WO2023241308A1 - 一种光传输模块、光模块、电路板组件及光网络设备 - Google Patents

一种光传输模块、光模块、电路板组件及光网络设备 Download PDF

Info

Publication number
WO2023241308A1
WO2023241308A1 PCT/CN2023/095234 CN2023095234W WO2023241308A1 WO 2023241308 A1 WO2023241308 A1 WO 2023241308A1 CN 2023095234 W CN2023095234 W CN 2023095234W WO 2023241308 A1 WO2023241308 A1 WO 2023241308A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
chip
reflective
transmission module
Prior art date
Application number
PCT/CN2023/095234
Other languages
English (en)
French (fr)
Inventor
李月涛
汪金朗
史锡婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023241308A1 publication Critical patent/WO2023241308A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • H04B10/43Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver

Definitions

  • the present application relates to the field of optical communication technology, and in particular to an optical transmission module, an optical module, a circuit board assembly and an optical network device.
  • the grating coupling (GC) interface is an important light extraction method with stable performance and high reliability. Since the direction of the beam output by the grating coupling interface is perpendicular to the optical chip, additional height space needs to be reserved above the grating coupling interface to place the optical fiber assembly. However, since the optical chip and the electrical chip need to be close to the heat sink to ensure heat dissipation, the height space above the grating coupling interface in the optical chip is limited. Moreover, in the application scenario of optoelectronic co-sealing, optical chips and electrical chips are stacked. The optical chip uses a suspended bottom light extraction method, and the suspended height of the optical chip is the height space reserved for the light extraction module. Because the thickness of the electrical chip is small, the floating height of the optical chip is small. The height space of the light extraction module is small, which limits the installation of the light extraction module.
  • Embodiments of the present application provide an optical transmission module, an optical module, a circuit board assembly and an optical network device, which solve the problem of limited installation of existing optical extraction modules.
  • an optical transmission module which includes a support member and an optical fiber assembly.
  • the fiber optic assembly is arranged on the support.
  • the optical fiber assembly includes an optical fiber array and a fixing device, wherein the optical fiber array includes a plurality of optical fibers arranged side by side along a first direction.
  • the fixing device includes an optical main assembly and a plurality of condenser lenses.
  • the optical main assembly fixes the first ends of the plurality of optical fibers in the optical fiber array.
  • a reflective surface is formed on the optical main component, and the reflective surface is used to reflect the beam signals transmitted by the plurality of optical fibers to the plurality of condenser lenses respectively.
  • a plurality of condenser lenses are spaced apart along the first direction on the optical body assembly and located on a side close to the support member.
  • the plurality of condenser lenses are used to respectively converge the light beam signals reflected by the reflective surface to a plurality of coupling interfaces spaced apart along the first direction on the optical chip.
  • the optical transmission module reflects the beam signals transmitted by multiple optical fibers to multiple condenser lenses through the reflective surface on the optical body assembly.
  • the multiple condenser lenses then reflect the beam signals reflected by the reflective surface. They are respectively gathered to a plurality of coupling interfaces spaced apart along the first direction on the optical chip.
  • signal transmission between the optical transmission module and the optical chip is realized.
  • the height of the support in the light transmission module can be smaller.
  • the optical main assembly can be arranged on the same plane as the optical fiber array, the height of the optical main assembly can be slightly greater than the height of the optical fiber array, and the thickness of the condenser lens is less than the height of the support member. Therefore, the height of the entire optical transmission module is small and can be used in scenarios where the height between the coupling interface of the optical chip and the substrate is less than 5 mm, without causing degradation in polarization maintenance performance and additional insertion loss.
  • the above-mentioned optical body assembly includes a first optical fixing part and a second optical fixing part.
  • the second optical fixing part is arranged opposite to the first optical fixing part.
  • the first ends of the plurality of optical fibers in the optical fiber array are clamped between the first optical fixing part and the second optical fixing part.
  • the surface of the first optical fixing member close to the first end of the optical fiber and the surface of the second optical fixing member close to the first end of the optical fiber are connected with the end surfaces of the first ends of the plurality of optical fibers in the optical fiber array to form a reflective surface.
  • the condenser lens and the support member are both arranged on the side surface of the second optical fixing member away from the first optical fixing member.
  • the optical main component requires less material, has a simpler structure, and is easy to process the reflective surface.
  • the above-mentioned optical body assembly includes a first optical fixing part, a second optical fixing part and a reflective lens.
  • the second optical fixing part is located below the first optical fixing part.
  • the support member is disposed below the second optical fixing member.
  • the first ends of the plurality of optical fibers in the optical fiber array are clamped between the first optical fixing part and the second optical fixing part.
  • the surface of the first optical fixing member close to the first end of the optical fiber and the surface of the second optical fixing member close to the first end of the optical fiber are connected with the end surfaces of the first ends of the plurality of optical fibers in the optical fiber array to form a connection surface.
  • the reflective lens has first and second outer surfaces disposed oppositely.
  • the first outer surface of the reflective lens is connected to the connecting surface.
  • the above-mentioned reflective surface is formed on the second outer surface of the reflective lens.
  • the condenser lens is arranged on a side surface of the reflective lens close to the support member.
  • the reflective lens and the condenser lens are integrated structures.
  • the optical transmission module has fewer assembly steps and is easy to install.
  • the above-mentioned reflective surface is an arcuate surface or reflective slope convex toward the outside.
  • the edge on the reflective surface close to the support member is located outside the edge on the reflective surface away from the support member. According to the optical fiber beam signal reflection angle requirements, the appropriate reflective surface shape can be selected.
  • the above-mentioned optical fiber assembly further includes a sealing layer.
  • the sealing layer is used to fill between the coupling interface of the condenser lens and the corresponding optical chip, and to connect the coupling interface of the condenser lens and the corresponding optical chip. are covered. Therefore, the sealing layer can seal the coupling interface between the condenser lens and the optical chip, preventing the coupling interface between the condenser lens and the optical chip from being affected by dust, water vapor and other impurities that affect the optical performance.
  • the structure of the sealing layer is relatively simple.
  • the sealing layer is an optical path adhesive layer. Optical path glue is cheap and has good optical properties such as transmittance and refractive index.
  • the above-mentioned optical fiber assembly further includes an optical gasket, and the optical gasket is used to be disposed between the sealing layer and the coupling interface of the corresponding optical chip.
  • the optical gasket can cover the coupling interface of the optical chip to seal the coupling interface of the optical chip.
  • the thickness of the optical path adhesive layer can be controlled to be less than 50 ⁇ m by adjusting the thickness of the optical spacer. Therefore, on the premise of ensuring the sealing effect of the condenser lens, the optical path glue can be prevented from deforming during the baking process.
  • the multiple groups of optical fiber components are stacked on the support member in sequence, and the lengths of the multiple groups of optical fiber components decrease successively in a direction approaching the support member.
  • the reflective surfaces in the multiple groups of optical fiber assemblies are respectively used to reflect the beam signals transmitted by multiple optical fiber arrays to multiple condenser lenses in multiple fixing devices.
  • the plurality of condenser lenses fixed in the plurality of groups of optical fiber assemblies are used to respectively converge the light beam signals reflected by the plurality of reflecting surfaces to a plurality of coupling interfaces distributed along the second direction on the optical chip.
  • Optical transmission modules with multiple sets of optical fiber components can transmit signals with multiple rows of coupling interfaces arranged in an array on the optical chip, which can meet the requirements of high channel density and can be suitable for installation scenarios with small height space.
  • one set of optical main components includes a first optical fixing component, a second optical fixing component, a reflective lens and an optical connecting component.
  • the second optical fixing part is located on the first optical fixing part Below the custom piece.
  • the first ends of the plurality of optical fibers in the optical fiber array are clamped between the first optical fixing part and the second optical fixing part.
  • the surface of the first optical fixing member close to the first end of the optical fiber and the surface of the second optical fixing member close to the first end of the optical fiber are connected with the end surfaces of the first ends of the plurality of optical fibers in the optical fiber array to form a connection surface.
  • the first outer surface of the reflective lens is connected to the connection surface, the reflective surface is formed on the second outer surface of the reflective lens, and the second outer surface is opposite to the first outer surface.
  • the condenser lens is arranged on a side surface of the reflective lens close to the support member.
  • the optical connector connects the reflective lenses in the same set of optical fiber assemblies with the reflective lenses in an adjacent set of optical fiber assemblies.
  • the reflective lens, optical connector, and condenser lens of the optical main component in the multiple optical fiber assemblies are integrated structures, which further reduces the assembly steps of the optical main component in the optical module and facilitates installation.
  • the total thickness of the optical fiber array in the optical fiber assembly and the optical body assembly in the fixing device ranges from 1.2 to 1.5 mm.
  • the thickness of the support is 0.3mm. Therefore, three sets of optical fiber assemblies can be installed in a height space with a spacing of 5mm.
  • each group of optical fibers has 40 optical fibers, and the distance between two adjacent coupling interfaces along the first direction on the optical chip is 127 ⁇ m, and the distance between two adjacent coupling interfaces along the second direction is 3 mm.
  • the optical channel density of the optical module can be above 11.1ch/mm 2 (channel/square millimeters).
  • the optical module according to the embodiment of the present application includes an optical chip and the optical transmission module described in the above embodiment.
  • a plurality of coupling interfaces are provided on the first surface of the optical chip, and the plurality of coupling interfaces are spaced apart along the first direction.
  • the support member in the optical transmission module is arranged on the optical chip.
  • the plurality of condenser lenses in the optical transmission module are used to respectively converge the light beam signals reflected by the reflective surface to a plurality of coupling interfaces spaced apart along the first direction on the optical chip.
  • the structure of the optical transmission module in the optical module of the embodiment of the present application is the same as that of the optical transmission module in the above embodiment. Both can solve the same technical problems and obtain the same technical effects, and will not be described again here.
  • the above-mentioned optical transmission module can be applied to application scenarios in which multiple coupling interfaces on the optical chip are all grating coupling interfaces.
  • the plurality of coupling interfaces distributed along the first direction are one row of coupling interfaces.
  • the first surface of the optical chip is provided with multiple rows of coupling interfaces, and the multiple rows of coupling interfaces are spaced apart along the second direction.
  • the above-mentioned optical transmission module includes multiple groups of optical fiber components.
  • the multiple groups of optical fiber components are stacked on the support member in sequence, and the lengths of the multiple groups of optical fiber components gradually decrease in a direction approaching the support member.
  • the reflective surfaces in the plurality of groups of optical fiber assemblies are respectively used to reflect the beam signals transmitted by the plurality of optical fiber arrays to the plurality of condenser lenses of the plurality of fixing devices.
  • the plurality of condenser lenses fixed in the plurality of groups of optical fiber assemblies are used to respectively converge the light beam signals reflected by the plurality of reflecting surfaces to a plurality of coupling interfaces distributed along the second direction on the optical chip. Therefore, this optical module can meet high-speed and high-density transmission requirements.
  • the above-mentioned optical module also includes an airtight cover, and the airtight cover is located outside the optical transmission module.
  • the airtight cover is used to seal multiple coupling interfaces of the support member, optical fiber assembly, and optical chip.
  • the airtight cover can isolate the coupling interface of the condenser lens and optical chip from the outside environment. Therefore, the coupling interface between the condenser lens and the optical chip is prevented from being affected by the external environment, and the installation operation of the airtight cover is relatively simple.
  • the distance between two adjacent coupling interfaces distributed along the second direction on the optical chip is more than 0.7 mm.
  • the solution of stacking multiple groups of optical fiber components in the embodiment of the present application can be applied to optical chips with a spacing of more than 0.7 mm between two adjacent coupling interfaces distributed along the second direction.
  • embodiments of the present application also include a circuit board assembly, including a substrate, an electrical chip, and the optical module described in the above embodiments.
  • the electrical chip is arranged on the first area of the substrate.
  • the optical module is arranged on the substrate and connected to the electrical chip.
  • the optical module in the circuit board assembly in the embodiment of the present application has the same structure as the optical module described in the above embodiment. Both can solve the same technical problem and obtain the same technical effect.
  • the optical module is disposed on the second area of the substrate.
  • the optical module is connected to the electrical chip through the substrate.
  • the optical module also includes an airtight cover, and the airtight cover is located between the optical chip and the optical transmission outside the module. The lower edge of the airtight cover is connected to the base plate. The airtight cover requires smaller volume and lower cost.
  • the above-mentioned optical module is disposed on a side of the electrical chip away from the upper substrate, and the first surface of the optical chip in the optical module has a plurality of first connection portions.
  • a plurality of second connection portions are provided on a side surface of the electronic chip away from the substrate.
  • the partial area on the first surface of the optical chip that has a plurality of first connection portions is opposite to the partial area that has the second connection portions on the electrical chip.
  • the first connection part and the second connection part are connected.
  • a partial area with a plurality of coupling interfaces on the first surface of the optical chip is opposite to the substrate.
  • the optical transmission module in the optical module is located between the optical chip and the substrate.
  • the optical chip and the electrical chip are stacked in the circuit board assembly, which can reduce the space occupied by the optical chip and the electrical chip on the substrate. Thus, space utilization on the circuit board assembly is improved.
  • the optical module also includes an airtight cover.
  • the airtight cover is located outside the optical chip, the optical transmission module and the electrical chip.
  • the airtight cover is not only simple to install, but also can isolate the optical chip, optical transmission module, and electrical chip in the circuit board assembly from the outside world, so that the circuit board assembly is less affected by the outside world.
  • embodiments of the present application include an optical network device, which includes a housing and the circuit board assembly described in the above embodiment.
  • the circuit board assembly is disposed within the housing.
