WO2021056835A1 - 一种光接收端组件和光模块 - Google Patents
一种光接收端组件和光模块 Download PDFInfo
- Publication number
- WO2021056835A1 WO2021056835A1 PCT/CN2019/124121 CN2019124121W WO2021056835A1 WO 2021056835 A1 WO2021056835 A1 WO 2021056835A1 CN 2019124121 W CN2019124121 W CN 2019124121W WO 2021056835 A1 WO2021056835 A1 WO 2021056835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- port
- end assembly
- circuit board
- optical fiber
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
Definitions
- the present disclosure relates to the field of optical communication, and in particular to an optical receiving end assembly and an optical module.
- increasing the transmission rate of a single optical module is an urgent technical problem to be solved.
- increasing the port of the optical module is an effective way to increase the optical information density without increasing the space of the optical module significantly. That is, by increasing the transmit optical port or the receiving optical port of the optical module, it can greatly increase the optical information density. Improve the transmission rate of a single optical module.
- the increase of optical ports also requires the iterative upgrade of optoelectronic processing chips.
- the increase of optical ports means that the external connector interface connected to the optical port will adopt a dual or multi-connection mode, which improves the efficiency of the user's plugging and unplugging.
- OSFP Octal Small Form-factor Pluggable
- the existing Octal Small Form-factor Pluggable (OSFP, Octal Small Form-factor Pluggable) four-port optical module is a packaging method that increases ports and improves speed. It contains 2 transmitting optical ports and 2 receiving optical ports, and the external connector adopts standard double Mini LC patch cords.
- the standard dual Mini LC jumper has two fixed connectors, which correspond to a transmitting optical port and a receiving optical port on the optical module. In this way, the position of the optical port on the optical module is very high, that is, the relative position of the transmitting optical port and the receiving optical port is very high.
- the difficulty of optical module design and process realization is increased, and the manufacturing cost is increased.
- the embodiments of the present disclosure expect to provide an optical receiving end assembly and an optical module, which can reduce the relative position requirements of the transmitting optical port and the receiving optical port, and reduce the manufacturing cost of the optical module.
- embodiments of the present disclosure provide a light receiving end assembly, the light receiving end assembly includes a first optoelectronic chip group, a first lens group, a splitter, a coupler, and an optical receiving port connected to each other; wherein , The coupler and the receiving optical port are connected by an optical fiber.
- the interface through which the optical receiving port is connected to the optical fiber and the interface through which the coupler connects to the optical fiber face the same direction, and the lateral distance between the extension lines of the two interfaces is greater than a preset value.
- the length of the optical fiber between the receiving optical port and the coupler is greater than a preset value.
- the optical fiber is a single-mode optical fiber or a microbend optical fiber.
- the optical receiving port includes a pin assembly, and the optical fiber is connected to the optical receiving port through the pin assembly.
- an embodiment of the present disclosure provides an optical module, the optical module includes at least one of any of the above-mentioned optical receiving end components, at least one optical transmitting end assembly, and a circuit board; the optical receiving end assembly And the light emitting end assembly are both fixed on the circuit board.
- the light emitting end component includes a second optoelectronic chip group, a second lens group, a multiplexer, an optical path component, and an emitting light port which are connected to each other; the receiving light port and the emitting light port are both arranged in the At the same end in the length direction of the circuit board, the first optoelectronic chip group, the first lens group, the splitter and the coupler are all arranged on the first surface of the circuit board, and the second The optoelectronic chip set, the second lens group, the multiplexer and the optical circuit assembly are all arranged on the second surface of the circuit board; the first surface and the second surface are both connected to the circuit
- the length of the board is parallel to the surface, and the first surface and the second surface face opposite directions.
- the first optoelectronic chip group, the first lens group, the splitter and the coupler are all arranged in a first area of the first surface of the circuit board; the second optoelectronic chip The group, the second lens group, the multiplexer and the optical circuit assembly are all arranged in the second area of the second surface of the circuit board; the first area and the second area are in the circuit The length of the board is staggered.
- the optical module further includes a support member supporting the light receiving end assembly and the light emitting end assembly, and the support member is fixed on the circuit board.
- the supporting member includes a limiting groove for limiting the optical fiber.
- the position of the receiving optical port does not have to be completely fixed, which reduces the receiving optical port and the transmitting optical port.
- the relative position requirement of the optical port reduces the manufacturing cost of the optical module.
- FIG. 1 is a schematic diagram of a first surface of a first implementation of an optical module according to an embodiment of the disclosure
- FIG. 2 is a schematic diagram of a first surface of a second implementation of an optical module according to an embodiment of the disclosure
- FIG. 3 is a schematic diagram of a first surface of a third implementation manner of an optical module according to an embodiment of the disclosure.
- FIG. 4 is a schematic diagram of a first surface of a fourth implementation manner of an optical module according to an embodiment of the disclosure.
- FIG. 5 is a schematic diagram of the structural principle of the optical receiving end assembly in the optical module according to the embodiment of the disclosure.
- FIG. 6 is a schematic diagram of the structural principle of the light emitting end assembly in the optical module of the embodiment of the disclosure.
- FIG. 7 is a first schematic diagram of the distribution of light receiving end components and light emitting end components in the optical module of the embodiment of the disclosure.
- FIG. 8 is a second schematic diagram of the distribution of light receiving end components and light emitting end components in the optical module of the embodiment of the disclosure.
- FIG. 9 is a third schematic diagram of the distribution of the optical receiving end components and the optical transmitting end components in the optical module according to the embodiment of the disclosure.
- FIG. 10 is an overall exploded schematic diagram of an optical module including a housing according to an embodiment of the disclosure.
- FIG. 11 is a first schematic diagram of only one receiving optical port and one emitting optical port in the optical module according to the embodiment of the disclosure.
- FIG. 12 is a second schematic diagram of the optical module according to the embodiment of the disclosure, where there is only one receiving optical port and one emitting optical port.
