WO2023179289A1 - 光纤阵列、光模块及通信设备 - Google Patents

光纤阵列、光模块及通信设备 Download PDF

Info

Publication number
WO2023179289A1
WO2023179289A1 PCT/CN2023/077844 CN2023077844W WO2023179289A1 WO 2023179289 A1 WO2023179289 A1 WO 2023179289A1 CN 2023077844 W CN2023077844 W CN 2023077844W WO 2023179289 A1 WO2023179289 A1 WO 2023179289A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
circuit board
core
core end
Prior art date
Application number
PCT/CN2023/077844
Other languages
English (en)
French (fr)
Inventor
于飞
赵俊英
丰涛
汪金朗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023179289A1 publication Critical patent/WO2023179289A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • This application relates to optical communication technology, and in particular to an optical fiber array, optical module and communication equipment.
  • optical waveguide of the optical chip and the fiber array There are usually two coupling methods between the optical waveguide of the optical chip and the fiber array (FA): grating coupling (GC) and edge coupling (EC).
  • edge coupling method When the edge coupling method is used, the optical waveguide and the optical fiber of the optical fiber array are optically coupled at the side edge of the optical chip, and the coupling direction of the optical fiber and the optical chip is roughly flush with the surface of the optical chip. Since the thickness of the optical chip itself is small (for example, less than 1 mm), the optical fiber led out from the optical chip is usually placed close to the surface of the circuit board carrying the optical chip.
  • the circuit board needs to be avoided on the path where the optical fiber passes (which can be called the optical fiber path), resulting in the height of the circuit board corresponding to the components located on the optical fiber path being limited, which is not conducive to the device layout of the circuit board.
  • Embodiments of the present application provide an optical fiber array, optical module and communication equipment that can optimize the layout of circuit board components.
  • this application provides an optical fiber array, including:
  • Fiber optic transmission unit including:
  • a concave reflector is provided on the base and is optically coupled to the optical fiber.
  • the concave reflector is used to reflect the light transmitted from the optical fiber, or the concave reflector is used to reflect the light to Transmission takes place within the optical fiber.
  • the optical fiber array Since a concave reflector that can change the optical path is added to the optical fiber array, when the optical fiber array is coupled to the edge of the optical chip, the optical fiber does not need to be placed close to the circuit board, or the distance between the optical fiber and the circuit board is large enough so that the circuit board does not need to attach to the optical fiber. With avoidance, the height of the devices on the circuit board does not need to be limited, which is conducive to optimizing the device layout of the circuit board.
  • the concave reflector can converge light while reflecting light, which is beneficial to reducing light loss and improving light transmission quality.
  • the base body includes a first surface and a second surface that are connected and arranged, and the second surface includes a curved surface protruding toward the outside of the base body.
  • part of the optical fiber is fixed on the curved surface, and the optical fiber extends from the first end of the second surface to the second end of the second surface to form a curved structure along the outer contour of the curved surface.
  • the first ends of the two surfaces are connected to the first surface, and the concave reflector is disposed on the first end of the second surface.
  • a concave surface can be formed on the substrate through etching or other processing methods, and then a reflective material can be coated on the concave surface to form a concave reflector.
  • a concave reflector can be fixed on the base body.
  • the optical fiber On the second surface, as the optical fiber extends along the contour of the curved surface from the first end of the second surface toward the second end of the second surface, the optical fiber is gradually raised. In the space above the circuit board, the optical fiber extends from the second end of the second surface to an area outside the receiving groove of the circuit board. Since the optical fiber located at the second end of the second surface is separated relative to the optical fiber located at the first end of the second surface, Elevate so that the distance between the optical fiber and the circuit board is large enough.
  • the circuit board does not need to avoid the optical fiber on the optical fiber path.
  • the height of the components on the corresponding optical fiber path of the circuit board does not need to be limited, which is conducive to optimizing the component layout of the circuit board.
  • the curved structure can also reduce the possibility of the optical fiber being broken and extend the service life of the optical fiber.
  • a fixing groove is provided on the curved surface, and the optical fiber is at least partially accommodated in In the fixed groove, the concave reflector is arranged in the fixed groove.
  • Locating the optical fiber transmission unit in the fixed groove is beneficial to limiting the position of the optical fiber transmission unit, reducing the possibility of loosening of the optical fiber transmission unit, and improving the stability of optical coupling between the optical fiber transmission unit and the optical chip.
  • the optical fiber has an optical axis
  • the optical fiber includes an optical fiber.
  • Core and cladding the fiber core includes a core end surface and a core side surface connected to the core end surface, the core end surface is perpendicular to the optical axis of the optical fiber, and the light reflected from the concave reflector passes through The core end face is incident into the optical fiber, or the light from the optical fiber is incident on the concave reflector through the core end face.
  • the light reflected by the concave reflector is directly incident on the optical axis of the optical fiber through the core end face for transmission, or the light from the optical fiber is directly incident on the concave reflector through the core end face.
  • the optical path is simple and helps reduce optical loss. .
  • the optical fiber has an optical axis
  • the optical fiber includes a core The end surface and the core side surface connected to the core end surface.
  • the core end surface includes a core end reflection surface.
  • the core end surface is tilted relative to the optical axis of the optical fiber.
  • the light reflected from the concave reflector passes through the core end surface.
  • the core side surface is then incident on the core end reflective surface for reflection, or the light reflected by the core end reflection surface passes through the core side surface and is incident on the concave reflector for reflection.
  • the core end surface of the fiber core is used to form a core end reflective surface, which can also bend the optical path, which is beneficial to improving the flexibility of the optical module device layout.
  • the core end reflective surface can be set as a flat surface or a concave surface.
  • the planar core-end reflective surface is simple to produce and helps reduce costs.
  • the concave core-end reflective surface can reflect light while concentrating it, which is beneficial to reducing light loss.
  • the base body includes: a first surface, which is provided with a device. A groove is provided, the concave reflector is provided in the installation groove; a second surface is provided with a fixing groove, and the optical fiber is fixed in the fixing groove; and a third surface is connected to the first surface and the second surface. Between the surfaces, light can be incident on the core end reflective surface through the third surface, or light can be emitted from the base body through the third surface after being reflected by the core end reflective surface.
  • the matrix raises the optical fiber, it can also be used as a part of the optical path, so that the optical fiber does not need to be bent, which facilitates the assembly of the optical fiber array.
  • the core end surface is tilted relative to the optical axis of the optical fiber. 45 degrees, after the light is reflected by the core end reflective surface of the core end surface, the light path can be bent 90 degrees.
  • the concave reflector is arranged parallel to the core end surface.
  • the optical path of the output light output by the optical chip takes the optical path of the output light output by the optical chip as an example.
  • Output light passes through the concave surface After reflection by the reflector and the core end reflective surface of the core end face, the output light is transmitted along the optical axis of the optical fiber.
  • the concave reflector is set parallel to the core end face, the core end face is set at an angle of 45 degrees relative to the optical axis of the optical fiber.
  • the transmission direction of the output light can remain the same as the transmission direction before incident on the concave reflector, which only increases the distance between the optical fiber and the circuit board. Due to the increased spacing between the optical fiber and the circuit board, height restrictions on components located on the circuit board in the fiber path can be reduced, thereby optimizing the circuit board layout.
  • this application provides an optical module, including:
  • Optical chips including:
  • the chip body is electrically connected to the circuit board
  • An optical waveguide is provided on the sheet body,
  • the concave reflector of the optical fiber transmission unit and the optical waveguide are coupled at the edge of the sheet body, the The concave reflector reflects the light output from the optical waveguide to the optical fiber, or reflects the light from the optical fiber to the optical waveguide.
  • the optical fiber does not need to be placed against the circuit board, or the distance between the optical fiber and the circuit board is not required. It is large enough so that the circuit board does not need to avoid optical fibers, and the height of the devices on the circuit board does not need to be limited, which is conducive to optimizing the layout of the circuit board and optimizing the performance of the optical module.
  • the optical module further includes a spacer block, the base body and the spacer block are stacked, and the circuit board includes two components facing each other along the first direction.
  • a first side and a second side are provided, the first direction is the stacking direction of the base body and the pad, and at least part of the base body is disposed protruding from the second side in the first direction, This facilitates the coupling of the concave reflector of the optical fiber array with the optical waveguide.
  • the optical module further includes a substrate, and the first side is fixed on the On the substrate, the sheet body is arranged on the substrate, and the pad is arranged on the substrate.
  • the substrate can be directly placed on the motherboard without the need for the circuit board, chip body, and pads, which facilitates heat dissipation of the circuit board, chip body, etc. , thereby improving the heat dissipation efficiency of the optical module.
  • the substrate in a third possible implementation manner of the second aspect of this application, includes: a connecting portion, and the first The side surface is fixed on the connecting part; and the convex part is protruding on the connecting part, the sheet body is disposed on the convex part, and the cushion block is disposed on the convex part.
  • the spacer block and the sheet body are both arranged on the convex part with a height higher than the connecting part. The convex part not only raises the spacer block and the sheet body, it also facilitates the heat dissipation of the sheet body.
  • the circuit board penetrates the first side and the The second side is provided with a receiving groove, the convex portion is received in the receiving groove, the sheet body is received in the receiving groove, and the pad is received in the receiving groove.
  • the chip body and the pad are arranged in the receiving groove, which can reduce the impact on the layout of the device on the circuit board.
  • the optical module further includes an auxiliary component, and the auxiliary component The component is fixed on the sheet body, and the auxiliary component is fixedly connected to the base body.
  • the light between the concave reflector and the optical waveguide is The angle between the axes is 45 Spend.
  • the present application provides a communication device, including a mainboard and an optical module according to the first to fourth possible implementations of the second aspect.
  • the circuit board of the optical module is electrically connected to the mainboard. .
  • the optical fiber array and the optical chip adopt an edge coupling method to realize optical coupling. Since the optical fiber array of the optical module is equipped with a concave reflector, the concave reflector can change the optical path, so that the optical fiber does not need to be placed against the circuit board. In this way, the circuit board does not need to avoid the optical fiber, or the height of the circuit board device on the optical fiber path is reduced, which is conducive to optimizing the layout of the circuit board and improving the performance of the communication equipment.
