WO2023240928A1 - 车载天线的测试系统 - Google Patents

车载天线的测试系统 Download PDF

Info

Publication number
WO2023240928A1
WO2023240928A1 PCT/CN2022/133507 CN2022133507W WO2023240928A1 WO 2023240928 A1 WO2023240928 A1 WO 2023240928A1 CN 2022133507 W CN2022133507 W CN 2022133507W WO 2023240928 A1 WO2023240928 A1 WO 2023240928A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
anechoic chamber
mounted antenna
test
bearing surface
Prior art date
Application number
PCT/CN2022/133507
Other languages
English (en)
French (fr)
Inventor
于伟
覃丽
Original Assignee
深圳市通用测试系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市通用测试系统有限公司 filed Critical 深圳市通用测试系统有限公司
Publication of WO2023240928A1 publication Critical patent/WO2023240928A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • G01R29/105Radiation diagrams of antennas using anechoic chambers; Chambers or open field sites used therefor

Definitions

  • the vehicle antenna is installed on the vehicle body.
  • the car antenna is installed on the vehicle body
  • the tank antenna is installed on the tank vehicle body.
  • the performance of the vehicle antenna for example, direction diagram, gain, etc.
  • vehicle antenna installed on the vehicle body and in the actual working environment.
  • the height from the bottom of the shield 111 is H1, and the radius of the arc is R, the absorbing material 112 is laid on the turntable 121, and the entire vehicle to be tested is located in the test coordinate system shown in Figure 3.
  • a lift 122 is used to lift the vehicle to be tested.
  • the rotation range of the measurement antenna can exceed 90°. As long as the entire vehicle to be tested is lifted up. If the height is high enough, the arc-shaped track extends below the X-axis, and the ⁇ angle can reach 120°.
  • the semi-anechoic chamber test system has the following characteristics.
  • the center of the arc-shaped trajectory is located directly above the center of the turntable 121 and on the upper surface of the turntable.
  • the entire vehicle to be tested is placed directly on the turntable 121. , that is, the vehicle to be tested is also located in the test coordinate system as shown in Figure 3.
  • the absorbing material 112 is not laid under and around the vehicle to be tested.
  • the absorbing material 112 is placed on the turntable 121 and around the vehicle to be tested.
  • the ground is laid with materials that simulate the real ground to reflect electromagnetic waves and simulate the real usage scenario of the vehicle to be tested.
  • the maximum rotation range of the measurement antenna can reach 90°, which cannot extend below the X-axis, and the measurement angle range cannot exceed 90°.
  • the center of the arc-shaped track is located at a certain height (H1) above the center of the turntable. This The height is the height that the elevator can rise. In related technologies, H1 may exceed 1 meter.
  • the center of the arc-shaped track is located on the upper surface of the center of the turntable. Since the turntable is located on the bottom of the chamber, H1 is close to 0.
  • the purpose of the present disclosure is to provide a vehicle-mounted antenna testing system to alleviate the technical problem that the vehicle-mounted antenna testing system in the related art cannot take into account both the full anechoic chamber test and the semi-anechoic chamber test.
  • a vehicle-mounted antenna test system which may include: an anechoic chamber, a lifting platform, a measurement antenna, and a reflector, wherein,
  • the anechoic chamber is used to provide a full anechoic chamber test environment or a semi-anechoic chamber test environment;
  • the lifting platform is fixedly installed in the anechoic chamber and is used to carry the vehicle to be tested carrying the vehicle antenna and drive the vehicle to be tested to a preset height;
  • the measurement antenna is used to communicate with the vehicle-mounted antenna to obtain the wireless performance of the vehicle-mounted antenna
  • the reflective plate when the reflective plate is detachably connected to the bearing surface of the lifting platform that carries the vehicle to be tested, the reflective plate is installed on the semi-anechoic chamber test.
  • the bearing surface in the case of a full anechoic chamber test, the reflective plate is removed from the bearing surface.
  • the reflective plate when the reflective plate is integrally arranged with the load-bearing surface, the reflective plate protrudes from the load-bearing surface when a semi-anechoic chamber test is performed. When a full anechoic chamber test is performed, down, the reflective plate retracts into the bearing surface.
  • the boundary of the orthographic projection of the lifting platform may not exceed the boundary of the orthographic projection of the entire vehicle to be measured.
  • the lifting platform can also be used to drive the entire vehicle to be tested to rotate on a horizontal plane at the preset height.
  • the lifting platform may include:
  • the number of measurement antennas may be one or more;
  • the scanning mechanism may include any of the following: arc-shaped tracks, rocker arms, and industrial robot arms.
  • the number of measurement antennas may be multiple;
  • the test system for the vehicle-mounted antenna may further include a scanning mechanism, the scanning mechanism being used to fixedly install a plurality of the measurement antennas, so that the plurality of measurement antennas are distributed in a circular arc shape in spatial positions to achieve the measurement.
  • the antenna performs arc-shaped trajectory scanning communication on the vehicle-mounted antenna, so as to perform a spherical scanning test on the vehicle-mounted antenna in conjunction with the rotation of the lifting platform.
  • the reflective plate when the reflective plate is detachably connected to the bearing surface, the reflective plate is detachably connected to the upper surface of the bearing surface, or the reflective plate is detachably connected to the side surface of the bearing surface. connect.
  • the area of the reflective plate can extend outward from the outer boundary of the orthographic projection of the entire vehicle to be measured by a distance of at least three target wavelengths, where the target wavelength is the lowest wavelength of the vehicle-mounted antenna.
  • the wavelength corresponding to the operating frequency.
  • the material of the reflective plate may include at least one of the following: metal, carbon fiber, or composite material.
  • the anechoic chamber may include: a shielding body and an absorbing material;
  • the absorbing material is spread across all inner walls of the shielding body
  • the absorbing material is at least laid on the upper inner wall and side inner walls of the shielding body.
  • the shielding body may be made of a metal plate to shield external electromagnetic waves.
  • a vehicle-mounted antenna test system which may include: an anechoic chamber, a lifting platform, a measurement antenna, and a reflection plate, wherein the anechoic chamber is used to provide a full anechoic chamber test environment or a semi-anechoic chamber test.
  • the lifting platform is fixedly installed in the radio anechoic chamber, used to carry the vehicle to be tested carrying the vehicle antenna, and drive the vehicle to be measured to a preset height;
  • the measurement antenna is used to communicate with the vehicle antenna to obtain the accuracy of the vehicle antenna Wireless performance;
  • the reflector plate can be detachably connected to the load-bearing surface of the vehicle under test on the lift platform, or the reflector plate and the load-bearing surface can be integrated into one piece. When the reflector plate and the load-bearing surface are integrated into one piece, the reflector plate can telescope from the load-bearing surface. , the reflective plate is used to reflect electromagnetic waves.
  • the vehicle-mounted antenna testing system of the present disclosure when the bearing surface is connected to a reflecting plate, or when the reflecting plate extends from the bearing surface, the vehicle-mounted antenna testing system can be used in a semi-anechoic chamber.
  • the test system of the vehicle-mounted antenna can be used for full radio wave anechoic chamber test, that is to say, the test of the vehicle-mounted antenna of the present disclosure
  • the system has the function of both full anechoic chamber testing and semi-anechoic chamber testing, and the two functions can be conveniently switched by disassembling or retracting the reflector, achieving low cost and adapting to more tests. requirements, which alleviates the technical problem in related technologies that the vehicle-mounted antenna test system cannot take into account both the full anechoic chamber test and the semi-anechoic chamber test.
  • Figure 1 is a schematic diagram of a test coordinate system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a traditional all-anechoic chamber test system provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the entire vehicle to be tested in the test coordinate system provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of a traditional semi-anechoic chamber test system provided by an embodiment of the present disclosure