- connection should be interpreted broadly. For example, it may be an electrical connection, or it may be the internal communication between the two components, it may be directly connected, or it may be indirectly connected through an intermediate medium.
- intermediate medium For those of ordinary skill in the art, the specific meaning of the above-mentioned terms can be understood according to specific circumstances.
- first ⁇ second ⁇ third If the term “first ⁇ second ⁇ third” is involved, it only distinguishes similar objects and does not represent a specific order for the objects. Understandably, “first ⁇ second ⁇ third” can be interchanged in a specific order or precedence when permitted.
- the embodiment of the present disclosure provides a light receiving end assembly, the light receiving end assembly includes a first optoelectronic chip group, a first lens group, a demultiplexer, a coupler, and an optical receiving port that are connected to each other; The coupler and the receiving optical port are connected by an optical fiber.
- the demultiplexer here, also called demultiplexer or demultiplexer, is configured to separate optical signals of various wavelengths.
- the optical fiber connection is a flexible connection, and the position of the receiving optical port does not need to be completely fixed.
- the optical circuit component connection Through the optical circuit component connection, the relative position requirements of the receiving optical port and the emitting optical port are reduced, and the manufacturing cost of the optical module is reduced.
- the interface through which the optical receiving port is connected to the optical fiber and the interface through which the coupler connects to the optical fiber face the same direction, and the lateral distance between the extension lines of the two interfaces is greater than a preset value.
- the optical fiber between the two interfaces has a large 180-degree bend, so that the optical fiber has a small force or elasticity on the other components of the optical receiving end assembly, and increases the stability and service life of the optical receiving end assembly. ; And making the optical fiber very long can also reduce the production difficulty of the optical fiber assembly, which is the preferred way.
- the reason for the lateral distance between the extension lines of the two interfaces to be greater than the preset value is to make the curvature of the optical fiber large enough.
- the orientation of the two interfaces is opposite and the center is aligned. This can be connected in a straight line.
- the force may be relatively large on other devices, the assembly is simple, and it can better avoid the optical module due to the overlapping of the optical fiber 1 during the assembly. The shell is crushed.
- the problem that the optical fiber exerts a large force on other devices can be appropriately reduced by fixing the optical fiber with soft glue.
- a method between the above two methods is also feasible, that is, the orientation of the two interfaces is neither inconsistent nor opposite.
- the extension line of the two interfaces is perpendicular, so that the optical fiber will have a 90-degree turn. It can reduce the force of the optical fiber on other components of the light receiving end assembly, but it may increase the difficulty of the layout of the circuit board.
- the length of the optical fiber between the receiving optical port and the coupler is greater than a preset value. Only the length is long enough to make the two ends of the optical fiber bent with a large arc of 180 degrees, that is, the two ends of the optical fiber connected to the receiving port and the coupler, the length of the straight line is longer, so that the impact of the optical fiber is further reduced.
- the force of other components of the light receiving end assembly can be determined according to specific conditions in actual production.
- the optical fiber is a single-mode optical fiber or a microbend optical fiber.
- the loss of single-mode fiber is smaller, and it can be closer to the way of connecting optical circuit components. Compared with ordinary optical fibers, micro-bent fibers have lower loss in the bent state. It can be understood that other types of optical fibers are also possible.
- the optical receiving port includes a pin assembly, and the optical fiber is connected to the optical receiving port through the pin assembly. In this way, it is more convenient to connect the optical fiber, which is the preferred way.
- the embodiment of the present disclosure also provides an optical module, the optical module includes any of the above-mentioned optical receiving end components, at least one optical emitting end assembly and a circuit board; the optical receiving end assembly and the light emitting end assembly The end components are all fixed on the circuit board.
- the optical module may include multiple optical receiving end components and multiple optical transmitting end components, so that the transmission rate and bandwidth of the optical module can be improved.
- the light receiving end component and the light emitting end component are arranged in pairs, that is, the number is generally equal, but the present disclosure does not limit it.
- the circuit board here in the embodiment of the present disclosure, may be a PCBA, but may also be other circuit boards that can carry the light receiving end component and the light emitting end component.
- the light emitting end component includes a second optoelectronic chip group, a second lens group, a multiplexer, an optical path component, and an emitting optical port that are connected to each other; the receiving optical port and the The light emitting ports are all arranged at the same end in the length direction of the circuit board, and the first optoelectronic chip group, the first lens group, the splitter and the coupler are all arranged on the first side of the circuit board.
- the second optoelectronic chip group, the second lens group, the multiplexer and the optical path component are all arranged on the second surface of the circuit board; the first surface and the second The surfaces are all surfaces parallel to the length direction of the circuit board, and the first surface and the second surface face opposite directions. In this way, making better use of the surface of the circuit board and reducing the volume of the entire optical module is a preferred way.
- the multiplexer is also called a multiplexer, which is configured to combine two or more optical signals of different wavelengths (carrying various information) together, and couple them to the same optical fiber of the optical line for transmission.
- the first optoelectronic chip group, the first lens group, the splitter and the coupler are all arranged in the first area of the first surface of the circuit board;
- the second optoelectronic chip group, the second lens group, the multiplexer and the optical path assembly are all arranged in a second area of the second surface of the circuit board; the first area and the second area Staggered in the length direction of the circuit board.
- the optical module further includes a support member supporting the light receiving end assembly and the light emitting end assembly, and the support member is fixed on the circuit board.
- the support includes a limiting groove for limiting the optical fiber.
- the optical fiber arrangement is more stable, which can further reduce the force of the optical fiber on other components of the light receiving end assembly, and can also avoid damage to the optical fiber during assembly, which is a preferred method.
- the embodiments of the present disclosure provide an optical module, the optical module includes at least one optical receiving end assembly 10, at least one optical transmitting end assembly 20, and a circuit board 30; the optical receiving end assembly 10 and the light emitting end assembly 20 are both fixed on the circuit board 30.