  • the present application provides an optical fiber array, including a base body and an optical fiber transmission unit.
  • the optical fiber transmission unit is fixed on the base body.
  • the base is used to connect with the optical chip.
  • the optical fiber transmission unit has an optical axis.
  • the optical fiber transmission unit includes fiber core and cladding.
  • the fiber core includes a core end surface and a core side surface connected to the core end surface.
  • the core end surface includes the core end reflection surface.
  • the core end surface is inclined relative to the optical axis of the optical fiber.
  • a cladding layer covers the side surface of the core, and part of the side surface of the core is exposed outside the cladding layer, so that light can pass through the side surface of the core.
  • the optical path is changed directly through the core end face of the optical fiber itself without adding other devices, so that the optical fiber array can change the optical path while having a simple structure and low manufacturing cost.
  • this application provides an optical module, including:
  • Optical chips including:
  • the chip body is electrically connected to the circuit board
  • An optical waveguide is provided on the sheet body,
  • the base body is fixed on the sheet body, the side surface of the core exposed outside the cladding is coupled with the optical waveguide at the edge of the sheet body, and the core end surface
  • the angle between the core end surface and the optical axis of the optical waveguide is 45 degrees, and the angle between the core end surface and the optical axis of the optical fiber transmission unit is 45 degrees.
  • the light output by the optical waveguide passes through the core side surface and then is incident on the core end reflective surface.
  • the optical fiber transmission unit After the light output from the optical waveguide is incident on the optical fiber transmission unit, it is reflected by the core end reflective surface, and the optical path can be bent 90 degrees, so that the optical fiber transmission unit does not need to be placed close to the circuit board, and the circuit board does not need to avoid the optical fiber.
  • the height of devices on the circuit board does not need to be limited, which is conducive to optimizing the layout of the circuit board.
  • the present application provides a communication device, including a mainboard and an optical module according to the fifth aspect.
  • the circuit board of the optical module is electrically connected to the mainboard.
  • Figure 1 is a schematic diagram of the application scenario of the communication device provided by the first embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an optical module provided by the first embodiment of the present application.
  • Figure 3a is a three-dimensional schematic view of the optical fiber transmission unit provided by the first embodiment of the present application.
  • Figure 3b is a three-dimensional schematic view of the optical fiber transmission unit provided by the first embodiment of the present application from another perspective;
  • Figure 4 is a cross-sectional view of the optical fiber of the optical fiber transmission unit provided by the first embodiment of the present application along the optical axis of the optical fiber;
  • Figure 5 is a schematic diagram of the optical path of the optical module provided by the first embodiment of the present application.
  • Figure 6 is a diagram of simulation calculation results of the optical module provided by the first embodiment of the present application.
  • Figure 7 is a schematic diagram of a possible structure of an optical module provided by an embodiment of the present application.
  • Figure 8 is a schematic cross-sectional view of an optical module provided by the second embodiment of the present application.
  • Figure 9 is a schematic diagram of the optical path of the optical module provided by the second embodiment of the present application.
  • Figure 10 is a three-dimensional perspective view of an optical fiber transmission unit provided by the second embodiment of the present application.
  • Figure 11 is a cross-sectional view of the optical fiber of the optical fiber transmission unit provided in the second embodiment of the present application along the optical axis direction of the optical fiber;
  • Figure 12 is a diagram of simulation calculation results of the optical module provided by the second embodiment of the present application.
  • Figure 13 is a schematic diagram of an optical module provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of an optical module provided by the third embodiment of the present application.
  • Figure 15 is a schematic diagram of the optical path of the optical module provided by the third embodiment of the present application.
  • Figure 16 is a diagram of simulation calculation results of the optical module provided by the third embodiment of the present application.
  • the optical chip is placed on the surface of the circuit board.
  • the thickness of the optical chip is generally less than 1 millimeter (mm). Therefore, on the path of the circuit board that the optical fiber needs to pass through (which can be called the optical fiber path), the device The height needs to be limited to less than 1mm, otherwise it will interfere with the optical fiber and the layout optimization will be limited.
  • the circuit board is provided with a receiving slot, and the optical chip is received in the receiving slot of the circuit board and electrically connected to the circuit board.
  • the upper surface of the optical chip is roughly flush with the upper surface of the circuit board, and the optical fiber of the optical fiber array Coupled with the side optical waveguide edge of the optical chip, the optical fiber is close to the upper surface of the circuit board.
  • the circuit board needs to avoid the path where the optical fiber passes (which can be called the optical fiber path), causing the circuit board to be located on the optical fiber path. Limiting the height of the device is not conducive to reducing the device layout of the circuit board.
  • the optical fiber array includes a base body and an optical fiber transmission unit.
  • the optical fiber transmission unit includes optical fiber and concave reflector.
  • the optical fiber is fixed on the base body.
  • the concave reflector is fixed on the base and optically coupled with the optical fiber.
  • the concave reflector is used to reflect the light transmitted from the optical fiber, or the concave reflector is used to reflect the light into the optical fiber for transmission.
  • the communication device 100 includes a mainboard 10 and an optical module 30 disposed on the mainboard 10 .
  • the communication device 100 can exchange information with other external devices through the optical module 30 .
  • the communication device 100 can be a cluster router, or other types of communication devices, such as switches, transmission network equipment, and optical line terminals (Optical Line Terminal, OLT) of the access network.
  • OLT optical Line Terminal
  • the optical module 30 may be, but is not limited to, an onboard optical module.
  • FIG. 2 is a schematic structural diagram of an optical module provided by the first embodiment of the present application.
  • the optical module 30 includes a substrate 32 , a circuit board 34 , an optical chip 36 , a spacer 37 and an optical fiber array 38 .
  • the circuit board 34 is fixed on the base plate 32 and electrically connected to the main board 10 .
  • the optical chip 36 is disposed on the substrate 32 .
  • the optical chip 36 is electrically connected to the circuit board 34 to realize electrical signal transmission between the optical chip 36 and the circuit board 34 .
  • the pad 37 is disposed on the base plate 32 .
  • the optical fiber array 38 is fixed on the spacer block 37 .
  • the optical fiber array 38 is edge-coupled with the optical chip 36, thereby realizing optical transmission between the optical fiber array 38 and the optical chip 36.
  • the substrate 32 and the mainboard 10 are stacked and used to carry components such as the circuit board 34, the optical chip 36, and the pad 37.
  • the substrate 32 includes a connecting portion 322 and a protruding portion 324 .
  • the connecting portion 322 is stacked with the mainboard 10 .
  • convex The portion 324 protrudes from the side of the connecting portion 322 away from the main board 10 .
  • the convex portion 324 is used to support and cushion the optical chip 36 and the pad 37 .
  • the thermal expansion coefficient of the substrate 32 , the thermal expansion coefficient of the optical chip 36 , and the thermal expansion coefficient of the cushion block 37 are close to each other.
  • the thermal expansion coefficient of the substrate 32 , the thermal expansion coefficient of the optical chip 36 , and the thermal expansion coefficient of the cushion block 37 are close to each other.
  • the range of is no less than 3 and no more than 5, and the range of the thermal expansion coefficient of the circuit board 34 is no less than 14 and no more than 18.
  • the thermal expansion coefficients of the substrate 32, the optical chip 36, and the pad 37 are close, which can improve the joint reliability between the substrate 32 and the optical chip 36, and between the substrate 32 and the pad 37, and facilitate the dissipation of heat.
  • the substrate 32 has the characteristics of high strength, resistance to deformation, and good heat dissipation.
  • the substrate 32 may be made of CuW and Kovar. In other embodiments of the present application, the material of the substrate 32 is not limited.
  • the circuit board 34 includes a first side 342 and a second side 344 arranged oppositely.
  • the circuit board 34 is provided with a receiving groove 346 penetrating the first side 342 and the second side 344 .
  • the first side 342 is fixedly connected to the connecting portion 322 .
  • the protruding portion 324 is received in the receiving groove 346 .
  • the connection portion 322 of the substrate 32 is located between the circuit board 34 and the main board 10 .
  • the optical chip 36 is a SiPh chip (silicon optical chip).
  • SiPh chip silicon optical chip
  • the light received by the optical chip 36 is called input light
  • the light output by the optical chip 36 is called output light.
  • the optical chip 36 can receive the input light transmitted from the optical fiber array 38 and convert the input light into an electrical signal, and/or the optical chip 36 can convert the electrical signal into output light and output it to the optical fiber array 38 .
  • the optical chip 36 includes a sheet body 362 and an optical waveguide 364.
  • the sheet body 362 is fixed on the protruding portion 324 and received in the receiving groove 346 .
  • the sheet body 362 includes a first connecting surface 3622 and a second connecting surface 3624.
  • the first connecting surface 3622 is connected to the protruding portion 324 .
  • the first connection surface 3622 and the second connection surface 3624 are arranged opposite to each other.
  • the second connecting surface 3624 is oriented in the same direction as the second side surface 344 .
  • the optical waveguide 364 is provided on the first connection surface 3622. One end of the optical waveguide 364 extends to the boundary edge of the second connection surface 3624 and the third connection surface 3626 for edge coupling with the optical fiber array 38 .
  • the sheet body 362 and the circuit board 34 are connected through wires such as gold wires. Since the sheet body 362 is received in the receiving groove 346, the length of the wire between the sheet body 362 and the circuit board 34 can be shortened, which is beneficial to improving the transmission performance of signals (eg, high speed above 112G).
  • the spacer block 37 is fixed on the protrusion 324 for supporting and elevating the optical fiber array 38 .
  • the third connecting surface 3626 is arranged toward the pad 37 .
  • the stacking direction of the circuit board 34 and the substrate 32 , the thickness direction of the circuit board 34 and the thickness direction of the optical chip 36 are consistent.
  • the surface of the spacer 37 facing away from the substrate 32 is lower than the second connection surface 3624 of the optical chip 36, which facilitates the coupling adjustment between the optical fiber array 38 and the optical chip 36, thereby realizing optical waveguide.
  • Optical coupling (optical docking) between 364 and the optical fiber array 38. It can be understood that the surface of the spacer 37 facing away from the substrate 32 may not be lower than the second connection surface 3624 of the optical chip 36 .
  • the optical fiber array 38 includes a base 382 and a plurality of optical fiber transmission units 384 arranged in an array on the base 382 .
  • Each optical fiber transmission unit 384 is edge-coupled with one optical waveguide 364 .
  • the base 382 is used to support the optical fiber transmission unit 384.
  • the base 382 can be made of light-transmitting material.
  • the material of the base 382 may be, but is not limited to, silicon dioxide (SiO 2 ). In other embodiments of the present application, the base 382 can also be made of non-transparent material.
  • the base 382 includes a first surface 3822, a second surface 3824 and a third surface 3826 connected in sequence.
  • the third surface 3826 is connected between the first surface 3822 and the second surface 3824.
  • the third surface 3826 is generally perpendicular to the first surface 3822.
