WO2023240976A1 - 暖风机 - Google Patents

暖风机 Download PDF

Info

Publication number
WO2023240976A1
WO2023240976A1 PCT/CN2022/140922 CN2022140922W WO2023240976A1 WO 2023240976 A1 WO2023240976 A1 WO 2023240976A1 CN 2022140922 W CN2022140922 W CN 2022140922W WO 2023240976 A1 WO2023240976 A1 WO 2023240976A1
Authority
WO
WIPO (PCT)
Prior art keywords
air inlet
air
duct
arc
sub
Prior art date
Application number
PCT/CN2022/140922
Other languages
English (en)
French (fr)
Inventor
王汉文
李小静
张俊强
张毅
沈钊
杨良玉
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023240976A1 publication Critical patent/WO2023240976A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present application relates to the technical field of heating equipment, specifically, to a heater.
  • wall-mounted heaters expand the heating range by increasing their air outlet.
  • Some wall-mounted heaters that use axial flow blades require an increase in the size of the axial flow blades due to the increase in the size of the air outlet, resulting in wall-mounted
  • the overall size of the wall-mounted heater is larger.
  • Another wall-mounted heater using a cross-flow impeller requires a longer length of the cross-flow impeller due to the increase in the size of the air outlet. This also results in the overall size of the wall-mounted heater being larger.
  • the cross-flow impeller when the cross-flow impeller is lengthened, it needs to be driven by an asynchronous motor with larger torque. When the rotational speed is high, it is easy to cause the risk of deformation of the cross-flow impeller, thus affecting the overall performance of the wall-mounted heater.
  • the main purpose of this application is to provide a heater to solve the problem that the wall-mounted heater in the traditional technology is larger in size due to the long length of the cross-flow impeller, and the cross-flow impeller is prone to appear when the rotational speed is large. Deformation problem.
  • the present application provides a heater, including a casing, a plurality of centrifugal impellers and a heating assembly, wherein the casing has an exhaust air duct and at least one air inlet duct, and the casing also has an exhaust air duct. outlet and at least two air inlets, wherein the exhaust air duct is connected to the exhaust outlet, and the same air inlet air duct is connected to at least two air inlets; at least one centrifugal wind wheel is provided in the air inlet air duct; the heating component is arranged at the inlet The position where the air duct is connected to the exhaust air duct is used to heat the wind blown by the centrifugal wind wheel and discharge it from the exhaust outlet.
  • the plurality of centrifugal wind wheels are all coaxially arranged, and the heater further includes at least one driving part. Two adjacent centrifugal wind wheels are driven by the same driving part, or different centrifugal wind wheels are driven by corresponding driving parts.
  • the housing includes a base, wherein at least two air inlets are provided on the base, and each air inlet is spaced along the length direction of the base, and is provided between two adjacent air inlets that are connected to the same air inlet duct.
  • the base includes a base body and an installation groove structure.
  • the installation groove structure is arranged on the base body, and the groove wall of the installation groove structure is in the shape of a slide. The exit of the slide-shaped installation groove structure faces the heating component.
  • the air inlet air duct and the air exhaust air duct are connected, and at least a part of the centrifugal wind wheel is arranged in the installation groove structure.
  • At least part of the inner wall surface of the base body is raised to form a second air inlet structure.
  • Mounting groove structures are provided on both sides of the second air inlet structure.
  • An air inlet is provided on the second air inlet structure, and the air inlet is connected to the two air inlet structures respectively.
  • the installation groove structure on the side is connected.
  • the plurality of air inlets include at least one first sub-air inlet and at least one second sub-air inlet.
  • the cross-section of the second air inlet structure is trapezoidal, and the two inclinations of the second air inlet structure are trapezoidal.
  • a second sub-air inlet is provided on the hypotenuse.
  • the height of the second air inlet structure is higher than the height of the geometric center line of the air duct inlet.
  • the slope from the first end to the second end of the inclined side of the trapezoid-shaped second air inlet structure is A, where 70° ⁇ A ⁇ 85°.
  • the plurality of air inlets include at least one first sub-air inlet and at least one second sub-air inlet, and the first sub-air inlet and the second sub-air inlet are respectively located on both sides of the installation slot structure.
  • the base body includes a plate body and a coaming plate.
  • the surrounding plate is arranged around the outer periphery of the plate body to form a box shape.
  • the mounting groove structure is provided on the plate body, and a plurality of mounting groove structures are provided along the length of the plate body. Direction interval setting.
  • a first arc-shaped notch is provided on both side walls of the installation groove structure, and the side of the heating component facing the installation groove structure has an arc-shaped plate section.
  • the arc-shaped plate section and the first arc-shaped notch smoothly transition, and the heater It also includes a volute, the volute cover is located at the installation groove structure, and both axial ends of the volute have second arc-shaped notches, so that the side walls and arc-shaped plates of the installation groove structure located in the first arc-shaped notch Sections and side walls of the volute located at the second arc-shaped notch form two air duct inlets for communicating with the air inlet duct.
  • part of the bottom outer surface of the base body is recessed to form a first air inlet structure, and the first end of the first air inlet structure is located at an edge in the length direction of the base body, and the second end of the first air inlet structure is connected to the installation The groove structure is connected.
  • the second end of the first air inlet structure is higher than the first end of the first air inlet structure, and a first sub-air inlet is opened on the first air inlet structure.
  • a first arc-shaped notch is provided on both side walls of the installation groove structure, and the height of the second end of the first air inlet structure is lower than the lowest point of the first arc-shaped notch.
  • slope from the first end to the second end of the first air inlet structure is B, where 10° ⁇ B ⁇ 14°.