  • the optical network equipment can be a router (such as a cluster router), a core server, a supercomputer, a splitter, a fiber amplifier, a beam shaper or an adjustable filter, etc. Since the circuit board assembly in the optical network equipment of the embodiment of the present application has the same structure as the circuit board assembly described in the above embodiment, they can solve the same technical problem and obtain the same technical effect, which will not be described again here.
  • Figure 1 is a three-dimensional view of the optical network device being a router according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a circuit board assembly in an optical network device according to an embodiment of the present application
  • Figure 3 is a schematic cross-sectional view of the first circuit board assembly in the optical network equipment according to the embodiment of the present application;
  • Figure 4 is a schematic cross-sectional view of the second circuit board assembly in the optical network equipment according to the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an optical transmission module with an end-bent optical fiber as a first circuit board assembly in an optical network device;
  • Figure 6 is a schematic structural diagram of an optical transmission module with an end-bent optical fiber as a second circuit board assembly in an optical network device;
  • Figure 7 is a schematic cross-sectional view of the optical chip and optical transmission module of the optical module in the optical network equipment according to the embodiment of the present application;
  • Figure 8 is an exploded schematic diagram of the optical chip and optical transmission module of the optical module in the optical network equipment according to the embodiment of the present application;
  • Figure 9 is a side view of an optical fiber component in an optical network device according to an embodiment of the present application.
  • Figure 10 is an exploded schematic diagram of each component in the optical fiber assembly in the optical network equipment according to the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of an optical fiber component with an arc-shaped reflective surface in an optical network device according to an embodiment of the present application
  • Figure 12 is a schematic diagram of the optical path of the optical module in the optical network equipment according to the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of an optical module with a second fixing device in the optical network equipment according to the embodiment of the present application;
  • Figure 14 is an exploded schematic diagram of an optical module in an optical network device having multiple sets of optical transmission modules and multiple rows of coupling interfaces on an optical chip according to an embodiment of the present application;
  • Figure 15 is a schematic cross-sectional view of the optical module in the optical network equipment according to the embodiment of the present application, which has multiple sets of optical transmission modules and the optical chip has multiple rows of coupling interfaces;
  • Figure 16 shows the second circuit board assembly in the optical network equipment according to the embodiment of the present application, which has multiple sets of optical transmission modules and multiple row couplings.
  • Figure 17 is a schematic cross-sectional view of a second circuit board assembly in an optical network device with multiple sets of optical transmission modules and multiple rows of coupling interfaces;
  • Figure 18 is a schematic cross-sectional view of an optical module having multiple second fixing devices in the optical network equipment according to the embodiment of the present application;
  • Figure 19 is a schematic cross-sectional view of an optical module having multiple third fixing devices in the optical network equipment according to the embodiment of the present application;
  • Figure 20 is a schematic cross-sectional view of an optical module with a sealing layer in the optical network equipment according to the embodiment of the present application;
  • Figure 21 is a schematic cross-sectional view of an optical module with a sealing layer and an optical gasket in the optical network equipment according to the embodiment of the present application;
  • Figure 22 is a schematic cross-sectional view of an optical module with a sealing cover in the optical network equipment according to the embodiment of the present application;
  • Figure 23 is a schematic cross-sectional view of the first circuit board assembly with a sealing cover in the optical network equipment according to the embodiment of the present application;
  • Figure 24 is a schematic cross-sectional view of the second circuit board assembly with a sealing cover in the optical network equipment according to the embodiment of the present application;
  • Figure 25 is a three-dimensional schematic view of the sealing cover in the optical network equipment according to the embodiment of the present application.
  • 1000-Optical network equipment 100-casing, 200-circuit board assembly, 10-substrate, 101-third connection part, 102-wiring layer, 20-electrical chip, 201-second connection part, 30-optical module, 1-Optical chip, 1a-first surface, 11-first connection part, 12, 12a, 12b, 12c-coupling interface, 2-optical transmission module, 2a-support, 2b, 2ba, 2bb, 2bc-optical fiber assembly , 21-fiber array, 211-fiber, 2111-first end, 22-fixing device, 221-optical body assembly, 221a-lower edge, 221b-upper edge, 2211-first optical fixture, 2212-second optical Fixing part, 2213-reflecting lens, 2213a-first outer surface, 2213b-second outer surface, 2214-optical connector, 220-fixing groove, 222-condensing lens, 23-sealing layer, 24-optical gasket, 25, 25a, 25b-airtight cover, 251-
  • connection should be understood in a broad sense.
  • “connection” may refer to a mechanical structure or a physical structure connection.
  • it can be a fixed connection, a detachable connection, or integrated, it can be directly connected, or it can be indirectly connected through an intermediate medium.
  • It can also be understood as the physical contact and electrical conduction of components, and it can also be understood as the connection between different components in the circuit structure through physical lines that can transmit electrical signals such as PCB copper foil or wires.
  • Embodiments of the present application include an optical network device, which may be a router (such as a cluster router), a core server, a supercomputer, a splitter, a fiber amplifier, a beam shaper, an adjustable filter, etc.
  • a router such as a cluster router
  • a core server such as a cluster router
  • a supercomputer such as a supercomputer
  • a splitter such as a fiber amplifier
  • a beam shaper such as a beam shaper
  • an adjustable filter etc.
  • This application actually The embodiment does not place any special restrictions on the specific form of the above optical network equipment.
  • the following examples take the optical network device as a router as shown in Figure 1 as an example.
  • Figure 1 is a three-dimensional view of an optical network device that is a router provided by some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a circuit board assembly in the optical network device shown in Figure 1.
  • the optical network device 1000 is a router.
  • Router 1000 may include a housing 100 as shown in FIG. 1 and a circuit board assembly 200 as shown in FIG. 2 .
  • An installation cavity (not shown in the figure) is formed in the housing 100 , and the circuit board assembly 200 is disposed in the installation cavity of the housing 100 .
  • the circuit board assembly 200 includes a substrate 10 , an electrical chip 20 and an optical module 30 .
  • the optical module 30 and the electrical chip 20 are both arranged on the substrate 10 .
  • the optical module 30 is used for modulation and conversion of photoelectric signals and transmission of optical input and output signals.
  • the electrical chip 20 may specifically be a switching chip.
  • the switching chip is electrically connected to the optical module 30 , thereby realizing signal transmission between the optical module 30 and the electrical chip 20 .
  • the circuit board assembly 200 shown in FIG. 2 includes one electrical chip 20 and two optical modules 30 , and the electrical chip 20 and the two optical modules 30 are both electrically connected. This application does not limit the number of electrical chips 20 and optical modules 30 in the circuit board assembly 200, and they can be selected according to actual needs.
  • the upper surface of the substrate 10 has a plurality of third connection portions 101 .
  • the third connection part 101 may be a soldering pad or a metal pillar.
  • There are multiple wiring layers 102 in the substrate 10 and FIG. 3 shows only one wiring layer 102 .
  • the wiring layer 102 can be connected to the third connection portion 101 .
  • the electronic chip 20 is provided with a plurality of second connection portions 201 .
  • the second connection part 201 may also be a pad or a metal pillar.
  • the optical module 30 includes an optical chip 1, which is used for photoelectric conversion.
  • the optical chip 1 can be an optical waveguide chip (such as a planar optical waveguide chip).
  • the first surface 1 a of the optical chip 1 has a plurality of first connection portions 11 .
  • the first connection part 11 may also be a pad or a metal pillar.
  • the electrical chip 20 and the optical chip 1 can be connected through different combinations of the third connection part 101 , the second connection part 201 and the first connection part 11 to realize signal transmission between the optical chip 1 and the electrical chip 20 in the optical module 30 .
  • the following is an example of the connection method between the electrical chip 20 and the optical chip 1 .
  • the optical module 30 and the electrical chip 20 may be electrically connected through the substrate 10 .
  • the electrical chip 20 is disposed in the first area A of the substrate 10 .
  • the optical module 30 is disposed in the second area B of the substrate 10 .
  • the electrical chip 20 and the optical module 30 are spaced apart.
  • the second connection part 201 of the electrical chip 20 is connected to the third connection part 101 of the substrate 10
  • the first connection part 11 of the optical chip 1 is connected to the third connection part 101 of the substrate 10 . Therefore, the electrical chip 20 can be electrically connected to the optical chip 1 in the optical module 30 through the wiring layer 102 of the substrate 10 .
  • the optical module 30 and the electrical chip 20 may be directly electrically connected.
  • both the upper surface of the electrical chip 20 (ie, the side surface of the electrical chip 20 away from the substrate 10 ) and the lower surface (ie, the side surface of the electrical chip 20 close to the substrate 10 ) have the above-mentioned second connection.
  • the second connection portion 201 on the lower surface of the electronic chip 20 is connected to the third connection portion 101 of the substrate 10 .
  • a portion of the first surface 1 a of the optical chip 1 having a plurality of first connection portions 11 is opposite to a portion of the upper surface of the electrical chip 20 having a plurality of second connection portions 201 .
  • the partial area of the first surface 1 a of the optical chip 1 that does not have the first connection portion 11 may be opposite to the substrate 10 .
  • the second connection part 201 on the upper surface of the electrical chip 20 may be connected with the first connection part 11 of the optical chip 1 . Therefore, the electrical chip 20 and the optical chip 1 in the optical module 30 are directly electrically connected.
  • the installation method shown in FIG. 4 can also be referred to as the optical chip 1 in the optical module 30 being flip-mounted on the electrical chip 20 .
  • the above-mentioned optical chip 1 is provided with a coupling interface 12 as shown in FIG. 5 , and the coupling interface 12 is used for inputting or outputting a beam signal.
  • the coupling interface 12 may also be called an optical input and output (Optical Input&Output) interface.
  • the coupling interface 12 may be an edge coupler (EC) interface, and the coupling interface 12 is located on the side of the optical chip 1 .
  • the coupling interface 12 can also be a grating coupling interface, and the coupling interface 12 is provided on the first side of the optical chip 1 on surface 1a.
  • the above-mentioned optical module 30 also includes an optical transmission module 2 as shown in FIG. 5 .
  • the number of optical transmission modules 2 in the optical module 30 may be one, or two or more.
  • the optical transmission module 2 includes an optical fiber assembly 2b, and the optical fiber 211 in the optical fiber assembly 2b can be directly connected to the above-mentioned coupling interface 12. Therefore, the optical chip 1 can transmit the beam signal to the optical fiber assembly 2b through the coupling interface 12, and then transmit the beam signal to other devices through the optical fiber assembly 2b. Moreover, the optical fiber component 2b can also transmit the beam signals of other devices to the optical chip 1 through the coupling interface 12.
  • the optical transmission module 2 is disposed above the optical chip 1 .
  • a heat dissipation device 40 needs to be provided above the optical chip 1 and the electrical chip 20, and the optical chip 1 and the electrical chip 20 need to be close to the heat dissipation device 40 to ensure good heat dissipation effect. Therefore, the height H 1 reserved for the optical transmission module 2 is small, which limits the installation of the optical fiber assembly 2b in the optical transmission module 2 .
  • the optical chip 1 shown in FIG. 6 is flip-chip mounted on the electrical chip 20 , and the coupling interface 12 is located in the area of the optical chip 1 opposite to the substrate 10 . Since the thickness of the electronic chip 20 is small (the vertical direction in the figure is the thickness direction), the height H 2 between the coupling interface 12 and the substrate 10 is also small, which also makes the installation of the optical fiber component 2b in the optical transmission module 2 problematic. limit.
  • the first end of the optical fiber 211 in the optical fiber assembly 2b is bent and then connected to the coupling interface 12 to realize the installation of the optical fiber assembly 2b.
  • the optical fiber 211 has a minimum bending radius limit and cannot meet application scenarios where the height limit (H 1 or H 2 ) is less than 5 mm.
  • the small radius bend at the first end of the optical fiber 211 will cause degradation of the polarization-maintaining performance during the transmission process and will also cause additional insertion loss.
  • embodiments of the present application provide an optical transmission module 2 that does not require bending the optical fiber 211 .
  • the optical transmission module 2 of the embodiment of the present application also includes a support member 2a as shown in FIG. 7 .
  • the support member 2a can be disposed on the first surface 1a of the optical chip 1 .
  • the support member 2a may be a gasket.
  • the supporting member 2a can be made of glass, plastic, etc.
  • the optical fiber assembly 2b can be arranged on the support 2a.
  • the multiple coupling interfaces 12 may be spaced apart along the first direction P.
  • the optical fiber assembly 2b cooperating with the plurality of coupling interfaces 12 includes an optical fiber array 21.
  • the optical fiber array 21 includes a plurality of optical fibers 211 arranged side by side along the first direction P.
  • the optical fiber assembly 2b also includes a fixing device 22, which includes an optical body assembly 221 as shown in Figure 8 and a plurality of condenser lenses 222 as shown in Figure 9.
  • the optical body assembly 221 can fix the first ends 2111 of the plurality of optical fibers 211 in the optical fiber array 21 .
  • the optical main assembly 221 is formed with a reflective surface 22a, which is used to reflect the beam signals transmitted by the plurality of optical fibers 211 to the plurality of condenser lenses 222 respectively.
  • the plurality of condenser lenses 222 are spaced apart along the first direction P on the optical body assembly 221 and are located on the side close to the support member 2a.
  • the optical body assembly 221 may include a first optical fixing part 2211 and a second optical fixing part 2212 .
  • the second optical fixing part 2212 is arranged opposite to the first optical fixing part 2211 .
  • the supporting member 2a is disposed below the second optical fixing member 2212, that is, the supporting member 2a is disposed on a side surface of the second optical fixing member 2212 away from the first optical fixing member 2211.
  • the first ends 2111 of the plurality of optical fibers 211 in the optical fiber array 21 are clamped between the first optical fixing part 2211 and the second optical fixing part 2212.
  • the first optical fixing member 2211 and the second optical fixing member 2212 may both be transparent fixing plates, such as glass plates, plastic plates or silicon plates.
  • a plurality of fixing grooves 220 may be provided on the surface of the first optical fixing part 2211 opposite to the second optical fixing part 2212, or on the surface of the second optical fixing part 2212 opposite to the first optical fixing part 2211.
  • the first ends 2111 of the plurality of optical fibers 211 in the optical fiber array 21 are respectively received in a plurality of fixing grooves 220.
  • the above-mentioned first optical fixing member 2211 and second optical fixing member 2212 also They can all be installed in the above-mentioned fixing groove 220.
  • the surface of the first optical fixing member 2211 close to the first end 2111 of the optical fiber 211 , the surface of the second optical fixing member 2212 close to the first end 2111 of the optical fiber 211 and the first ends 2111 of the plurality of optical fibers 211 in the optical fiber array 21 End-to-end connections.
  • the end surfaces are all provided with inclined surfaces with the same inclination, thereby forming a reflective surface 22a as shown in FIG. 8 .