  • the first surface 3822 is fixedly connected to the side of the pad 37 facing away from the base plate 32 .
  • Second surface 3824 includes a curved surface. The curved surface is used to install the optical fiber transmission unit 384.
  • the curved surface is an arc surface protruding toward the outside of the base 382 .
  • a partial area of the second surface 3824 may be a curved surface, or the entire area of the second surface 3824 may be a curved surface.
  • a plurality of fixing grooves 3827 arranged in an array are provided on the curved surface.
  • the second surface 3824 includes a first end and a second end located oppositely. The first end of the second surface 3824 is connected to the first surface 3822, and the second end of the second surface 3824 is connected to the third surface 3826. Compared to the The second end of the second surface 3824 and the first end of the second surface 3824 are closer to the pad 37 .
  • the fixing groove 3827 extends from the first end of the second surface 3824 to the second end of the second surface 3824 along the outer contour of the curved surface.
  • the cross section of the fixing groove 3827 is generally V-shaped.
  • the plurality of fixing grooves 3827 correspond to the plurality of optical fiber transmission units 384 in one-to-one correspondence.
  • the extension manner of the fixing groove 3827 is not limited.
  • the fixing groove 3827 is only provided at the first end of the second surface 3824 and does not extend to the second end of the second surface 3824.
  • the cross-sectional shape of the fixing groove 3827 is not limited.
  • Fixing the optical fiber transmission unit 384 in the fixing groove 3827 is beneficial to limiting the position of the optical fiber transmission unit 384, reducing the possibility of loosening of the optical fiber transmission unit 384, and improving the optical coupling between the optical fiber transmission unit 384 and the optical chip 36 stability.
  • the edge where the second surface 3824 and the third surface 3826 meet is located at the highest position of the base 382 , and the first end of the second surface 3824 is connected to the first end of the second surface 3824 .
  • the edges where the surfaces 3822 meet are located at the lowest position of the base 382 .
  • the fixing groove 3827 extends from the first end of the second surface 3824 to the second end of the second surface 3824 along the outer contour of the curved surface.
  • the optical fiber transmission unit 384 includes an optical fiber 3842 and a concave reflector 3844. At least part of the optical fiber 3842 is fixedly received in the fixing groove 3827, so that the optical fiber 3842 forms a curved structure on the curved surface that is consistent with the contour of the curved surface.
  • the optical fiber 3842 is gradually raised.
  • the optical fiber 3842 extends from the second end of the second surface 3824 to an area outside the receiving groove 346 of the circuit board 34. Since the optical fiber 3842 located at the second end of the second surface 3824 is separated relative to the optical fiber 3842 at the first end of the second surface 3824, Elevate so that the distance between the optical fiber 3842 and the circuit board 34 is large enough.
  • the circuit board 34 does not need to avoid the optical fiber 3842 on the optical fiber path.
  • the height of the components on the corresponding optical fiber path of the circuit board 34 does not need to be limited, which is conducive to optimizing the circuit.
  • Device layout for board 34 the curved structure can also reduce the possibility of the optical fiber 3842 being broken and extend the service life of the optical fiber 3842.
  • the optical fiber 3842 includes a core 3852 and a cladding 3854.
  • the core 3852 includes a core end surface 3856 and a core side surface 3858 that are connected and arranged.
  • Cladding 3854 covers core sides 3858.
  • the outer surface of the cladding 3854 is fixedly connected to the groove wall of the fixing groove 3827 through colloid. It can be understood that this application does not limit the cross-sectional shape of the optical axis of the vertical optical fiber 3842, for example, it can be circular or elliptical, etc.
  • the concave reflector 3844 is provided at an end of the fixing groove 3827 close to the first surface 3822.
  • the concave reflector 3844 is optically coupled to the optical fiber 3842, and the concave reflector 3844 and the optical waveguide 364 are coupled at the edge of the third connection surface 3626 of the sheet body 362, that is, the optical fiber 3842, the concave reflector 3844, and the optical waveguide 364 form an optical path.
  • the concave reflector 3844 can reflect the output light transmitted from the optical waveguide 364 to the core end surface 3856 and/or reflect the input light transmitted from the optical fiber 3842 to the optical waveguide 364 .
  • the concave reflector 3844 can reflect light and focus light at the same time, thus changing the optical path while reducing light loss.
  • a depression can be formed directly on the first end of the second surface 3824 by laser ablation, and a reflective material can be coated on the inner wall of the depression to form a concave reflective lens.
  • the present application does not limit the preparation process and process steps of the concave reflective mirror.
  • a high-reflective film can be coated on the light-transmitting preform to form an independent concave reflective lens, and then the concave reflective lens can be fixed on In the fixed groove 3827.
  • the concave reflector 3844 and the sheet body 362 can be connected through colloid, and the base body 382 and the spacer block 37 can be connected through colloid, thereby improving the coupling reliability between the optical fiber transmission unit 384 and the optical chip 36 .
  • FIG. 5 is an optical path diagram taking the optical path of the output light transported by the optical waveguide to the optical fiber 3842 as an example. Among them, the path shown by the line with the smaller arrow is the optical path of the output light.
  • Optical waveguide 364 has an optical axis A.
  • Fiber 3842 Has optical axis B.
  • the core end face 3856 is perpendicular to the optical axis B of the optical fiber 3842. At the core end face 3856, the normal line of the core end face 3856 coincides with the optical axis B.
  • the concave reflector 3844 is tilted relative to the core end surface 3856. The angle between the concave reflector 3844 and the core end surface 3856 is approximately 45 degrees.
  • D and L Let the distance between the normal line of the transmission end surface of the optical waveguide 364 and the core end surface 3856 be D, and let the distance between the optical axis A of the optical waveguide 364 and the core end surface 3856 of the optical fiber 3842 be L. D and L can be adjusted according to actual needs.
  • the output light output from the optical waveguide 364 along the optical axis A is incident on the concave reflecting mirror 3844 .
  • the output light reflected by the concave reflector 3844 is output along the optical axis B of the optical fiber 3842. Since the optical axis A is perpendicular to the optical axis B, compared with the output light transmitted along the optical axis A of the optical waveguide 364, the optical path of the output light reflected by the concave reflector 3844 is bent by 90 degrees.
  • Input light from the optical fiber 3842 along the optical axis B is incident on the concave reflector 3844 .
  • the input light reflected by the concave mirror 3844 is input to the optical waveguide 364 along the optical axis A of the optical waveguide. Since the optical axis A is perpendicular to the optical axis B, compared with the input light transmitted along the optical axis B of the optical fiber 3842, the optical path of the input light reflected by the concave reflector 3844 is equivalent to being bent by 90 degrees.
  • the optical fiber array 38, the optical module 30 and the communication device 100 provided in the first embodiment of the present application due to the provision of the concave reflector 3844, the light transmission direction after reflection by the concave reflector 3844 is bent compared to the transmission direction before reflection.
  • the angle is 90 degrees, so that the optical fiber 3842 does not need to be placed close to the circuit board 34, and the circuit board 34 no longer needs to avoid the optical fiber 3842. Since the circuit board 34 no longer needs to avoid the optical fiber 3842, the height of the components on the circuit board 34 is not limited, which is beneficial to optimizing the component layout of the circuit board 34.
  • the optical chip is flip chip welded to the substrate through a large solder ball (c4 bump), and then the substrate is welded to the circuit board through a ball grid array package (BGA).
  • BGA ball grid array package
  • the vertical distance between the optical fiber and the circuit board is large enough, reducing the height requirements for the circuit board components located on the optical fiber path.
  • high-temperature welding is used between the optical chip and the substrate, and between the substrate and the circuit board, which imposes very high temperature specifications on the coupling glue between the optical chip and the optical fiber array, such as above 260°.
  • the gap between the optical chip 36 and the concave reflector 3844 is The temperature specification of the coupling colloid is not high, which is beneficial to reducing the production cost of the optical fiber array 38 .
  • concave reflector 3844 reflects the output light from the optical waveguide 364 to the core end surface 3856, it can also play a role in condensing the light and reducing light divergence and light loss.
  • the optical fiber 3842 is fixed in the fixing groove 3827 through small curvature bending to form a curved structure, that is, the optical fiber 3842 extends along the second surface 3824, so that the position of the optical fiber 3842 at the second end of the second surface 3824 is higher than that at the second surface.
  • Two surfaces 3824 are located at the first end of optical fiber 3842. Since the position of the optical fiber 3842 at the first end of the second surface 3824 is raised, the distance between the optical fiber 3842 and the first side 342 of the circuit board 34 is further increased, further reducing the impact of the optical fiber 3842 on the device layout of the circuit board 34 Influence.
  • the base plate 32 and the pad 37 can be omitted, that is, the base body 382 is directly disposed on the main board 10 .
  • the present application does not limit the shape and structure of the base body 382.
  • the base body 382 can be a hemisphere or other shaped object, and the base body 382 can increase the distance between the optical fiber 3842 and the circuit board 34. .
  • the receiving groove 346 may penetrate the second side 344 but not the first side 342 .
  • the receiving groove 346 can be omitted, and the optical chip 36 and the base 382 are directly provided on the circuit board 34 . Since the thickness of the optical chip 36 is small, disposing the base 382 on the circuit board 34 can also elevate the optical fiber 3842.
  • the receiving groove on the circuit board 34 can be omitted, and the spacer 37 and the optical chip 36 are located on one side of the circuit board 34 .
  • the base 382 and the pad 37 are stacked.
  • the circuit board 34 includes a first side 342 and a second side 344 that are oppositely arranged along a first direction.
  • the first direction is the stacking direction of the base 382 and the pad 37. At least part of the base 382 is in
  • the second side 344 is disposed protruding in the first direction.
  • the first side 342 is fixed on the connecting portion 322 of the base plate 32 .
  • the pad 37 and the optical chip 36 are fixed on the protruding portion 324 .
  • This application does not limit the tilt angle of the concave reflector 3844 relative to the optical axis B of the optical fiber 3842 or the optical axis A of the optical waveguide 364.
  • a second embodiment of the present application provides an optical module 50.
  • the optical module 50 provided in the second embodiment has a similar structure to the optical module 30 provided in the first embodiment. The difference is that, The structure of the optical fiber of the optical fiber transmission unit.
  • the optical module 50 includes a circuit board 54 , an optical chip 56 and an optical fiber array 58 .
  • the circuit board 54 is electrically connected to the main board.
  • the optical chip 56 is electrically connected to the circuit board 54 .
  • the optical fiber array 58 is edge-coupled with the optical chip 56 to realize optical transmission between the optical fiber array 58 and the optical chip 56 .
  • the circuit board 54 includes a first side 542 and a second side 544 (the top surface of the circuit board 54 ) that are oppositely arranged.
  • the circuit board 54 is provided with a receiving groove 546 penetrating the first side 542 and the second side 544 .
  • the optical chip 56 includes a sheet body 562 and an optical waveguide 564 .
  • the sheet body 562 is received in the receiving slot 546 .
  • the sheet body 562 includes a first connecting surface 5622, a second connecting surface 5624, and a third connecting surface 5626.
  • the first connection surface 5622 and the second connection surface 5624 are arranged opposite to each other.
  • the second connecting surface 5624 is oriented in the same direction as the second side surface 544 .
  • the third connection surface 5626 is located between the first connection surface 5622 and the second connection surface 5624.