  • the heater is arranged in a structural form including multiple centrifugal wind wheels.
  • the centrifugal wind wheel can be put into use after direct injection molding, and the manufacturing cost is low, which is beneficial to reducing the processing and manufacturing costs of the heater.
  • this application greatly increases the air inlet volume of the heater by connecting the same air inlet duct with at least two air inlets.
  • Figure 1 shows a schematic structural diagram of a heater according to an optional embodiment of the present application
  • FIG. 2 shows a partial structural diagram of the heater in Figure 1. In this figure, the cover is omitted;
  • Figure 3 shows a schematic structural view of the heater in Figure 2 with the volute omitted
  • Figure 4 shows a schematic structural diagram of the heater in Figure 3 with the centrifugal wind wheel omitted;
  • Figure 5 shows a schematic structural diagram of the heater in Figure 4 with the heating component omitted;
  • Figure 6 shows a schematic structural view of the heater in Figure 5 with the heating component omitted from another perspective
  • Figure 7 shows a schematic cross-sectional structural view of the heater in Figure 6 with the heating component omitted;
  • FIG. 8 shows a partial cross-sectional structural diagram of the heater in FIG. 2 .
  • this application provides a heater .
  • the heater includes a housing 10, a plurality of centrifugal impellers 20 and a heating assembly 30.
  • the housing 10 has an exhaust air duct and at least one air inlet duct.
  • the housing 10 also has The air exhaust port 121 and at least two air inlets 111, wherein the exhaust air duct is connected to the air exhaust port 121, and the same air inlet air duct is connected to at least two air inlets 111; at least one centrifugal wind wheel is provided in the air inlet air duct. 20;
  • the heating component 30 is arranged at a position where the air inlet air duct and the air exhaust air duct are connected to heat the wind blown by the centrifugal wind wheel 20 and discharge it from the air exhaust port 121.
  • the heater By arranging the heater in a structural form including multiple centrifugal wind wheels 20, due to the small size of a single centrifugal wind wheel 20, it is less likely to undergo major deformation when its rotational speed is high, thus ensuring the rotation of the centrifugal wind wheel 20. Reliability, in addition, the centrifugal wind wheel 20 can be put into use after direct injection molding, and the manufacturing cost is low, which is beneficial to reducing the processing and manufacturing cost of the heater. Furthermore, this application greatly increases the air inlet volume of the heater by connecting the same air inlet duct with at least two air inlets 111 .
  • the plurality of centrifugal wind wheels 20 are all coaxially arranged, and the heater further includes at least one driving part 50 , and two adjacent centrifugal wind wheels 20 are driven by the same driving part 50 .
  • the same driving part 50 is fully used to drive two adjacent centrifugal wind wheels 20, which is conducive to the miniaturization of the heater. design.
  • centrifugal wind wheels 20 when two centrifugal wind wheels 20 are provided in the same air inlet duct, the two centrifugal wind wheels 20 are coaxially arranged, and the centrifugal wind wheel 20 on the side close to the driving part 50 is driven by The part 50 drives the rotation, and drives the other centrifugal wind wheel 20 to rotate through the transmission shaft between the two centrifugal wind wheels 20 .
  • different centrifugal wind wheels 20 are operated by corresponding driving parts 50 . In this way, the reliability of driving the corresponding centrifugal rotor 20 by the single driving part 50 is ensured, and independent control of each centrifugal rotor 20 can also be achieved.
  • the plurality of centrifugal rotors 20 are arranged in sequence along the length direction of the housing 10 . In this way, the overall regularity of the heater is ensured.
  • FIG. 2 and 3 there are two centrifugal wind wheels 20 in this application, and the two centrifugal wind wheels 20 are driven by the same driving part 50, and the driving part 50 is located on the two centrifugal wind wheels. Between the wind wheels 20, the two driving shafts of the driving part 50 are respectively drivingly connected to the centrifugal wind wheel 20 on the corresponding side.
  • the air inlet 111 and the air outlet 121 are respectively provided on different side walls of the housing 10 .
  • the air inlet 111 can directly communicate with the air inlet duct, and the air inlet path is short, and it can also ensure that the exhaust air duct can also directly communicate with the exhaust air.
  • the port 121 is directly connected to ensure a short air outlet path, which is beneficial to improving the efficiency of the heater in providing warm air.
  • the housing 10 includes a base 11 and a cover 12 .
  • the base 11 is provided with at least two air inlets 111 , and each air inlet 111 is spaced along the length direction of the base 11 .
  • a centrifugal wind wheel 20 is provided between two adjacent air inlets 111 connected by the air inlet duct, and the heating component 30 is provided at a position opposite to the centrifugal wind wheel 20;
  • the cover 12 is provided on the base 11, and the cover
  • the shell 12 is provided with an air exhaust port 121 at a position opposite to the heating component 30 .
  • the base 11 includes a base body and a mounting groove structure 112.
  • the mounting groove structure 112 is provided on the base body, and the groove wall surface of the mounting groove structure 112 is in the shape of a slide.
  • the mounting groove structure 112 is in the shape of a slide.
  • the outlet faces the heating assembly 30 to connect the air inlet duct and the exhaust air duct.
  • At least a part of the centrifugal impeller 20 is disposed in the installation groove structure 112 . In this way, the space of the installation groove structure 112 is fully utilized to install the centrifugal wind wheel 20, ensuring the overall compactness of the heater.
  • mounting groove structure 112 and the base body can also be integrally formed.
  • At least part of the inner wall of the base body is raised toward the inner side of the cover 12 to form a second air inlet structure 1132.
  • Mounting groove structures 112 are respectively provided on both sides of the second air inlet structure 1132.
  • the two air inlet structures 1132 are provided with air inlets 111, and the air inlets 111 are respectively connected with the installation slot structures 112 on both sides.
  • the plurality of air inlets 111 include at least one first sub-air inlet 1111 and at least one second sub-air inlet 1112.