  • the reflective surface 22a may be a reflective inclined surface as shown in FIG. 8 or an outwardly convex arc surface as shown in FIG. 11 to adapt to different reflection angle requirements. Moreover, the edge of the reflective surface 22a close to the support member 2a (the lower edge 221a of the reflective surface 22a shown in Figure 11) is located on the edge of the reflective surface 22a away from the supporter 2a (the reflective surface shown in Figure 11). The outer side of the upper edge 221b) of the surface 22a. Therefore, by designing the reflective surface 22a with an appropriate tilt angle, the requirement of reflecting the beam signal of the optical fiber 211 to the condenser lens 222 as shown in FIG. 12 can be achieved.
  • the plurality of condenser lenses 222 are disposed on a side surface of the second optical fixing member 2212 close to the support member 2a, and are used to converge the beam signals reflected by the reflective surface 22a onto the optical chip 1 along the first direction P.
  • a plurality of coupling interfaces 12 distributed at intervals.
  • the optical transmission module 2 of the embodiment of the present application can transmit the beam signal of the optical fiber 211 to the coupling interface 12 of the optical chip 1 only through the reflective surface 22a of the optical body assembly 221 and the condenser lens 222.
  • the height of the support member 2a in the light transmission module 2 can be smaller.
  • the optical main assembly 221 can be disposed in the same plane as the optical fiber array 21.
  • the height of the optical main assembly 221 can be slightly greater than the height of the optical fiber array 21, and the thickness of the condenser lens 222 is less than the height of the support member 2a. Therefore, the height of the entire optical transmission module 2 is small and can be used in scenarios where the height between the coupling interface 12 of the optical chip 1 and the substrate 10 is less than 5 mm, and will not cause problems of polarization maintenance performance degradation and additional insertion loss. .
  • first optical fixing part 2211 and the second optical fixing part 2212, the condenser lens 222 and the second optical fixing part 2212 in the above-mentioned optical body assembly 221 can all be connected through adhesive materials.
  • the end surface of the first end 2111 of the optical fiber 211 may be polished to form the above-mentioned reflective surface 22a.
  • the optical body assembly 221 has a smaller volume, which can reduce the volume of the optical transmission module 2 and also reduce the material cost of the optical transmission module 2 .
  • the optical body assembly 221 may also have other structures.
  • the above-mentioned optical body assembly 221 includes a first optical fixing part 2211 , a second optical fixing part 2212 and a reflective lens 2213 .
  • the structure of the first optical fixing part 2211 and the second optical fixing part 2212 in Figure 13 is similar to that of the first optical fixing part 2211 and the second optical fixing part 2212 in Figure 12.
  • the surface of the member 2211 close to the first end 2111 of the optical fiber 211, the surface of the second optical fixing member 2212 close to the first end 2111 of the optical fiber 211, and the end faces of the first ends 2111 of the multiple optical fibers 211 in the optical fiber array 21 can all be vertical surface to form the connecting surface 22b.
  • the reflective lens 2213 has multiple outer surfaces.
  • the multiple outer surfaces include a first outer surface 2213a and a second outer surface 2213b that are oppositely arranged.
  • the first outer surface 2213a of the reflective lens 2213 may be connected to the above-mentioned connection surface 22b.
  • the second outer surface 2213b of the reflective lens 2213 may form the above-mentioned reflective surface 22a.
  • the condenser lens 222 is disposed on a side surface of the reflective lens 2213 close to the support member 2a.
  • the connecting surface 22b shown in FIG. 13 is a plane, and the longitudinal cross-section (perpendicular to the plane of the reflective lens 2213) of the reflective lens 2213 is a right-angled trapezoid.
  • the condenser lens 222 is a convex lens protruding toward the optical chip 1 side. Therefore, when manufacturing the optical body assembly 221, the reflective lens 2213 and the condenser lens 222 can be manufactured as an integrated structure, thereby reducing assembly steps.
  • the reflective surface 22a on the reflective lens 2213 and the arc surface of the condenser lens 222 can be formed through a molding process. It can also be made by grinding process. Both of these two manufacturing processes can ensure the accuracy and reliability of the tilt angle of the reflective surface 22a and the arc surface of the condenser lens 222.
  • the above-mentioned optical chip 1 is only provided with a row of multiple coupling interfaces 12 distributed along the first direction P, which can satisfy some application scenarios that require low optical channel density.
  • the optical fiber array 21 in the optical module 30 needs to transmit both the light source and the beam signal. Therefore, multiple groups of optical fiber arrays 21 are often required to transmit light source and beam signals.
  • the first surface 1a of the optical chip 1 in the embodiment of the present application is provided with multiple rows of coupling interfaces 12 (the multiple coupling interfaces 12 distributed along the first direction P are called a row of coupling interfaces 12) , the multiple rows of coupling interfaces 12 are spaced apart along the second direction Q.
  • the first surface 1 a of the optical chip 1 has a plurality of coupling interfaces 12 arranged in an array.
  • the optical transmission module 2 includes multiple sets of the above-mentioned optical fiber components 2b as shown in FIG. 15, and the multiple sets of optical fiber components 2b are stacked on the support member 2a.
  • the lengths of the plurality of groups of optical fiber assemblies 2b gradually decrease in the direction approaching the support member 2a. Therefore, the first ends 2111 of the plurality of groups of optical fiber assemblies 2b can correspond to the plurality of rows of coupling interfaces 12 on the optical chip 1 respectively.
  • Figures 14 and 15 both show that the first surface 1a of the optical chip 1 has two rows of coupling interfaces 12.
  • the optical transmission module 2 includes two groups of optical fiber components 2b, and the two groups of optical fiber components 2b correspond to the two rows of coupling interfaces 12 respectively. Therefore, the reflective surfaces 22a in the plurality of groups of optical fiber assemblies 2b can respectively reflect the beam signals transmitted by the plurality of optical fiber arrays 21 to the plurality of condenser lenses 222 of the plurality of fixing devices 22.
  • the plurality of condenser lenses 222 of the fixing devices 22 in the plurality of optical fiber assemblies 2b can respectively converge the light beam signals reflected by the plurality of reflection surfaces 22a to the plurality of coupling interfaces 12 distributed along the second direction Q on the optical chip 1 . Therefore, the optical module 30 can be suitable for installation scenarios with small height space, and can meet the requirements of high channel density.
  • the optical module 30 includes three groups of optical fiber components 2b which are stacked on the support 2a in sequence.
  • the total thickness W 0 of the optical fiber array 21 and the optical body assembly 221 in each group of optical fiber components 2b above is in the range of 1.2mm-1.5mm, and the thickness W 1 of the support member 2a can be 0.3mm to meet the signal requirements of the optical module. transmission requirements.
  • a group of optical fiber assemblies 2ba located on the top layer corresponds to a row of coupling interfaces 12a farthest from the support member 2a.
  • a layer of optical fiber components 2bb located in the middle layer corresponds to a row of coupling interfaces 12b located in the middle.
  • the group of optical fiber components 2bc located on the bottom layer corresponds to the row of coupling interfaces 12c closest to the support member 2a.
  • each group of optical fiber arrays 21 has 40 optical fibers 211, and the distance D 1 between two adjacent coupling interfaces 12 along the first direction P on the optical chip 1 is 127 ⁇ m, and the distance D 1 between two adjacent coupling interfaces 12 along the second direction Q is 127 ⁇ m.
  • the optical channel density of the optical module 30 can be above 11.1 ch/mm 2 (channel/square millimeters).
  • Figure 17 shows an optical module 30 in which the first ends 2111 of the optical fibers 211 of the three groups of optical fiber assemblies 2b are all bent.
  • the connection between the optical fiber 211 and the coupling interface 12 is realized.
  • the density of the optical module 30 in Figure 17 is 2.574ch/mm 2 . Therefore, compared with the optical module 30 shown in FIG. 17 , the optical channel density of the optical module 30 according to the embodiment of the present application is increased by more than 4 times.
  • the insertion losses at the coupling interface 12 of the optical module 30 shown in FIG. 17 and the optical module 30 of the embodiment of the present application are equal or have a small difference (for example, the insertion losses of the two optical modules 30 are both about 0.5dB).
  • the light beam signals distributed along the second direction Q in the embodiment of the present application are The distance D 2 between two adjacent coupling interfaces 12 is 0.7 mm or more.
  • the stacking scheme of multiple groups of optical fiber components 2b in the embodiment of the present application can be applied to an optical chip 1 with a distance D 2 between two adjacent coupling interfaces 12 distributed along the second direction Q of 0.7 mm or more. .
  • the multiple rows of optical fiber components 2b in the optical transmission module 2 can all adopt the structural solution of the optical fiber component 2b illustrated above, as shown in Figure 16 and Figure 18. Moreover, the multi-row optical fiber components 2b in the optical transmission module 2 can also adopt other structures.
  • the reflective lens 2213 and the condenser lens 222 in the multi-row optical fiber assembly 2b in the optical transmission module 2 can be an integral structure to reduce assembly steps.
  • the optical main assembly 221 in the optical transmission module 2 is also provided with an optical connector 2214 as shown in Figure 19.
  • the optical connector 2214 connects the reflected light in the same optical fiber assembly 2b.
  • the lens 2213 is connected to the reflective lens 2213 in an adjacent group of optical fiber assemblies 2b. Therefore, the optical body components 221 in the multiple groups of optical fiber components 2b can be connected into an integrated structure through the optical connectors 2214.
  • the optical connector 2214 may be a connecting lens.
  • the optical connector 2214, the reflective lens 2213, and the condenser lens 222 are all made of the same material. Therefore, the reflective lens 2213, the optical connector 2214, and the condenser lens 222 of the optical body assembly 221 in the multi-group optical fiber assembly 2b can be manufactured through an integrated molding process to obtain an integrated structure, further reducing the installation steps of the optical module 30.
  • the optical fiber assembly 2b in some embodiments of the present application also includes a sealing structure for sealing the condenser lens 222 and the coupling interface 12 .
  • the sealing structure may be of various types, and examples of the sealing structure are given below.
  • the sealing structure may be a sealing layer 23 .
  • the sealing layer 23 can be filled between the condenser lens 222 and the coupling interface 12 of the corresponding optical chip 1 , and wrap the coupling structure of the condenser lens 222 and the corresponding optical chip 1 .
  • the sealing structure is relatively simple.
  • the above-mentioned sealing layer 23 is an optical path glue layer.
  • the optical path adhesive layer is cheap and has good optical properties such as transmittance and refractive index.
  • the optical path adhesive layer is less than 50 ⁇ m, the optical path adhesive is not easily deformed during the baking process, so it can be suitable for application scenarios where the distance between the condenser lens 222 and the coupling interface 12 is small.
  • the distance (or maximum distance) D 3 between the condenser lens 222 and the corresponding coupling interface 12 of the optical chip 1 is relatively large, such as the distance between the condenser lens 222 and the corresponding coupling interface 12 of the optical chip 1 ( (or maximum spacing) D 3 is greater than 50 ⁇ m, and the optical path adhesive layer that is too thick is easily deformed during the baking process. Therefore, in some embodiments of the present application, the above-mentioned optical fiber assembly 2b also includes an optical gasket 24 as shown in FIG. 21 , which is disposed between the sealing layer 23 and the coupling interface 12 of the corresponding optical chip 1 .
  • the optical gasket 24 can cover the coupling interface 12 of the optical chip 1 and be fixed on the first surface 1 a of the optical chip 1 through an adhesive material. Therefore, the coupling interface 12 of the optical chip 1 is sealed. Furthermore, by adjusting the thickness of the optical spacer 24, the thickness W 1 of the optical path adhesive layer can be controlled to be less than 50 ⁇ m. Therefore, on the premise of ensuring the sealing effect of the condenser lens 222, the optical path glue can be prevented from deforming during the baking process.
  • a horizontal microscope can be used to monitor the distance (or maximum distance) D 3 between the multiple condenser lenses 222 and the multiple coupling interfaces 12 on the optical chip 1 . If the distance between a condenser lens 222 and a coupling interface 12 on the optical chip 1 is less than 50 ⁇ m, the optical path glue is directly filled between the condenser lens 222 and the coupling interface 12 on the optical chip 1, and the entire condenser lens 222 is directly filled with the coupling interface 12 on the optical chip 1. The optical lens 222 is wrapped with the coupling interface 12 on the optical chip 1 .
  • a condenser lens 222 and a coupling interface 12 on the optical chip 1 are greater than 50 ⁇ m, first select an optical gasket 24 with a suitable thickness W 2 (such as 150 ⁇ m) and fix it on the coupling interface 12 on the optical chip 1 . Then, optical path glue is filled between the optical gasket 24 and the condenser lens 222 so that the thickness W 1 of the filled optical path glue is less than 50 ⁇ m.
  • a suitable thickness W 2 such as 150 ⁇ m
  • the optical module 30 in the embodiment of the present application also includes an airtight cover 25 as shown in FIG. 22 , and the airtight cover 25 is directly provided outside the optical transmission module 2 .
  • the airtight cover 25 can isolate the condenser lens 222 and the coupling interface 12 of the optical chip 1 from the external environment. Therefore, the sealing of the condenser lens 222 and the coupling interface 12 of the optical chip 1 is achieved.
  • the airtight cover 25 may be provided in different ways.
  • the optical chip 1 and the electrical chip 20 are spaced apart.
  • the airtight cover 25a is provided outside the optical chip 1 and the optical transmission module 2 .
  • the lower edge of the airtight cover 25a is connected to the substrate 10.
  • the optical chip 1 is flip-chip mounted on the electrical chip 20 .
  • the airtight cover 25b is provided outside the optical chip 1, the optical transmission module 2 and the electrical chip 20.
  • the lower edge of the airtight cover 25b is connected to the substrate 10 .
  • the inner surface of the airtight cover 25 b is connected to the side surface of the substrate 10 . Therefore, the airtight cover 25b can isolate the optical chip 1, the optical transmission module 2 and the electrical chip 20 in the circuit board assembly 200 from the outside world, and the circuit board assembly 200 is less affected by the outside world.
  • the airtight cover 25 is provided with a sealing section (feedthrough) 251 as shown in Figure 25, and the sealing section 251 is connected to the optical transmission module. Corresponds to the position of fiber array 21 in 2.
  • the optical fiber array 21 in the optical transmission module 2 penetrates the airtight cover 25 through the sealing section 251, while maintaining the sealing performance inside the airtight cover 25.
  • the assembly steps of the above-mentioned optical module 30 include the following steps:
  • multiple groups of optical fiber assemblies 2b corresponding to the multiple coupling interfaces 12 distributed along the second direction Q on the optical chip 1 can be obtained.
  • the focal lengths of the condenser lenses 222 used in the multiple groups of optical fiber assemblies 2b and the thickness of the base of the condenser lens 222 can be different to adapt to different height requirements.
  • S200 Stack multiple groups of optical fiber assemblies 2b on the support 2a.
  • the specific assembly steps of multiple groups of optical fiber components 2b are as follows: first place one end of a group of optical fiber components 2b (the bottom optical fiber component 2b) at the edge of the second direction Q in the array of coupling interfaces 12 on the optical chip 1 above a row of coupling interfaces 12. After that, the light source is connected to the test loop of the optical fiber component 2b, and the position of the optical fiber component 2b above the coupling interface 12 is adjusted. Monitor the insertion loss of the optical link of the test loop until the insertion loss of the optical link is adjusted to the lowest, and obtain the specific installation position of the optical fiber component 2b.
  • a support member 2a of appropriate size is selected and fixed on the optical chip 1.
  • the optical fiber assembly 2b is fixed to the support member 2a, thereby completing the assembly of the bottom group of optical fiber assemblies 2b.
  • the assembly of multiple sets of optical fiber assemblies 2b is completed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光传输模块(2)、光模块(30)、电路板组件(200)及光网络设备(1000),涉及光通信领域,解决了现有光引出模组安装受限的问题。光传输模块(2)包括支撑件(2a)和设置在支撑件(2a)上的光纤组件(2b)。光纤组件(2b)包括光纤阵列(21)和固定装置(22),光纤阵列(21)包括沿第一方向并排设置的多根光纤(211)。固定装置(22)包括光学主体组件(221)和多个聚光透镜(222),光学主体组件(221)将光纤阵列(21)中多根光纤(211)的第一端固定。光学主体组件(221)上形成有反射面(22a),反射面(22a)用于将多根光纤(211)传输的光束信号分别对应反射至多个聚光透镜(222)。多个聚光透镜(222)在光学主体组件(221)上沿第一方向间隔分布,且位于靠近支撑件(2a)的一侧上。多个聚光透镜(222)用于将经反射面(22a)反射的光束信号分别汇聚至光芯片(1)上沿第一方向间隔分布的多个耦合接口(12)。