  • the optical waveguide 564 is provided in the sheet body 562 .
  • One end of the optical waveguide 364 extends to the third connection surface 5626 to be edge-coupled with the optical fiber array 58 .
  • Optical waveguide 564 has an optical axis A (as shown in Figure 8).
  • the optical fiber array 58 includes a base 582 and a plurality of optical fiber transmission units 584 arranged in an array on the base 582 .
  • the base 582 is fixed on the first connection surface 5622 and is used to support the optical fiber transmission unit 584.
  • the base 582 is a light-transmitting base.
  • the material of the base 582 may be, but is not limited to, silicon dioxide (SiO 2 ).
  • the base 582 includes a first surface 5822, a second surface 5824, and a third surface 5826.
  • the third surface 5826 is connected between the first surface 5822 and the second surface 5824.
  • the second surface 5824 is oriented in the same direction as the second side 544 of the circuit board 54 .
  • the first surface 5822 is fixedly connected to the substrate 52 .
  • a mounting slot 5827 is provided on the first surface 5822 for mounting the optical fiber transmission unit 584 .
  • the second surface 5824 is provided with a plurality of fixing grooves 5828 arranged in an array for installing the optical fiber transmission unit 584 .
  • the third surface 5826 and the third connection surface 5626 are fixedly connected by colloid to achieve edge coupling between the optical fiber transmission unit 584 and the optical waveguide 564 .
  • the installation groove 5827 has a generally V-shaped cross section.
  • the cross section of the fixing groove 5828 is generally V-shaped. In other embodiments of the present application, the cross-sectional shapes of the installation groove 5827 and the fixing groove 5828 are not limited.
  • the optical fiber transmission unit 584 includes an optical fiber 5842 and a concave reflector 5844.
  • the optical fiber 5842 is at least partially fixedly received in the fixing groove 5828.
  • fiber 5842 has an optical axis B.
  • Optical fiber 5842 includes a core 5852 and a cladding 5854.
  • the core 5852 includes a core end surface 5856 and a core side surface 5858 that are connected and arranged.
  • the core end face 5856 is inclined relative to the optical axis B of the optical fiber 5842.
  • the tilt angle of the core end surface 5856 relative to the optical axis A of the optical waveguide 564 is 45 degrees
  • the tilt angle of the core end surface 5856 relative to the optical axis B of the optical fiber 5842 is 45 degrees.
  • the core end surface 5856 includes a core end reflective surface, and the core end reflective surface is used to change the light path incident on the core end reflective surface.
  • the core end reflective surface is distributed on at least part of the core end surface 5856.
  • Cladding 5854 covers core sides 5858.
  • the outer surface of the cladding 5854 is fixedly connected to the groove wall of the fixing groove 5828 through colloid.
  • the core side surface 5858 corresponding to the core end surface 5856 is exposed outside the cladding 5854 so that light can pass through the core side surface 5858 and realize light transmission between the core end reflection surface and the concave reflector 5844.
  • the angle at which the core end surface 5856 is inclined relative to the optical axis B is not limited.
  • the core end reflective surface can be configured as a flat surface or as a concave surface.
  • the planar core-end reflective surface is simple to produce and helps reduce costs.
  • the concave core-end reflective surface can reflect light while concentrating it, which is beneficial to reducing light loss.
  • the concave reflector 5844 is fixed in the installation groove 5827.
  • the concave reflector 5844 is a concave reflective lens, and the concave reflector 5844 is substantially parallel to the core end surface 5856.
  • the path shown by the arrow is the optical path of the output light in the optical module.
  • the output light output from the optical waveguide 564 along the optical axis A passes through the base 582 and is incident on the concave reflecting mirror 5844 .
  • the output light reflected by the concave reflector 5844 passes through the base 582 and then reaches the core end surface 5856 through the core side surface 5858.
  • the output light reflected by the core end reflective surface is output along the optical axis B.
  • the distance between the optical fiber 5842 and the optical fiber 5842 is increased.
  • the distance between the second sides 544 of the circuit board 54 is increased.
  • the input light input from the optical fiber 5842 along the optical axis B is incident on the core end reflection surface of the core end surface 5856 .
  • the input light reflected by the core end reflection surface of the core end surface 5856 passes through the core side surface 5858 and then enters the concave reflector 5844.
  • the input light reflected by the concave mirror 5844 is input to the optical waveguide 564 of the optical chip 56 along the direction of the optical axis A.
  • the distance between the optical fiber 5842 and the circuit is increased.
  • the vertical distance between the transmission end surface of the optical waveguide 564 and the center of the concave reflector 5844 be D
  • the distance between the optical axis A of the optical waveguide 564 and the optical axis B of the optical fiber 5842 be L.
  • D and L can be adjusted according to actual needs. After simulation calculation, please refer to Figure 12.
  • the spot diameter of the output light output by the optical waveguide 564 is approximately 8.8 microns
  • the spot diameter of the output light incident on the core end surface 5856 is approximately 9.8 microns.
  • the coupling insertion loss (loss) is 0.5dB, meeting application requirements.
  • the optical fiber 5842 does not need to be placed close to the circuit board 54, and the circuit board 54 no longer needs to avoid the optical fiber 5842.
  • the height of the components on the circuit board 54 is not limited. It is beneficial to optimize the device layout of the circuit board 54 . Compared with the optical module provided in the first embodiment, since the optical fiber 5842 in the optical fiber transmission unit 584 does not need to be bent, assembly is facilitated.
  • the coupling between the optical fiber 5842 and the optical chip 56 is bonded through the base 582 and colloid, and the base 582 and the optical chip 56 are bonded through colloid.
  • the base 582 can be implemented by two covers, one for mounting optical fibers and the other for mounting concave reflectors.
  • the cover body and the cover body are bonded by colloid.
  • the optical chip 56 and the base 582 are bonded by colloid.
  • the refractive index of the optical chip 56, the refractive index of the base 582, and the refractive index of the glue between the optical chip 56 and the base 582 need to match.
  • the refractive index of the optical chip 56, The refractive index of the base 582 is close to the refractive index of the glue between the optical chip 56 and the base 582 .
  • the optical module 50 also includes an auxiliary component 59.
  • the auxiliary component 59 is fixed on the second connection surface 5624 of the sheet body 562, and the auxiliary component 59 is fixed on the third surface 5826 of the base body 582. connect.
  • the auxiliary component 59 is used to enhance the connection strength and stability between the base 582 and the optical chip 56 , thereby improving the reliability of the optical module 50 .
  • the auxiliary component 59 and the sheet body 562 can be fixedly connected through colloid bonding, and the auxiliary component 59 and the third surface 5826 of the base 582 can be fixedly connected through colloid bonding.
  • the core end reflective surface may be a reflective plane or a concave mirror.
  • a third embodiment of the present application provides an optical module 70 that can be applied to communication equipment (as shown in Figure 1).
  • the optical module 70 includes a substrate 72 , a circuit board 74 , an optical chip 76 and an optical fiber array 78 .
  • the base board 72 is fixed on the main board, and the circuit board 74 is fixed on the side of the base board 72 away from the main board.
  • the circuit board 74 is electrically connected to the main board.
  • the optical chip 76 is electrically connected to the circuit board 74 to realize electrical signal transmission between the optical chip 76 and the circuit board 74 .
  • the optical fiber array 78 is edge-coupled with the optical chip 76 to realize optical transmission between the optical fiber array 78 and the optical chip 76 .
  • the circuit board 74 includes a first side 742 and a second side 744 that are oppositely arranged.
  • the circuit board 74 is provided with a receiving groove 746 penetrating the first side 742 and the second side 744 .
  • the optical chip 76 includes a sheet body 762 and an optical waveguide 764 .
  • the sheet body 762 is received in the receiving groove 746 .
  • the sheet body 762 includes a first connecting surface 7622, a second connecting surface 7624, and a third connecting surface 7626.
  • the first connection surface 7622 and the second connection surface 7624 are arranged opposite to each other.
  • the first connection surface 7622 is connected to the substrate 72 .
  • the first connection surface 7622 is oriented in the same direction as the first side surface 742 .
  • the third connection surface 7626 is located between the first connection surface 7622 and the second connection surface 7624.
  • the optical waveguide 764 is provided in the sheet body 762 .
  • One end of the optical waveguide 764 extends to the third connection surface 7626 to be edge-coupled with the optical fiber array 78 .
  • Optical waveguide 764 has an optical axis A.
  • the optical fiber array 78 includes a base body 782 and an optical fiber transmission unit 784 provided on the base body 782 .
  • the base body 782 is fixed on the second connection surface 7624 and is used to support the optical fiber transmission unit 784.
  • the material of the base 782 may be, but is not limited to, silicon dioxide (SiO 2 ).
  • the optical fiber transmission unit 784 has an optical axis B.
  • the optical fiber transmission unit 784 includes a core 7852 and a cladding 7854.
  • the core 7852 includes a core end surface 7856 and a core side surface 7858 that are connected and arranged.
  • the core end surface 7856 includes a core end reflective surface, and the core end reflective surface is used to change the optical path.
  • the core end surface 7856 is inclined relative to the optical axis B of the optical fiber 7842.
  • the angle between the optical axis A and the normal line of the core end face 7856 is 45 degrees.
  • the core end surface 7856 is tilted at an angle of 45 degrees relative to the optical axis B of the optical fiber 7842.
  • Cladding 7854 covers core sides 7858. Part of the core side surface 7858 is exposed outside the cladding 7854, so that light can pass through the core side surface 7858 and realize light transmission between the core end reflective surface and the optical wave
  • FIGS. 14 and 15 The path shown by the arrow in FIGS. 14 and 15 is the optical path of the output light on the optical waveguide 764 in the optical module 70 .
  • the output light output from the optical waveguide 564 along the optical axis A passes through the core side surface 7858 and is incident on the core end reflection surface of the core end surface 7856 .
  • the output light reflected by the core end reflective surface of the core end surface 7856 is transmitted along the optical axis B in the fiber core 7852. After being reflected by the core end reflective surface of the core end surface 7856, the output light changes the original optical path close to the circuit board 74, increasing the distance between the optical fiber transmission unit 784 and the first side 742 of the circuit board 74.
  • the input light input from the optical fiber 7842 along the optical axis B is incident on the core end reflection surface of the core end surface 7856 .
  • the input light reflected by the core end reflection surface of the core end surface 7856 is input to the optical waveguide 764 of the optical chip 76 along the direction of the optical axis A. After being reflected by the core end reflective surface of the core end surface 7856, the input light changes the original optical path close to the circuit board 74, increasing the distance between the optical fiber transmission unit 784 and the first side 742 of the circuit board 74.
  • the distance from the end surface of the optical waveguide 764 to the center of the core end surface 7856 be D.
  • spot size (spot diameter) of the optical waveguide 764 of the optical chip 76 is close to the diameter of the fiber core 7852, for example, 8.8x8.8um, and the optical waveguide 764
  • the center distance from the core end face 7856 of the optical fiber transmission unit 784 is no less than 27 microns and no more than 47 microns, please refer to Figure 16, and the coupling insertion loss (loss) can be controlled within 0.5dB.
  • the optical fiber transmission unit 784 does not need to be placed close to the circuit board 74, and the circuit board 74 no longer needs to avoid the optical fiber transmission unit 784, which is conducive to optimizing the circuit board 74. layout.
  • the optical path can be changed, which is beneficial to simplifying the structure of the optical module 70.
  • connection and “connection” mentioned in this application include direct and indirect connections (connections) unless otherwise specified.