  • the cross-section of the second air inlet structure 1132 is trapezoidal, and both sides of the second air inlet structure 1132 are trapezoidal.
  • a second sub-air inlet 1112 is provided on the inclined hypotenuse.
  • the air inlet volume of the second sub-air inlet 1112 is expanded, and at the same time, the air inlet resistance of the second sub-air inlet 1112 can be reduced. , to achieve the effect of effective diversion.
  • the slope design of the two inclined hypotenuses of the second air inlet structure 1132 will affect the air inlet volume of the air duct inlet 13.
  • the height of the second air inlet structure 1132 is higher than the height of the geometric center line of the air duct inlet 13 . In this way, it is ensured that the air intake volume of the air duct inlet 13 is sufficient.
  • the dotted line marked with the letter C in Figure 7 represents the geometric center line of the air duct inlet 13.
  • the slope from the first end to the second end of the inclined side of the trapezoid-shaped second air inlet structure 1132 is A, where 70° ⁇ A ⁇ 85°.
  • the slope A from the first end to the second end of the inclined side of the trapezoid-shaped second air inlet structure 1132 is 81°. In this way, the air inlet area is effectively increased by 57%.
  • the plurality of air inlets 111 include at least one first sub-air inlet 1111 and at least one second sub-air inlet 1112.
  • the second sub-air inlet 1112 is opened in the second air inlet structure 1132, and the The first sub-air inlet 1111 and the second sub-air inlet 1112 are located on both sides of the installation slot structure 112 respectively.
  • the centrifugal wind wheel 20 is disposed in the installation groove structure 112
  • the first sub-air inlet 1111 and the second sub-air inlet 1112 for communicating with the same air inlet duct are respectively provided on both sides of the installation groove structure 112. , which is conducive to improving the air intake efficiency and air intake volume of the heater.
  • the base body includes a plate body 113 and a surrounding plate 114.
  • the surrounding plate 114 is arranged around the outer periphery of the plate body 113 to form a box shape.
  • the mounting groove structure 112 is provided on the plate body 113, and there are many The mounting groove structures 112 are arranged at intervals along the length direction of the plate body 113 .
  • the box-shaped base body makes it easy to directly cover the cover 12 on the enclosure 114, thereby realizing the assembly of the cover 12 and the base 11.
  • a plurality of installation groove structures 112 are provided along the length direction of the plate body 113.
  • the spacing arrangement makes full use of the space in the length direction of the plate body 113 to ensure the compactness of the overall structure of the heater.
  • a first arc-shaped notch 1121 is provided on both side walls of the installation slot structure 112 .
  • the heating component 30 has an arc-shaped plate section 31 on one side facing the installation slot structure 112 .
  • the arc-shaped plate section 31 is connected to the first arc-shaped notch 1121 .
  • An arc-shaped gap 1121 transitions smoothly.
  • the heater also includes a volute 40.
  • the volute 40 is covered at the installation groove structure 112, and both axial ends of the volute 40 have second arc-shaped gaps 41, so that the volute 40 is located at the third position.
  • the side walls of the installation groove structure 112 of an arc-shaped notch 1121, the arc-shaped plate section 31, and the side walls of the volute 40 located in the second arc-shaped notch 41 form two air duct inlets for communicating with the air inlet duct. 13. Both air duct inlets 13 are circular. In this way, the circular air duct inlet 13 is beneficial to reducing wind resistance.
  • the bottom outer surface of part of the base body is recessed to form a first air inlet structure 1131, and the first end of the first air inlet structure 1131 is located at the edge of the length direction of the base body.
  • the second end of the air inlet structure 1131 is connected to the installation groove structure 112.
  • the second end of the first air inlet structure 1131 is higher than the first end of the first air inlet structure 1131, and the first air inlet structure 1131 is connected to the installation groove structure 112.
  • the structure 1131 is provided with a first sub-air inlet 1111.
  • the inclined structure of the first air inlet structure 1131 increases the size of the first sub-air inlet 1111 compared to the existing method of directly opening the first sub-air inlet 1111 on the plane of the base body.
  • the opening area of the first sub-air inlet 1111 ensures that the air intake volume of the first sub-air inlet 1111 is sufficient.
  • both sides of the installation groove structure 112 are A first arc-shaped notch 1121 is formed on the side walls, and the height of the second end of the first air inlet structure 1131 is lower than the lowest point of the first arc-shaped notch 1121 .
  • the slope from the first end to the second end of the first air inlet structure 1131 is B, where 10° ⁇ B ⁇ 14°.
  • the opening area of the first sub-air inlet 1111 is greatly increased without increasing the overall volume of the base body.
  • the slope B from the first end to the second end of the first air inlet structure 1131 is 12°. In this way, it is ensured that the air inlet area can be increased by 9%.
  • the hole cross section of the first sub-air inlet 1111 opened on the first air inlet structure 1131 may be at least one of square, circular or polygonal.
  • the second air inlet structure 1132 The hole cross section of the second sub-air inlet 1112 opened above can also be at least one of square, circular or polygonal.
  • the driving part 50 in this application is a shaded pole motor.
  • the shaded pole motor is installed on the horizontal platform of the second air inlet structure 1132 for connecting two inclined side walls.
  • the centrifugal wind wheel 20 The required motor performance requirements can use lower-cost shaded pole motors, which will help improve the economy of the heater.
  • the heating component 30 in this application is a PTC component.
  • the PTC component includes a PTC bracket and a PTC.
  • the PTC is installed on the PTC bracket, and the PTC is used to control the wind blown from the centrifugal wind wheel 20 . Apply heat.
  • the double centrifugal wind wheel provided by this application can not only increase the air volume of the heater, but also reduce the noise.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本申请涉及一种暖风机,包括壳体 (10)、多个离心风轮 (20) 和加热组件 (30),其中,壳体 (10) 具有排风风道和至少一个进风风道,壳体 (10) 还具有排风口 (121) 和至少两个进风口 (111) ,其中,排风风道与排风口 (121) 连通,同一进风风道与至少两个进风口 (111) 连通; 进风风道内设置有至少一个离心风轮 (20); 加热组件 (30) 设置在进风风道与排风风道连通的位置处,以对由离心风轮 (20) 吹出的风进行加热,并由排风口 (121) 排出。