  • Figure 5 is a schematic structural diagram of a vehicle-mounted antenna test system provided by an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of the dimensional relationship between the rectangular reflective plate provided by the embodiment of the present disclosure and the vehicle to be tested;
  • FIG. 7 is a schematic diagram illustrating the dimensional relationship between the circular reflective plate and the vehicle to be tested according to an embodiment of the present disclosure.
  • Icon 11-Anechoic chamber; 12-Lifting platform; 13-Measuring antenna; 14-Reflecting plate; 15-Scanning mechanism; 111-Shielding body; 112-Absorbing material; 121-Turntable; 122-Elevator; 123-Loading surface .
  • the vehicle-mounted antenna testing system of the present disclosure when the bearing surface is connected to a reflecting plate, or when the reflecting plate extends from the bearing surface, the vehicle-mounted antenna testing system can be used for semi-anechoic chamber testing; and When the load-bearing surface is not connected to the reflector, or when the reflector is retracted into the load-bearing surface, the vehicle-mounted antenna test system can be used for full radio wave anechoic chamber testing. That is to say, the vehicle-mounted antenna test system of the present disclosure can It has the function of full anechoic chamber testing and half anechoic chamber testing, and the two functions can be conveniently switched by disassembling or retracting the reflector, achieving low cost and adapting to more testing requirements.
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted antenna testing system according to an embodiment of the present disclosure.
  • the vehicle-mounted antenna testing system may include: an anechoic chamber 11, a lifting platform 12, a measurement antenna 13 and a reflecting plate 14 ,in,
  • the lifting platform 12 is fixedly installed in the anechoic chamber 11.
  • the lifting platform 12 can be used to carry the entire vehicle to be tested carrying the vehicle antenna, and drive the entire vehicle to be tested to a preset height;
  • the reflection plate 14 is detachably connected to the load-bearing surface 123 of the lifting platform 12 that carries the vehicle to be tested, or the reflection plate 14 and the load-bearing surface 123 are integrally arranged. When the reflection plate 14 and the load-bearing surface 123 are integrally arranged, the reflection plate 14 can Retractable from the bearing surface 123, the reflective plate 14 is used to reflect electromagnetic waves.
  • the pointing of the above-mentioned measurement antenna 13 is aligned with the center of the test coordinates, that is, aligned with the location of the vehicle to be measured, which satisfies the test system coordinates. system requirements, as shown in Figure 3. Specifically, according to some test specifications, if the sampling trajectory of the measurement antenna 13 is an arc, the center of the arc is located at the bottom center of the vehicle to be tested, or according to some other test specifications, the center of the arc is located at the bottom center of the vehicle to be tested. Measure the overall center of the vehicle.
  • the reflective plate 14 and the bearing surface 123 are integrally arranged, if a semi-anechoic chamber test is to be performed, the reflective plate 14 is extended from the bearing surface 123. At this time, the reflective plate 14 is used to reflect electromagnetic waves, which is equivalent to a traditional The ground in the semi-anechoic chamber test system realizes the semi-anechoic chamber test of the vehicle-mounted antenna; when a full anechoic chamber test is required, the reflection plate 14 is retracted into the bearing surface 123, which is the same as the traditional full anechoic chamber test system , capable of achieving full anechoic chamber testing of vehicle antennas.
  • a vehicle-mounted antenna testing system including: a radio anechoic chamber 11, a lifting platform 12, a measurement antenna 13 and a reflection plate 14, where the radio anechoic chamber 11 is used to provide a full radio anechoic chamber test environment or Semi-anechoic chamber test environment; the lifting platform 12 is fixedly installed in the anechoic chamber 11, used to carry the vehicle under test carrying the vehicle antenna, and drive the vehicle under test to a preset height; the measurement antenna 13 is used to conduct measurements with the vehicle antenna communication to obtain the wireless performance of the vehicle-mounted antenna; the reflection plate 14 is detachably connected to the load-bearing surface 123 of the lifting platform 12 that carries the vehicle to be tested, or the reflection plate 14 and the load-bearing surface 123 are integrally arranged, wherein, when the reflection plate 14 and the load-bearing surface 123 When the surface 123 is integrally provided, the reflective plate 14 can expand and contract from the carrying surface 123, and the reflective plate 14 is used to reflect
  • the vehicle-mounted antenna test system of the present disclosure when the bearing surface 123 is connected to the reflection plate 14, or when the reflection plate 14 extends from the bearing surface 123, the vehicle-mounted antenna test system can be used Tested in a semi-anechoic chamber; when the bearing surface 123 is not connected to the reflective plate 14, or when the reflective plate 14 is retracted into the bearing surface 123, the vehicle antenna test system can be used for full anechoic chamber testing, that is to say , the vehicle-mounted antenna test system of the present disclosure has both the function of full anechoic chamber testing and the function of semi-anechoic chamber testing, and the two functions can be conveniently switched by disassembling or retracting the reflector 14 to achieve It is low in cost and can adapt to more test requirements, which alleviates the technical problem in related technologies that the vehicle antenna test system cannot take into account both full anechoic chamber testing and half anechoic chamber testing.
  • the anechoic chamber 11 includes: a shielding body 111 and an absorbing material 112;
  • the absorbing material 112 is spread across all inner walls of the shielding body 111;
  • the absorbing material 112 is laid on at least the upper inner wall and the side inner wall of the shielding body 111 .
  • the shielding body 111 is usually made of a metal plate and is used to shield external electromagnetic waves.
  • the absorbing material 112 is spread all over the inner walls of the shielding body 111 to absorb the energy of electromagnetic waves.
  • the absorbing material 112 is laid on at least the upper inner wall and the side inner wall of the shielding body 111 .
  • the boundary of the orthographic projection of the lifting platform 12 does not exceed the boundary of the orthographic projection of the entire vehicle to be measured.
  • the lifting platform 12 will cause a certain amount of electromagnetic wave reflection during the full anechoic chamber test, which may lead to a decrease in quiet zone performance. This further affects the accuracy of the test. Therefore, by limiting the boundary of the orthographic projection of the lifting platform 12 to not exceed the boundary of the orthographic projection of the entire vehicle to be tested, the influence of electromagnetic wave reflection caused by an excessively large lifting platform 12 can be avoided, thus ensuring the accuracy of the test results. accuracy.
  • the lifting platform 12 includes: a turntable 121, a lift 122 fixedly arranged above the turntable 121, and a bearing surface 123 fixedly connected to the lift 122; or
  • the number of measurement antennas 13 is one or more;
  • the vehicle-mounted antenna testing system may also include a scanning mechanism 15, which is used to fixedly install one or more measurement antennas 13, and is used to drive the measurement antennas 13 to make arc-shaped movements in the vertical direction to achieve pairing of the measurement antennas 13.
  • the vehicle-mounted antenna performs arc-shaped scanning and communication to coordinate with the rotation of the lifting platform 12 to perform a spherical scanning test on the vehicle-mounted antenna.
  • the above-mentioned spherical scanning test does not necessarily involve the entire spherical surface, but may be a partial spherical surface, such as an upper hemisphere, according to test needs.
  • the scanning test of the upper hemisphere of the vehicle-mounted antenna can be realized; as another example, when When the arc-shaped movement range of the measurement antenna 13 is 180°, in conjunction with the 180° rotation of the lifting platform 12 on the horizontal plane, the scanning test of the upper hemisphere of the vehicle-mounted antenna can be realized.
  • the above-mentioned scanning mechanism 15 includes any of the following: arc-shaped rails, rocker arms, and industrial robot arms (Fig. 5 illustrates the case where the scanning mechanism 15 is a circular-arc rail).
  • the scanning mechanism 15 is an arc-shaped track