Description

一种光传输模块、光模块、电路板组件及光网络设备
本申请要求于2022年06月13日提交中国专利局、申请号为202210661271.6、申请名称为“一种光传输模块、光模块、电路板组件及光网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光传输模块、光模块、电路板组件及光网络设备。
背景技术
信息技术的发展带来了通信传输速率的增加,这种增长带来对更高速率交换芯片的需求。为了配合高速率的交换芯片,需要引入更多的通道数量,使得芯片的封装方式发生了很大的变化。从电芯片与光芯片相互独立发展到电芯片与光芯片同板加工,之后还实现了电芯片与光芯片一起封装。
在光芯片的众多引出接口中,光栅耦合(Grating Coupler,GC)接口是一种重要的光引出方式,其性能稳定,可靠性高。由于光栅耦合接口输出的光束方向与光芯片垂直,所以,在光栅耦合接口的上方需要预留额外的高度空间来放置光纤组件。但是,由于光芯片和电芯片需要紧贴散热片以保证散热,所以,光芯片中光栅耦合接口的上方的高度空间有限。并且,在光电共封的应用场景中,光芯片与电芯片堆叠设置。光芯片采用悬空底部的出光方式,光芯片的悬空高度为预留的光引出模组的高度空间。因电芯片的厚度较小,使得光芯片的悬空高度较小。光引出模组的高度空间较小,使得光引出模组安装受限。
发明内容
本申请实施例提供一种光传输模块、光模块、电路板组件及光网络设备,解决了现有光引出模组安装受限的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种光传输模块,该光传输模块包括支撑件和光纤组件。光纤组件用于设置在支撑件上。该光纤组件包括光纤阵列和固定装置,其中,该光纤阵列包括沿第一方向并排设置的多根光纤。该固定装置包括光学主体组件和多个聚光透镜,光学主体组件将光纤阵列中多根光纤的第一端固定。并且,光学主体组件上形成有反射面,该反射面用于将多根光纤传输的光束信号分别对应反射至多个聚光透镜。多个聚光透镜在光学主体组件上沿第一方向间隔分布,且位于靠近支撑件的一侧上。多个聚光透镜用于将经反射面反射的光束信号分别汇聚至光芯片上沿第一方向间隔分布的多个耦合接口。
基于以上,本申请实施例的光传输模块通过光学主体组件上的反射面将多根光纤传输的光束信号分别对应反射至多个聚光透镜,多个聚光透镜再将经反射面反射的光束信号分别汇聚至光芯片上沿第一方向间隔分布的多个耦合接口。从而,实现了光传输模块与光芯片的信号传输。并且,通过设计合适的聚光透镜的弧面角度,光传输模块中支撑件的高度 可以较小。而光学主体组件可以与光纤阵列同平面设置,光学主体组件的高度可以略大于光纤阵列的高度,而聚光透镜的厚度小于支撑件的高度。所以,整个光传输模块的高度较小,可以应用于光芯片的耦合接口与基板之间的高度为5mm以下的场景中,且不会产生保偏性能劣化和额外插损的问题。
在本申请的一些实施例中,上述光学主体组件包括第一光学固定件和第二光学固定件。第二光学固定件与第一光学固定件相对设置。该光纤阵列中多根光纤的第一端夹持在第一光学固定件和第二光学固定件之间。第一光学固定件上靠近光纤的第一端的表面、第二光学固定件上靠近光纤的第一端的表面与光纤阵列中多根光纤的第一端的端面相接,以形成反射面。聚光透镜、支撑件均设置在第二光学固定件上远离第一光学固定件的一侧表面上。该光学主体组件所需的材料较少,结构也较简单,且便于加工上述反射面。
在本申请的另一些实施例中,上述光学主体组件包括第一光学固定件、第二光学固定件及反射透镜。其中,第二光学固定件位于第一光学固定件的下方。支撑件设置在第二光学固定件的下方。光纤阵列中多根光纤的第一端夹持在第一光学固定件和第二光学固定件之间。第一光学固定件上靠近光纤的第一端的表面、第二光学固定件上靠近光纤的第一端的表面与光纤阵列中多根光纤的第一端的端面相接,以形成连接面。反射透镜具有相对设置的第一外表面和第二外表面。反射透镜的第一外表面与连接面连接。上述反射面形成在反射透镜的第二外表面上。聚光透镜设置在反射透镜上靠近支撑件的一侧表面上。反射透镜与聚光透镜为一体结构。该光传输模块的组装步骤较少,便于安装。
并且,上述反射面为朝外侧凸起的弧面或反射斜面。反射面上靠近支撑件的一侧边沿位于反射面上远离支撑件的一侧边沿的外侧。根据光纤的光束信号反射角度需求,可以选择合适的反射面形状。
基于以上,在一些实施例中,上述光纤组件还包括密封层,密封层用于填充在聚光透镜与对应的光芯片的耦合接口之间,且将聚光透镜和对应的光芯片的耦合接口均覆盖。从而,密封层可以将聚光透镜和光芯片的耦合接口密封,避免了聚光透镜和光芯片的耦合接口被尘土和水汽等杂质影响光学性能。并且,密封层的结构较简单。示例的,密封层为光路胶层。光路胶的价格便宜,且光学性能如透射率、折射率均较好。
在本申请的一些实施方式中,上述光纤组件还包括光学垫片,光学垫片用于设置在密封层与对应的光芯片的耦合接口之间。该光学垫片可以覆盖在光芯片的耦合接口上,以对光芯片的耦合接口进行密封。并且,可以通过调整光学垫片的厚度来控制光路胶层的厚度小于50μm。从而,在保证对聚光透镜的密封效果的前提下,还可以避免光路胶在烘烤过程中产生形变。
而对于具有多组光纤组件的光传输模块,多组光纤组件依次层叠设置在支撑件上,且多组光纤组件的长度沿靠近支撑件的方向依次递减。多组光纤组件中的反射面分别用于将多个光纤阵列传输的光束信号反射至多个固定装置中的多个聚光透镜。多组光纤组件中固定装置的多个聚光透镜用于将经多个反射面反射的光束信号分别汇聚至光芯片上沿第二方向分布的多个耦合接口。具有多组光纤组件的光传输模块可以与光芯片上阵列排布的多排耦合接口进行信号传输,可以满足高通道密度的要求,且能够适用于高度空间较小的安装场景。
并且,对于上述具有多组光纤组件的光传输模块,一组光学主体组件包括第一光学固定件、第二光学固定件、反射透镜及光学连接件。其中,第二光学固定件位于第一光学固 定件的下方。光纤阵列中多根光纤的第一端夹持在第一光学固定件和第二光学固定件之间。第一光学固定件上靠近光纤的第一端的表面、第二光学固定件上靠近光纤的第一端的表面与光纤阵列中多根光纤的第一端的端面相接,以形成连接面。反射透镜的第一外表面与连接面连接,反射面形成在反射透镜的第二外表面,第二外表面与第一外表面相对。聚光透镜设置在反射透镜上靠近支撑件的一侧表面。光学连接件将同一组光纤组件中的反射透镜与相邻的一组光纤组件中的反射透镜连接。多组光纤组件中光学主体组件的反射透镜、光学连接件、聚光透镜为一体结构,进一步减少了光模块中光学主体组件的组装步骤,且便于安装。
一组上述光纤组件中光纤阵列和固定装置中光学主体组件的总厚度的取值范围为1.2-1.5mm。支撑件的厚度为0.3mm。从而,在间距为5mm的高度空间内,可以安装3组光纤组件。对于上述每组光纤阵列具有40根光纤,且光芯片上沿第一方向相邻两个耦合接口之间的间距为127μm、沿第二方向相邻两个耦合接口之间的间距为3mm的光模块,该光模块的光通道密度可以为11.1ch/mm2(channel/square millimeters)以上。
第二方面,本申请实施例的光模块包括光芯片和上述实施例所述的光传输模块。其中,光芯片的第一表面上设有多个耦合接口,多个耦合接口沿第一方向间隔分布。光传输模块中的支撑件设置在光芯片上。光传输模块中的多个聚光透镜用于将经反射面反射的光束信号分别汇聚至光芯片上沿第一方向间隔分布的多个耦合接口。本申请实施例的光模块中光传输模块的结构与上述实施例中的光传输模块结构相同,两者能够解决相同的技术问题,并获得相同的技术效果,此处不再赘述。并且,上述光传输模块可以适用于光芯片上的多个耦合接口均为光栅耦合接口的应用场景。
并且,上述沿第一方向分布的多个耦合接口为一排所述耦合接口,上述光芯片的第一表面上设有多排耦合接口,多排耦合接口沿第二方向间隔分布。相应地,上述光传输模块包括多组光纤组件,多组光纤组件依次层叠设置在支撑件上,且多组光纤组件的长度沿靠近支撑件的方向依次递减。多组光纤组件中的反射面分别用于将多个光纤阵列传输的光束信号反射至多个固定装置的多个聚光透镜。多组光纤组件中固定装置的多个聚光透镜用于将经多个反射面反射的光束信号分别汇聚至光芯片上沿第二方向分布的多个耦合接口。因此,该光模块可以满足高速率、高密度的传输需求。
此外,上述光模块还包括气密罩,气密罩罩设在光传输模块外。该气密罩用于将支撑件、光纤组件、光芯片的多个耦合接口均密封。气密罩可以将聚光透镜、光芯片的耦合接口与外界的环境隔开。从而,避免了聚光透镜和光芯片的耦合接口受外界环境的影响,且气密罩的安装操作较简单。
在一种实施例中,上述光芯片上沿第二方向分布的相邻两个耦合接口之间的间距为0.7mm以上。本申请实施例的多组光纤组件堆叠的方案可以适用于具有沿第二方向分布的相邻两个耦合接口之间的间距为0.7mm以上的光芯片。
第三方面,本申请实施例还包括一种电路板组件,包括基板、电芯片及上述实施例所述的光模块。其中,电芯片设置在基板的第一区域上。光模块设置在基板上,且与电芯片连接。本申请实施例电路板组件中的光模块与上述实施例所述的光模块的结构相同,两者能够解决相同的技术问题,并获得相同的技术效果。
在一些实施例中,光模块设置在基板的第二区域上。光模块通过基板与电芯片连接。并且,基于上述电路板组件的结构,该光模块还包括气密罩,气密罩罩设在光芯片和光传 输模块外。气密罩的下边沿与基板连接。气密罩所需体积较小,成本较低。
在另一些实施例中,上述光模块设置在电芯片远离上基板的一侧,且光模块中光芯片的第一表面具有多个第一连接部。相应地,电芯片上远离基板的一侧表面设有多个第二连接部。光芯片的第一表面上具有多个第一连接部的部分区域与电芯片上具有第二连接部的部分区域相对。并且,第一连接部与第二连接部连接。光芯片的第一表面上具有多个耦合接口的部分区域与基板相对。光模块中的光传输模块位于光芯片与基板之间。该电路板组件中光芯片与电芯片堆叠设置,可以减少光芯片与电芯片在基板上的占板空间。从而,提高了电路板组件上的空间利用率。
并且,基于该电路板组件的结构,该光模块还包括气密罩,气密罩罩设在光芯片、光传输模块及电芯片外。该气密罩不仅安装简单,而且可以将电路板组件中光芯片、光传输模块、电芯片与外界均隔离,电路板组件受外界影响较小。
第四方面,本申请实施例包括一种光网络设备,该光网络设备包括外壳以及上述实施例所述的电路板组件。该电路板组件设置在外壳内。该光网络设备可以为路由器(如集群路由器)、核心服务器、超级计算机、分路器、光纤放大器、光束整形器或可调滤波器等。由于本申请实施例光网络设备中的电路板组件与上述实施例所述的电路板组件结构相同,两者能够解决相同的技术问题,并获得相同的技术效果,此处不再赘述。
附图说明
为了说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1为本申请实施例光网络设备为路由器的立体图;
图2为本申请实施例光网络设备中电路板组件的结构示意图;
图3为本申请实施例光网络设备中第一种电路板组件的截面示意图;