Abstract

一种光纤阵列(38)、光模块(30)及通信设备(100),光纤阵列(38)包括基体(382)及光纤传输单元(384)。光纤传输单元(384)包括光纤(3842)与凹面反射镜(3844)。光纤(3842)固定于基体(382)上。凹面反射镜(3844)固定于基体(382)上并与光纤(3842)光耦合,凹面反射镜(3844)用于将从光纤(3842)传输过来的光反射出去,或者,凹面反射镜(3844)用于将光反射至光纤(3842)内进行传输。由于光纤阵列(38)中增加了可改变光路的凹面反射镜(3844),在光纤阵列(38)与光芯片(36)边缘耦合时,光纤(3842)无需贴靠电路板(34)设置,或者光纤(3842)与电路板(34)之间的间距足够大,使得电路板(34)无需对光纤(3842)进行避让,电路板(34)上的器件高度不需要被限制,有利于优化电路板(34)的布局。

Description

光纤阵列、光模块及通信设备
本申请要求在2022年3月24日提交中国国家知识产权局、申请号为202210295962.9、申请名称为“光纤阵列、光模块及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术,特别涉及一种光纤阵列、光模块及通信设备。
背景技术
光芯片的光波导与光纤阵列(fiber array,FA)之间的耦合方式通常有两种:光栅耦合(grating coupling,GC)与边缘耦合(edge coupling,EC)。采用边缘耦合方式时,光波导与光纤阵列的光纤在光芯片的侧边缘光耦合,光纤与光芯片的耦合方向大致与光芯片的表面齐平。由于光芯片本身的厚度较小(例如小于1mm),从光芯片引出的光纤,通常贴近承载光芯片的电路板的表面设置。这样一来,电路板需在光纤经过的路径(可称为光纤路径)上进行避让,导致电路板对应位于光纤路径上的器件的高度被限定,不利于电路板的器件布局。
发明内容
本申请实施例提供了一种能够优化电路板器件布局的光纤阵列、光模块及通信设备。
第一方面,本申请提供了一种光纤阵列,包括:
基体;及
光纤传输单元,包括:
光纤,固定于所述基体上;及
凹面反射镜,设于所述基体上并与所述光纤光耦合,所述凹面反射镜用于将从所述光纤传输过来的光反射出去,或者,所述凹面反射镜用于将光反射至所述光纤内进行传输。
由于光纤阵列中增加了可改变光路的凹面反射镜,在光纤阵列与光芯片边缘耦合时,光纤无需贴靠电路板设置,或者光纤与电路板之间的间距足够大,使得电路板无需对光纤进行避让,电路板上的器件高度不需要被限制,有利于优化电路板的器件布局。
另外,凹面反射镜在反射光的同时可对光进行汇聚,有利于减少光损耗,提高光的传输质量。
根据第一方面,本申请第一方面的第一种可能的实现方式中,所述基体包括连接设置的第一表面与第二表面,所述第二表面包括向所述基体外凸设的曲面,部分所述光纤固定于所述曲面上,所述光纤沿所述曲面的外轮廓由所述第二表面的第一端向所述第二表面的第二端延伸形成弯曲结构,所述第二表面的第一端与所述第一表面连接,所述凹面反射镜设于所述第二表面的第一端。
本申请中的凹面反射镜在基体上的设置方式通常包括两种。第一种设置方式,可在基体上通过蚀刻或其他加工方式形成凹面,再在凹面上涂覆反射材料来形成凹面反射镜。第二种设置方式,可将独立设置的凹面反射镜固定在基体上。
在第二表面上,由于光纤从第二表面的第一端沿曲面的轮廓朝向所述第二表面的第二端延伸,光纤被逐渐抬高。在电路板的上方空间,光纤自第二表面的第二端在电路板的收容槽外的区域延伸,由于位于第二表面的第二端的光纤相对于位于第二表面的第一端的光纤被抬高,使得光纤与电路板之间的间距足够大,电路板无需在光纤路径上对光纤进行避让,电路板对应光纤路径上的器件高度不需要被限制,有利于优化电路板的器件布局。还有,弯曲结构还能够降低减小光纤被折断的可能性,延长光纤的使用寿命。
根据第一方面或本申请第一方面的第一种可能的实现方式,本申请第一方面的第二种可能的实现方式中,所述曲面上设有固定槽,所述光纤至少部分收容于所述固定槽内,所述凹面反射镜设于所述固定槽内。
将光纤传输单元设于固定槽内,有利于对光纤传输单元的位置进行限位,减少光纤传输单元的位置松动的可能性,有利于提高光纤传输单元与光芯片光耦合的稳定性。
根据第一方面或本申请第一方面的第一种至第二种可能的实现方式,本申请第一方面的第三种可能的实现方式中,所述光纤具有光轴,所述光纤包括纤芯及包层,所述纤芯包括芯端面及与所述芯端面连接设置的芯侧面,所述芯端面与所述光纤的光轴相垂直,从所述凹面反射镜反射过来的光透过所述芯端面入射至所述光纤内,或者,来自所述光纤的光透过所述芯端面入射至所述凹面反射镜。
由凹面反射镜反射的光直接透过芯端面入射至光纤内光轴进行传输,或来自光纤的光透过所述芯端面直接入射至所述凹面反射镜,光路简单,有利于减小光损耗。
根据第一方面或本申请第一方面的第一种至第三种可能的实现方式,本申请第一方面的第四种可能的实现方式中,所述光纤具有光轴,所述光纤包括芯端面及与所述芯端面连接设置的芯侧面,所述芯端面包括芯端反射面,所述芯端面相对所述光纤的光轴倾斜设置,从所述凹面反射镜反射过来的光透过所述芯侧面后入射至所述芯端反射面进行反射,或者,经所述芯端反射面反射后的光透过所述芯侧面入射至所述凹面反射镜进行反射。
利用纤芯的芯端面形成芯端反射面,芯端反射面也可对光路进行弯折,有利于提高光模块器件布局的灵活性。芯端反射面可以设置成平面也可以设置成凹面。平面的芯端反射面制作简单,有利于降低成本。凹面的芯端反射面可以在反射光的同时对光进行汇聚,有利于减小光损耗。
根据第一方面或本申请第一方面的第一种至第四种可能的实现方式,本申请第一方面的第五种可能的实现方式中,所述基体包括:第一表面,设有装设槽,所述凹面反射镜设于所述装设槽;第二表面,设有固定槽,所述光纤固定于固定槽;及第三表面,连接于所述第一表面与所述第二表面之间,光能够透过所述第三表面入射至所述芯端反射面,或者经所述芯端反射面反射后光透过所述第三表面从所述基体出射。
基体在垫高光纤的同时,也可以作为光路的一部分,使得光纤无需被弯折,方便了光纤阵列的组装。
根据第一方面或本申请第一方面的第一种至第五种可能的实现方式,本申请第一方面的第六种可能的实现方式中,所述芯端面相对所述光纤的光轴倾斜45度,光在经过芯端面的芯端反射面反射后,光路可弯折90度。
根据第一方面或本申请第一方面的第一种至第六种可能的实现方式,本申请第一方面的第七种可能的实现方式中,所述凹面反射镜与所述芯端面平行设置。
在光纤阵列与光芯片边缘耦合,以光芯片输出的输出光的光路为例。输出光经凹面 反射镜与芯端面的芯端反射面反射后,输出光沿光纤的光轴传输。由于凹面反射镜与芯端面平行设置,而芯端面相对光纤的光轴倾斜设置45度。输出光的光路虽然两次被弯折,但输出光的传输方向与入射到凹面反射镜前的传输方向可保持相同,仅增大了光纤与电路板之间的间距。由于增大了光纤与电路板之间的间距,对于位于电路板在光纤路径上的器件的高度限制可降低,进而优化了电路板布局。
第二方面,本申请提供一种光模块,包括:
电路板;
光芯片,包括:
片体,与所述电路板电连接;及
光波导,设于所述片体上,
及根据第一方面或第一方面的第一种至第七种可能实现方式所述的光纤阵列,所述光纤传输单元的凹面反射镜与所述光波导在所述片体边缘耦合,所述凹面反射镜将所述光波导输出的光反射至所述光纤,或将来自所述光纤的光反射至所述光波导。
第二方面提供的光模块中,由于光纤阵列中增加了可改变光路的凹面反射镜,在光纤阵列与光芯片边缘耦合时,光纤无需贴靠电路板设置,或者光纤与电路板之间的间距足够大,使得电路板无需对光纤进行避让,电路板上的器件高度不需要被限制,有利于优化电路板的布局,及优化光模块的性能。
根据第二方面,本申请第二方面的第一种可能的实现方式中,所述光模块还包括垫块,所述基体与所述垫块层叠设置,所述电路板包括沿第一方向相对设置的第一侧面与第二侧面,所述第一方向为所述基体与所述垫块的层叠方向,所述基体的至少部分在所述第一方向上凸出所述第二侧面设置,方便了光纤阵列的凹面反射镜与光波导耦合。
根据第二方面或本申请第二方面的第一种可能的实现方式,本申请第二方面的第二种可能的实现方式中,所述光模块还包括基板,所述第一侧面固定于所述基板上,所述片体设置于所述基板上,所述垫块设于所述基板上。
由于电路板、片体、垫块都设置在基板上,当光模块设置于主板上时,基板可免于电路板、片体、垫块直接设置在主板上,方便电路板、片体等散热,进而提高了光模块的散热效率。
根据第二方面或本申请第二方面的第一种至第二种可能的实现方式,本申请第二方面的第三种可能的实现方式中,所述基板包括:连接部,所述第一侧面固定于所述连接部上;及凸部,凸设于所述连接部上,所述片体设置于所述凸部上,所述垫块设于所述凸部上。垫块、片体均设置在高度高于连接部的凸部上,凸部在垫高垫块与片体的同时,亦方便片体散热。
根据第二方面或本申请第二方面的第一种至第三种可能的实现方式,本申请第二方面的第四种可能的实现方式中,所述电路板贯穿所述第一侧面与所述第二侧面设有收容槽,所述凸部收容于所述收容槽内,所述片体收容于所述收容槽内,所述垫块收容于所述收容槽内。片体、垫块设置在收容槽内,能够减小对电路板上器件布局的影响。
根据第二方面或本申请第二方面的第一种至第四种可能的实现方式,本申请第二方面的第五种可能的实现方式中,所述光模块还包括辅助件,所述辅助件固定于所述片体上,所述辅助件与所述基体固定连接。
根据第二方面或本申请第二方面的第一种至第五种可能的实现方式,本申请第二方面的第六种可能的实现方式中,所述凹面反射镜与所述光波导的光轴之间的夹角为45 度。
第三方面,本申请提供一种通信设备,包括主板及根据第二方面的第一种至第四种可能的实现方式所述的光模块,所述光模块的电路板与所述主板电连接。
第三方面提供的通信设备,光纤阵列与光芯片采用边缘耦合方式实现光耦合,由于光模块的光纤阵列中设有凹面反射镜,凹面反射镜可改变光路,使光纤无需贴靠电路板设置。这样一来,电路板无需对光纤进行避让,或者降低了电路板在光纤路径上的器件高度,有利于优化电路板的布局,及提高通信设备的性能。
第四方面,本申请提供一种光纤阵列,包括基体及光纤传输单元。光纤传输单元固定于基体上。基体用于与光芯片连接。光纤传输单元具有光轴。光纤传输单元包括纤芯与包层。纤芯包括芯端面及与所述芯端面连接设置的芯侧面,所述芯端面包括所述芯端反射面,所述芯端面相对所述光纤的光轴倾斜设置。包层,覆盖于所述芯侧面上,部分所述芯侧面裸露在所述包层外,以使光能够透过所述芯侧面。
第四方面提供的光纤阵列中,直接通过光纤本身的芯端面改变光路,而不增加其他器件,使得光纤阵列在能够改变光路同时,结构简单,制作成本低。
第五方面,本申请提供一种光模块,包括:
电路板;
光芯片,包括:
片体,与所述电路板电连接;及
光波导,设于所述片体上,
及根据第四方面提供的光纤阵列,所述基体固定于所述片体上,裸露在所述包层外的所述芯侧面与所述光波导在所述片体边缘耦合,所述芯端面与所述光波导的光轴之间的夹角为45度,所述芯端面与所述光纤传输单元的光轴之间的夹角为45度。所述光波导输出的光透过所述芯侧面后入射至芯端反射面。
从光波导输出的光入射至所述光纤传输单元后,经所述芯端反射面反射,光路可弯折90度,使得光纤传输单元无需贴近电路板设置,使得电路板无需对光纤进行避让,电路板上的器件高度不需要被限制,有利于优化电路板的布局。
第六方面,本申请提供一种通信设备,包括主板及根据第五方面所述的光模块,所述光模块的电路板与所述主板电连接。
附图说明
图1为本申请第一实施方式提供的通信设备的应用场景示意图;
图2为本申请第一实施方式提供的光模块的结构示意图;
图3a为本申请第一实施方式提供的光纤传输单元的立体示意图;
图3b为本申请第一实施方式提供的光纤传输单元的另一视角的立体示意图;
图4为本申请第一实施方式提供的光纤传输单元的光纤沿光纤光轴方向的剖视图;
图5为本申请第一实施方式提供的光模块的光路示意图;
图6为本申请第一实施方式提供的光模块的仿真计算结果图;
图7为本申请一实施方式提供的光模块的可能结构示意图;
图8为本申请第二实施方式提供的光模块的剖面示意图;
图9为本申请第二实施方式提供的光模块的光路示意图;
图10为本申请第二实施方式提供的光纤传输单元的立体透视示意图;
图11为本申请第二实施方式提供的光纤传输单元的光纤沿光纤光轴方向的剖视图;
图12为本申请第二实施方式提供的光模块的仿真计算结果图;
图13为本申请一实施方式提供的光模块的示意图;
图14为本申请第三实施方式提供的光模块的示意图;
图15为本申请第三实施方式提供的光模块的光路示意图;
图16为本申请第三实施方式提供的光模块的仿真计算结果图。
具体实施方式
光芯片的光波导与光纤阵列(fiber array,FA)之间的耦合方式通常有两种:光栅耦合(grating coupling,GC)与边缘耦合(edge coupling,EC)。采用边缘耦合方式实现光芯片的光波导与光纤阵列之间的光耦合,光芯片与光纤阵列的光纤的耦合方向大致与光芯片的表面齐平,有以下两种技术方案:
第一种技术方案中,光芯片设置于电路板的表面上,光芯片的厚度一般小于1毫米(mm),因此,在光纤需经过的电路板的路径(可称为光纤路径)上,器件的高度需要限定为小于1mm,否则与光纤干涉,对布局优化有限。
第二种技术方案中,电路板设有收容槽,光芯片收容于电路板的收容槽内并与电路板电连接,光芯片的上表面大致与电路板的上表面齐平,光纤阵列的光纤与光芯片的侧面光波导边缘耦合,光纤与电路板的上表面贴近,这样一来,电路板需在光纤经过的路径(可称为光纤路径)上进行避让,导致电路板对应位于光纤路径上的器件的高度进行限定,不利于减少电路板的器件布局。
基于此,本申请提供一种光纤阵列及其相关的光模块及通信设备。光纤阵列包括基体及光纤传输单元。光纤传输单元包括光纤及凹面反射镜。光纤固定于所述基体上。凹面反射镜固定于所述基体上并与所述光纤光耦合。所述凹面反射镜用于将从所述光纤传输过来的光反射出去,或者,所述凹面反射镜用于将光反射至所述光纤内进行传输。
