WO2023240907A1 - 基于分数布朗运动的管道建模方法 - Google Patents

基于分数布朗运动的管道建模方法 Download PDF

Info

Publication number
WO2023240907A1
WO2023240907A1 PCT/CN2022/130262 CN2022130262W WO2023240907A1 WO 2023240907 A1 WO2023240907 A1 WO 2023240907A1 CN 2022130262 W CN2022130262 W CN 2022130262W WO 2023240907 A1 WO2023240907 A1 WO 2023240907A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracture surface
gaussian distribution
pipeline
coordinates
preset
Prior art date
Application number
PCT/CN2022/130262
Other languages
English (en)
French (fr)
Inventor
郑航桅
孙国胜
王晶惠
郑成志
Original Assignee
广东粤海水务投资有限公司
哈尔滨工业大学水资源国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东粤海水务投资有限公司, 哈尔滨工业大学水资源国家工程研究中心有限公司 filed Critical 广东粤海水务投资有限公司
Publication of WO2023240907A1 publication Critical patent/WO2023240907A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Definitions

  • the present invention relates to the technical field of pipeline analysis, and in particular to a pipeline modeling method based on fractional Brownian motion.
  • Analyzing and testing pipelines is currently one of the main methods for studying the characteristics of pipeline engineering.
  • In actual operation due to the complex actual conditions of the pipelines, it is very difficult and costly to directly use the original pipelines for testing, and the cost performance is low.
  • the existing technology There are already some methods to obtain the pipeline roughness model through computer modeling, but these methods have heavy traces of artificial generation of the model, and the randomness is greatly different from the real original pipeline. Therefore, it is based on the existing modeling methods. The results obtained from experiments are often not accurate enough.
  • the purpose of the present invention is to provide a pipeline modeling method based on fractional Brownian motion, which can effectively complete pipeline modeling and improve the accuracy of pipeline modeling.
  • the present invention proposes a pipeline modeling method based on fractional Brownian motion, which includes the following steps:
  • Step S1 Set initial fracture surface parameters.
  • the initial fracture surface parameters include the coordinates of the nodes at the four corners of the fracture surface and the first Gaussian distribution that the Z-axis corresponding to the initial fracture surface needs to obey.
  • the first Gaussian distribution It is a Gaussian distribution M(0, ⁇ 2 ) with mean zero and variance ⁇ 2 ;
  • Step S2 Perform the first linear interpolation on the coordinates of the nodes at the four corners of the fracture surface to obtain the midpoint coordinates and center point coordinates of the four sides of the initial fracture surface.
  • update the first Gaussian distribution to have a mean of zero and a variance of Gaussian distribution M (0, ),in It is calculated based on the preset Hurst index and the preset update formula;
  • Step S3 Using step S2 as the basic recursive process, perform n-1 linear interpolations on the initial fracture surface to generate a node with a node number of (2n+1) 2 and a size of target fracture surface, and update the first Gaussian distribution to have a mean of zero and a variance of Gaussian distribution M (0, ),in Calculated according to the preset Hurst index and the preset update formula, n is a positive integer greater than 1;
  • Step S4 Determine the fractal dimension according to the Hurst index, and input the fractal dimension and the target fracture surface into a preset modeling algorithm to generate a three-dimensional pipeline model.
  • the preset update formula is:
  • H is the Hurst index, and the value range is 0-1.
  • pipeline modeling is completed in MATLAB software.
  • the present invention provides a pipeline modeling method based on fractional Brownian motion, which includes the following steps: Step S1.
  • the initial fracture surface parameters include the coordinates of the nodes at the four corners of the fracture surface.
  • the first Gaussian distribution is a Gaussian distribution M(0, ⁇ 2) with a mean value of zero and a variance of ⁇ 2; Step S2.
  • the coordinates of the nodes at the four corners are first linearly interpolated to obtain the midpoint coordinates and center point coordinates of the four sides of the initial fracture surface.
  • the first Gaussian distribution is updated to have a mean of zero and a variance of Gaussian distribution M (0, ),in It is calculated based on the preset Hurst index and the preset update formula; step S3, taking step S2 as the basic recursive process, perform n-1 linear interpolations on the initial fracture surface to generate a node number of (2n+1 ) 2.