图4为本申请实施例光网络设备中第二种电路板组件的截面示意图;
图5为一种光网络设备中第一种电路板组件具有端部弯折光纤的光传输模块的结构示意图;
图6为一种光网络设备中第二种电路板组件具有端部弯折光纤的光传输模块的结构示意图;
图7为本申请实施例光网络设备中光模块的光芯片和光传输模块的截面示意图;
图8为本申请实施例光网络设备中光模块的光芯片和光传输模块的分解示意图;
图9为本申请实施例光网络设备中光纤组件的侧视图;
图10为本申请实施例光网络设备中光纤组件内各部件的分解示意图;
图11为本申请实施例光网络设备中光纤组件具有弧形反射面的结构示意图;
图12为本申请实施例光网络设备中光模块的光路示意图;
图13为本申请实施例光网络设备中光模块具有第二种固定装置的结构示意图;
图14为本申请实施例光网络设备中光模块具有多组光传输模块、光芯片上具有多排耦合接口的分解示意图;
图15为本申请实施例光网络设备中光模块具有多组光传输模块、光芯片上具有多排耦合接口的截面示意图;
图16为本申请实施例光网络设备中第二种电路板组件具有多组光传输模块和多排耦 合接口的截面示意图;
图17为一种光网络设备中第二种电路板组件具有多组光传输模块和多排耦合接口的截面示意图;
图18为本申请实施例光网络设备中光模块具有多个第二种固定装置的截面示意图;
图19为本申请实施例光网络设备中光模块具有多个第三种固定装置的截面示意图;
图20为本申请实施例光网络设备中光模块具有密封层的截面示意图;
图21为本申请实施例光网络设备中光模块具有密封层和光学垫片的截面示意图;
图22为本申请实施例光网络设备中光模块具有密封罩的截面示意图;
图23为本申请实施例光网络设备中第一种电路板组件具有密封罩的截面示意图;
图24为本申请实施例光网络设备中第二种电路板组件具有密封罩的截面示意图;
图25为本申请实施例光网络设备中密封罩的立体示意图。
附图标号:
1000-光网络设备,100-外壳,200-电路板组件,10-基板,101-第三连接部,102-走线层,20-电芯片,201-第二连接部,30-光模块,1-光芯片,1a-第一表面,11-第一连接部,12、12a、12b、12c-耦合接口,2-光传输模块,2a-支撑件,2b、2ba、2bb、2bc-光纤组件,21-光纤阵列,211-光纤,2111-第一端,22-固定装置,221-光学主体组件,221a-下边沿,221b-上边沿,2211-第一光学固定件,2212-第二光学固定件,2213-反射透镜,2213a-第一外表面,2213b-第二外表面,2214-光学连接件,220-固定槽,222-聚光透镜,23-密封层,24-光学垫片,25、25a、25b-气密罩,251-密封节,22a-反射面,22b-连接面,40-散热装置。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”、“左”、“右”、“水平”以及“竖直”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是指的机械构造,物理构造的连接。如可以是固定连接,也可以是可拆卸连接,或成一体,可以是直接相连,也可以通过中间媒介间接相连。还可理解为元器件物理接触并电导通,也可理解为线路构造中不同元器件之间通过PCB铜箔或导线等可传输电信号的实体线路进行连接的形式。
本申请实施例包括一种光网络设备,该光网络设备可以为路由器(如集群路由器)、核心服务器、超级计算机、分路器、光纤放大器、光束整形器及可调滤波器等。本申请实 施例对上述光网络设备的具体形式不做特殊限制。以下为了方便说明,均是以该光网络设备为如图1所示的路由器为例进行的举例说明。
请参照图1和图2,图1为本申请一些实施例提供的光网络设备为路由器的立体图,图2为图1所示的光网络设备中电路板组件的结构示意图。由上述可知,在本实施例中,光网络设备1000为路由器。路由器1000可以包括如图1所示的外壳100和如图2所示的电路板组件200。外壳100内形成有安装腔(图中未示出),电路板组件200设置在外壳100的安装腔内。
参照图2,该电路板组件200包括基板10、电芯片20以及光模块30。其中,光模块30和电芯片20均设置在基板10上。光模块30用于进行光电信号的调制、转换和光输入输出信号的传输。该电芯片20具体可以为交换芯片。该交换芯片与光模块30电连接,从而实现光模块30与电芯片20之间的信号传输。示例的,图2所示的电路板组件200包括1个电芯片20和2个光模块30,电芯片20与2个光模块30均电连接。本申请对电路板组件200中电芯片20和光模块30的数量不做限制,具体可以根据实际需要进行选择。
需要说明的是,如图3所示,上述基板10的上表面具有多个第三连接部101。具体地,该第三连接部101可以为焊盘或金属柱等。基板10内具有多层走线层102,图3仅示出了一层走线层102。该走线层102可以与第三连接部101连接。而电芯片20设有多个第二连接部201。具体地,该第二连接部201也可以为焊盘或金属柱等。光模块30包括光芯片1,该光芯片1用于进行光电转换。例如,该光芯片1可以为光波导芯片(如平面光波导芯片)。光芯片1的第一表面1a具有多个第一连接部11。具体地,该第一连接部11也可以为焊盘或金属柱等。电芯片20和光芯片1可以通过第三连接部101、第二连接部201和第一连接部11的不同组合方式进行连接,以实现光模块30中光芯片1与电芯片20的信号传输。以下对电芯片20和光芯片1连接方式进行举例说明。
在一些实施例中,光模块30和电芯片20可以通过基板10电连接。继续参照图3,电芯片20设置在基板10的第一区域A内。而光模块30设置在基板10的第二区域B内。换而言之,电芯片20与光模块30间隔设置。电芯片20的第二连接部201与基板10的第三连接部101连接,光芯片1的第一连接部11与基板10的第三连接部101连接。从而,电芯片20可以通过基板10的走线层102与光模块30中的光芯片1电连接。
在另一些实施例中,光模块30和电芯片20可以直接电连接。如图4所示,电芯片20的上表面(即电芯片20上远离基板10的一侧表面)和下表面(即电芯片20上靠近基板10的一侧表面))均具有上述第二连接部201。电芯片20的下表面上的第二连接部201与基板10的第三连接部101连接。光芯片1的第一表面1a上具有多个第一连接部11的部分区域与电芯片20的上表面具有第二连接部201的区域相对设置。而光芯片1的第一表面1a上不具有第一连接部11的部分区域可以与基板10相对。电芯片20的上表面上的第二连接部201可以与光芯片1的第一连接部11连接。从而,实现了电芯片20与光模块30中的光芯片1直接电连接。图4所示的安装方式,也可以称为光模块30中的光芯片1倒装在电芯片20上。
并且,上述光芯片1上设有如图5所示的耦合接口12,该耦合接口12用于输入光束信号或输出光束信号。该耦合接口12也可以称为光输入输出(Optical Input&Output)接口。该耦合接口12可以为边沿耦合(edge coupler,EC)接口,耦合接口12位于光芯片1的侧面。该耦合接口12也可以为光栅耦合接口,耦合接口12设置在光芯片1的第一 表面1a上。上述光模块30还包括如图5所示的光传输模块2,光模块30中的光传输模块2可以为一个,也可以为两个或两个以上,本申请对此不作限制。该光传输模块2包括光纤组件2b,光纤组件2b中的光纤211可以直接与上述耦合接口12连接。从而,光芯片1可以通过耦合接口12将光束信号传输至光纤组件2b,再通过光纤组件2b将光束信号传输至其他设备。并且,光纤组件2b还可以通过耦合接口12将其他设备的光束信号传输给光芯片1。
以光芯片1具有光栅耦合接口为例,继续参照图5,光传输模块2设置在光芯片1的上方。但是考虑到在光芯片1和电芯片20的上方需要设置散热装置40,且光芯片1和电芯片20需要紧贴散热装置40以保证散热效果良好。所以,给光传输模块2预留的高度H1较小,使得光传输模块2中的光纤组件2b安装受限。而图6所示的光芯片1倒装在电芯片20上,耦合接口12位于光芯片1上与基板10相对的区域。由于电芯片20的厚度(图中竖直方向为厚度方向)较小,所以,耦合接口12与基板10之间的高度H2也较小,也会使得光传输模块2中光纤组件2b安装受限。
为解决上述问题,如图5和图6所示,一种光传输模块2中将光纤组件2b中光纤211的第一端弯折,再与耦合接口12连接,以实现光纤组件2b的安装。但是,光纤211有最小弯曲半径的限制,无法满足高度限制高度(H1或H2)5mm以下的应用场景。另外,在需要高保偏性能的光链路中,光纤211第一端的小半径弯曲会导致传输过程的保偏性能劣化,还会带来额外的插损。
因此,为了解决上述问题、同时不会产生保偏性能劣化和额外插损问题,本申请实施例提供一种不需弯曲光纤211的光传输模块2。
本申请实施例的光传输模块2除了包括光纤组件2b,还包括如图7所示的支撑件2a,该支撑件2a可以设置在光芯片1的第一表面1a上。例如,该支撑件2a可以为垫片。支撑件2a的制作材料可以为玻璃、塑料等。光纤组件2b可以设置在该支撑件2a上。
对于光芯片1上具有多个如图8所示的耦合接口12,多个耦合接口12可以沿第一方向P间隔分布。相应地,与该多个耦合接口12配合的光纤组件2b包括光纤阵列21,该光纤阵列21包括沿第一方向P并排设置的多根光纤211。该光纤组件2b还包括固定装置22,该固定装置22包括如图8所示的光学主体组件221和如图9所示的多个聚光透镜222。其中,光学主体组件221可以将光纤阵列21中多根光纤211的第一端2111固定。并且,该光学主体组件221上形成有反射面22a,反射面22a用于将多根光纤211传输的光束信号分别对应反射至多个聚光透镜222。上述多个聚光透镜222在光学主体组件221上沿第一方向P间隔分布,且位于靠近支撑件2a的一侧上。
例如,如图10所示,该光学主体组件221可以包括第一光学固定件2211和第二光学固定件2212,第二光学固定件2212与第一光学固定件2211相对设置。支撑件2a设置在第二光学固定件2212的下方,即支撑件2a设置在第二光学固定件2212远离第一光学固定件2211的一侧表面上。光纤阵列21中多根光纤211的第一端2111夹持在第一光学固定件2211和第二光学固定件2212之间。具体地,该第一光学固定件2211和第二光学固定件2212可以均为透明的固定板,如玻璃板、塑料板或硅板。第一光学固定件2211上与第二光学固定件2212相对的表面上、或第二光学固定件2212上与第一光学固定件2211相对的表面上可以开设有多个固定槽220。光纤阵列21中多根光纤211的第一端2111分别容置在多个固定槽220内。当然,上述第一光学固定件2211和第二光学固定件2212也 可以均设置上述固定槽220内。第一光学固定件2211上靠近光纤211的第一端2111的表面、第二光学固定件2212上靠近光纤211的第一端2111的表面与光纤阵列21中多根光纤211的第一端2111的端面相接。第一光学固定件2211上靠近光纤211的第一端2111的表面、第二光学固定件2212上靠近光纤211的第一端2111的表面及光纤阵列21中多根光纤211的第一端2111的端面均设置斜度相同的斜面,从而形成如图8所示的反射面22a。该反射面22a可以为如图8所示的反射斜面,也可以为如图11所示的朝外侧凸起的弧面,以适应不同的反射角度需求。并且,反射面22a上靠近支撑件2a的一侧边沿(图11所示的反射面22a的下边沿221a)位于反射面22a上远离所述支撑件2a的一侧边沿(图11所示的反射面22a的上边沿221b)的外侧。从而,通过设计合适倾斜角度的反射面22a,即可实现如图12所示的将光纤211的光束信号反射至聚光透镜222的要求。