- the light receiving end assembly 10 includes a first optoelectronic chip group 101, a first lens group 102, a splitter 103, a coupler 104, and a receiving optical port 105 that are connected to each other;
- the optical fiber 106 is connected between 104 and the optical receiving port 105.
- the orientation of the interface of the optical receiving port 105 connecting the optical fiber 106 is the same as the orientation of the interface of the coupler 104 connecting the optical fiber 106. In this way, the production difficulty of the optical fiber 106 can be reduced, and the force or elasticity of the optical fiber 106 on other components of the light receiving end assembly 10 is small.
- the length of the optical fiber 106 between the receiving optical port 105 and the coupler 104 is greater than a preset value. In this way, the force exerted by the optical fiber 106 on other components of the light receiving end assembly 10 can be further reduced.
- the optical fiber 106 is a single-mode optical fiber or a micro-bent optical fiber. In this way, the transmission loss is smaller.
- the optical receiving port 105 includes a pin assembly (not shown in the figure), and the optical fiber 106 is connected to the optical receiving port 105 through the pin assembly. In this way, the connection of the optical fiber 106 is more convenient.
- the light emitting end assembly 20 includes a second optoelectronic chip group 201, a second lens group 202, a multiplexer 203, an optical path assembly 204, and a light emitting port 205 that are connected to each other;
- the port 105 and the light emitting port 205 are both arranged at the same end in the length direction of the circuit board 30.
- the first optoelectronic chip group 101, the first lens group 102, the demultiplexer 103 and the coupling The devices 104 are all arranged on the first surface 301 of the circuit board 30, and the second optoelectronic chip group 201, the second lens group 202, the multiplexer 203 and the optical path component 204 are all arranged on the The second surface 302 of the circuit board 30. In this way, the volume of the entire optical module can be reduced, see Figures 7-9.
- the first optoelectronic chip group 101, the first lens group 102, the splitter 103, and the coupler 104 are all arranged in the first area 303 of the first surface 301 of the circuit board 30
- the second optoelectronic chip group 201, the second lens group 202, the multiplexer 203 and the optical path component 204 are all arranged in the second area 304 of the second surface 302 of the circuit board 30;
- the first area 303 and the second area 304 are staggered in the length direction of the circuit board 30. In this way, the heat dissipation effect of the optical module is better, see Figure 7-9.
- the optical module further includes a support 306 supporting the light receiving end assembly 10 and the light emitting end assembly 20, and the support 306 is fixed on the circuit board 30.
- the material of the support 306 may be Kovar, tungsten copper or ceramic.
- the supporting member 306 may only use one of them, or may be used in combination.
- Kovar alloy is used to support the light emitting port 205
- tungsten copper is used to support the second optoelectronic chip set 201
- ceramics are used to support the first photoelectric chip set 201.
- Optoelectronic chipset 101 is used to support the first photoelectric chip set 201.
- Kovar alloy is used to support the light emitting port 205 of the light emitting end assembly 20, some lenses of the second lens group 202, and the multiplexer 203, and tungsten copper is used to support the second photoelectricity of the light emitting end assembly 20.
- Part of the lenses of the chip group 201 and the second lens group 202 use ceramics to support the first optoelectronic chip group 101, the light receiving port 105, the splitter 103 and the first lens group 102 of the light receiving end assembly 10.
- the supporting member 306 includes a limiting groove (not shown in the figure) for limiting the optical fiber 106. In this way, the arrangement of the optical fiber 106 is more stable.
- the components in the light receiving end assembly 10 are fixed on the support 306 in the following manner: the first optoelectronic chip set 101 is fixed by structural glue, the splitter 103, the coupler 104.
- the first lens group 102 is fixed by structural glue or ultraviolet curing glue
- the light receiving port 105 is fixed by laser welding or structural glue.
- the components in the light emitting end assembly 20 are fixed on the support 306 in the following manner: the second optoelectronic chipset 201 is fixed by structural glue, the multiplexer 203 and the optical path assembly 204 It is fixed by structural glue or ultraviolet light curing glue, the second lens group 202 is fixed by ultraviolet light curing glue, and the light emitting port 205 is fixed by laser welding or structural glue.
- both the demultiplexer 103 and the multiplexer 203 can use one of the following solutions:
- Z-block cooperates with thin film filter (TFF, thin film filter);
- Polarizing beam splitter PBS, Polarizing Beam Splitter
- the splitter 103 uses Z-block to cooperate with TFF, and the multiplexer 203 uses AWG; or the splitter 103 uses AWG, and the multiplexer 203 uses PBS; any combination is possible.
- first lens group 102 and the second lens group 202 both have but are not limited to the functions of light path convergence, collimation, light path turning, and isolator.
- the coupler 104 may be a collimator or a fiber array (FA, Fiber Array) capillary.
- the optical module further includes a housing.
- the housing includes a base 401, a bottom cover 402, and a top cover 403.
- the external optical signal enters from the optical receiving port 105 of the optical receiving end assembly 10, and then enters the coupler 104 through the optical fiber 106, and then separates the optical signals of different wavelengths through the demultiplexer 103, After passing through the multiple lenses of the first lens group 102 to the multiple channels of the first optoelectronic chip group 101, they are converted into electrical signals through the first optoelectronic chip group 101.
- the internal electrical signals are converted into a variety of optical signals through the second optoelectronic chip group 201 of the light emitting end assembly 20, and are respectively transmitted to the multiple lenses of the second lens group 202 through multiple channels.
- the second lens group 202 is transmitted to the multiplexer 203, the multiple optical signals are combined together through the multiplexer 203, and are transmitted to the emitted light of the light emitting end assembly 20 through the optical path component 204
- the port 205 is transmitted to the outside through the light emitting port 205.