请参阅图1,图1为本申请提供的一种通信设备的应用场景示意图。通信设备100包括主板10及设置于主板10上的光模块30。通信设备100可通过光模块30与外部其他设备进行信息交互。可以理解,通信设备100可以为集群路由器,或者为其他类型的通信设备,例如交换机、传送网设备、接入网的光线路终端(Optical Line Terminal,OLT)。
光模块30可以但不限定为板载光模块。请结合参阅图2,图2为本申请第一实施方式提供的光模块的结构示意图。光模块30包括基板32、电路板34、光芯片36、垫块37及光纤阵列38。电路板34固定于基板32上并与主板10电连接。光芯片36设置于基板32上。光芯片36与电路板34电连接,实现光芯片36与电路板34之间的电信号传输。垫块37设置于基板32上。光纤阵列38固定于垫块37上。光纤阵列38与光芯片36边缘耦合,进而实现光纤阵列38与光芯片36之间的光传输。
本申请的一些实施方式中,基板32与主板10层叠设置,用于承载电路板34、光芯片36、垫块37等元器件。基板32包括连接部322与凸部324。连接部322与主板10层叠设置。凸 部324凸设于连接部322背离主板10的一侧。凸部324用于支撑并垫高光芯片36与垫块37。
本申请的一些实施方式中,基板32的热膨胀系数、光芯片36的热膨胀系数、垫块37的热膨胀系数接近,例如,基板32的热膨胀系数、光芯片36的热膨胀系数、垫块37的热膨胀系数的范围为不小于3且不大于5,电路板34的热膨胀系数的范围为不小于14且不大于18。基板32的热膨胀系数、光芯片36的热膨胀系数、垫块37的热膨胀系数接近,能够提高基板32与光芯片36之间、基板32与垫块37之间的接合可靠性,且方便热量的散发。基板32具有强度高、不易变形、散热好等特点。基板32的制成材料可以选用CuW与可伐合金(Kovar)。本申请的其他实施方式中,对基板32的材质不作限定。
电路板34包括相对设置的第一侧面342与第二侧面344。电路板34设有贯穿第一侧面342与第二侧面344的收容槽346。第一侧面342与连接部322固定连接。凸部324收容于收容槽346内。基板32的连接部322位于电路板34与主板10之间。
本申请的一些实施方式中,光芯片36为SiPh芯片(硅光芯片)。为方便描述,将光芯片36接收的光称为输入光,将光芯片36输出的光称为输出光。光芯片36能够接收光纤阵列38传输过来的输入光并将输入光转换为电信号,及/或光芯片36能够将电信号转换为输出光输出至光纤阵列38。
光芯片36包括片体362及光波导364。片体362固定于凸部324上并收容于收容槽346内。片体362包括第一连接面3622及第二连接面3624。第一连接面3622与凸部324连接设置。第一连接面3622与第二连接面3624相对设置。第二连接面3624的朝向与第二侧面344的朝向相同。光波导364设于第一连接面3622上。光波导364的一端延伸至第二连接面3624与第三连接面3626的交界边缘设置,用于与光纤阵列38边缘耦合。本申请的一些实施方式中,片体362与电路板34通过金线等导线连接。由于片体362收容于收容槽346内,可缩短片体362与电路板34之间的导线长度,有利于提高信号(例如112G以上的高速)的传输性能。
垫块37固定于凸部324上,用于支撑并垫高光纤阵列38。第三连接面3626朝向垫块37设置。本申请的一些实施方式中,电路板34与基板32的层叠方向、电路板34的厚度方向及光芯片36的厚度方向相一致。在电路板34与基板32的层叠方向上,垫块37背离基板32的表面低于光芯片36的第二连接面3624,便于光纤阵列38与光芯片36之间的耦合调整,从而实现光波导364与光纤阵列38之间的光耦合(光对接)。可以理解,垫块37背离基板32的表面可以不低于光芯片36的第二连接面3624。
请参阅图3a与图3b,光纤阵列38包括基体382及多个呈阵列排布于基体382上的光纤传输单元384。每个光纤传输单元384对应与一个光波导364边缘耦合。
基体382用于支撑光纤传输单元384。基体382可以由透光材质制成。基体382的制成材质可以但不限定为二氧化硅(SiO2)。本申请的其他实施方式中,基体382也可以为非透光材质制成。基体382包括依次连接的第一表面3822、第二表面3824及第三表面3826。第三表面3826连接于第一表面3822与第二表面3824之间。第三表面3826大致垂直第一表面3822。第一表面3822与垫块37背离基板32的一面固定连接。第二表面3824包括曲面。曲面用于安装光纤传输单元384。
本申请的一些实施方式中,曲面为朝向基体382外部凸出的弧面。第二表面3824的部分区域可以为曲面,或者,第二表面3824的全部区域为曲面。曲面上设有多个呈阵列排布的固定槽3827。第二表面3824包括相对设置的第一端与第二端。第二表面3824的第一端与第一表面3822连接,第二表面3824的第二端与第三表面3826连接。相较于第 二表面3824的第二端,第二表面3824的第一端更为靠近垫块37。
固定槽3827沿曲面的外轮廓由第二表面3824的第一端延伸至第二表面3824的第二端。固定槽3827的横截面大致呈V形。多个固定槽3827与多个光纤传输单元384一一对应。本申请的其他实施方式中,对固定槽3827的延伸方式不作限定,例如,固定槽3827仅设置在第二表面3824的第一端而不延伸至第二表面3824的第二端。本申请的其他实施方式中,对固定槽3827的横截面形状不作限定。将光纤传输单元384固定于固定槽3827内,有利于对光纤传输单元384的位置进行限位,减少光纤传输单元384的位置松动的可能性,有利于提高光纤传输单元384与光芯片36光耦合的稳定性。
本申请的一些实施方式中,在电路板34与基板32的层叠方向上,第二表面3824与第三表面3826交界的边缘位于基体382的最高位置,第二表面3824的第一端与第一表面3822相接的边缘位于基体382的最低位置。固定槽3827由第二表面3824的第一端沿曲面的外轮廓延伸至第二表面3824的第二端。
光纤传输单元384包括光纤3842与凹面反射镜3844。光纤3842至少部分固定收容于固定槽3827内,进而使光纤3842在曲面上形成与曲面的轮廓一致的弯曲结构。
在第二表面3824上,由于光纤3842从第二表面3824的第一端沿曲面的轮廓逐渐延伸,光纤3842被逐渐抬高。光纤3842自第二表面3824的第二端向电路板34的收容槽346外的区域延伸,由于位于第二表面3824的第二端的光纤3842相对于第二表面3824的第一端的光纤3842被抬高,使得光纤3842与电路板34之间的间距足够大,电路板34无需在光纤路径上对光纤3842进行避让,电路板34对应光纤路径上的器件高度不需要被限制,有利于优化电路板34的器件布局。还有,弯曲结构还能够降低减小光纤3842被折断的可能性,延长光纤3842的使用寿命。
请参阅图4,光纤3842包括纤芯3852与包层3854。纤芯3852包括连接设置的芯端面3856与芯侧面3858。包层3854包覆于芯侧面3858上。包层3854的外侧面与固定槽3827的槽壁通过胶体固定连接。可以理解,本申请对光纤3842的垂直光纤3842的光轴的横截面形状不作限定,例如,可以为圆形或椭圆形等等。
请再次参阅图3a,凹面反射镜3844设于于固定槽3827靠近第一表面3822的一端。凹面反射镜3844与光纤3842光耦合,凹面反射镜3844与光波导364在片体362的第三连接面3626边缘耦合,即光纤3842、凹面反射镜3844、光波导364形成光路。
凹面反射镜3844能够将来自光波导364输送的输出光反射至芯端面3856,及/或将来自光纤3842输送来的输入光反射至光波导364。凹面反射镜3844能够在反射光的同时汇聚光,进而在改变光路的同时,减少光损耗。
本申请的一些实施方式中,制备时,可以直接在第二表面3824的第一端上通过激光烧蚀形成一凹陷,并在凹陷的内壁上涂覆反射材料,进而形成一个凹面反射透镜。
在本申请的其他实施方式中,本申请不限定凹面反射镜的制备工艺及制程步骤,例如,可以在透光预制体上镀高反射膜形成独立的凹面反射透镜,再将凹面反射透镜固定在固定槽3827内。
本申请的一些实施方式中,凹面反射镜3844与片体362可通过胶体连接,基体382与垫块37之间通过胶体连接,进而提高光纤传输单元384与光芯片36之间的耦合可靠性。
请参阅图5,图5为以光波导输送的输出光至光纤3842的光路为示例的光路图。其中,带有较小箭头的线条所示路径为输出光的光路。光波导364具有光轴A。光纤3842 具有光轴B。芯端面3856与光纤3842的光轴B相垂直。在芯端面3856,芯端面3856的法线与光轴B重合。凹面反射镜3844相对芯端面3856倾斜设置。凹面反射镜3844与芯端面3856之间的夹角大致为45度。设光波导364的传输端面与芯端面3856的法线之间的间距为D,设光波导364的光轴A与光纤3842的芯端面3856之间的间距为L。D与L可以根据实际的需要进行调整。
沿光轴A从光波导364输出的输出光入射至凹面反射镜3844上。经凹面反射镜3844反射后的输出光沿光纤3842的光轴B输出。由于光轴A与光轴B相垂直,相较于沿光波导364的光轴A传输的输出光,经凹面反射镜3844反射后的输出光的光路弯折了90度。
沿光轴B从光纤3842输入的输入光入射至凹面反射镜3844上。经凹面反射镜3844反射后的输入光沿光波导的光轴A输入至光波导364。由于光轴A与光轴B相垂直,相较于沿光纤3842的光轴B传输的输入光,经凹面反射镜3844反射后的输入光的光路相当于弯折了90度。
经仿真计算,请参阅图6,在光波导364输出的输出光的光斑直径大致为8.8微米时,经过凹面反射镜3844的反射及汇聚,入射至芯端面3856上的输出光的光斑直径大致为9.8微米。以D=H=0.3mm为例。当多个光通道的间距公差(pitch precision)控制在1.4mm以内,耦合插损(loss)为0.5dB,满足应用需求。
本申请的第一实施方式提供的光纤阵列38、光模块30及通信设备100,由于设置了凹面反射镜3844,经凹面反射镜3844反射后的光传输方向相较于反射前的传输方向弯折了90度,使光纤3842无需贴近电路板34设置,进而使电路板34无需再为光纤3842进行避让。由于电路板34无需再为光纤3842进行避让,电路板34上的器件高度不受限制,有利于优化电路板34的器件布局。
另外,一种相关技术方案中,光芯片通过大焊球(c4 bump)倒装(flip chip)焊接到基板上,再通过球栅阵列封装(Ball grid array package,BGA)将基板焊接到电路板上,这样一来,光纤与电路板之间的垂直距离够大,降低对电路板位于光纤路径上的器件的高度要求。然而,光芯片与基板之间,基板与电路板之间采用高温焊接的方式,对光芯片与光纤阵列之间的耦合胶提出了很高的温度规格要求,如260°以上。
而本申请中,由于光芯片36未通过锡球倒装焊接到基板32上,基板32未通过球栅阵列封装焊接到电路板34上,因此,对光芯片36与凹面反射镜3844之间的耦合胶体的温度规格要求不高,有利于降低光纤阵列38的制作成本。
还有,凹面反射镜3844在将来自光波导364的输出光反射至芯端面3856的同时,亦能够起到汇聚光的作用,减少光发散及光损耗。
更甚者,光纤3842通过小曲率弯折在固定槽3827内固定形成弯曲结构,即光纤3842沿第二表面3824延伸,使得位于第二表面3824的第二端的光纤3842的位置要高于位于第二表面3824的第一端的光纤3842的位置。由于抬高了位于第二表面3824的第一端的光纤3842的位置,进一步增加了光纤3842与电路板34的第一侧面342之间的距离,进一步减少光纤3842对电路板34的器件布局的影响。
本申请的其他实施方式中,基板32、垫块37可以省略,即直接将基体382设置于主板10上。
本申请的其他实施方式中,本申请不限定基体382的形状与结构,例如,基体382可以为半球体或其他形状的物体,基体382可以增大光纤3842与电路板34之间的间距即可。
本申请的其他实施方式中,收容槽346可以贯穿第二侧面344但未贯穿第一侧面342。
本申请的一实施方式中,收容槽346可以省略,而直接将光芯片36与基体382设于电路板34上。由于光芯片36的厚度较小,将基体382设置于电路板34上也可以抬高光纤3842。
本申请的一实施方式中,请参阅图7,电路板34上的收容槽可以省略,垫块37与光芯片36位于电路板34的一侧。基体382与垫块37层叠设置,电路板34包括沿第一方向相对设置的第一侧面342与第二侧面344,第一方向为基体382与垫块37的层叠方向,基体382的至少部分在第一方向上凸出第二侧面344设置。第一侧面342固定于基板32的连接部322上。垫块37与光芯片36固定于凸部324上。
本申请对凹面反射镜3844相对光纤3842的光轴B或光波导364的光轴A的倾斜角度不作限定。
请参阅图8、图9及图10,本申请第二实施方式提供一种光模块50,第二实施方式提供的光模块50与第一实施方式提供的光模块30的结构类似,不同在于,光纤传输单元的光纤的结构。
较为具体的,光模块50包括电路板54、光芯片56及光纤阵列58。电路板54与主板电连接。光芯片56与电路板54电连接。光纤阵列58与光芯片56边缘耦合,进而实现光纤阵列58与光芯片56之间的光传输。
电路板54包括相对设置的第一侧面542与第二侧面544(电路板54的顶面)。电路板54设有贯穿第一侧面542与第二侧面544的收容槽546。
光芯片56包括片体562及光波导564。片体562收容于收容槽546内。片体562包括第一连接面5622、第二连接面5624及第三连接面5626。第一连接面5622与第二连接面5624相对设置。第二连接面5624的朝向与第二侧面544的朝向相同。第三连接面5626位于第一连接面5622与第二连接面5624之间。光波导564设于片体562内。光波导364的一端延伸至第三连接面5626,以与光纤阵列58边缘耦合。光波导564具有光轴A(如图8所示)。