上述多个聚光透镜222设置在第二光学固定件2212上靠近支撑件2a的一侧表面上,且用于将经反射面22a反射的光束信号分别汇聚至光芯片1上沿第一方向P间隔分布的多个耦合接口12。从而,实现了光纤组件2b与光芯片1的信号传输。因此,本申请实施例的光传输模块2可以仅通过光学主体组件221的反射面22a、聚光透镜222将光纤211的光束信号传输至光芯片1的耦合接口12。并且,通过设计合适的聚光透镜222的弧面角度,光传输模块2中支撑件2a的高度可以较小。而光学主体组件221可以与光纤阵列21同平面设置,光学主体组件221的高度可以略大于光纤阵列21的高度,而聚光透镜222的厚度小于支撑件2a的高度。所以,整个光传输模块2的高度较小,可以应用于光芯片1的耦合接口12与基板10之间的高度为5mm以下的场景中,且不会产生保偏性能劣化和额外插损的问题。
需要说明的是,上述光学主体组件221中第一光学固定件2211与第二光学固定件2212、聚光透镜222与第二光学固定件2212均可以通过胶黏材料连接。在制作光学主体组件221时,第一光学固定件2211上靠近光纤211的第一端2111的表面、第二光学固定件2212上靠近光纤211的第一端2111的表面及光纤阵列21中多根光纤211的第一端2111的端面可以通过研磨工艺形成上述反射面22a。该光学主体组件221的体积较小,可以缩小光传输模块2的体积,还可以降低光传输模块2的材料成本。
此外,上述光学主体组件221除了上述图12所示的结构,还可以为其他结构。在本申请的一些实施例中,参照图13,上述光学主体组件221包括第一光学固定件2211、第二光学固定件2212及反射透镜2213。图13中的第一光学固定件2211和第二光学固定件2212与图12中的第一光学固定件2211和第二光学固定件2212的结构类似,区别在于:图13中的第一光学固定件2211上靠近光纤211的第一端2111的表面、第二光学固定件2212上靠近光纤211的第一端2111的表面及光纤阵列21中多根光纤211的第一端2111的端面均可以为竖直面,以形成连接面22b。而反射透镜2213具有多个外表面,如多个外表面包括相对设置的第一外表面2213a和第二外表面2213b。反射透镜2213的第一外表面2213a可以与上述连接面22b连接。反射透镜2213的第二外表面2213b可以形成上述反射面22a。聚光透镜222设置在反射透镜2213上靠近支撑件2a的一侧表面上。例如,图13示出的连接面22b为平面,反射透镜2213的纵截面(垂直于反射透镜2213的所在平面)形状为直角梯形。聚光透镜222为朝光芯片1一侧凸起的凸透镜。因此,在制作光学主体组件221时,可以将反射透镜2213与聚光透镜222制作为一体结构,从而减少装配步骤。并且,反射透镜2213上的反射面22a与聚光透镜222的弧面可以通过模压工艺 制作,也可以通过研磨工艺制作。这两种制作工艺均可以保证反射面22a的倾斜角和聚光透镜222的弧面的精度可靠性。
上述光芯片1仅设有一排沿第一方向P分布的多个耦合接口12,可以满足一些对光通道密度要求较低的应用场景。而对于光通道密度要求较高的应用场景,如具有光源池的光模块,该光模块30中的光纤阵列21既需要传输光源,还需要传输光束信号。所以,常常需要多组光纤阵列21传递光源和光束信号。
因此,如图14所示,本申请实施例的光芯片1的第一表面1a上设有多排耦合接口12(沿第一方向P分布的多个耦合接口12称为一排耦合接口12),多排耦合接口12沿第二方向Q间隔分布。换而言之,光芯片1的第一表面1a具有阵列排布的多个耦合接口12。相应地,光传输模块2包括多组如图15所示的上述光纤组件2b,多组光纤组件2b层叠设置在支撑件2a上。并且,多组光纤组件2b的长度沿靠近支撑件2a的方向依次递减。因此,多组光纤组件2b的第一端2111可以分别与光芯片1上的多排耦合接口12对应。图14和图15均示出了光芯片1的第一表面1a上具有两排耦合接口12,光传输模块2包括两组光纤组件2b,两组光纤组件2b分别与两排耦合接口12对应。因此,多组光纤组件2b中的反射面22a分别可以将多个光纤阵列21传输的光束信号反射至多个固定装置22的多个聚光透镜222。多组光纤组件2b中固定装置22的多个聚光透镜222可以将经多个反射面22a反射的光束信号分别汇聚至光芯片1上沿第二方向Q分布的多个耦合接口12。从而,光模块30可以适用于高度空间较小的安装场景,而且能够满足高通道密度的要求。
以光芯片1的第一表面1a与基板10之间的间距H2为5mm为例,如图16所示,光芯片1上可以设置3排耦合接口12。光模块30包括3组光纤组件2b依次层叠设置在支撑件2a上。上述每组光纤组件2b中光纤阵列21和光学主体组件221的总厚度的取值范围W0为1.2mm-1.5mm,而支撑件2a的厚度W1可以为0.3mm,以满足光模块的信号传输需求。具体地,位于顶层的一组光纤组件2ba与距离支撑件2a最远的一排耦合接口12a对应。而位于中间层的一层光纤组件2bb与位于中间位置的一排耦合接口12b对应。而位于底层的一组光纤组件2bc与距离支撑件2a最近的一排耦合接口12c对应。并且,对于上述每组光纤阵列21具有40根光纤211,且光芯片1上沿第一方向P相邻两个耦合接口12之间的间距D1为127μm、沿第二方向Q相邻两个耦合接口12之间的间距D2为3mm的光模块30,该光模块30的光通道密度可以为11.1ch/mm2(channel/square millimeters)以上。
而图17示出了一种光模块30,该光模块30中3组光纤组件2b的光纤211的第一端2111均弯折。从而,实现了光纤211与耦合接口12的连接。以该光模块30具有上述参数为例,图17的光模块30的密度为2.574ch/mm2。因此,相较于图17示出的光模块30,本申请实施例的光模块30的光通道密度提高了4倍以上。而图17示出的光模块30和本申请实施例的光模块30在耦合接口12处的插损相等或相差较小(如两种光模块30的插损均约为0.5dB)。
需要说明的是,为了避免相邻两组光传输模块2中沿第二方向Q相邻的两个聚光透镜222传输光束信号相互干涉,所以,本申请实施例中沿第二方向Q分布的相邻两个耦合接口12之间的间距D2为0.7mm以上。换而言之,本申请实施例的多组光纤组件2b堆叠的方案可以适用于具有沿第二方向Q分布的相邻两个耦合接口12之间的间距D2为0.7mm以上的光芯片1。
对于具有多排光纤组件2b的光传输模块2,该光传输模块2中多排光纤组件2b可以均采用上述举例说明的光纤组件2b的结构方案,如图16所示和图18所示。并且,光传输模块2中多排光纤组件2b还可以采用其他结构。
例如,该光传输模块2中多排光纤组件2b中反射透镜2213和聚光透镜222可以为一体结构,以减少组装步骤。示例的,该光传输模块2中的光学主体组件221在图18所示的结构基础上,还设置如图19所示的光学连接件2214,该光学连接件2214将同一光纤组件2b中的反射透镜2213与相邻的一组光纤组件2b中的反射透镜2213连接。从而,多组光纤组件2b中光学主体组件221可以通过光学连接件2214连接为一体结构。例如,该光学连接件2214可以为连接透镜。光学连接件2214与反射透镜2213、聚光透镜222均采用相同的材料制作。所以,多组光纤组件2b中光学主体组件221的反射透镜2213、光学连接件2214、聚光透镜222可以通过一体成型工艺制作,以获得一体结构,进一步减少了光模块30的安装步骤。
以上说明了光模块30中光纤组件2b的主体结构的不同方案。对于上述结构的光纤组件2b,该光纤组件2b中聚光透镜222与光芯片1的耦合接口12之间具有间隙,聚光透镜222和耦合接口12容易被外界空气中的尘土和水汽等杂质的影响光学性能。因此,本申请的一些实施例中的光纤组件2b还包括用于将聚光透镜222与耦合接口12密封的密封结构。该密封结构可以为多种,以下对该密封结构进行举例说明。
对于聚光透镜222与耦合接口12之间的间距(或最大间距)D3较小的方案,如图20所示,该密封结构可以为密封层23。该密封层23可以填充在聚光透镜222与对应的光芯片1的耦合接口12之间,并且将聚光透镜222与对应的光芯片1的耦合结构包裹。该密封结构较简单。例如,上述密封层23为光路胶层。光路胶层的价格便宜,且光学性能如透射率、折射率均较好。并且,在光路胶层的厚度W1小于50μm时,光路胶在烘烤过程不容易变形,所以可以适用于聚光透镜222与耦合接口12之间的间距较小的应用场景。
而对于聚光透镜222与对应的光芯片1的耦合接口12之间的间距(或最大间距)D3较大,如聚光透镜222与对应的光芯片1的耦合接口12之间的间距(或最大间距)D3大于50μm,厚度过大的光路胶层在烘烤过程容易变形。所以,本申请的一些实施例中,上述光纤组件2b还包括如图21所示的光学垫片24,该光学垫片24设置在密封层23与对应的光芯片1的耦合接口12之间。光学垫片24可以覆盖在光芯片1的耦合接口12上,并通过胶粘材料固定在光芯片1的第一表面1a上。从而,对光芯片1的耦合接口12进行密封。并且,通过调整光学垫片24的厚度,可以控制光路胶层的厚度W1小于50μm。从而,在保证聚光透镜222密封效果的前提下,还可以避免光路胶在烘烤过程中产生形变。
需要说明的是,在光模块30组装时,可以使用水平方向显微镜监控多个聚光透镜222与光芯片1上的多个耦合接口12之间的间距(或最大间距)D3。若一个聚光透镜222与光芯片1上的一个耦合接口12之间的间距小于50μm,则直接将光路胶填充在聚光透镜222与光芯片1上的耦合接口12之间,并将整个聚光透镜222和光芯片1上的耦合接口12包裹。若一个聚光透镜222与光芯片1上的一个耦合接口12之间的间距大于50μm,则先选择合适厚度W2(如150μm)的光学垫片24固定在光芯片1上的耦合接口12上。再在光学垫片24与聚光透镜222之间填充光路胶,以使所填充的光路胶的厚度W1小于50μm。
而对于具有3组或以上的光纤组件2b的光传输模块2,上述两种密封结构均会使得 光模块30的组装步骤过多。因此,本申请实施例的光模块30还包括如图22所示的气密罩25,该气密罩25直接罩设在光传输模块2外。气密罩25可以将聚光透镜222、光芯片1的耦合接口12与外界的环境隔开。从而,实现了对聚光透镜222和光芯片1的耦合接口12的密封。