- the optical fiber 106 between the coupler 104 and the optical receiving port 105 can be divided into two implementation manners.
- the demultiplexer 103 of the optical receiving end assembly 10 it can also be divided into two implementations, and a total of four implementations can be combined (just an example, not all combinations).
- the four implementation manners include:
- the optical fiber 106 between the coupler 104 and the receiving optical port 105 is connected in a straight line, and the specific embodiment of the demultiplexer 103 of the optical receiving end assembly 10 is Z-block cooperates with TFF.
- the optical fiber 106 between the coupler 104 and the receiving optical port 105 is connected in a curve, and the specific embodiment of the demultiplexer 103 of the optical receiving end assembly 10 is Z-block cooperates with TFF.
- the curved connection here may be: the direction of the interface of the optical receiving port 105 connecting the optical fiber 106 and the direction of the interface of the coupler 104 connecting the optical fiber 106 are the same.
- the optical fiber 106 between the coupler 104 and the receiving optical port 105 is connected in a straight line, and the specific embodiment of the demultiplexer 103 of the optical receiving end assembly 10 is AWG.
- the optical fiber 106 between the coupler 104 and the receiving optical port 105 is connected in a curve, and the specific embodiment of the demultiplexer 103 of the optical receiving end assembly 10 is AWG.
- the optical fiber 106 between the coupler 104 and the light receiving port 105 is connected in a straight line. In this way, the assembly is simple and it can better avoid the overlapping of the optical fiber 106 during assembly. The winding is crushed by the shell of the optical module.
- the optical fiber 106 may be fixed by soft glue. In addition, by fixing the optical fiber 106 in the limiting groove, the force of the optical fiber 106 on other components in the light receiving end assembly 10 can be further reduced.
- the optical module may also have only one receiving optical port 105 and one emitting optical port 205, that is, both the optical receiving end assembly 10 and the optical emitting end assembly 20 have only one optical port.
- the optical receiving end assembly 10 and the optical transmitting end assembly 20 both have only one optical port
- the optical fiber can also be passed between the coupler 104 and the receiving optical port 105 of the optical receiving end assembly 10 connection. In this way, the relative position requirements of the transmitting optical port 205 and the receiving optical port 105 can also be reduced, and the manufacturing cost of the optical module can be reduced.
- connecting the coupler 104 and the receiving optical port 105 of the optical receiving end assembly 10 through an optical fiber can further reduce the manufacturing cost of the optical module.
- the position of the receiving optical port does not have to be completely fixed, which reduces the receiving optical port and the transmitting optical port.
- the relative position requirement of the optical port reduces the manufacturing cost of the optical module.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