  • the measurement antenna 13 is installed on the arc-shaped track and can move along the arc-shaped track
  • the scanning mechanism 15 is a rocker arm
  • the measurement antenna 13 is installed on the rocker arm, and can move along the arc-shaped track.
  • the drive of the turntable motor of the arm realizes the arc-shaped movement of the measuring antenna 13; when the scanning mechanism 15 is an industrial robot arm, the measuring antenna 13 is installed on the industrial robot arm, and the arc-shaped movement of the measuring antenna 13 is realized through the driving of the industrial robot arm. shape movement.
  • the measurement antenna 13 is located in the near-field radiation range of the entire vehicle to be tested, so as to perform a near-field spherical scanning test on the vehicle-mounted antenna.
  • the number of measurement antennas 13 is multiple;
  • the vehicle-mounted antenna testing system may also include a scanning mechanism 15, which is used to fixedly install multiple measurement antennas 13, so that the multiple measurement antennas 13 are distributed in a circular arc shape in spatial positions, so as to realize the measurement of the vehicle-mounted antennas by the measurement antennas 13.
  • the antenna performs arc-shaped scanning and communication to coordinate with the rotation of the lifting platform 12 to perform a spherical scanning test on the vehicle-mounted antenna.
  • the form of the reflection plate 14 when the reflection plate 14 is detachably connected to the bearing surface 123, the form of the reflection plate 14 includes any of the following: an integral form or a splicing form of multiple sub-reflection plates 14.
  • the above-mentioned detachable connection may be a snap connection or a hinged connection.
  • the embodiments of the present disclosure do not specifically limit the manner of the above-mentioned detachable connection.
  • the reflection plate 14 may be an integrally provided reflection plate 14 , or may be an integrally provided spliced reflection plate 14 .
  • the entire reflective plate 14 may be a plane parallel to the bearing surface 123 .
  • the reflective plate 14 when the reflective plate 14 is detachably connected to the bearing surface 123, the reflective plate 14 is detachably connected to the upper surface of the bearing surface 123, or the reflective plate 14 is detachably connected to the side surface of the bearing surface 123.
  • Fig. 5 shows a schematic diagram of the detachable connection between the reflection plate 14 and the upper surface of the bearing surface 123).
  • the reflection plate 14 can be installed on the upper surface of the load-bearing surface 123, that is, during testing, it is located between the vehicle to be tested and the upper surface of the load-bearing surface 123; it can also be installed on the side of the load-bearing surface 123, with the reflective plate 14
  • the upper surface is flush with the bearing surface 123 to conform to the relative position between the simulated ground and the vehicle to be tested.
  • the advantage of installing on the side is: when the vehicle to be tested is placed on the load-bearing surface 123, the reflector 14 can also be disassembled and assembled, without having to move the vehicle to be tested from the load-bearing surface 123 before removing the reflector. The disassembly and assembly of 14 thus saves testing time and facilitates quick switching between two test functions, or quick switching of different reflectors 14 to simulate different road surfaces.
  • the area of the reflective plate 14 extends outward from the outer boundary of the orthographic projection of the entire vehicle to be measured by a distance of at least three target wavelengths, where the target The wavelength is the wavelength corresponding to the lowest operating frequency of the vehicle antenna.
  • the area of the reflective plate 14 extends outward by at least three pixels from the outer boundary of the orthographic projection of the vehicle to be tested.
  • test results with better accuracy such as radiation patterns
  • the area of the reflective plate 14 can be set larger.
  • the area of the reflective plate 14 After extending outward from the outer boundary of the orthographic projection of the entire vehicle to be measured to a distance of six target wavelengths, and then increasing its area, the impact on the test results will be negligible.
  • the distance of six target wavelengths can be extended outward to ensure that the test Accuracy.
  • the minimum operating frequency of the vehicle-mounted antenna is low and its corresponding target wavelength is very long, due to cost and engineering implementation difficulty considerations, a certain accuracy can be sacrificed and only the distance of three target wavelengths can be extended outward. Because of this In this case, if the distance of six target wavelengths is expanded outward, the area of the reflection plate 14 will be very large, which is inconvenient to implement. The details can be set according to actual test needs.
  • the material of the reflective plate 14 includes at least one of the following: metal, carbon fiber, or composite material.
  • the reflective plate 14 can be made of carbon fiber material.
  • the carbon fiber material has the same reflective properties for electromagnetic waves as metal and is light in weight and is used to simulate metal.
  • the reflective plate 14 can also be made of composite materials. The reflective properties of composite materials for electromagnetic waves can be Used to simulate the reflection characteristics of cement pavement or gravel pavement for electromagnetic waves.
  • the number of reflective plates 14 is one or more.
  • the multiple reflective plates 14 have different electromagnetic parameters for simulating different road surfaces. , install different reflective plates 14 or extend different reflective plates 14 according to test needs.
  • the shape of the reflective plate 14 includes any of the following: circular, rectangular, square, or polygonal.
  • the vehicle-mounted antenna test system recorded in this disclosure can perform tests on the entire vehicle to be tested under any test function according to test needs.
  • test needs can be performed by the two test functions:
  • the reflective plate 14 is removed from the bearing surface 123, or the reflective plate 14 is retracted into the bearing surface 123, and the lifting platform 12 lifts the entire vehicle to be tested to a preset height;
  • the reflective plate 14 is installed on the bearing surface 123, or the reflective plate 14 is extended from the bearing surface 123, and the lifting platform 12 lifts the entire vehicle to be tested to a preset height;
  • the vehicle-mounted antenna test system can perform performance testing of the vehicle-mounted antenna, including: antenna pattern, antenna gain, antenna efficiency, etc., and can also test the overall performance of the vehicle-mounted antenna and transceiver. For example, radiated power (EIRP), radiated sensitivity (EIS), total radiated power (TRP), total radiated sensitivity (TRS), etc.
  • EIRP radiated power
  • EIS radiated sensitivity
  • TRP total radiated power
  • TRS total radiated sensitivity
  • the test system of the vehicle-mounted antenna of the present disclosure is the same as an ordinary full anechoic chamber under the test function of the full anechoic chamber; under the test function of the semi-anechoic chamber, the added reflection plate 14 is located between the vehicle to be tested and the load-bearing surface. Between 123, the reflective plate 14 simulates the floor of the semi-anechoic chamber. Since the size of the reflection plate 14 is larger than the orthographic projection size of the vehicle to be measured (the orthographic projection of the vehicle to be measured is completely located within the reflection plate 14), and the size of the reflection plate 14 is large enough relative to the working frequency of the vehicle-mounted antenna, the vehicle-mounted The main downward radiation energy of the antenna can be almost completely reflected by the reflection plate 14. In this case, the reflection plate 14 can well simulate the reflection of the electromagnetic wave of the vehicle-mounted antenna from the ground in a semi-anechoic chamber.
  • the reflective plate 14 can be made of lightweight carbon fiber material, and can be spliced into multiple pieces to facilitate installation or disassembly one by one. Therefore, it is easy to switch between the two test functions.
  • the vehicle-mounted antenna test system of the present disclosure has two test functions. Through the vehicle-mounted antenna test system of the present disclosure, it can adapt to more test requirements, has low cost, and can easily switch between the two test functions. , is a multifunctional, low-cost vehicle antenna test solution.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种车载天线的测试系统,该测试系统中,当承载面(123)连接有反射板(14)时,或,当反射板(14)从承载面(123)中伸出时,该车载天线的测试系统可以用于半电波暗室测试;而当承载面(123)不连接反射板(14)时,或,当反射板(14)缩回至承载面(123)中时,该车载天线的测试系统可以用于全电波暗室测试,也就是说,本车载天线的测试系统,既具有全电波暗室测试的功能,也具有半电波暗室测试的功能,并且两种功能可以通过反射板(14)的拆装或伸缩的方式进行便利的切换,实现成本低,能适应更多的测试要求,缓解了现有的车载天线的测试系统无法兼顾全电波暗室测试和半电波暗室测试的技术问题。