光纤阵列58包括基体582与多个呈阵列排布于基体582上的光纤传输单元584。基体582固定于第一连接面5622上,用于支撑光纤传输单元584。基体582为透光基体。基体582的制成材质可以但不限定为二氧化硅(SiO2)。基体582包括第一表面5822、第二表面5824及第三表面5826。第三表面5826连接于第一表面5822与第二表面5824之间。第二表面5824与电路板54的第二侧面544的朝向相同。第一表面5822与基板52固定相接。第一表面5822上设有装设槽5827,用于安装光纤传输单元584。第二表面5824上设有多个呈阵列排布的固定槽5828,用于安装光纤传输单元584。第三表面5826与第三连接面5626通过胶体固定连接,以实现光纤传输单元584与光波导564的边缘耦合。装设槽5827的横截面大致呈V形。固定槽5828的横截面大致呈V形。本申请的其他实施方式中,对装设槽5827与固定槽5828的横截面形状不作限定。
光纤传输单元584包括光纤5842与凹面反射镜5844。光纤5842至少部分固定收容于固定槽5828内。请参阅图11,光纤5842具有光轴B。光纤5842包括纤芯5852与包层5854。纤芯5852包括连接设置的芯端面5856与芯侧面5858。芯端面5856相对光纤5842的光轴B倾斜设置。本申请的一些实施方式中,芯端面5856相对光波导564的光轴A倾斜的夹角为45度,芯端面5856相对光纤5842的光轴B的倾斜角度为45度。
芯端面5856包括芯端反射面,芯端反射面用于改变入射至芯端反射面上的光路。芯端反射面分布于芯端面5856的至少部分区域。包层5854包覆于芯侧面5858上。包层5854的外侧面与固定槽5828的槽壁通过胶体固定连接。位置对应芯端面5856的芯侧面5858裸露在包层5854外,以使光能够透过芯侧面5858,实现光在芯端反射面与凹面反射镜5844之间传输。本申请的其他实施方式中,不限定芯端面5856相对光轴B倾斜的角度。
可以理解,芯端反射面可以设置成平面也可以设置成凹面。平面的芯端反射面制作简单,有利于降低成本。凹面的芯端反射面可以在反射光的同时对光进行汇聚,有利于减小光损耗。
凹面反射镜5844固定于装设槽5827内。本申请的一些实施方式中,凹面反射镜5844为凹面反射透镜,凹面反射镜5844与芯端面5856大致平行。
请再次参阅图9,其中,箭头所示路径为输出光在光模块中的光路。沿光轴A从光波导564输出的输出光透过基体582后入射至凹面反射镜5844上。经凹面反射镜5844反射后的输出光透过基体582后,再经芯侧面5858到达芯端面5856。经芯端反射面反射后的输出光沿光轴B输出。
经凹面反射镜5844与芯端面5856的芯端反射面两次反射后,在维持输出光的原有(从光波导564沿光轴A输出时)的传输方向的同时,增大了光纤5842与电路板54的第二侧面544之间的距离。
沿光轴B从光纤5842输入的输入光入射至芯端面5856的芯端反射面。经芯端面5856的芯端反射面反射后的输入光,透过芯侧面5858后入射至凹面反射镜5844。经凹面反射镜5844反射后的输入光沿光轴A方向输入至光芯片56的光波导564。
经凹面反射镜5844与芯端面5856的芯端反射面两次反射后,在保持输入光的原有(沿光轴B输入至光纤5842时)的传输方向的同时,增大了光纤5842与电路板54的第二侧面544之间的距离。
设光波导564的传输端面与凹面反射镜5844的中心之间的垂直间距为D,设光波导564的光轴A与光纤5842的光轴B之间的间距为L。D与L可以根据实际的需要进行调整。经仿真计算,请参阅图12,在光波导564输出的输出光的光斑直径大致为8.8微米时,经过凹面反射镜5844的反射及汇聚,入射至芯端面5856上的输出光的光斑直径大致为9.8微米。以D=L=0.5mm为例。当多个光通道的间距公差(pitch precision)控制在1.5微米以内,耦合插损(loss)为0.5dB,满足应用需求。
由于凹面反射镜5844与芯端反射面改变了光路,使得光纤5842无需贴靠电路板54设置,进而使电路板54无需再为光纤5842进行避让,电路板54上的器件高度不受限制,有利于优化电路板54的器件布局。相较于第一实施方式提供的光模块,由于光纤传输单元584中的光纤5842无需弯折,方便了组装。
本实施方式中,光纤5842与光芯片56之间的耦合,通过基体582以及胶体粘接,基体582光芯片56通过胶体粘接。
在其他实施方式中,基体582可通过两个盖体实现,一个盖体用安装光纤,另一个盖体用于安装凹面反射镜。盖体与盖体之间通过胶体粘接。光芯片56与基体582之间通过胶体粘接,光芯片56的折射率、基体582的折射率,及光芯片56与基体582之间的胶的折射率需要匹配,光芯片56的折射率、基体582的折射率,及光芯片56与基体582之间的胶的折射率接近。
本申请的其他实施方式中,请参阅图13,光模块50还包括辅助件59,辅助件59固定于片体562的第二连接面5624上,辅助件59与基体582的第三表面5826固定连接。辅助件59用于加强基体582与光芯片56之间的连接强度及稳定性,进而提高光模块50的可靠性。辅助件59与片体562可通过胶体粘接等方式实现固定连接,辅助件59与基体582的第三表面5826可通过胶体粘接等方式实现固定连接。
本申请的其他实施方式中,芯端反射面可以为反射平面也可以为凹面镜。
请参阅图14,本申请第三实施方式提供一种可应用于通信设备(如图1所示)的光模块70。
光模块70包括基板72、电路板74、光芯片76及光纤阵列78。基板72固定于主板上,电路板74固定于基板72背离主板一侧。电路板74与主板电连接。光芯片76与电路板74电连接,实现光芯片76与电路板74之间的电信号传输。光纤阵列78与光芯片76边缘耦合,进而实现光纤阵列78与光芯片76之间的光传输。
电路板74包括相对设置的第一侧面742与第二侧面744。电路板74设有贯穿第一侧面742与第二侧面744的收容槽746。
光芯片76包括片体762及光波导764。片体762收容于收容槽746内。片体762包括第一连接面7622、第二连接面7624及第三连接面7626。第一连接面7622与第二连接面7624相对设置。第一连接面7622与基板72连接。第一连接面7622的朝向与第一侧面742的朝向相同。第三连接面7626位于第一连接面7622与第二连接面7624之间。光波导764设于片体762内。光波导764的一端延伸至第三连接面7626,以与光纤阵列78边缘耦合。光波导764具有光轴A。
光纤阵列78包括基体782与设于基体782上的光纤传输单元784。基体782固定于第二连接面7624上,用于支撑光纤传输单元784。基体782的制成材质可以但不限定为二氧化硅(SiO2)。
光纤传输单元784具有光轴B。光纤传输单元784包括纤芯7852与包层7854。纤芯7852包括连接设置的芯端面7856与芯侧面7858。芯端面7856包括芯端反射面,芯端反射面用于改变光路。芯端面7856相对光纤7842的光轴B倾斜设置。光轴A与芯端面7856的法线之间的夹角为45度。本申请的一些实施方式中,芯端面7856相对光纤7842的光轴B倾斜角度为45度。包层7854包覆于芯侧面7858上。部分芯侧面7858裸露在包层7854外,以使光能够透过芯侧面7858,实现光在芯端反射面与光波导764之间传输。
请参阅图14与图15,图14与图15中的箭头所示路径为光波导764上的输出光在光模块70中的光路。沿光轴A从光波导564输出的输出光透过芯侧面7858后入射至芯端面7856的芯端反射面上。经芯端面7856的芯端反射面反射后的输出光沿光轴B在纤芯7852内传输。经芯端面7856的芯端反射面反射后,输出光改变了原有的贴近电路板74的光路,增大了光纤传输单元784与电路板74的第一侧面742之间的距离。
沿光轴B从光纤7842输入的输入光入射至芯端面7856的芯端反射面上。经芯端面7856的芯端反射面反射后的输入光沿光轴A方向输入至光芯片76的光波导764。经芯端面7856的芯端反射面反射后,输入光改变了原有的贴近电路板74的光路,增大了光纤传输单元784与电路板74的第一侧面742之间的距离。
设光波导764的端面至芯端面7856中心的距离为D。光芯片76的光波导764输出光的光斑尺寸(光斑直径)与纤芯7852的直径接近时,例如,8.8x8.8um,且光波导764 与光纤传输单元784的芯端面7856的中心距离为不小于27微米且不大于47微米以内时,请参阅图16,耦合插损(loss)可以控制在0.5dB以内。
由于芯端面7856改变了从光波导764输出光的光路,使得光纤传输单元784无需贴靠电路板74设置,进而使电路板74无需再为光纤传输单元784进行避让,有利于优化电路板74的布局。另外,仅通过在芯端面7856上设置反射面,即可实现改变光路,有利于简化光模块70的结构。
本申请中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本申请,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种光纤阵列,其特征在于,包括:
    基体;及
    光纤传输单元,包括:
    光纤,固定于所述基体上;及
    凹面反射镜,设于所述基体上并与所述光纤光耦合,所述凹面反射镜用于将从所述光纤传输过来的光反射出去,或者,所述凹面反射镜用于将光反射至所述光纤内进行传输。
  2. 根据权利要求1所述的光纤阵列,其特征在于,
    所述基体包括连接设置的第一表面与第二表面,所述第二表面包括向所述基体外凸设的曲面,部分所述光纤固定于所述曲面上,所述光纤沿所述曲面的外轮廓由所述第二表面的第一端向所述第二表面的第二端延伸形成弯曲结构,所述第二表面的第一端与所述第一表面连接,所述凹面反射镜设于所述第二表面的第一端。
  3. 根据权利要求2所述的光纤阵列,其特征在于,所述曲面上设有固定槽,所述光纤至少部分收容于所述固定槽内,所述凹面反射镜设于所述固定槽。
  4. 根据权利要求2所述的光纤阵列,其特征在于,所述光纤具有光轴,所述光纤包括纤芯及包层,所述纤芯包括芯端面及与所述芯端面连接设置的芯侧面,所述芯端面与所述光纤的光轴相垂直,从所述凹面反射镜反射过来的光透过所述芯端面入射至所述光纤内,或者,来自所述光纤的光透过所述芯端面入射至所述凹面反射镜。
  5. 根据权利要求1所述的光纤阵列,其特征在于,所述光纤具有光轴,所述光纤包括芯端面及与所述芯端面连接设置的芯侧面,所述芯端面包括芯端反射面,所述芯端面相对所述光纤的光轴倾斜设置,从所述凹面反射镜反射过来的光透过所述芯侧面后入射至所述芯端反射面进行反射,或者,经所述芯端反射面反射后的光透过所述芯侧面入射至所述凹面反射镜进行反射。
  6. 根据权利要求5所述的光纤阵列,其特征在于,所述基体包括:
    第一表面,设有装设槽,所述凹面反射镜设于所述装设槽;
    第二表面,设有固定槽,所述光纤固定于所述固定槽;及
    第三表面,连接于所述第一表面与所述第二表面之间,光能够透过所述第三表面入射至所述芯端反射面,或者经所述芯端反射面反射后光透过所述第三表面从所述基体出射。
  7. 根据权利要求5所述的光纤阵列,其特征在于,所述芯端面相对所述光纤的光轴倾斜45度。
  8. 根据权利要求7所述的光纤阵列,其特征在于,所述凹面反射镜与所述芯端面平行设置。
  9. 一种光模块,其特征在于,包括:
    电路板;
    光芯片,包括:
    片体,与所述电路板电连接;及
    光波导,设于所述片体上,
    根据权利要求1-8任意一项所述的光纤阵列,所述光纤传输单元的凹面反射镜与所述光波导在所述片体边缘耦合,所述凹面反射镜将所述光波导输出的光反射至所述光纤,或将来自所述光纤的光反射至所述光波导。
  10. 根据权利要求9所述的光模块,其特征在于,所述光模块还包括垫块,所述基体与所述垫块层叠设置,所述电路板包括沿第一方向相对设置的第一侧面与第二侧面,所述第一方向为所述基体与所述垫块的层叠方向,所述基体的至少部分在所述第一方向上凸出所述第二侧面设置。
  11. 根据权利要求10所述的光模块,其特征在于,所述光模块还包括基板,所述第一侧面固定于所述基板上,所述片体设置于所述基板上,所述垫块设于所述基板上。
  12. 根据权利要求11所述的光模块,其特征在于,所述基板包括:
    连接部,所述第一侧面固定于所述连接部上;及
    凸部,凸设于所述连接部上,所述片体设置于所述凸部上,所述垫块设于所述凸部上。
  13. 根据权利要求12所述的光模块,其特征在于,所述电路板贯穿所述第一侧面与所述第二侧面设有收容槽,所述凸部收容于所述收容槽内,所述片体收容于所述收容槽内,所述垫块收容于所述收容槽内。
  14. 根据权利要求9所述的光模块,其特征在于,所述光模块还包括辅助件,所述辅助件固定于所述片体上,所述辅助件与所述光纤传输单元的基体固定连接。
  15. 一种通信设备,其特征在于,包括主板及根据权利要求9-14任意一项所述的光模块,所述光模块的电路板与所述主板电连接。
PCT/CN2023/077844 2022-03-24 2023-02-23 光纤阵列、光模块及通信设备 WO2023179289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210295962.9A CN116840977A (zh) 2022-03-24 2022-03-24 光纤阵列、光模块及通信设备
CN202210295962.9 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023179289A1 true WO2023179289A1 (zh) 2023-09-28