  • Step S4 Determine the fractal dimension according to the Hurst index, and input the fractal dimension and the target fracture surface into the preset modeling algorithm to generate a three-dimensional pipeline model, which can Effectively complete pipeline modeling and improve the accuracy of pipeline modeling.
  • Figure 1 is a schematic diagram of steps S1 to S3 of the pipeline modeling method based on fractional Brownian motion of the present invention
  • Figure 2 is a schematic diagram of step S4 of the pipeline modeling method based on fractional Brownian motion of the present invention
  • Figure 3 is a flow chart of the pipeline modeling method based on fractional Brownian motion of the present invention.
  • the present invention provides a pipeline modeling method based on fractional Brownian motion, which includes the following steps:
  • Step S1 Set initial fracture surface parameters.
  • the initial fracture surface parameters include the coordinates of the nodes at the four corners of the fracture surface and the first Gaussian distribution that the Z coordinate corresponding to the initial fracture surface needs to obey.
  • the first Gaussian distribution It is a Gaussian distribution M(0, ⁇ 2 ) with mean zero and variance ⁇ 2 .
  • step S1 specifically includes: assuming that the construction area of the initial fracture surface is determined by the coordinates A0, B0, C0 and D0 of the nodes at the four corners of the fracture surface, the Z coordinate The value obeys N(0, ⁇ 2), and N(0, ⁇ 2) represents a Gaussian distribution with a mean of zero and a variance of ⁇ 2.
  • the initial fracture surface parameters are set in a preset three-dimensional coordinate system, in which the coordinates of the nodes at the four corners of the fracture surface are represented by X coordinates and Y coordinates, and the Z coordinate obeys the above-mentioned first Gaussian distribution. .
  • Step S2 Perform the first linear interpolation on the coordinates of the nodes at the four corners of the fracture surface to obtain the midpoint coordinates and center point coordinates of the four sides of the initial fracture surface.
  • update the first Gaussian distribution to have a mean of zero and a variance of Gaussian distribution M (0, ),in It is calculated based on the preset Hurst index and the preset update formula.
  • Step S3 Using step S2 as the basic recursive process, perform n-1 linear interpolations on the initial fracture surface to generate a node with a node number of (2n+1) 2 and a size of target fracture surface, and update the first Gaussian distribution to have a mean of zero and a variance of Gaussian distribution M (0, ),in Calculated according to the preset Hurst index and the preset update formula, n is a positive integer greater than 1;
  • steps S2 to S3 includes:
  • H is the Hurst index, and its value range is 0-1.
  • the preset update formula is:
  • H is the Hurst index, and the value range is 0-1.
  • H is equal to 0.1.
  • Step S4 Determine the fractal dimension according to the Hurst index, and input the fractal dimension and the target fracture surface into a preset modeling algorithm to generate a three-dimensional pipeline model.
  • the fractal dimension D is an important parameter to describe the roughness of the fracture surface, and its complexity and irregularity can be reflected by fractal characteristics. Generally speaking, the larger the fractal dimension D, the rougher the fracture surface.
  • the original data of the rough surface can be generated first through the MATLAB programming method, and then the parametric surface tool is used to perform surface lofting based on fBm called by the finite element analysis software COMSOL.
  • the maximum number of nodes and relative Tolerance reduces the relative error between parameterized coordinates and actual coordinates, and improves the accuracy of parameterization.
  • the rough surface of a pipe with a length of 15m and a diameter of 1.2m was simulated, as shown in Figure 4, with a Hurst index of 0.1 and a fractal dimension D of 2.9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供一种基于分数布朗运动的管道建模方法。方法包括如下步骤:步骤S1、设定初始断裂面参数,初始断裂面参数包括四个角点的初始坐标且z轴的值服从第一高斯分布(S1);步骤S2、对四个角点的初始坐标进行第一次线性插值,得到初始断裂面的四条边的中点坐标及中心点坐标,同时更新第一高斯分布(S2);步骤S3、以步骤S2为基本递归过程,对初始断裂面再进行n -1次线性插值,生成一个节点数为(2n+1) 2、大小为2 n×2 n的目标断裂面,并更新第一高斯分布(S3);步骤S4、根据赫斯特指数确定分形维数,并将分形维数和目标断裂面输入预设的建模算法中,生成三维的管道模型(S4),能够有效的完成管道的建模,提升管道建模的准确性。