Description

车载天线的测试系统
相关申请的交叉引用
本申请要求于2022年06月17日提交中国国家知识产权局的申请号为202210693196.1、名称为“车载天线的测试系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信的技术领域,尤其是涉及一种车载天线的测试系统。
背景技术
整车天线安装在整车车体上,例如,汽车天线安装在汽车整车车体上、坦克天线安装在坦克整车车体上,在整车情况下,整车天线的性能(例如,方向图、增益等)更加反映整车天线的真实性能,以下,安装在整车车体上,处于实际工作环境下的整车天线称之为“车载天线”。
目前,相关技术对车载天线性能的测试多采用球面测试,球面测试的测试坐标系如图1所示,有几种测试系统可以用于车载天线的性能测试,分别是全电波暗室测试系统、半电波暗室测试系统和室外开放场地测试系统。5GAA汽车协会对上述三种测试系统都予以认可。
其中,全电波暗室测试系统包括屏蔽体111、吸波材料112(如图2所示),屏蔽体111通常由金属板制作,其作用是屏蔽外界的电磁波,形成一个没有外部电磁波干扰的测试环境,屏蔽体111的内壁上铺满吸波材料112,其作用是吸收入射的电磁波,将电磁波经过屏蔽体111内部的反射降低至设计的要求。全电波暗室测试系统还包括水平放置的转台121,转台上设有升降机122,升降机122可以将待测整车升起,转台121带动升降机122和待测整车一起转动。设置升降机122的原因在于,在全电波测试中,测试区域与转台121上的吸波材料112之间需要保持一定距离,测试区域才能满足静区的条件。测量天线13设置在一个圆弧形轨道上,并可以在圆弧形轨道上滑动,以实现在圆弧形轨迹上的采样,或者多个测量天线13固定安装在天线支撑架上,且多个测量天线13呈圆弧形分布,通过电子开关切换各测量天线,以实现同样的采样。测试时,转台121(含升降机122)带动待测整车转动,测量天线13在圆弧形轨道上移动采样或多个测量天线13在θ角度切换采样,测量天线13就可以在一个围绕待测整车的局部的球面上的多个空间位置对车载天线进行测试。全电波暗室测试系统具有如下特点,球面测试的测试坐标系的中心即圆弧形轨迹的圆 心位于转台121的转动中心的正上方,距离屏蔽体111底面的高度为H1,圆弧形的半径是R,转台121上铺设吸波材料112,待测整车位于如图3所示的测试坐标系中,在坐标系中,测量天线转动到Z轴正方向时即图1中示出的测试坐标系中的θ=0°,转动到X轴正方向时即θ=90°。在全电波暗室测试系统中,因待测整车下面需要铺设吸波材料112,所以采用升降机122将待测整车顶起,测量天线的转动范围可以超过90°,只要将待测整车顶起足够高,圆弧形轨道延伸到X轴以下,θ角度可以达到120°。
与全电波暗室测试系统相比,半电波暗室测试系统的地面不铺设吸波材料112,而其它的面铺设吸波材料112(如图4所示),半电波暗室测试系统内也设有水平放置的转台121,测量天线的设置与全电波暗室测试系统类似,与全电波暗室测试系统不同的是,圆弧形轨迹的圆心位于转台121的转动中心,且位于转台121的上表面(或者距离上表面一定的距离),转台121上不需要设置升降机122,待测整车放置在转台121上,测试时不需要顶起。半电波暗室测试系统具有如下特点,圆弧形轨迹的圆心位于转台121中心的正上方,且位于转台的上表面,转台121上没有铺设吸波材料112,待测整车直接放置在转台121上,即待测整车也位于如图3所示的测试坐标系中,待测整车下方和周围不铺设吸波材料112,而是根据测试需要,在转台121上和待测整车周围的地面铺设用于模拟真实地面的材料,以进行电磁波的反射,用于模拟待测整车的真实的使用场景。在半电波暗室测试系统中,测量天线的转动范围最大可以达到90°,无法延伸到X轴以下,测量的角度范围无法超过90°。
需要说明的是,相关技术中,除了前面所述的测试场景,根据不同的测试需求,也存在其他的测试场景,其中,测量天线的采样轨迹不为圆弧形。但是,各种不同的测试场景都有一个共同点:测量天线的指向通常需要对准测试坐标的中心,即需要对准待测整车所在的位置。
在实际的测试中,往往需要在上述全电波暗室测试系统和半电波暗室测试系统中都进行测试。而对于上述的两种测试系统来说,无法实现在一种类型的测试系统中执行另一种类型的测试,因为在一种类型的测试系统中,测试坐标的位置已经固定,测量天线安装的时候指向测试坐标的中心,在测试系统经过校准后,测量天线的指向在使用中通常是不便调整的。而这两种测试系统的测试坐标无法共用。具体地,以图2和图4所示的测试系统为例进行说明:在图2所示的全电波暗室测试系统中,圆弧形轨道的圆心位于转台中心的上面一定高度(H1),这个高度即升降机可以上升的高度,相关技术中H1可能超过1米,而在图4所示的半电波暗室测试系统中,圆弧形轨道的圆心位于转台中心的上表面,由于转台位于暗室底面,H1接近为0。若将图2中全电波暗室测试系统中的升降机的上升高度设置为0,且将地面的吸波材料去除,那么圆弧形轨道的圆心仍位于转台中心的上面一定 高度,但是待测整车已无法位于上述圆心位置,即无法得到如图3所示的测试坐标系,所以无法完成测试,若将圆弧形轨道也往下移动,使其圆心下降,是极其困难的,因为圆弧形轨道的体积大、重量大,在任何一种类型的暗室中都需要进行牢固的安装和固定,一旦建设完成后,相对位置关系就不容易改变,也就是说相关技术中的车载天线的测试系统无法便利的实现全电波暗室测试和半电波暗室测试的切换。
发明内容
有鉴于此,本公开的目的在于提供一种车载天线的测试系统,以缓解相关技术中的车载天线的测试系统无法兼顾全电波暗室测试和半电波暗室测试的技术问题。
本公开的一些实施例提供了一种车载天线的测试系统,可以包括:电波暗室、升降台、测量天线和反射板,其中,
所述电波暗室,用于提供全电波暗室测试环境或半电波暗室测试环境;
所述升降台固定设置于所述电波暗室中,用于承载携带有所述车载天线的待测整车,并带动所述待测整车到达预设高度;
所述测量天线用于与所述车载天线进行通信,以获得所述车载天线的无线性能;
所述反射板与所述升降台的承载所述待测整车的承载面可拆卸连接,或所述反射板与所述承载面一体设置,其中,当所述反射板与所述承载面一体设置时,所述反射板能够从所述承载面中伸缩,所述反射板用于进行电磁波的反射。
在一些实施方式中,所述反射板与所述升降台的承载所述待测整车的所述承载面可拆卸连接时,在进行半电波暗室测试的情况下,所述反射板被安装于所述承载面;在进行全电波暗室测试的情况下,所述反射板从所述承载面上被拆除。
在一些实施方式中,所述反射板与所述承载面一体设置时,在进行半电波暗室测试的情况下,所述反射板从所述承载面中伸出,在进行全电波暗室测试的情况下,所述反射板缩回至所述承载面中。
在一些实施方式中,所述升降台的正投影的边界可以不超过所述待测整车的正投影的边界。
在一些实施方式中,所述升降台还可以用于带动所述待测整车在所述预设高度的水平面转动。
在一些实施方式中,所述升降台可以包括:
转台、固定设置于所述转台上方的升降机和与所述升降机固定连接的所述承载面;或者
升降台本体、内置于所述升降台本体的转动机和内置于所述升降台本体的升降机,其 中,所述升降台本体为所述承载面。
在一些实施方式中,所述测量天线的数量可以为一个或多个;
所述车载天线的测试系统还可以包括扫描机构,所述扫描机构用于固定安装一个或多个所述测量天线,并用于带动所述测量天线在竖直方向做圆弧形运动,实现所述测量天线对所述车载天线进行圆弧形轨迹的扫描通信,以配合所述升降台的转动对所述车载天线进行球面扫描测试。
在一些实施方式中,所述扫描机构可以包括以下任一种:圆弧形轨道、摇臂、工业机械臂。
在一些实施方式中,所述测量天线的数量可以为多个;
所述车载天线的测试系统还可以包括扫描机构,所述扫描机构用于固定安装多个所述测量天线,以使多个所述测量天线在空间位置上呈圆弧形分布,实现所述测量天线对所述车载天线进行圆弧形轨迹的扫描通信,以配合所述升降台的转动对所述车载天线进行球面扫描测试。
在一些实施方式中,所述反射板与所述承载面可拆卸连接时,所述反射板的形式可以包括以下任一种:一体设置的形式、多个子反射板拼接的形式。
在一些实施方式中,所述反射板与所述承载面可拆卸连接时,所述反射板与所述承载面的上表面可拆卸连接,或所述反射板与所述承载面的侧面可拆卸连接。
在一些实施方式中,所述反射板的面积可以从所述待测整车的正投影的外边界向外扩展至少三个目标波长的距离,其中,所述目标波长为所述车载天线的最低工作频率对应的波长。
在一些实施方式中,所述反射板的材质可以包括以下至少之一:金属、碳纤维、复合材料。