Description

暖风机
相关申请
本申请要求2022年06月17日申请的,申请号为202210690260.0,名称为“暖风机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及加热设备技术领域,具体而言,涉及一种暖风机。
背景技术
传统技术中,壁挂式暖风机通过增大其出风口来扩大取暖范围,部分采用轴流风叶的壁挂式暖风机因出风口的尺寸增大而需要轴流风叶的尺寸增大,导致壁挂式暖风机的整体尺寸较大,另一部分采用贯流风轮的壁挂式暖风机因出风口的尺寸增大而需要贯流风轮的长度较长,同样导致壁挂式暖风机的整体尺寸较大。
但是,贯流风轮的长度加长后需要使用扭矩较大的异步电机来驱动,当转速较大时容易导致贯流风轮出现变形的风险,从而影响壁挂式暖风机的整机性能。
发明内容
本申请的主要目的在于提供一种暖风机,以解决传统技术中的壁挂式暖风机因贯流风轮的长度较长而导致整机的尺寸较大,且贯流风轮在转速较大时容易出现变形的问题。
为了实现上述目的,本申请提供了一种暖风机,包括壳体、多个离心风轮和加热组件,其中,壳体具有排风风道和至少一个进风风道,壳体还具有排风口和至少两个进风口,其中,排风风道与排风口连通,同一进风风道与至少两个进风口连通;进风风道内设置有至少一个离心风轮;加热组件设置在进风风道与排风风道连通的位置处,以对由离心风轮吹出的风进行加热,并由排风口排出。
进一步地,多个离心风轮均同轴设置,暖风机还包括至少一个驱动部,相邻两个离心风轮由同一个驱动部驱动,或者不同的离心风轮由对应的驱动部动作。
进一步地,壳体包括底座,其中,底座上开设有至少两个进风口,且各进风口沿底座的长度方向间隔设置,与同一进风风道连通的相邻的两个进风口之间设置有一个离心风轮;底座包括底座本体和安装槽结构,安装槽结构设置在底座本体上,且安装槽结构的槽壁面 呈滑梯状,呈滑梯状的安装槽结构的出口处朝向加热组件,以连通进风风道和排风风道,离心风轮的至少一部分设置在安装槽结构内。
进一步地,底座本体的至少一部分内壁面隆起以形成第二进风结构,第二进风结构的两侧分别设置有安装槽结构,第二进风结构上开设有进风口,进风口分别与两侧的安装槽结构连通。
进一步地,多个进风口包括至少一个第一子进风口和至少一个第二子进风口,第二进风结构的横截面呈梯形状,且呈梯形状的第二进风结构的两个倾斜斜边上开设有第二子进风口。
进一步地,在底座本体的厚度方向上,第二进风结构的高度高于风道入口的几何中心线的高度。
进一步地,呈梯形状的第二进风结构的倾斜边的第一端至第二端的坡度为A,其中,70°≤A≤85°。
进一步地,多个进风口包括至少一个第一子进风口和至少一个第二子进风口,且第一子进风口和第二子进风口分别位于安装槽结构的两侧。
进一步地,底座本体包括板体和围板,围板绕设在板体的外周缘处,以形成盒体状,安装槽结构设置在板体上,且多个安装槽结构沿板体的长度方向间隔设置。
进一步地,安装槽结构的两侧壁上均开设有第一弧形缺口,加热组件朝向安装槽结构的一侧具有弧形板段,弧形板段与第一弧形缺口平滑过渡,暖风机还包括蜗壳,蜗壳罩设在安装槽结构处,且蜗壳的轴向两端均具有第二弧形缺口,以使位于第一弧形缺口的安装槽结构的侧壁、弧形板段、位于第二弧形缺口的蜗壳的侧壁围成用于与进风风道连通的两个风道入口。
进一步地,部分底座本体的底部外表面凹陷形成第一进风结构,且第一进风结构的第一端与位于底座本体的长度方向的边缘处,第一进风结构的第二端与安装槽结构连接,在底座本体的厚度方向上,第一进风结构的第二端高于第一进风结构的第一端,且第一进风结构上开设有第一子进风口。
进一步地,安装槽结构的两侧壁上均开设有第一弧形缺口,第一进风结构的第二端的高度低于第一弧形缺口的最低点处。
进一步地,第一进风结构的第一端至第二端的坡度为B,其中,10°≤B≤14°。
应用本申请的技术方案,通过将暖风机设置成包括多个离心风轮的结构形式,这样,由于单个离心风轮的尺寸较小,在其转速较大时不易出现较大变形,从而确保离心风轮的转动可靠性,此外,离心风轮在直接注塑后即可投入使用,制造成本较低,有利于降低暖 风机的加工制造成本。
进一步地,本申请通过将同一进风风道与至少两个进风口连通,大大增加了暖风机的进风量。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1示出了根据本申请的一种可选实施例的暖风机的结构示意图;
图2示出了图1中的暖风机的部分结构示意图,该图中,省略了罩壳;
图3示出了图2中的暖风机的省略了蜗壳的结构示意图;
图4示出了图3中的暖风机省略了离心风轮的结构示意图;
图5示出了图4中的暖风机省略了加热组件的结构示意图;
图6示出了图5中的省略了加热组件的暖风机的另一个视角的结构示意图;
图7示出了图6中的省略了加热组件的暖风机的剖视结构示意图;
图8示出了图2中的暖风机的部分剖视结构示意图。
其中,上述附图包括以下附图标记:
10、壳体;11、底座;111、进风口;1111、第一子进风口;1112、第二子进风口;112、安装槽结构;1121、第一弧形缺口;113、板体;1131、第一进风结构;1132、第二进风结构;114、围板;12、罩壳;121、排风口;13、风道入口;
20、离心风轮;
30、加热组件;31、弧形板段;
40、蜗壳;41、第二弧形缺口;
50、驱动部。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决传统技术中的壁挂式暖风机因贯流风轮的长度较长而导致整机的尺寸较大,且贯流风轮在转速较大时容易出现变形的问题,本申请提供了一种暖风机。
如图1至图8所示,暖风机包括壳体10、多个离心风轮20和加热组件30,其中,壳体10具有排风风道和至少一个进风风道,壳体10还具有排风口121和至少两个进风口111,其中,排风风道与排风口121连通,同一进风风道与至少两个进风口111连通;进风风道内设置有至少一个离心风轮20;加热组件30设置在进风风道与排风风道连通的位置处,以对由离心风轮20吹出的风进行加热,并由排风口121排出。
通过将暖风机设置成包括多个离心风轮20的结构形式,这样,由于单个离心风轮20的尺寸较小,在其转速较大时不易出现较大变形,从而确保离心风轮20的转动可靠性,此外,离心风轮20在直接注塑后即可投入使用,制造成本较低,有利于降低暖风机的加工制造成本。进一步地,本申请通过将同一进风风道与至少两个进风口111连通,大大增加了暖风机的进风量。
需要说明的是,在本申请中,多个离心风轮20均同轴设置,暖风机还包括至少一个驱动部50,相邻两个离心风轮20由同一个驱动部50驱动。这样,确保了多个离心风轮20的紧凑性,从而有利于暖风机的小型化设计,此外,充分使用同一个驱动部50驱动相邻的两个离心风轮20,有利于暖风机的小型化设计。
需要说明的是,在本申请中,当同一进风风道内设置有两个离心风轮20时,两个离心风轮20同轴设置,且靠近驱动部50一侧的离心风轮20通过驱动部50来驱动转动,并通过两个离心风轮20之间的传动轴带动另外一个离心风轮20转动。需要说明的是,在本申请的一个未图示的实施例中,不同的离心风轮20由对应的驱动部50动作。这样,确保单个驱动部50对对应的离心风轮20的驱动可靠性,还能够实现各离心风轮20的独立控制。
需要说明的是,在本申请中,多个离心风轮20沿壳体10的长度方向顺次排列。这样,确保暖风机的整体规整性。
在一些实施例中,如图2和图3所示,本申请中的离心风轮20为两个,且两个离心风轮20通过同一个驱动部50驱动,且驱动部50位于两个离心风轮20之间,驱动部50的两个驱动轴分别与对应侧的离心风轮20驱动连接。
需要说明的是,在本申请中,进风口111和排风口121分别设置在壳体10的不同的侧壁上。这样,在确保壳体10的各侧壁的结构强度的同时,还能够进风口111能够直接与进风风道连通,且进风路径较短,以及确保排风风道同样能够直接与排风口121直接连通,确保出风路径较短,有利于提升暖风机提供暖风的效率。
如图1至图7所示,壳体10包括底座11和罩壳12,其中,底座11上开设有至少两 个进风口111,且各进风口111沿底座11的长度方向间隔设置,与同一进风风道连通的相邻的两个进风口111之间设置有一个离心风轮20,加热组件30设置在与离心风轮20相对的位置处;罩壳12设置在底座11上,且罩壳12与加热组件30相对的位置处开设有排风口121。这样,通过将壳体10设置成包括底座11和罩壳12的结构形式,确保暖风机的组装便捷性。
如图2至图7所示,底座11包括底座本体和安装槽结构112,安装槽结构112设置在底座本体上,且安装槽结构112的槽壁面呈滑梯状,呈滑梯状的安装槽结构112的出口处朝向加热组件30,以连通进风风道和排风风道,离心风轮20的至少一部分设置在安装槽结构112内。这样,充分利用安装槽结构112的空间来安装离心风轮20,确保暖风机的整体紧凑性。
当然,安装槽结构112与底座本体也可以是一体成型。
如图2至图7所示,底座本体的至少一部分内壁面向罩壳12内一侧隆起以形成第二进风结构1132,第二进风结构1132的两侧分别设置有安装槽结构112,第二进风结构1132上开设有进风口111,进风口111分别与两侧的安装槽结构112连通。多个进风口111包括至少一个第一子进风口1111和至少一个第二子进风口1112,第二进风结构1132的横截面呈梯形状,且呈梯形状的第二进风结构1132的两个倾斜斜边上开设有第二子进风口1112。这样,相比于现有的直接在底座本体的平面上开设第二子进风口1112的方式扩大了第二子进风口1112的进风量,同时还能够减少第二子进风口1112的进风阻力,实现有效引流的作用。
需要说明的是,在本申请中,考虑到第二进风结构1132的两个倾斜斜边的坡度设计会影响风道入口13的进风量,如图7所示,在底座本体的板体113的厚度方向上,第二进风结构1132的高度高于风道入口13的几何中心线的高度。这样,确保风道入口13的进风量足够,图7中的字母C标注的虚线表示风道入口13的几何中心线。