一种光接收端组件(10)和光模块,光接收端组件(10)包括相互连接的第一光电芯片组(101)、第一透镜组(102)、分波器(103)、耦合器(104)和接收光口(105);其中,耦合器(104)和接收光口(105)之间通过光纤(106)连接。
Description
相关申请的交叉引用
本申请基于申请号为201910907477.0、申请日为2019年09月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本公开涉及光通信领域,具体涉及一种光接收端组件和光模块。
随着通讯线路传输容量的日益增长,尤其在数据中心和网络核心节点上,原有的光纤传输技术已不能满足数据日益增长的需要。因此,提高单个光模块的传输速率是亟需解决的技术问题。通过波分复用技术,将光模块的端口增加,是一种不明显增加光模块空间,成倍增加光信息密度的有效方式,即通过增加光模块的发射光口或接收光口,可以大幅提高单个光模块的传输速率。当然,光口的增加,也需要光电处理芯片的迭代升级。
在光模块中,光口的增加,意味着连接光口的外部连接器接口会采用双联或多联方式,提高用户拔插效率。例如,现有的八进制小型可插拔(OSFP,Octal Small Form-factor Pluggable)四端口光模块,即是一种采用增加端口、提高速率的一种封装方式。它包含2个发射光口、2个接收光口,外部连接器采用标准双联Mini LC跳线。标准双联Mini LC跳线有两个位置固定的连接头,分别对应光模块上的一个发射光口和一个接收光口。这样对光模块上光口的位置要求很高,即发射光口和接收光口的相对位置要求很高。相应的增加了光模块设计及工艺实现难度,增加了制作成本。
当然,在常规双端口高速模块中,如400G双密度四通道小型可插拔封装(QSFP-DD,Quad Small Form-factor Pluggable-Double Density)模块中,提高发射光口和接收光口的相对位置精度,也能利于大型数据中心机房使用双联跳线,提高插拔效率。因此,同样会增加制作成本。
发明内容
有鉴于此,本公开实施例期望提供一种光接收端组件和光模块,能降低发射光口和接收光口的相对位置要求,降低光模块的制作成本。
为达到上述目的,本公开实施例提供了如下的技术方案:
第一方面,本公开实施例提供了一种光接收端组件,所述光接收端组件包括相互连接的第一光电芯片组、第一透镜组、分波器、耦合器和接收光口;其中,所述耦合器和所述接收光口之间通过光纤连接。
优选地,所述接收光口连接所述光纤的接口和所述耦合器连接所述光纤的接口朝向同一个方向,且两个接口的延伸线在横向的距离大于预设值。
优选地,所述接收光口与所述耦合器之间的所述光纤长度大于预设值。
优选地,所述光纤为单模光纤或微弯光纤。
优选地,所述接收光口包括插针组件,所述光纤通过所述插针组件接入所述接收光口。
第二方面,本公开实施例提供了一种光模块,所述光模块包括至少一个上面所述的任意一种光接收端组件、至少一个光发射端组件和电路板;所述光接收端组件和所述光发射端组件均固定于所述电路板上。
优选地,所述光发射端组件包括相互连接的第二光电芯片组、第二透镜组、合波器、光路组件和发射光口;所述接收光口和所述发射光口均布置在所述电路板长度方向的同一端,所述第一光电芯片组、所述第一透镜组、所述分波器和所述耦合器均布置在所述电路板的第一表面,所述第二光电芯片组、所述第二透镜组、所述合波器和所述光路组件均布置在所述 电路板的第二表面;所述第一表面和所述第二表面均为与所述电路板长度方向平行的表面,且所述第一表面和所述第二表面的朝向相反。
优选地,所述第一光电芯片组、所述第一透镜组、所述分波器和所述耦合器均布置在所述电路板的第一表面的第一区域;所述第二光电芯片组、所述第二透镜组、所述合波器和所述光路组件均布置在所述电路板的第二表面的第二区域;所述第一区域和所述第二区域在所述电路板的长度方向错开。
优选地,所述光模块还包括支撑所述光接收端组件和所述光发射端组件的支撑件,所述支撑件固定于所述电路板上。
优选地,所述支撑件包括限制所述光纤的限位槽。
本公开实施例的光接收端组件和光模块,通过将所述光接收端组件的耦合器和接收光口之间通过光纤连接,使接收光口的位置不必完全固定,降低了接收光口和发射光口的相对位置要求,降低了光模块的制作成本。
本公开实施例的其他有益效果将在具体实施方式中结合具体技术方案进一步说明。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要的说明。应当理解,下面描述的附图仅仅是本公开实施例的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本公开实施例光模块的第一种实施方式的第一表面示意图;
图2为本公开实施例光模块的第二种实施方式的第一表面示意图;
图3为本公开实施例光模块的第三种实施方式的第一表面示意图;
图4为本公开实施例光模块的第四种实施方式的第一表面示意图;
图5为本公开实施例光模块中光接收端组件的结构原理示意图;
图6为本公开实施例光模块中光发射端组件的结构原理示意图;
图7为本公开实施例光模块中光接收端组件和光发射端组件的分布示意图一;
图8为本公开实施例光模块中光接收端组件和光发射端组件的分布示意图二;
图9为本公开实施例光模块中光接收端组件和光发射端组件的分布示意图三;
图10为本公开实施例光模块包括外壳的整体分解示意图;
图11为本公开实施例光模块中只有一个接收光口和一个发射光口的示意图一;
图12为本公开实施例光模块中只有一个接收光口和一个发射光口的示意图二。
需要说明的是,在本公开中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者装置所固有的要素。
除非另有说明和限定,术语“连接”应做广义理解。例如,可以是电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如有涉及的术语“第一\第二\第三”,仅是区别类似的对象,不代表针对对象的特定排序。可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。
本公开实施例提供了一种光接收端组件,所述光接收端组件包括相互 连接的第一光电芯片组、第一透镜组、分波器(Demultiplexer)、耦合器和接收光口;其中,所述耦合器和所述接收光口之间通过光纤连接。
这里的分波器,也叫解复用器或去复用器,被配置为各种波长的光信号分离。
本公开实施例的光接收端组件,通过将所述光接收端组件的耦合器和接收光口之间通过光纤连接,光纤连接是一种柔性连接,接收光口的位置不必完全固定,相比通过光路组件连接,降低了接收光口和发射光口的相对位置要求,降低了光模块的制作成本。
在一种实施方式中,所述接收光口连接所述光纤的接口和所述耦合器连接所述光纤的接口朝向同一个方向,且两个接口的延伸线在横向的距离大于预设值。这样,两个接口之间的光纤有一个180度的大弧度折弯,使光纤对于光接收端组件的其它器件的作用力或弹力很小,增加所述光接收端组件的稳定性和使用寿命;而且把光纤做的很长,也能降低光纤组件的生产难度,是优选方式。两个接口的延伸线在横向的距离大于预设值是为了使光纤的转弯弧度足够大。能够理解,两个接口的朝向相对且中心对齐也可以,这样可以直线连接,虽然可能对其它器件的作用力比较大,但装配简单,也能更好避免装配中因光纤1叠绕被光模块的外壳压坏。而光纤对其它器件作用力大的问题,可以通过软胶固定所述光纤的方式适量减小,详细可参见下面的具体实施例和图1、图3。另外,在介于上述两个方式之间的方式也是可行,即两个接口的朝向既不一致,也不相对,例如,两个接口的延伸线垂直,这样光纤会有一个90度的转弯,也能减小光纤对于光接收端组件的其它器件的作用力,但是可能会增加电路板的布局难度。