在一些实施方式中,所述反射板的数量可以为一个或多个,当所述反射板的数量为多个时,多个所述反射板具有不同的电磁参数,用于模拟不同的路面。
在一些实施方式中,所述电波暗室可以包括:屏蔽体和吸波材料;
其中,当所述电波暗室提供全电波暗室测试环境时,所述吸波材料遍布所述屏蔽体的所有内壁;
当所述电波暗室提供半电波暗室测试环境时,所述吸波材料至少铺设于所述屏蔽体的上部内壁和侧部内壁。
在一些实施方式中,所述屏蔽体可以由金属板制作,以用于屏蔽外界的电磁波。
在本公开实施例中,提供了一种车载天线的测试系统,可以包括:电波暗室、升降台、测量天线和反射板,其中,电波暗室,用于提供全电波暗室测试环境或半电波暗室测试环 境;升降台固定设置于电波暗室中,用于承载携带有车载天线的待测整车,并带动待测整车到达预设高度;测量天线用于与车载天线进行通信,以获得车载天线的无线性能;反射板与升降台的承载待测整车的承载面可拆卸连接,或反射板与承载面一体设置,其中,当反射板与承载面一体设置时,反射板能够从承载面中伸缩,反射板用于进行电磁波的反射。通过上述描述可知,本公开中的车载天线的测试系统中,当承载面连接有反射板时,或,当反射板从承载面中伸出时,该车载天线的测试系统可以用于半电波暗室测试;而当承载面不连接反射板时,或,当反射板缩回至承载面中时,该车载天线的测试系统可以用于全电波暗室测试,也就是说,本公开的车载天线的测试系统,既具有全电波暗室测试的功能,也具有半电波暗室测试的功能,并且两种功能可以通过反射板的拆装或伸缩的方式进行便利的切换,实现成本低,能适应更多的测试要求,缓解了相关技术中的车载天线的测试系统无法兼顾全电波暗室测试和半电波暗室测试的技术问题。
附图说明
为了更清楚地说明本公开具体实施方式或相关技术中的技术方案,下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的测试坐标系的示意图;
图2为本公开实施例提供的传统的全电波暗室测试系统的示意图;
图3为本公开实施例提供的待测整车在测试坐标系中的示意图;
图4为本公开实施例提供的传统的半电波暗室测试系统的示意图;
图5为本公开实施例提供的一种车载天线的测试系统的结构示意图;
图6为本公开实施例提供的长方形反射板与待测整车的尺寸关系的示意图;
图7为本公开实施例提供的圆形反射板与待测整车的尺寸关系的示意图。
图标:11-电波暗室;12-升降台;13-测量天线;14-反射板;15-扫描机构;111-屏蔽体;112-吸波材料;121-转台;122-升降机;123-承载面。
具体实施方式
为下面将结合实施例对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
传统的车载天线的测试系统中,无法实现在一种类型的测试系统中执行另一种类型的测试。而分别搭建两种测试系统会花费大量的人力和资金成本。
基于此,本公开的车载天线的测试系统中,当承载面连接有反射板时,或,当反射板从承载面中伸出时,该车载天线的测试系统可以用于半电波暗室测试;而当承载面不连接反射板时,或,当反射板缩回至承载面中时,该车载天线的测试系统可以用于全电波暗室测试,也就是说,本公开的车载天线的测试系统,既具有全电波暗室测试的功能,也具有半电波暗室测试的功能,并且两种功能可以通过反射板的拆装或伸缩的方式进行便利的切换,实现成本低,能适应更多的测试要求。
为便于对本实施例进行理解,首先对本公开实施例所公开的一种车载天线的测试系统进行详细介绍。
图5是根据本公开实施例的一种车载天线的测试系统的结构示意图,如图5所示,该车载天线的测试系统可以包括:电波暗室11、升降台12、测量天线13和反射板14,其中,
电波暗室11可以用于提供全电波暗室测试环境或半电波暗室测试环境;
升降台12固定设置于电波暗室11中,该升降台12可以用于承载携带有车载天线的待测整车,并带动待测整车到达预设高度;
测量天线13用于与车载天线进行通信,以获得车载天线的无线性能;
反射板14与升降台12的承载待测整车的承载面123可拆卸连接,或反射板14与承载面123一体设置,其中,当反射板14与承载面123一体设置时,反射板14能够从承载面123中伸缩,反射板14用于进行电磁波的反射。
在本公开实施例中,当升降台12带动待测整车到达预设高度时,上述测量天线13的指向对准测试坐标的中心,即对准待测整车所在的位置,满足测试系统坐标系的要求,如图3所示。具体而言,根据一些测试规范,若测量天线13的采样轨迹为圆弧形时,该圆弧的圆心位于待测整车的底部中心,或者根据另外一些测试规范,该圆弧的圆心位于待测整车的整体的中心。
当反射板14与升降台12的承载待测整车的承载面123可拆卸连接时,若要进行半电波暗室测试,则将反射板14安装于承载面123,此时,反射板14用于进行电磁波的反射,相当于传统的半电波暗室测试系统中的地面,实现车载天线的半电波暗室测试;若要进行全电波暗室测试时,则将反射板14从承载面123上拆除,便与传统的全电波暗室测试系统相同,得到了一个无反射的环境,能够实现车载天线的全电波暗室测试。
当反射板14与承载面123一体设置时,若要进行半电波暗室测试,则将反射板14从承载面123中伸出,此时,反射板14用于进行电磁波的反射,相当于传统的半电波暗室测试系统中的地面,实现车载天线的半电波暗室测试;若要进行全电波暗室测试时,则将反 射板14缩回至承载面123中,便与传统的全电波暗室测试系统相同,能够实现车载天线的全电波暗室测试。
需要说明的是,上述待测整车可以为待测汽车,还可以为待测坦克等,且待测整车携带的车载天线的数量可以为多个,也可以为一个,本公开实施例中以待测整车为待测汽车为例进行说明。
在本公开实施例中,提供了一种车载天线的测试系统,包括:电波暗室11、升降台12、测量天线13和反射板14,其中,电波暗室11,用于提供全电波暗室测试环境或半电波暗室测试环境;升降台12固定设置于电波暗室11中,用于承载携带有车载天线的待测整车,并带动待测整车到达预设高度;测量天线13用于与车载天线进行通信,以获得车载天线的无线性能;反射板14与升降台12的承载待测整车的承载面123可拆卸连接,或反射板14与承载面123一体设置,其中,当反射板14与承载面123一体设置时,反射板14能够从承载面123中伸缩,反射板14用于进行电磁波的反射。通过上述描述可知,本公开中的车载天线的测试系统中,当承载面123连接有反射板14时,或,当反射板14从承载面123中伸出时,该车载天线的测试系统可以用于半电波暗室测试;而当承载面123不连接反射板14时,或,当反射板14缩回至承载面123中时,该车载天线的测试系统可以用于全电波暗室测试,也就是说,本公开的车载天线的测试系统,既具有全电波暗室测试的功能,也具有半电波暗室测试的功能,并且两种功能可以通过反射板14的拆装或伸缩的方式进行便利的切换,实现成本低,能适应更多的测试要求,缓解了相关技术中的车载天线的测试系统无法兼顾全电波暗室测试和半电波暗室测试的技术问题。
上述内容对本公开的车载天线的测试系统的结构进行了简要介绍,下面对其中涉及到的具体内容进行详细描述。
在本公开的一个可选实施例中,参考图5,电波暗室11包括:屏蔽体111和吸波材料112;
其中,当电波暗室11提供全电波暗室测试环境时,吸波材料112遍布屏蔽体111的所有内壁;
当电波暗室11提供半电波暗室测试环境时,吸波材料112至少铺设于屏蔽体111的上部内壁和侧部内壁。
具体的,屏蔽体111通常由金属板制作,用于屏蔽外界的电磁波,当为全电波暗室测试环境时,吸波材料112遍布屏蔽体111的所有内壁,用于吸收电磁波的能量,当为半电波暗室测试环境时,吸波材料112至少铺设于屏蔽体111的上部内壁和侧部内壁。所以,当半电波暗室测试环境转换为全电波暗室测试环境时,若原来屏蔽体111的底部内壁没有铺设吸波材料112时,需要再在底部内壁铺设吸波材料112;而全电波暗室测试环境转换为 半电波暗室测试环境时,吸波材料112遍布屏蔽体111的所有内壁,不会影响半电波暗室测试,因为此种测试类型下,反射板14模拟了测试所需的地面环境。
在本公开的一个可选实施例中,升降台12的正投影的边界不超过待测整车的正投影的边界。
具体的,若升降台12的正投影的边界超过待测整车的正投影的边界时,在全电波暗室测试时,升降台12就会带来一定的电磁波反射,可能导致静区性能下降,进而影响测试的精度,所以,通过限定升降台12的正投影的边界不超过待测整车的正投影的边界,可以避免升降台12过大所带来的电磁波反射影响,从而保证测试结果的准确性。
在本公开的一个可选实施例中,升降台还用于带动所述待测整车在所述预设高度的水平面转动。