需要说明的是,对于不同架构的电路板组件200,上述气密罩25的罩设方式可以不同。例如,如图23所示,光芯片1与电芯片20间隔设置。气密罩25a罩设在光芯片1和光传输模块2外。气密罩25a的下边沿与基板10连接。
又如,如图24所示,光芯片1倒装在电芯片20上。气密罩25b罩设在光芯片1、光传输模块2及电芯片20外。具体地,气密罩25b的下边沿与基板10连接。或者,气密罩25b的内侧面与基板10的侧面连接。从而,该气密罩25b可以将电路板组件200中光芯片1、光传输模块2及电芯片20与外界隔离,电路板组件200受外界影响较小。
可以理解的是,在光纤阵列21需要穿出气密罩25与外部的器件连接时,该气密罩25上设有如图25所示的密封节(feedthrough)251,密封节251与光传输模块2中的光纤阵列21位置对应。光传输模块2中的光纤阵列21通过密封节251内穿出气密罩25,同时还可以保持气密罩25内部的密封性。
以密封结构包括密封层23为例,上述光模块30的组装步骤包括以下步骤:
S100:组装光纤组件2b。例如,第一光学固定件2211和第二光学固定件2212将光纤阵列21夹持并固定后,通过研磨工艺形成反射面22a。再使用光束分析仪对聚光透镜222的上表面与光纤阵列21之间的间距进行监控,并调整聚光透镜222的方位,直至光纤组件2b中多个聚光透镜222或选定的一些聚光透镜222所形成的光斑符合预设要求。之后,再将聚光透镜222与第二光学固定件2212通过胶粘材料固定。多次执行上述步骤,即可获得可以与光芯片1上沿第二方向Q分布的多个耦合接口12对应的多组光纤组件2b。其中,多组光纤组件2b所使用的聚光透镜222的焦距和聚光透镜222(聚光透镜222包括基体和设置在基体上的凸透镜)中基体的厚度可以不同,以此适配不同高度需求的耦合接口12的位置。
S200:将多组光纤组件2b堆叠在支撑件2a上。例如,多组光纤组件2b的具体组装步骤如下:将一组光纤组件2b(最底层的光纤组件2b)的一端先放置在光芯片1上的耦合接口12阵列中位于第二方向Q的边沿位置的一排耦合接口12的上方。之后,再将光源接入该光纤组件2b的测试回路中,调整光纤组件2b在耦合接口12上方的位置。监测测试回路的光链路插入损耗,直至调节到光链路的插入损耗最低,获得光纤组件2b的具体安装位置。之后,选择合适尺寸的支撑件2a固定在光芯片1上。再将光纤组件2b与支撑件2a固定,完成了最底层一组光纤组件2b的装配。之后重复上述步骤进行上层光纤组件2b的装置。以底层的光纤组件2b的顶部为基准,调整上层的光纤组件2b的位置,使该光纤组件2b的整个光链路的插入损耗最低,然后进行光纤组件2b的固化操作。以此类推,直至完成多组光纤组件2b的装配。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光传输模块,其特征在于,包括:
    支撑件;
    光纤组件,所述光纤组件用于设置在所述支撑件上;所述光纤组件包括:
    光纤阵列,所述光纤阵列包括沿第一方向并排设置的多根光纤;
    固定装置,所述固定装置包括光学主体组件和多个聚光透镜,所述光学主体组件将所述光纤阵列中多根光纤的第一端固定;所述光学主体组件上形成有反射面,所述反射面用于将所述多根光纤传输的光束信号分别对应反射至所述多个聚光透镜;所述多个聚光透镜在所述光学主体组件上沿所述第一方向间隔分布,且位于靠近所述支撑件的一侧上;所述多个聚光透镜用于将经所述反射面反射的光束信号分别汇聚至光芯片上沿所述第一方向间隔分布的多个耦合接口。
  2. 根据权利要求1所述的光传输模块,其特征在于,所述光学主体组件包括:
    第一光学固定件;
    第二光学固定件,所述第二光学固定件与所述第一光学固定件相对设置;所述光纤阵列中多根光纤的第一端夹持在所述第一光学固定件和所述第二光学固定件之间;所述第一光学固定件上靠近所述光纤的第一端的表面、所述第二光学固定件上靠近所述光纤的第一端的表面与所述光纤阵列中多根光纤的第一端的端面相接,以形成所述反射面;所述聚光透镜、所述支撑件均设置在所述第二光学固定件上远离所述第一光学固定件的一侧表面上。
  3. 根据权利要求1所述的光传输模块,其特征在于,所述光学主体组件包括:
    第一光学固定件;
    第二光学固定件,所述第二光学固定件位于所述第一光学固定件的下方,所述光纤阵列中多根光纤的第一端夹持在所述第一光学固定件和所述第二光学固定件之间;所述第一光学固定件上靠近所述光纤的第一端的表面、第二光学固定件上靠近所述光纤的第一端的表面与所述光纤阵列中多根光纤的第一端的端面相接,以形成连接面;
    反射透镜,所述反射透镜的第一外表面与所述连接面连接;所述反射面形成在所述反射透镜的第二外表面上,所述第二外表面与所述第一外表面相对;所述聚光透镜设置在所述反射透镜上靠近所述支撑件的一侧表面上;所述反射透镜与所述聚光透镜为一体结构。
  4. 根据权利要求1-3中任一项所述的光传输模块,其特征在于,所述反射面为朝外侧凸起的弧面或反射斜面;所述反射面上靠近所述支撑件的一侧边沿位于所述反射面上远离所述支撑件的一侧边沿的外侧。
  5. 根据权利要求1-4中任一项所述的光传输模块,其特征在于,所述光纤组件还包括:
    密封层,所述密封层用于填充在所述聚光透镜与对应的光芯片的耦合接口之间,且将所述聚光透镜和对应的光芯片的耦合接口均覆盖。
  6. 根据权利要求5所述的光传输模块,其特征在于,所述密封层为光路胶层。
  7. 根据权利要求5或6所述的光传输模块,其特征在于,所述光纤组件还包括:
    光学垫片,所述光学垫片用于设置在所述密封层与对应的光芯片的耦合接口之间,且将光芯片的耦合接口覆盖。
  8. 根据权利要求1-7中任一项所述的光传输模块,其特征在于,所述光传输模块包括 多组所述光纤组件,多组所述光纤组件依次层叠设置在所述支撑件上,且多组所述光纤组件的长度沿靠近所述支撑件的方向依次递减;多组所述光纤组件中的反射面分别用于将多个所述光纤阵列传输的光束信号反射至多个所述固定装置的多个聚光透镜;多组所述光纤组件中固定装置的多个聚光透镜用于将经多个所述反射面反射的光束信号分别汇聚至光芯片上沿第二方向分布的多个耦合接口。
  9. 根据权利要求8所述的光传输模块,其特征在于,一组所述光学主体组件包括:
    第一光学固定件;
    第二光学固定件,所述第二光学固定件位于所述第一光学固定件的下方,所述光纤阵列中多根光纤的第一端夹持在所述第一光学固定件和所述第二光学固定件之间;所述第一光学固定件上靠近所述光纤的第一端的表面、所述第二光学固定件上靠近所述光纤的第一端的表面与所述光纤阵列中多根光纤的第一端的端面相接,以形成连接面;
    反射透镜,所述反射透镜的第一外表面与所述连接面连接;所述反射面形成在所述反射透镜的第二外表面上,所述第二外表面与所述第一外表面相对;所述聚光透镜设置在所述反射透镜上靠近所述支撑件的一侧表面上;
    光学连接件,所述光学连接件将同一组所述光纤组件中的反射透镜与相邻的一组所述光纤组件中的反射透镜连接;多组所述光纤组件中光学主体组件的反射透镜、光学连接件、聚光透镜为一体结构。
  10. 根据权利要求1-9中任一项所述的光传输模块,其特征在于,一组所述光纤组件中光纤阵列和固定装置中光学主体组件的总厚度的取值范围为1.2-1.5mm;所述支撑件的厚度为0.3mm。
  11. 一种光模块,其特征在于,包括:
    光芯片,所述光芯片的第一表面上设有多个耦合接口,多个所述耦合接口沿第一方向间隔分布;
    上述权利要求1-10中任一项所述的光传输模块,所述光传输模块中的支撑件设置在所述光芯片上;所述光传输模块中的多个聚光透镜用于将经所述反射面反射的光束信号分别汇聚至所述光芯片上沿所述第一方向间隔分布的多个耦合接口。
  12. 根据权利要求11所述的光模块,其特征在于,沿所述第一方向分布的多个所述耦合接口为一排所述耦合接口;所述光芯片的第一表面上设有多排所述耦合接口,多排所述耦合接口沿第二方向间隔分布;
    所述光传输模块包括多组所述光纤组件,多组所述光纤组件依次层叠设置在所述支撑件上,且多组所述光纤组件的长度沿靠近所述支撑件的方向依次递减;多组所述光纤组件中的反射面分别用于将多个所述光纤阵列传输的光束信号反射至多个所述固定装置的多个聚光透镜;多组所述光纤组件中固定装置的多个聚光透镜用于将经多个所述反射面反射的光束信号分别汇聚至光芯片上沿第二方向分布的多个耦合接口。
  13. 根据权利要求11或12中所述的光模块,其特征在于,所述光模块还包括:
    气密罩,所述气密罩罩设在所述光传输模块外,且用于将所述支撑件、所述光纤组件、所述光芯片的多个耦合接口均密封。
  14. 根据权利要求11-13中的任一项所述的光模块,其特征在于,所述多个耦合接口均为光栅耦合接口。
  15. 根据权利要求14所述的光模块,其特征在于,沿所述第二方向分布的相邻两个所 述耦合接口之间的间距为0.7mm以上。
  16. 一种电路板组件,其特征在于,包括:
    基板;
    电芯片,所述电芯片设置在所述基板的第一区域上;
    上述权利要求11-15中任一项所述的光模块,所述光模块设置在所述基板上,且与所述电芯片连接。
  17. 根据权利要求16所述的电路板组件,其特征在于,所述光模块设置在所述基板的第二区域上;所述光模块通过所述基板与所述电芯片连接;
    所述光模块还包括气密罩,所述气密罩罩设在所述光芯片和所述光传输模块外,且所述气密罩的下边沿与所述基板连接。
  18. 根据权利要求16所述的电路板组件,其特征在于,所述光模块设置在所述电芯片远离上所述基板的一侧,且所述光模块中光芯片的第一表面具有多个第一连接部;所述电芯片上远离所述基板的一侧表面设有多个第二连接部;所述光芯片的第一表面上具有所述多个第一连接部的部分区域与所述电芯片上具有第二连接部的部分区域相对,且所述第一连接部与所述第二连接部连接;所述光芯片的第一表面上具有所述多个耦合接口的部分区域与所述基板相对,所述光模块中的光传输模块位于所述光芯片与所述基板之间;
    所述光模块还包括气密罩,所述气密罩罩设在所述光芯片、所述光传输模块及所述电芯片外。
  19. 一种光网络设备,其特征在于,包括外壳以及上述权利要求16-18中任一项所述的电路板组件,所述电路板组件设置在所述外壳内。
  20. 根据权利要求19所述的光网络设备,其特征在于,所述光网络设备为路由器。
PCT/CN2023/095234 2022-06-13 2023-05-19 一种光传输模块、光模块、电路板组件及光网络设备 WO2023241308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210661271.6 2022-06-13
CN202210661271.6A CN117270112A (zh) 2022-06-13 2022-06-13 一种光传输模块、光模块、电路板组件及光网络设备