在一种实施方式中,所述接收光口与所述耦合器之间的所述光纤长度大于预设值。只有长度足够长,才能使180度的大弧度折弯的光纤的两端,即连接到所述接收光口和所述耦合器的两端,直线段的长度更长,这样, 进一步减少光纤对于光接收端组件的其它器件的作用力。这里的预设值,可以是在实际生产中根据具体情况确定。
在一种实施方式中,所述光纤为单模光纤或微弯光纤。单模光纤的损耗更小,可以更接近采用光路组件连接的方式。相比普通光纤,微弯光纤在弯曲状态下损耗更小。能够理解,其它类型的光纤也是可以的。
在一种实施方式中,所述接收光口包括插针组件,所述光纤通过所述插针组件接入所述接收光口。这样,更便于光纤的连接,是优选方式。
本公开实施例还提供了一种光模块,所述光模块包括上面所述的任意一种光接收端组件、至少一个光发射端组件和电路板;所述光接收端组件和所述光发射端组件均固定于所述电路板上。
这里,所述光模块可以包括多个光接收端组件和多个光发射端组件,这样,可以提高光模块的传输速率和带宽。一般地,在光模块中,所述光接收端组件和光发射端组件是成对设置的,即一般是数量相等的,但本公开不作限定。这里的电路板,在本公开实施例中,可以是PCBA,但也可以是其它能承载所述光接收端组件和光发射端组件的电路板。
在一种实施方式中,所述光发射端组件包括相互连接的第二光电芯片组、第二透镜组、合波器(Multiplexer)、光路组件和发射光口;所述接收光口和所述发射光口均布置在所述电路板长度方向的同一端,所述第一光电芯片组、所述第一透镜组、所述分波器和所述耦合器均布置在所述电路板的第一表面,所述第二光电芯片组、所述第二透镜组、所述合波器和所述光路组件均布置在所述电路板的第二表面;所述第一表面和所述第二表面均为与所述电路板长度方向平行的表面,且所述第一表面和所述第二表面的朝向相反。这样,更好的利用电路板的表面,减少整个光模块的体积,是优选方式。
这里,所述合波器也叫复用器,被配置为将两种或多种不同波长的光 信号(携带各种信息)汇合在一起,并耦合到光线路的同一根光纤中进行传输。
在一种实施方式中,所述第一光电芯片组、所述第一透镜组、所述分波器和所述耦合器均布置在所述电路板的第一表面的第一区域;所述第二光电芯片组、所述第二透镜组、所述合波器和所述光路组件均布置在所述电路板的第二表面的第二区域;所述第一区域和所述第二区域在所述电路板的长度方向错开。这样,使所述光接收端组件和所述光发射端组件分开散热,使光模块的散热效果更好,是优选方式。
在一种实施方式中,所述光模块还包括支撑所述光接收端组件和所述光发射端组件的支撑件,所述支撑件固定于所述电路板上。
在一种实施方式中,所述支撑件包括限制所述光纤的限位槽。这样,光纤布置的更稳固,能进一步减少光纤对于光接收端组件的其它器件的作用力,也能避免在装配中损坏光纤,是优选方式。
以下结合附图及具体实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。并且,下面描述的实施例,仅仅是本公开的一部分实施例,而不是全部的实施例。本技术领域的普通技术人员,根据这些实施例,在不付出创造性劳动的前提下获得的所有其它实施例,均属于本公开保护的范围。
如图1-6所示,本公开实施例提供了一种光模块,所述光模块包括至少一个光接收端组件10、至少一个光发射端组件20和电路板30;所述光接收端组件10和所述光发射端组件20均固定于所述电路板30上。
其中,如图5所示,所述光接收端组件10包括相互连接的第一光电芯片组101、第一透镜组102、分波器103、耦合器104和接收光口105;所述耦合器104和所述接收光口105之间通过光纤106连接。
其中,所述接收光口105连接所述光纤106的接口朝向和所述耦合器 104连接所述光纤106的接口朝向一致。这样,可以降低光纤106的生产难度,使光纤106对于光接收端组件10的其它器件的作用力或弹力很小。
更具体地,所述接收光口105与所述耦合器104之间的所述光纤106长度大于预设值。这样,可以进一步减少光纤106对于光接收端组件10的其它器件的作用力。
其中,所述光纤106为单模光纤或微弯光纤。这样,传输损耗更小。
其中,所述接收光口105包括插针组件(未在图中示出),所述光纤106通过所述插针组件接入所述接收光口105。这样,更便于光纤106的连接。
其中,如图6所示,所述光发射端组件20包括相互连接的第二光电芯片组201、第二透镜组202、合波器203、光路组件204和发射光口205;所述接收光口105和所述发射光口205均布置在所述电路板30长度方向的同一端,所述第一光电芯片组101、所述第一透镜组102、所述分波器103和所述耦合器104均布置在所述电路板30的第一表面301,所述第二光电芯片组201、所述第二透镜组202、所述合波器203和所述光路组件204均布置在所述电路板30的第二表面302。这样,能减少整个光模块的体积,参见图7~图9。
具体地,所述第一光电芯片组101、所述第一透镜组102、所述分波器103和所述耦合器104均布置在所述电路板30的第一表面301的第一区域303;所述第二光电芯片组201、所述第二透镜组202、所述合波器203和所述光路组件204均布置在所述电路板30的第二表面302的第二区域304;所述第一区域303和所述第二区域304在所述电路板30的长度方向错开。这样,光模块的散热效果更好,参见图7~图9。
其中,所述光模块还包括支撑所述光接收端组件10和所述光发射端组件20的支撑件306,所述支撑件306固定于所述电路板30上。更具体地,所述支撑件306的材质可以是可伐合金、钨铜或陶瓷。所述支撑件306可 以只用其中一种,也可以组合使用,例如使用可伐合金支撑所述发射光口205,使用钨铜支撑所述第二光电芯片组201,使用陶瓷支撑所述第一光电芯片组101。优选地,使用可伐合金支撑所述光发射端组件20的发射光口205、第二透镜组202的部分透镜、合波器203,使用钨铜支撑所述光发射端组件20的第二光电芯片组201、第二透镜组202的部分透镜,使用陶瓷支撑所述光接收端组件10的第一光电芯片组101、接收光口105、分波器103、第一透镜组102。
其中,所述支撑件306包括限制所述光纤106的限位槽(未在图中示出)。这样,光纤106布置的更稳固。
具体地,所述光接收端组件10中的器件是通过如下的方式固定在所述支撑件306上的:所述第一光电芯片组101通过结构胶固定,所述分波器103、耦合器104、第一透镜组102通过结构胶或紫外光固化胶固定,所述接收光口105通过激光焊接或结构胶固定。所述光发射端组件20中的器件是通过如下的方式固定在所述支撑件306上的:所述第二光电芯片组201通过结构胶固定,所述合波器203、所述光路组件204通过结构胶或紫外光固化胶固定,所述第二透镜组202通过紫外光固化胶固定,所述发射光口205通过激光焊接或结构胶固定。
其中,所述分波器103和所述合波器203均可以使用以下方案中的一种:
1)Z-block配合薄膜滤波片(TFF,thin film filter);
2)阵列波导光栅(AWG,Arrayed Waveguide Grating);
3)偏振分光棱镜(PBS,Polarizing Beam Splitter)。
而且两者可以使用相同的,也可以使用不同的。例如所述分波器103使用Z-block配合TFF,所述合波器203使用AWG;或者所述分波器103使用AWG,所述合波器203使用PBS;可以任意组合。
其中,所述第一透镜组102和所述第二透镜组202均具有但不限于光路汇聚,准直,光路转折,及隔离器的功能。