在本公开的一个可选实施例中,参考图5,升降台12包括:转台121、固定设置于转台121上方的升降机122和与升降机122固定连接的承载面123;或者
升降台本体、内置于升降台本体的转动机和内置于转台本体的升降机122,其中,升降台本体为承载面123。
具体的,上述第一种升降台12的结构中,转台121(一维平面转台)能够带动待测整车实现水平面上的转动,升降机122能够带动待测整车到达预设高度,承载面123用于承载待测整车,在这种结构中,可以在相关技术中普遍存在的一维平面转台121上增设相关技术中普遍存在的升降机122得到升降台12;上述第二种升降台12的结构中,升降台12是一体设置的,能够实现同样的功能。
在本公开的一个可选实施例中,测量天线13的数量为一个或多个;
所述车载天线的测试系统还可以包括扫描机构15,扫描机构15用于固定安装一个或多个测量天线13,并用于带动测量天线13在竖直方向做圆弧形运动,实现测量天线13对车载天线进行圆弧形轨迹的扫描通信,以配合升降台12的转动对车载天线进行球面扫描测试。
具体的,上述球面扫描测试不一定是整个球面,根据测试需要,可以是部分球面,例如,上半球面。作为一种示例,当测量天线13的圆弧形运动范围为90°时,配合升降台12在水平面上360°的转动,能够实现车载天线上半球面的扫描测试;作为另一种示例,当测量天线13的圆弧形运动范围为180°时,配合升降台12在水平面上180°的转动,能够实现车载天线上半球面的扫描测试。
可选地,上述扫描机构15包括以下任一种:圆弧形轨道、摇臂、工业机械臂(图5中示意了扫描机构15为圆弧形轨道的情况)。当扫描机构15为圆弧形轨道时,测量天线13安装于圆弧形轨道上,可以沿圆弧形轨道运动;当扫描机构15为摇臂时,测量天线13安装于摇臂上,通过摇臂的转盘马达的驱动,实现测量天线13的圆弧形运动;当扫描机构 15为工业机械臂时,测量天线13安装于工业机械臂上,通过工业机械臂的带动实现测量天线13的圆弧形运动。可选地,测量天线13位于待测整车的近场辐射范围,以对车载天线执行近场球面扫描测试。
在本公开的一个可选实施例中,测量天线13的数量为多个;
所述车载天线的测试系统还可以包括扫描机构15,扫描机构15用于固定安装多个测量天线13,以使多个测量天线13在空间位置上呈圆弧形分布,实现测量天线13对车载天线进行圆弧形轨迹的扫描通信,以配合升降台12的转动对车载天线进行球面扫描测试。
在本公开的一个可选实施例中,反射板14与承载面123可拆卸连接时,反射板14的形式包括以下任一种:一体设置的形式、多个子反射板14拼接的形式。
具体的,上述可拆卸连接可以是卡扣连接,还可以为铰接,本公开实施例对上述可拆卸连接的方式不进行具体限制。另外,反射板14可以为一体设置的反射板14,还可以为一体设置的拼接而成的反射板14。反射板14整体可以是一个平面,平行于承载面123。
在本公开的一个可选实施例中,反射板14与承载面123可拆卸连接时,反射板14与承载面123的上表面可拆卸连接,或反射板14与承载面123的侧面可拆卸连接,(图5中示出了反射板14与承载面123的上表面可拆卸连接的示意图)。
具体的,反射板14可以安装于承载面123的上表面,即在测试时,位于待测整车和承载面123的上表面之间;也可以安装于承载面123的侧面,反射板14的上表面与承载面123平齐,以符合模拟地面与待测整车之间的相对位置。安装于侧面的好处为:当待测整车置于承载面123上时,也可以进行反射板14的拆装,而无需再将待测整车从承载面123上移动下来,再进行反射板14的拆装,从而节省了测试时间,便于在两种测试功能之间快速切换,或者快速切换不同的反射板14以模拟不同的路面。
在本公开的一个可选实施例中,如图6和图7所示,反射板14的面积从待测整车的正投影的外边界向外扩展至少三个目标波长的距离,其中,目标波长为车载天线的最低工作频率对应的波长。
具体的,反射板14越大,对电磁波的反射效果就会越好,经过发明人的多次测试,当反射板14的面积从待测整车的正投影的外边界向外扩展至少三个目标波长的距离时,能够得到精度较好的测试结果(如,辐射方向图),若想得到更为精确的测试结果,反射板14的面积可以设置的更大一些,但是当反射板14的面积从待测整车的正投影的外边界向外扩展到六个目标波长的距离后,再增大其面积,对测试结果的影响可以忽略不计。所以,在实际测试时,若车载天线的最低工作频率较高,其对应的目标波长较短,且对测试结果的精度要求较高,那么可以向外扩展六个目标波长的距离,以保证测试精度。但是,若车载天线的最低工作频率较低,其对应的目标波长很长,出于成本和工程实现难度的考虑,可 以牺牲一定的精度,仅向外扩展三个目标波长的距离,因为此种情况下,若向外扩展六个目标波长的距离后,反射板14的面积将会很大,不便于实现。具体可以根据实际测试需要进行设定。
在本公开的一个可选实施例中,反射板14的材质包括以下至少之一:金属、碳纤维、复合材料。
具体的,反射板14可以由碳纤维材料制作,碳纤维材料对于电磁波的反射特性与金属一样,并且重量轻,用于模拟金属;反射板14还可以由复合材料制作,复合材料对于电磁波的反射特性可以用于模拟水泥路面、或者砂石路面对于电磁波的反射特性。
在本公开的一个可选实施例中,反射板14的数量为一个或多个,当反射板14的数量为多个时,多个反射板14具有不同的电磁参数,用于模拟不同的路面,根据测试需要安装不同的反射板14,或伸出不同的反射板14。
在本公开的一个可选实施例中,反射板14的形状包括以下任一种:圆形、长方形、正方形、多边形。
对本公开记载的车载天线的测试系统可以根据测试需要,对待测整车执行任一测试功能下的测试。在此对两种测试功能进行示意性说明:
在全电波暗室测试时,将反射板14从承载面123上拆卸,或者将反射板14缩回至承载面123中,升降台12将待测整车抬升到预设高度;
当电波暗室11是全电波暗室测试环境时,屏蔽体111的底部已铺设吸波材料112,满足测试环境,达到全电波暗室的工作状态;当电波暗室11是半电波暗室测试环境时,通过在底部铺设吸波材料112即可满足测试环境。
在半电波暗室测试时,将反射板14安装于承载面123,或者将反射板14从承载面123中伸出,升降台12将待测整车抬升到预设高度;
当电波暗室11是全电波暗室测试环境时,屏蔽体111的底部已铺设吸波材料112,底部铺设的吸波材料112并不影响半电波测试,因为此时反射板14模拟了测试所需的地面环境;当电波暗室11是半电波暗室测试环境时,满足测试环境。
在本公开的一个可选实施例中,车载天线的测试系统可以进行车载天线的性能测试,包括:天线方向图、天线增益、天线效率等,还可以进行车载天线和收发机整体性能的测试,例如,辐射功率(EIRP),辐射灵敏度(EIS),总辐射功率(TRP),总辐射灵敏度(TRS)等。
本公开的车载天线的测试系统在全电波暗室的测试功能下,与普通的全电波暗室是一样的;在半电波暗室的测试功能下,所增加的反射板14位于待测整车与承载面123之间,反射板14模拟了半电波暗室的地面。由于反射板14的尺寸大于待测整车的正投影尺寸(待 测整车的正投影完全位于反射板14之内),并且反射板14的尺寸相对于车载天线的工作频率足够大,则车载天线向下的主要辐射能量几乎能完全由反射板14反射,这种情况下,反射板14可很好的模拟半电波暗室中地面对于车载天线的电磁波的反射。
反射板14可以采用轻质碳纤维材料制作,同时可以采用多片拼接的方式实现,方便逐一安装或拆卸,因此,可以很便利的在两种测试功能之间切换。
本公开的车载天线的测试系统具有两种测试功能,通过本公开的一套车载天线的测试系统,可以适应更多的测试要求,成本低、且可以很方便的在两种测试功能之间切换,是一种多功能、低成本的车载天线的测试方案。
另外,在本公开实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本申请提供了一种车载天线的测试系统,该测试系统中,当承载面连接有反射板时,或,当反射板从承载面中伸出时,该车载天线的测试系统可以用于半电波暗室测试;而当承载面不连接反射板时,或,当反射板缩回至承载面中时,该车载天线的测试系统可以用于全电波暗室测试,也就是说,本公开的车载天线的测试系统,既具有全电波暗室测试的功能,也具有半电波暗室测试的功能,并且两种功能可以通过反射板的拆装或伸缩的方式进行便利的切换,实现成本低,能适应更多的测试要求,缓解了相关技术中的车载天线的测试系统无法兼顾全电波暗室测试和半电波暗室测试的技术问题。
此外,可以理解的是,本申请的车载天线的测试系统是可以重现的,并且可以用在多 种工业应用中。例如,本申请的车载天线的测试系统可以用于通信的技术领域。