如图7所示,呈梯形状的第二进风结构1132的倾斜边的第一端至第二端的坡度为A,其中,70°≤A≤85°。这样,通过合理优化呈梯形状的第二进风结构1132的倾斜边的第一端至第二端的坡度A的取值范围,确保在此范围内的坡度A能够确保进风面积有效增加。
在一些实施例中,呈梯形状的第二进风结构1132的倾斜边的第一端至第二端的坡度A为81°。这样,确保进风面积有效增加57%。
如图2至图7所示,多个进风口111包括至少一个第一子进风口1111和至少一个第二子进风口1112,第二子进风口1112开设在第二进风结构1132,且第一子进风口1111和第二子进风口1112分别位于安装槽结构112的两侧。这样,由于离心风轮20设置在安装槽 结构112内,通过将用于与同一进风风道连通的第一子进风口1111和第二子进风口1112分别设置在安装槽结构112的两侧,有利于提升暖风机的进风效率以及进风量。
如图5所示,底座本体包括板体113和围板114,围板114绕设在板体113的外周缘处,以形成盒体状,安装槽结构112设置在板体113上,且多个安装槽结构112沿板体113的长度方向间隔设置。这样,呈盒体状的底座本体便于直接将罩壳12罩设在围板114处,便可实现罩壳12与底座11的装配,此外,多个安装槽结构112沿板体113的长度方向间隔设置充分利用了板体113长度方向的空间,确保暖风机整体结构的紧凑性。
如图2所示,安装槽结构112的两侧壁上均开设有第一弧形缺口1121,加热组件30朝向安装槽结构112的一侧具有弧形板段31,弧形板段31与第一弧形缺口1121平滑过渡,暖风机还包括蜗壳40,蜗壳40罩设在安装槽结构112处,且蜗壳40的轴向两端均具有第二弧形缺口41,以使位于第一弧形缺口1121的安装槽结构112的侧壁、弧形板段31、位于第二弧形缺口41的蜗壳40的侧壁围成用于与进风风道连通的两个风道入口13。两个风道入口13均呈圆形。这样,呈圆形的风道入口13有利于减小风阻。
如图2至图7所示,部分底座本体的底部外表面凹陷形成第一进风结构1131,且第一进风结构1131的第一端与位于底座本体的长度方向的边缘处,第一进风结构1131的第二端与安装槽结构112连接,在底座本体的厚度方向上,第一进风结构1131的第二端高于第一进风结构1131的第一端,且第一进风结构1131上开设有第一子进风口1111。这样,在不增加底座本体的体积的前提下,第一进风结构1131呈倾斜状的结构形式相比于现有的直接在底座本体的平面上开设第一子进风口1111,增大了第一子进风口1111的开孔面积,确保第一子进风口1111的进风量足够,此外,有利于缩短风从第一子进风口1111进入进风风道的路径,从而减少风阻,进而有利于提升暖风机的风量性能。
进一步地,为了避免第一进风结构1131的第二端遮挡第一弧形缺口1121而无法确保风道入口13的进风顺畅性,如图4至图7所示,安装槽结构112的两侧壁上均开设有第一弧形缺口1121,第一进风结构1131的第二端的高度低于第一弧形缺口1121的最低点处。
如图7所示,第一进风结构1131的第一端至第二端的坡度为B,其中,10°≤B≤14°。这样,通过合理优化第一进风结构1131的第一端至第二端的坡度B,使得在不增加底座本体的整体体积的前提下,大大增加了第一子进风口1111的开孔面积。
在一些实施例中,第一进风结构1131的第一端至第二端的坡度B为12°。这样,确保进风面积能够增加9%。
需要说明的是,在本申请中,第一进风结构1131上开设的第一子进风口1111的孔截 面可以是方形、圆形或者多边形中的至少一种,当然,第二进风结构1132上开设的第二子进风口1112的孔截面同样也可以是方形、圆形或者多边形中的至少一种。
需要说明的是,在本申请中,本申请中的驱动部50为罩极电机,罩极电机安装在第二进风结构1132的用于连接两个倾斜侧壁的水平台上,离心风轮20所需的电机性能要求可使用成本较低的罩极电机,有利于提升暖风机的经济性。
需要说明的是,在本申请中,本申请中的加热组件30为PTC组件,PTC组件包括PTC支架和PTC,其中,PTC安装在PTC支架上,PTC用于对从离心风轮20吹出的风进行加热。
进一步地,本申请提供的双离心风轮在提升暖风机的风量的同时,还能够降低噪音。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数 据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种暖风机,包括:
    壳体(10),所述壳体(10)具有排风风道和至少一个进风风道,所述壳体(10)还具有排风口(121)和至少两个进风口(111),其中,所述排风风道与所述排风口(121)连通,同一所述进风风道与至少两个所述进风口(111)连通;
    多个离心风轮(20),所述进风风道内设置有至少一个所述离心风轮(20);
