臂存在碰撞的情况下,控制所述驱动件由所述使能状态切换为所述失能状态。
  17. 根据权利要求16所述的机械臂驱动方法,其中,在控制所述驱动件由所述使能状态切换为所述失能状态的步骤之后,还包括:
    判断所述机械臂的碰撞是否结束;
    根据碰撞是否结束控制所述驱动件的驱动状态。
  18. 根据权利要求17所述的机械臂驱动方法,其中,所述方法还包括:
    在碰撞结束的情况下,控制所述驱动件由所述失能状态切换为所述使能状态。
  19. 根据权利要求18所述的机械臂驱动方法,其中,所述方法还包括:
    在控制所述驱动件由所述使能状态切换为所述失能状态之前,记录所述机械臂的位置参数;
    在控制所述驱动件由所述失能状态切换为所述使能状态之后,控制所述机械臂运动至所述位置参数所记录的位置。
  20. 根据权利要求12所述的机械臂驱动方法,其中,在监测所述驱动件的工作参数步骤中,包括:对所述驱动件进行持续监测,得到连续的所述工作参数。
  21. 根据权利要求14所述的机械臂驱动方法,其中,在所述工作参数和所述预设参数进行大小比较步骤之前,包括:
    根据所述驱动件的性能参数确定所述预设参数的值。
  22. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求12至21中任一项所述的机械臂驱动方法。
  23. 一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序被计算机读取并实现权利要求12至21中任一项的机械臂驱动方法。
PCT/CN2023/100632 2022-06-16 2023-06-16 一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品 WO2023241685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210682955.4 2022-06-16
CN202210682955.4A CN114872034A (zh) 2022-06-16 2022-06-16 一种机械臂驱动结构、臂型机器人及驱动方法

Publications (1)

Publication Number Publication Date
WO2023241685A1 true WO2023241685A1 (zh) 2023-12-21

Family

ID=82681482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100632 WO2023241685A1 (zh) 2022-06-16 2023-06-16 一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品

Country Status (2)

Country Link
CN (1) CN114872034A (zh)
WO (1) WO2023241685A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872034A (zh) * 2022-06-16 2022-08-09 北京市商汤科技开发有限公司 一种机械臂驱动结构、臂型机器人及驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100145515A1 (en) * 2008-12-10 2010-06-10 Kabushiki Kaisha Yaskawa Denki Robot system and control method
KR20180053482A (ko) * 2016-11-11 2018-05-23 고려대학교 산학협력단 로봇 머니퓰레이터 제어 방법
CN110977972A (zh) * 2019-12-03 2020-04-10 珠海格力电器股份有限公司 一种多关节机器人碰撞检测方法、计算机可读存储介质及机器人
CN113681567A (zh) * 2021-09-14 2021-11-23 北京清飞科技有限公司 一种新型无传感器机器人碰撞检测方法及其系统
CN215511083U (zh) * 2021-09-08 2022-01-14 北京市商汤科技开发有限公司 一种对弈机器人机械臂及对弈机器人
CN114872034A (zh) * 2022-06-16 2022-08-09 北京市商汤科技开发有限公司 一种机械臂驱动结构、臂型机器人及驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246684A (ja) * 1999-02-26 2000-09-12 Sharp Corp アーム型ロボット
CN110948476A (zh) * 2019-12-18 2020-04-03 南京埃斯顿机器人工程有限公司 一种水平多关节机器人
DE102020203671A1 (de) * 2020-03-23 2021-09-23 Kuka Deutschland Gmbh Verfahren zum Steuern eines Roboterarms
CN214025720U (zh) * 2020-11-11 2021-08-24 深圳市越疆科技有限公司 桌面机械臂的驱动结构、桌面机械臂和机器人
CN113771047B (zh) * 2021-10-29 2023-02-21 遨博(北京)智能科技有限公司 对机械臂的碰撞处理方法、控制柜、以及机械臂系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100145515A1 (en) * 2008-12-10 2010-06-10 Kabushiki Kaisha Yaskawa Denki Robot system and control method
KR20180053482A (ko) * 2016-11-11 2018-05-23 고려대학교 산학협력단 로봇 머니퓰레이터 제어 방법
CN110977972A (zh) * 2019-12-03 2020-04-10 珠海格力电器股份有限公司 一种多关节机器人碰撞检测方法、计算机可读存储介质及机器人
CN215511083U (zh) * 2021-09-08 2022-01-14 北京市商汤科技开发有限公司 一种对弈机器人机械臂及对弈机器人
CN113681567A (zh) * 2021-09-14 2021-11-23 北京清飞科技有限公司 一种新型无传感器机器人碰撞检测方法及其系统
CN114872034A (zh) * 2022-06-16 2022-08-09 北京市商汤科技开发有限公司 一种机械臂驱动结构、臂型机器人及驱动方法

Also Published As

Publication number Publication date
CN114872034A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2023241685A1 (zh) 一种机械臂驱动结构、臂型机器人、驱动方法、存储介质及计算机程序产品
JP6364096B2 (ja) ロボットシステム
JP5044011B2 (ja) マニピュレータおよびその制御方法
CN106863266B (zh) 机器人、控制装置以及机器人系统
US8443693B2 (en) Rotary series elastic actuator
JP6454960B2 (ja) ロボット、ロボットシステム、ロボット制御装置
JP2010076012A (ja) マニピュレータシステムおよびその制御方法
US8509950B2 (en) Control apparatus and control method for robot, robot, and control program therefor
EP1477284A1 (en) Drive control method and drive controller
JP2013094672A5 (zh)
KR102023910B1 (ko) 로봇 및 로봇의 마찰 보상 방법
JP2022535728A (ja) 外科用ロボットアームの外部トルク観測および補償のためのシステムおよび装置
WO2016068175A1 (ja) ロボットアーム機構及びステッピングモータ制御装置
JP2012051042A (ja) ロボットシステム及びロボット制御装置
KR20170083037A (ko) 로봇 매니퓰레이터의 개방-루프/폐쇄-루프 제어를 위한 방법 및 장치
WO2019194138A1 (ja) ロボットの制御装置
JP2018069342A (ja) 制御装置、ロボットおよびロボットシステム
JP2011152620A (ja) ロボットアーム駆動装置
CN107363851B (zh) 控制装置以及机器人系统
JP2018528085A (ja) ロボットアームおよびロボットリスト
CN111319026A (zh) 一种沉浸式双臂机器人仿人远程操控方法
EP2829371A1 (en) Work robot and robot system
WO2018142559A1 (ja) 医療用マニピュレータ
CN107717996A (zh) 具有测距停止功能的多关节机器人和测距停止方法
JP7436241B2 (ja) ロボットシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823251

Country of ref document: EP

Kind code of ref document: A1