其中,所述耦合器104,可以是准直器或光纤阵列(FA,Fiber Array)毛细管。
其中,如图10所示,所述光模块还包括外壳。所述外壳包括底座401、底盖板402和顶盖板403。
为了进一步了解本公开实施例的特点与技术内容,下面介绍本公开实施例中光信号的传递过程:
1)外部的光信号从所述光接收端组件10的接收光口105进入,再通过所述光纤106进入所述耦合器104,然后通过所述分波器103将不同波长的光信号分离,在通过所述第一透镜组102的多个透镜分别传递至所述第一光电芯片组101的多个通道,通过所述第一光电芯片组101转成电信号。
2)内部的电信号通过所述光发射端组件20的第二光电芯片组201转成多种光信号,并通过多个通道分别传递至所述第二透镜组202的多个透镜,通过所述第二透镜组202传递至所述合波器203,通过所述合波器203将多种光信号汇合在一起,并通过所述光路组件204传递至所述光发射端组件20的发射光口205,通过所述发射光口205传送至外部。
较佳地,本公开实施例中,根据所述耦合器104和所述接收光口105之间光纤106的布置方式,可以分为两种实施方式。根据所述光接收端组件10的分波器103的具体实施方式,也可以分为两种实施方式,总共可以组合出四种实施方式(只是例举,不是全部组合)。具体地,四种实施方式包括:
第一种实施方式,如图1所示,所述耦合器104和所述接收光口105之间的光纤106为直线连接,所述光接收端组件10的分波器103的具体实施方式为Z-block配合TFF。
第二种实施方式,如图2所示,所述耦合器104和所述接收光口105之间的光纤106为曲线连接,所述光接收端组件10的分波器103的具体实施方式为Z-block配合TFF。这里的曲线连接可以是:所述接收光口105连接所述光纤106的接口朝向和所述耦合器104连接所述光纤106的接口朝向一致。
第三种实施方式,如图3所示,所述耦合器104和所述接收光口105之间的光纤106为直线连接,所述光接收端组件10的分波器103的具体实施方式为AWG。
第四种实施方式,如图4所示,所述耦合器104和所述接收光口105之间的光纤106为曲线连接,所述光接收端组件10的分波器103的具体实施方式为AWG。
在上述的第一、第三种实施方式中,所述耦合器104和所述接收光口105之间的光纤106为直线连接,这样,装配简单,也能更好避免装配中因光纤106叠绕被光模块的外壳压坏。为了减少光纤106对光接收端组件10中其它器件的作用力,可以通过软胶固定所述光纤106。另外,也可以通过把光纤106固定在限位槽中,进一步减少光纤106对光接收端组件10中其它器件的作用力。
较佳地,如图11、12所示,所述光模块还可以只有一个接收光口105和一个发射光口205,即光接收端组件10和光发射端组件20均只有一个光口。在光接收端组件10和光发射端组件20均只有一个光口的情况下,如果外部连接器接口采用双联,则光接收端组件10的耦合器104和接收光口105之间也可以通过光纤连接。这样,同样可以起到能降低发射光口205和接收光口105的相对位置要求,降低光模块的制作成本。
较佳地,如果光模块有比上述实施例更多的光口,则通过光纤连接光接收端组件10的耦合器104和接收光口105,则更能降低光模块的制作成 本。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本公开实施例的光接收端组件和光模块,通过将所述光接收端组件的耦合器和接收光口之间通过光纤连接,使接收光口的位置不必完全固定,降低了接收光口和发射光口的相对位置要求,降低了光模块的制作成本。
Claims (10)
- 一种光接收端组件,所述光接收端组件包括相互连接的第一光电芯片组、第一透镜组、分波器、耦合器和接收光口;其中,所述耦合器和所述接收光口之间通过光纤连接。
- 根据权利要求1所述的光接收端组件,其中,所述接收光口连接所述光纤的接口和所述耦合器连接所述光纤的接口朝向同一个方向,且两个接口的延伸线在横向的距离大于预设值。
- 根据权利要求2所述的光接收端组件,其中,所述接收光口与所述耦合器之间的所述光纤长度大于预设值。
- 根据权利要求3所述的光接收端组件,其中,所述光纤为单模光纤或微弯光纤。
- 根据权利要求1~4任一项所述的光接收端组件,其中,所述接收光口包括插针组件,所述光纤通过所述插针组件接入所述接收光口。
- 一种光模块,所述光模块包括至少一个权利要求1~5任一项所述的光接收端组件、至少一个光发射端组件和电路板;所述光接收端组件和所述光发射端组件均固定于所述电路板上。
- 根据权利要求6所述的光模块,其中,所述光发射端组件包括相互连接的第二光电芯片组、第二透镜组、合波器、光路组件和发射光口;所述接收光口和所述发射光口均布置在所述电路板长度方向的同一端,所述第一光电芯片组、所述第一透镜组、所述分波器和所述耦合器均布置在所述电路板的第一表面,所述第二光电芯片组、所述第二透镜组、所述合波器和所述光路组件均布置在所述电路板的第二表面;所述第一表面和所述第二表面均为与所述电路板长度方向平行的表面,且所述第一表面和所述第二表面的朝向相反。
- 根据权利要求7所述的光模块,其中,所述第一光电芯片组、所述 第一透镜组、所述分波器和所述耦合器均布置在所述电路板的第一表面的第一区域;所述第二光电芯片组、所述第二透镜组、所述合波器和所述光路组件均布置在所述电路板的第二表面的第二区域;所述第一区域和所述第二区域在所述电路板的长度方向错开。
- 根据权利要求8所述的光模块,其中,所述光模块还包括支撑所述光接收端组件和所述光发射端组件的支撑件,所述支撑件固定于所述电路板上。
- 根据权利要求9所述的光模块,其中,所述支撑件包括限制所述光纤的限位槽。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910907477.0 | 2019-09-24 | ||
CN201910907477.0A CN110618505A (zh) | 2019-09-24 | 2019-09-24 | 一种光接收端组件和光模块 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021056835A1 true WO2021056835A1 (zh) | 2021-04-01 |
Family
ID=68924318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/124121 WO2021056835A1 (zh) | 2019-09-24 | 2019-12-09 | 一种光接收端组件和光模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110618505A (zh) |
WO (1) | WO2021056835A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111722331A (zh) * | 2020-06-28 | 2020-09-29 | 武汉英飞光创科技有限公司 | 光模块及其制作方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050281528A1 (en) * | 2001-12-28 | 2005-12-22 | Mitsubishi Denki Kabushiki Kaisha | Optical transceiver, connector, substrate unit, optical transmitter, optical receiver, and semiconductor device |