    加热组件(30),所述加热组件(30)设置在所述进风风道与所述排风风道连通的位置处,以对由所述离心风轮(20)吹出的风进行加热,并由所述排风口(121)排出。
  2. 根据权利要求1所述的暖风机,其中,多个所述离心风轮(20)均同轴设置,所述暖风机还包括至少一个驱动部(50),相邻两个所述离心风轮(20)由同一个所述驱动部(50)驱动,或者不同的所述离心风轮(20)由对应的所述驱动部(50)动作。
  3. 根据权利要求1所述的暖风机,其中,所述壳体(10)包括:
    底座(11),所述底座(11)上开设有至少两个所述进风口(111),且各所述进风口(111)沿所述底座(11)的长度方向间隔设置,与同一所述进风风道连通的相邻的两个所述进风口(111)之间设置有一个所述离心风轮(20);
    所述底座(11)包括:
    底座本体;
    安装槽结构(112),所述安装槽结构(112)设置在所述底座本体上,且所述安装槽结构(112)的槽壁面呈滑梯状,呈滑梯状的所述安装槽结构(112)的出口处朝向所述加热组件(30),以连通所述进风风道和所述排风风道,所述离心风轮(20)的至少一部分设置在所述安装槽结构(112)内。
  4. 根据权利要求3所述的暖风机,其中,所述底座本体的至少一部分内壁面隆起以形成第二进风结构(1132),所述第二进风结构(1132)的两侧分别设置有所述安装槽结构(112),所述第二进风结构(1132)上开设有所述进风口(111),所述进风口(111)分别与两侧的所述安装槽结构(112)连通。
  5. 根据权利要求4所述的暖风机,其中,多个所述进风口(111)包括至少一个第一子进风口(1111)和至少一个第二子进风口(1112),所述第二进风结构(1132)的横截面呈梯形状,且呈梯形状的所述第二进风结构(1132)的两个倾斜斜边上开设有所述第二子进风口(1112)。
  6. 根据权利要求5所述的暖风机,其中,在所述底座本体的厚度方向上,所述第二进 风结构(1132)的高度高于风道入口(13)的几何中心线的高度。
  7. 根据权利要求5所述的暖风机,其中,呈梯形状的所述第二进风结构(1132)的倾斜边的第一端至第二端的坡度为A,其中,70°≤A≤85°。
  8. 根据权利要求4所述的暖风机,其中,多个所述进风口(111)包括至少一个第一子进风口(1111)和至少一个第二子进风口(1112),且所述第一子进风口(1111)和所述第二子进风口(1112)分别位于所述安装槽结构(112)的两侧。
  9. 根据权利要求3所述的暖风机,其中,所述底座本体包括:
    板体(113);
    围板(114),所述围板(114)绕设在所述板体(113)的外周缘处,以形成盒体状,所述安装槽结构(112)设置在所述板体(113)上,且多个所述安装槽结构(112)沿所述板体(113)的长度方向间隔设置。
  10. 根据权利要求3所述的暖风机,其中,
    所述安装槽结构(112)的两侧壁上均开设有第一弧形缺口(1121),所述加热组件(30)朝向所述安装槽结构(112)的一侧具有弧形板段(31),所述弧形板段(31)与所述第一弧形缺口(1121)平滑过渡,所述暖风机还包括蜗壳(40),所述蜗壳(40)罩设在所述安装槽结构(112)处,且所述蜗壳(40)的轴向两端均具有第二弧形缺口(41),以使位于所述第一弧形缺口(1121)的所述安装槽结构(112)的侧壁、所述弧形板段(31)、位于所述第二弧形缺口(41)的所述蜗壳(40)的侧壁围成用于与所述进风风道连通的两个风道入口(13)。
  11. 根据权利要求3至10中任一项所述的暖风机,其中,
    部分所述底座本体的底部外表面凹陷形成第一进风结构(1131),且所述第一进风结构(1131)的第一端与位于所述底座本体的长度方向的边缘处,所述第一进风结构(1131)的第二端与所述安装槽结构(112)连接,在所述底座本体的厚度方向上,所述第一进风结构(1131)的第二端高于所述第一进风结构(1131)的第一端,且所述第一进风结构(1131)上开设有第一子进风口(1111)。
  12. 根据权利要求11所述的暖风机,其中,所述安装槽结构(112)的两侧壁上均开设有第一弧形缺口(1121),所述第一进风结构(1131)的第二端的高度低于所述第一弧形缺口(1121)的最低点处。
  13. 根据权利要求11所述的暖风机,其中,所述第一进风结构(1131)的第一端至第二端的坡度为B,其中,10°≤B≤14°。
PCT/CN2022/140922 2022-06-17 2022-12-22 暖风机 WO2023240976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210690260.0 2022-06-17
CN202210690260.0A CN114992714B (zh) 2022-06-17 2022-06-17 暖风机