Claims (16)

  1. 一种车载天线的测试系统,其特征在于,包括:电波暗室、升降台、测量天线和反射板,其中,
    所述电波暗室,用于提供全电波暗室测试环境或半电波暗室测试环境;
    所述升降台固定设置于所述电波暗室中,用于承载携带有所述车载天线的待测整车,并带动所述待测整车到达预设高度;
    所述测量天线用于与所述车载天线进行通信,以获得所述车载天线的无线性能;
    所述反射板与所述升降台的承载所述待测整车的承载面可拆卸连接,或所述反射板与所述承载面一体设置,其中,当所述反射板与所述承载面一体设置时,所述反射板能够从所述承载面中伸缩,所述反射板用于进行电磁波的反射。
  2. 根据权利要求1所述的车载天线的测试系统,其特征在于,所述反射板与所述升降台的承载所述待测整车的所述承载面可拆卸连接时,在进行半电波暗室测试的情况下,所述反射板被安装于所述承载面;在进行全电波暗室测试的情况下,所述反射板从所述承载面上被拆除。
  3. 根据权利要求1所述的车载天线的测试系统,其特征在于,所述反射板与所述承载面一体设置时,在进行半电波暗室测试的情况下,所述反射板从所述承载面中伸出,在进行全电波暗室测试的情况下,所述反射板缩回至所述承载面中。
  4. 根据权利要求1至3中任一项所述的车载天线的测试系统,其特征在于,所述升降台的正投影的边界不超过所述待测整车的正投影的边界。
  5. 根据权利要求1至3中任一项所述的车载天线的测试系统,其特征在于,所述升降台还用于带动所述待测整车在所述预设高度的水平面转动。
  6. 根据权利要求5所述的车载天线的测试系统,其特征在于,所述升降台包括:
    转台、固定设置于所述转台上方的升降机和与所述升降机固定连接的所述承载面;或者
    升降台本体、内置于所述升降台本体的转动机和内置于所述升降台本体的升降机,其中,所述升降台本体为所述承载面。
  7. 根据权利要求5至6中任一项所述的车载天线的测试系统,其特征在于,所述测量天线的数量为一个或多个;
    所述车载天线的测试系统还包括扫描机构,所述扫描机构用于固定安装一个或多个所述测量天线,并用于带动所述测量天线在竖直方向做圆弧形运动,实现所述测量天线对所述车载天线进行圆弧形轨迹的扫描通信,以配合所述升降台的转动对所述车载天线进行球 面扫描测试。
  8. 根据权利要求7所述的车载天线的测试系统,其特征在于,所述扫描机构包括以下任一种:圆弧形轨道、摇臂、工业机械臂。
  9. 根据权利要求5至6中任一项所述的车载天线的测试系统,其特征在于,所述测量天线的数量为多个;
    所述车载天线的测试系统还可以包括扫描机构,所述扫描机构用于固定安装多个所述测量天线,以使多个所述测量天线在空间位置上呈圆弧形分布,实现所述测量天线对所述车载天线进行圆弧形轨迹的扫描通信,以配合所述升降台的转动对所述车载天线进行球面扫描测试。
  10. 根据权利要求1至9中任一项所述的车载天线的测试系统,其特征在于,所述反射板与所述承载面可拆卸连接时,所述反射板的形式包括以下任一种:一体设置的形式、多个子反射板拼接的形式。
  11. 根据权利要求1至10中任一项所述的车载天线的测试系统,其特征在于,所述反射板与所述承载面可拆卸连接时,所述反射板与所述承载面的上表面可拆卸连接,或所述反射板与所述承载面的侧面可拆卸连接。
  12. 根据权利要求1至11中任一项所述的车载天线的测试系统,其特征在于,所述反射板的面积从所述待测整车的正投影的外边界向外扩展至少三个目标波长的距离,其中,所述目标波长为所述车载天线的最低工作频率对应的波长。
  13. 根据权利要求1至12中任一项所述的车载天线的测试系统,其特征在于,所述反射板的材质包括以下至少之一:金属、碳纤维、复合材料。
  14. 根据权利要求1至13中任一项所述的车载天线的测试系统,其特征在于,所述反射板的数量为一个或多个,当所述反射板的数量为多个时,多个所述反射板具有不同的电磁参数,用于模拟不同的路面。
  15. 根据权利要求1至14中任一项所述的车载天线的测试系统,其特征在于,所述电波暗室包括:屏蔽体和吸波材料;
    其中,当所述电波暗室提供全电波暗室测试环境时,所述吸波材料遍布所述屏蔽体的所有内壁;
    当所述电波暗室提供半电波暗室测试环境时,所述吸波材料至少铺设于所述屏蔽体的上部内壁和侧部内壁。
  16. 根据权利要求15所述的车载天线的测试系统,其特征在于,所述屏蔽体由金属板制作,以用于屏蔽外界的电磁波。
PCT/CN2022/133507 2022-06-17 2022-11-22 车载天线的测试系统 WO2023240928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210693196.1A CN115097219A (zh) 2022-06-17 2022-06-17 车载天线的测试系统
CN202210693196.1 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023240928A1 true WO2023240928A1 (zh) 2023-12-21