CN203840348U (zh) * | 2014-03-10 | 2014-09-17 | 华星光通科技股份有限公司 | 替换式光发射模组及搭载替换式光发射模组的光收发器 |
CN105278056A (zh) * | 2015-11-06 | 2016-01-27 | 武汉电信器件有限公司 | 一种波分复用/解复用光组件 |
CN109061811A (zh) * | 2018-08-10 | 2018-12-21 | 武汉联特科技有限公司 | 双发双收光模块 |
CN109283632A (zh) * | 2017-07-19 | 2019-01-29 | 苏州旭创科技有限公司 | 光模块 |
CN109407230A (zh) * | 2018-12-04 | 2019-03-01 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN109541760A (zh) * | 2018-11-16 | 2019-03-29 | 宁波环球广电科技有限公司 | 光收发模块 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10175431B2 (en) * | 2016-08-19 | 2019-01-08 | Applied Optoelectronics, Inc. | Optical transceiver with a multiplexing device positioned off-center within a transceiver housing to reduce fiber bending loss |
CN108540230B (zh) * | 2017-03-01 | 2023-03-10 | 住友电气工业株式会社 | 光收发器及光收发器的制造方法 |
CN207457561U (zh) * | 2017-12-01 | 2018-06-05 | 太仓市同维电子有限公司 | 一种便于组装的光模块 |
CN208833961U (zh) * | 2018-08-01 | 2019-05-07 | 深圳市易飞扬通信技术有限公司 | 光模块 |
-
2019
- 2019-09-24 CN CN201910907477.0A patent/CN110618505A/zh active Pending
- 2019-12-09 WO PCT/CN2019/124121 patent/WO2021056835A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050281528A1 (en) * | 2001-12-28 | 2005-12-22 | Mitsubishi Denki Kabushiki Kaisha | Optical transceiver, connector, substrate unit, optical transmitter, optical receiver, and semiconductor device |
CN203840348U (zh) * | 2014-03-10 | 2014-09-17 | 华星光通科技股份有限公司 | 替换式光发射模组及搭载替换式光发射模组的光收发器 |
CN105278056A (zh) * | 2015-11-06 | 2016-01-27 | 武汉电信器件有限公司 | 一种波分复用/解复用光组件 |
CN109283632A (zh) * | 2017-07-19 | 2019-01-29 | 苏州旭创科技有限公司 | 光模块 |
CN109061811A (zh) * | 2018-08-10 | 2018-12-21 | 武汉联特科技有限公司 | 双发双收光模块 |
CN109541760A (zh) * | 2018-11-16 | 2019-03-29 | 宁波环球广电科技有限公司 | 光收发模块 |
CN109407230A (zh) * | 2018-12-04 | 2019-03-01 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Also Published As
Publication number | Publication date |
---|---|
CN110618505A (zh) | 2019-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11863917B2 (en) | Assembly of network switch ASIC with optical transceivers | |
JP4983703B2 (ja) | 光伝送システム | |
US10270531B2 (en) | Optical transceiver and method of manufacturing the same | |
CN104870069B (zh) | 多通道,并行传输光模块,及其制造和使用方法 | |
WO2019184100A1 (zh) | 一种光模块 | |
JP4706611B2 (ja) | 光送受信器 | |
JP2010122312A (ja) | 送受信レンズブロック及びそれを用いた光モジュール | |
JP2009020360A (ja) | 光モジュール | |
CN106646784A (zh) | 一种基于阵列波导光栅的波分复用光发射器件 | |
US11378761B2 (en) | Optical module | |
US20120148185A1 (en) | Receptacle-type bi-directional optical module and electronic apparatus thereof | |
WO2021012591A1 (zh) | 一种单纤双向多模波分复用光电转换装置及制备方法 | |
CN113296198A (zh) | 光发射组件、光学收发模块及光纤缆线模块 | |
JP2010122311A (ja) | レンズブロック及びそれを用いた光モジュール | |
CN218213537U (zh) | 多通道光收发组件及光模块 | |
WO2021056835A1 (zh) | 一种光接收端组件和光模块 | |
WO2015132849A1 (ja) | 光電気変換モジュールおよびそれを用いた情報装置 | |
TWI498619B (zh) | 雙向光傳輸次組件 | |
JP7144786B2 (ja) | 小型光トランシーバ | |
WO2022247706A1 (zh) | 光引擎组件、光互连系统及网络设备 | |
JP7436416B2 (ja) | 光集積回路用のマルチモード導波路システム及びコネクタ | |
TWI584604B (zh) | 光收發裝置 | |
WO2021088181A1 (zh) | 一种透镜系统 | |
JP2021189227A (ja) | 光変調器 | |
TWM524593U (zh) | 具散熱結構的光收發裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19946819 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19946819 Country of ref document: EP Kind code of ref document: A1 |