Publications (1)

Publication Number Publication Date
WO2023241308A1 true WO2023241308A1 (zh) 2023-12-21

Family

ID=89192204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095234 WO2023241308A1 (zh) 2022-06-13 2023-05-19 一种光传输模块、光模块、电路板组件及光网络设备

Country Status (2)

Country Link
CN (1) CN117270112A (zh)
WO (1) WO2023241308A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273444A (ja) * 1992-01-30 1993-10-22 Nippon Telegr & Teleph Corp <Ntt> 受光モジュール
US20030091301A1 (en) * 2000-10-16 2003-05-15 Photonage, Inc. Miniaturized parallel optical transmitter and receiver module
CN101091268A (zh) * 2004-12-28 2007-12-19 3M创新有限公司 电致发光器件和制造包括光学垫片的电致发光器件的方法
CN101520530A (zh) * 2009-03-26 2009-09-02 武汉电信器件有限公司 新型侧向耦合光纤构件及其加工方法
US20130142479A1 (en) * 2011-12-05 2013-06-06 Hon Hai Precision Industry Co., Ltd. Chip package
US20140183344A1 (en) * 2013-01-02 2014-07-03 Electronics And Telecommunications Research Institute Hybrid optical coupling module and manufacturing method thereof
CN106908911A (zh) * 2015-12-23 2017-06-30 福州高意通讯有限公司 一种用于多路并行传输的光收发组件
WO2018014220A1 (zh) * 2016-07-19 2018-01-25 华为技术有限公司 一种双向bosa组件及光模块、pon系统
CN210401756U (zh) * 2019-08-20 2020-04-24 苏州旭创科技有限公司 光模块
CN210835351U (zh) * 2019-11-19 2020-06-23 苏州旭创科技有限公司 一种光模块
CN113835165A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种光发射组件、芯片、光模块及光通信设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273444A (ja) * 1992-01-30 1993-10-22 Nippon Telegr & Teleph Corp <Ntt> 受光モジュール
US20030091301A1 (en) * 2000-10-16 2003-05-15 Photonage, Inc. Miniaturized parallel optical transmitter and receiver module
CN101091268A (zh) * 2004-12-28 2007-12-19 3M创新有限公司 电致发光器件和制造包括光学垫片的电致发光器件的方法
CN101520530A (zh) * 2009-03-26 2009-09-02 武汉电信器件有限公司 新型侧向耦合光纤构件及其加工方法
US20130142479A1 (en) * 2011-12-05 2013-06-06 Hon Hai Precision Industry Co., Ltd. Chip package
US20140183344A1 (en) * 2013-01-02 2014-07-03 Electronics And Telecommunications Research Institute Hybrid optical coupling module and manufacturing method thereof
CN106908911A (zh) * 2015-12-23 2017-06-30 福州高意通讯有限公司 一种用于多路并行传输的光收发组件
WO2018014220A1 (zh) * 2016-07-19 2018-01-25 华为技术有限公司 一种双向bosa组件及光模块、pon系统
CN210401756U (zh) * 2019-08-20 2020-04-24 苏州旭创科技有限公司 光模块
CN210835351U (zh) * 2019-11-19 2020-06-23 苏州旭创科技有限公司 一种光模块
CN113835165A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种光发射组件、芯片、光模块及光通信设备

Also Published As

Publication number Publication date
CN117270112A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US6327407B1 (en) Semiconductor light-receiving device, method of manufacturing the same, bidirectional optical semiconductor device, and optical transmission system
TWI303724B (en) Opto-electronic module form factor having adjustable optical plane height
RU2638979C1 (ru) Герметическая сборка для выравнивания оптического волокна, имеющая интегрированный оптический элемент
US6282339B1 (en) Reliable low-cost wavelength division multiplexed coupler with flexible and precise optical path adjustment
US20130034357A1 (en) Bidirectional optical transmission and receiving device
US8615149B2 (en) Photonics chip with efficient optical alignment and bonding and optical apparatus including the same
US7520682B2 (en) Transceiver module and optical bench for passive alignment
WO2022142171A1 (zh) 一种基于mlg2.0协议的单模光模块
CN111638577B (zh) 表贴式集成化光模块
US6347170B1 (en) Low-cost wavelength division multiplexed (WDM) coupler with more flexible and precise optical faith adjustment
CN114967004A (zh) 光纤阵列和硅光芯片的耦合方法以及光模块
CN203480083U (zh) 光接口装置
US20100034497A1 (en) Flexible Optical Pillars for an Optical Assembly
WO2023241308A1 (zh) 一种光传输模块、光模块、电路板组件及光网络设备
KR100793296B1 (ko) 렌즈 일체형 반사경과 그 제조방법 및 렌즈 일체형반사경을 이용하는 광접속 모듈
TWI498619B (zh) 雙向光傳輸次組件
CN211905786U (zh) 一种新型多通道并行接收光器件
US10382137B2 (en) Optoelectronic device having improved optical coupling
WO2021218462A1 (zh) 一种光模块
WO2021056835A1 (zh) 一种光接收端组件和光模块
EP3940438A1 (en) Optical module
WO2023179289A1 (zh) 光纤阵列、光模块及通信设备
TW201323963A (zh) 光學元件封裝結構及其封裝方法
JP5812116B2 (ja) 光モジュール及びその製造方法
WO2016200031A1 (ko) 광도파로칩을 이용한 광수신 모듈 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822878

Country of ref document: EP

Kind code of ref document: A1