Family

ID=83291635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133507 WO2023240928A1 (zh) 2022-06-17 2022-11-22 车载天线的测试系统

Country Status (2)

Country Link
CN (1) CN115097219A (zh)
WO (1) WO2023240928A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554657A (zh) * 2024-01-10 2024-02-13 中国汽车技术研究中心有限公司 一种车辆辅助安装固定装置及固定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097219A (zh) * 2022-06-17 2022-09-23 深圳市通用测试系统有限公司 车载天线的测试系统
CN116879666B (zh) * 2023-09-07 2023-11-28 合肥航太电物理技术有限公司 一种机载设备高强辐射场测试装置
CN117388586B (zh) * 2023-12-12 2024-04-26 南京捷希科技股份有限公司 一种终端测试系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089567A (ja) * 2006-09-06 2008-04-17 Yokohama National Univ 放射効率測定装置
CN101750549A (zh) * 2008-12-15 2010-06-23 北方设计研究院 可进行电磁兼容测试和天线测量的电磁测量综合暗室
CN201589796U (zh) * 2009-11-27 2010-09-22 英业达股份有限公司 电磁波暗室
US20180375594A1 (en) * 2015-12-16 2018-12-27 Ranlos Ab Method and apparatus for testing wireless communication to vehicles
US20190391195A1 (en) * 2017-03-06 2019-12-26 Bluetest Ab Arrangement And Method For Measuring The Performance Of Devices With Wireless Capability
CN110967569A (zh) * 2018-09-30 2020-04-07 上海汽车集团股份有限公司 一种测试系统和车辆测试方法
CN210835102U (zh) * 2019-09-20 2020-06-23 深圳市全球通检测服务有限公司 一种切换式多功能电波暗室
CN111812418A (zh) * 2020-07-17 2020-10-23 中国汽车工程研究院股份有限公司 一种胎压监测天线性能测试系统及方法
CN112946377A (zh) * 2019-12-10 2021-06-11 深圳市通用测试系统有限公司 车辆无线性能测试暗室
CN214669327U (zh) * 2021-02-10 2021-11-09 深圳市通用测试系统有限公司 一种测试系统
CN215116570U (zh) * 2021-06-01 2021-12-10 亿策科技有限公司 一种切换式电波暗室
CN115097219A (zh) * 2022-06-17 2022-09-23 深圳市通用测试系统有限公司 车载天线的测试系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089567A (ja) * 2006-09-06 2008-04-17 Yokohama National Univ 放射効率測定装置
CN101750549A (zh) * 2008-12-15 2010-06-23 北方设计研究院 可进行电磁兼容测试和天线测量的电磁测量综合暗室
CN201589796U (zh) * 2009-11-27 2010-09-22 英业达股份有限公司 电磁波暗室
US20180375594A1 (en) * 2015-12-16 2018-12-27 Ranlos Ab Method and apparatus for testing wireless communication to vehicles
US20190391195A1 (en) * 2017-03-06 2019-12-26 Bluetest Ab Arrangement And Method For Measuring The Performance Of Devices With Wireless Capability
CN110967569A (zh) * 2018-09-30 2020-04-07 上海汽车集团股份有限公司 一种测试系统和车辆测试方法
CN210835102U (zh) * 2019-09-20 2020-06-23 深圳市全球通检测服务有限公司 一种切换式多功能电波暗室
CN112946377A (zh) * 2019-12-10 2021-06-11 深圳市通用测试系统有限公司 车辆无线性能测试暗室
CN111812418A (zh) * 2020-07-17 2020-10-23 中国汽车工程研究院股份有限公司 一种胎压监测天线性能测试系统及方法
CN214669327U (zh) * 2021-02-10 2021-11-09 深圳市通用测试系统有限公司 一种测试系统
CN215116570U (zh) * 2021-06-01 2021-12-10 亿策科技有限公司 一种切换式电波暗室
CN115097219A (zh) * 2022-06-17 2022-09-23 深圳市通用测试系统有限公司 车载天线的测试系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554657A (zh) * 2024-01-10 2024-02-13 中国汽车技术研究中心有限公司 一种车辆辅助安装固定装置及固定方法
CN117554657B (zh) * 2024-01-10 2024-03-22 中国汽车技术研究中心有限公司 一种车辆辅助安装固定装置及固定方法

Also Published As

Publication number Publication date
CN115097219A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023240928A1 (zh) 车载天线的测试系统
JP4438905B2 (ja) 放射効率測定装置および放射効率測定方法
KR100926561B1 (ko) 유한 거리간 안테나 방사 패턴 측정 장치 및 방법
CN112946377B (zh) 车辆无线性能测试暗室
CN205982435U (zh) 一种小型一体化紧缩场测试系统
RU2582892C2 (ru) Устройство для электромагнитного испытания объекта
CN210347782U (zh) 一种反射面位于静区上方的紧缩场天线测量系统
CN113447730B (zh) 一种球面天线近场校准与扫描方法、系统及终端
CN214669327U (zh) 一种测试系统
KR20160016901A (ko) 휴대용 구형 근거리장 안테나 측정 시스템
KR102283698B1 (ko) 방사 패턴 결정 시스템 및 방법
CN112834833A (zh) 紧缩场天线测试系统
JP2013243586A (ja) アンテナ昇降装置
CN209841969U (zh) 紧缩场天线测试系统
CN113156224B (zh) 一种ota测试暗室
CN110988822B (zh) 基于无线单tr定标的多通道sar天线性能检测方法
CN206876773U (zh) 一种近场测试系统
CN216051957U (zh) 一种多功能天线测试系统
CN204720559U (zh) 一种一维机扫一维相扫天线装置
US7443170B2 (en) Device and method for determining at least one variable associated with the electromagnetic radiation of an object being tested
CN216209487U (zh) 一种紧缩场空口测试设备
JP2009063427A (ja) 電波無響箱
TWI764723B (zh) 多邊形球面空間採樣設備
CN115079112A (zh) 一种航空发动机近地动态rcs试验测试系统及测试方法
CN112867045B (zh) 一种多紧缩场测量系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946594

Country of ref document: EP

Kind code of ref document: A1