Family

ID=88099866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077844 WO2023179289A1 (zh) 2022-03-24 2023-02-23 光纤阵列、光模块及通信设备

Country Status (2)

Country Link
CN (1) CN116840977A (zh)
WO (1) WO2023179289A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053279A (ja) * 2007-08-23 2009-03-12 National Institute Of Advanced Industrial & Technology 光モジュール
JP2010020085A (ja) * 2008-07-10 2010-01-28 Fujitsu Ltd 光導波路構造体及びその製造方法、光モジュール
CN202256783U (zh) * 2011-07-28 2012-05-30 上海上诠电信科技有限公司 光纤直接转向连接器
CN204009138U (zh) * 2014-01-16 2014-12-10 中兴通讯股份有限公司 一种光耦合器件和光耦合单元
CN104570240A (zh) * 2015-01-04 2015-04-29 武汉耀晟互连科技有限公司 并行光纤阵列与光电子芯片耦合组件
CN107037541A (zh) * 2017-05-25 2017-08-11 东莞市胜创光电科技有限公司 光纤阵列
CN212301965U (zh) * 2020-05-27 2021-01-05 华为技术有限公司 一种光纤耦合器及光电设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053279A (ja) * 2007-08-23 2009-03-12 National Institute Of Advanced Industrial & Technology 光モジュール
JP2010020085A (ja) * 2008-07-10 2010-01-28 Fujitsu Ltd 光導波路構造体及びその製造方法、光モジュール
CN202256783U (zh) * 2011-07-28 2012-05-30 上海上诠电信科技有限公司 光纤直接转向连接器
CN204009138U (zh) * 2014-01-16 2014-12-10 中兴通讯股份有限公司 一种光耦合器件和光耦合单元
CN104570240A (zh) * 2015-01-04 2015-04-29 武汉耀晟互连科技有限公司 并行光纤阵列与光电子芯片耦合组件
CN107037541A (zh) * 2017-05-25 2017-08-11 东莞市胜创光电科技有限公司 光纤阵列
CN212301965U (zh) * 2020-05-27 2021-01-05 华为技术有限公司 一种光纤耦合器及光电设备

Also Published As

Publication number Publication date
CN116840977A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2021164669A1 (zh) 光学收发模块及光纤缆线模块
US20100272388A1 (en) Photoelectric conversion module
KR20040089014A (ko) 광 피씨비, 광 피씨비용 송수신 모듈 및 광연결블록연결구조
JP2007003817A (ja) 光導波路構造体、光モジュールおよびレンズアレイ
WO2000039621A1 (fr) Emetteur/recepteur permettant une transmission optique en parallele et plaque pour module optique
WO2023077902A1 (zh) 一种光模块
WO2023077903A1 (zh) 一种光模块
CN111638577A (zh) 表贴式集成化光模块
WO2023179289A1 (zh) 光纤阵列、光模块及通信设备
US20240004150A1 (en) Optical module
TWI507752B (zh) 光學元件封裝結構
KR20030007311A (ko) 광도파로가 매몰된 다층 광기판에서 광연결봉을 이용한광연결 구조
JP2006003818A (ja) 半導体集積回路チップ及びその製造方法
TWI504959B (zh) 光學元件封裝結構及其封裝方法
WO2021109776A1 (zh) 一种光模块
JP6001327B2 (ja) 光配線部品、光配線モジュールおよび光配線装置
WO2023241308A1 (zh) 一种光传输模块、光模块、电路板组件及光网络设备
KR100478379B1 (ko) 광도파로와 마이크로렌즈를 이용한 칩간 광연결 구조
KR20110070036A (ko) 인터포저를 이용한 광전변환모듈
US20130129276A1 (en) Optical engine assembly and optoelectronic package
CN220855278U (zh) 一种紧凑型800g dr8硅光模块
CN217981936U (zh) 一种光收发装置
CN220305528U (zh) 一种光模块
WO2021109645A1 (zh) 一种光模块
CN219552713U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773540

Country of ref document: EP

Kind code of ref document: A1