Publications (1)

Publication Number Publication Date
WO2023240976A1 true WO2023240976A1 (zh) 2023-12-21

Family

ID=83035389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140922 WO2023240976A1 (zh) 2022-06-17 2022-12-22 暖风机

Country Status (2)

Country Link
CN (1) CN114992714B (zh)
WO (1) WO2023240976A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992714B (zh) * 2022-06-17 2024-05-28 珠海格力电器股份有限公司 暖风机
CN115717776A (zh) * 2022-11-22 2023-02-28 珠海格力电器股份有限公司 暖风机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205842853U (zh) * 2016-06-27 2016-12-28 美的集团武汉制冷设备有限公司 落地式空调器
CN206755353U (zh) * 2017-04-11 2017-12-15 广东美的制冷设备有限公司 竖式空调器室内机和空调器
CN207936307U (zh) * 2018-02-11 2018-10-02 青岛海尔空调器有限总公司 空调室内机
CN108800315A (zh) * 2018-04-18 2018-11-13 广东美的制冷设备有限公司 空调器
CN113280403A (zh) * 2021-05-31 2021-08-20 广东美的制冷设备有限公司 风机及空调器
CN214094709U (zh) * 2021-01-05 2021-08-31 广东美的制冷设备有限公司 空调室内机及空调器
US20210356162A1 (en) * 2020-05-13 2021-11-18 Rite-Hite Holding Corporation Apparatus for Tensioning Pliable Airducts While Supporting Internal HVAC Components
CN114992714A (zh) * 2022-06-17 2022-09-02 珠海格力电器股份有限公司 暖风机
CN115013969A (zh) * 2022-06-17 2022-09-06 珠海格力电器股份有限公司 暖风机
CN217483006U (zh) * 2022-06-17 2022-09-23 珠海格力电器股份有限公司 风道组件和暖风机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157441B2 (en) * 2011-10-20 2015-10-13 Henkel IP & Holding GmbH Double inlet centrifugal blower with peripheral motor
CN103185395A (zh) * 2013-03-14 2013-07-03 杭州罗盟智能科技有限公司 一种3g智能反馈环境处理集成装置
CN203571888U (zh) * 2013-10-09 2014-04-30 广东美的制冷设备有限公司 空调室内机
CN104676676B (zh) * 2014-10-27 2017-03-08 广东美的厨房电器制造有限公司 微波炉
CN205448231U (zh) * 2016-03-28 2016-08-10 广东美的制冷设备有限公司 空调室内机后壳及壁挂式空调室内机
WO2018054027A1 (zh) * 2016-09-22 2018-03-29 中山大洋电机股份有限公司 一种盘管风机结构
CN208296269U (zh) * 2018-06-13 2018-12-28 广东美的制冷设备有限公司 空调器的壳体组件及空调器
CN109945302B (zh) * 2019-02-26 2024-04-19 广东美的制冷设备有限公司 空调室内机
CN210949202U (zh) * 2019-08-30 2020-07-07 广东美的环境电器制造有限公司 送风设备
CN111023545A (zh) * 2019-12-03 2020-04-17 珠海格力电器股份有限公司 底盘壳体、窗式空调器
CN215112849U (zh) * 2021-05-26 2021-12-10 慈溪市贝立格电器有限公司 一种壁挂式取暖器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205842853U (zh) * 2016-06-27 2016-12-28 美的集团武汉制冷设备有限公司 落地式空调器
CN206755353U (zh) * 2017-04-11 2017-12-15 广东美的制冷设备有限公司 竖式空调器室内机和空调器
CN207936307U (zh) * 2018-02-11 2018-10-02 青岛海尔空调器有限总公司 空调室内机
CN108800315A (zh) * 2018-04-18 2018-11-13 广东美的制冷设备有限公司 空调器
US20210356162A1 (en) * 2020-05-13 2021-11-18 Rite-Hite Holding Corporation Apparatus for Tensioning Pliable Airducts While Supporting Internal HVAC Components
CN214094709U (zh) * 2021-01-05 2021-08-31 广东美的制冷设备有限公司 空调室内机及空调器
CN113280403A (zh) * 2021-05-31 2021-08-20 广东美的制冷设备有限公司 风机及空调器
CN114992714A (zh) * 2022-06-17 2022-09-02 珠海格力电器股份有限公司 暖风机
CN115013969A (zh) * 2022-06-17 2022-09-06 珠海格力电器股份有限公司 暖风机
CN217483006U (zh) * 2022-06-17 2022-09-23 珠海格力电器股份有限公司 风道组件和暖风机

Also Published As

Publication number Publication date
CN114992714A (zh) 2022-09-02
CN114992714B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2023240976A1 (zh) 暖风机
US6568907B2 (en) Impeller structure
US10808715B2 (en) Heat dissipation fan
JP2004353496A (ja) 薄型ファンモータ
EP2525100B1 (en) Advection-type fan
KR100432431B1 (ko) 양흡입식 원심팬 및 이를 이용한 컴퓨터용 냉각장치
JPH0539930A (ja) 空気調和装置
CN110500317A (zh) 一种可装配多扇叶的风扇
JPH0593523A (ja) 空気調和装置
CN213450955U (zh) 一种具有良好散热效果的离心风机
JP2001295788A (ja) ファンモータ一体型送風機
CN109695583B (zh) 风扇
JPH0723778B2 (ja) 空気調和装置
WO2019144736A1 (zh) 叶轮、风机组件以及电器
CN201125883Y (zh) 轴流风扇、采用该轴流风扇的风机及空调器室外机
CN219367768U (zh) 风管机室内机和风管机
KR20190057009A (ko) 공기 압축을 이용한 송풍 시스템
CN218913269U (zh) 风机、风管机室内机和风管机
CN211151728U (zh) 一种便于散热的螺旋电机转子轴
JP3812467B2 (ja) 遠心送風機の羽根車及びそれを用いた遠心送風機
CN217129869U (zh) 大扭力风机和投影仪
CN214655867U (zh) 晾衣机的出风装置及晾衣机
WO2020147750A1 (zh) 立式空调器室内机
CN217545753U (zh) 一种风冷散热电机
CN217876135U (zh) 柜装空调室内机、空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946641

Country of ref document: EP

Kind code of ref document: A1