Description

基于分数布朗运动的管道建模方法 技术领域
本发明涉及管道分析技术领域,尤其涉及一种基于分数布朗运动的管道建模方法。
背景技术
对管道的进行分析试验,是目前研究管道工程特性的主要方法之一,实际操作时,因为管道实际情况复杂,直接采用原始管道进行试验的难度及成本均很高,性价比较低,现有技术中已经有一些通过计算机建模得到管道粗糙度模型的方法,但这些方法得到模型人工生成的痕迹较重,与真正的原始管道在随机性上差别较大,因此,基于现有建模方法进行试验得到的结果,往往不够准确。
技术问题
本发明的目的在于提供一种基于分数布朗运动的管道建模方法,能够有效的完成管道的建模,提升管道建模的准确性。
技术解决方案
为实现上述目的,本发明提一种基于分数布朗运动的管道建模方法,包括如下步骤:
步骤S1、设定初始断裂面参数,所述初始断裂面参数包括断裂面的四角的节点的坐标以及所述初始断裂面对应的Z轴需服从的第一高斯分布,所述第一高斯分布为均值为零、方差为σ 2的高斯分布M(0,σ 2);
步骤S2、对断裂面的四角的节点的坐标进行第一次线性插值,得到初始断裂面的四条边的中点坐标及中心点坐标,同时更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),其中 根据预设的赫斯特指数和预设的更新公式求的;
步骤S3、以步骤S2为基本递归过程,对初始断裂面再进行n-1次线性插值,生成一个节点数为(2n+1) 2、大小为 的目标断裂面,并更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),其中 根据预设的赫斯特指数和预设的更新公式求的,n为大于1的正整数;
步骤S4、根据赫斯特指数确定分形维数,并将所述分形维数和目标断裂面输入预设的建模算法中,生成三维的管道模型。
可选地,所述预设的更新公式为:
其中H为赫斯特指数,取值范围为0-1。
可选地,根据赫斯特指数确定分形维数方法为D=3-H,其中D为分形维数,H为赫斯特指数。
可选地,所述管道建模在MATLAB软件中完成。
有益效果
本发明的有益效果:本发明提供一种基于分数布朗运动的管道建模方法,包括如下步骤:步骤S1、设定初始断裂面参数,所述初始断裂面参数包括断裂面的四角的节点的坐标以及所述初始断裂面对应的Z轴需服从的第一高斯分布,所述第一高斯分布为均值为零、方差为σ2的高斯分布M(0,σ2);步骤S2、对断裂面的四角的节点的坐标进行第一次线性插值,得到初始断裂面的四条边的中点坐标及中心点坐标,同时更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),其中 根据预设的赫斯特指数和预设的更新公式求的;步骤S3、以步骤S2为基本递归过程,对初始断裂面再进行n-1次线性插值,生成一个节点数为(2n+1) 2、大小为 的目标断裂面,并更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),n为大于1的正整数;步骤S4、根据赫斯特指数确定分形维数,并将所述分形维数和目标断裂面输入预设的建模算法中,生成三维的管道模型,能够有效的完成管道的建模,提升管道建模的准确性。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,图1为本发明的基于分数布朗运动的管道建模方法的步骤S1至步骤S3的示意图;
图2为本发明的基于分数布朗运动的管道建模方法的步骤S4的示意图;
图3为本发明的基于分数布朗运动的管道建模方法的流程图。
本发明的最佳实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1至图3,本发明提供一种基于分数布朗运动的管道建模方法,包括如下步骤:
步骤S1、设定初始断裂面参数,所述初始断裂面参数包括断裂面的四角的节点的坐标以及所述初始断裂面对应的Z坐标需服从的第一高斯分布,所述第一高斯分布为均值为零、方差为σ 2的高斯分布M(0,σ 2)。
具体地,结合图1,在本发明的一些实施例中,所述步骤S1具体包括:假设初始断裂面的构造面积由断裂面的四角的节点的坐标A0、B0、C0和D0确定, Z坐标的值服从N(0,σ2),N(0,σ2)表示均值为零、方差为σ2的高斯分布。
需要说明的是,所述初始断裂面参数设定于一预设的三维坐标系中,其中断裂面的四角的节点的坐标通过X坐标和Y坐标表示,而Z坐标服从上述的第一高斯分布。
步骤S2、对断裂面的四角的节点的坐标进行第一次线性插值,得到初始断裂面的四条边的中点坐标及中心点坐标,同时更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),其中 根据预设的赫斯特指数和预设的更新公式求的。
步骤S3、以步骤S2为基本递归过程,对初始断裂面再进行n-1次线性插值,生成一个节点数为(2n+1) 2、大小为 的目标断裂面,并更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),其中 根据预设的赫斯特指数和预设的更新公式求的,n为大于1的正整数;
具体地,结合图1,在本发明的一些实施例中,所述步骤S2~步骤S3的处理过程包括:
如图1所示,通过分别平均断裂面的四角的节点的坐标和相邻节点的坐标,对每侧B1、C1、D1以及E1的一个中心点A1和四个中点进行线性插值,然后,将N(0, )添加方差为 的随机值,如下所示:
式中,H为赫斯特指数,取值范围为0-1。
采用上述步骤作为基本递归过程,如图2所示对A2、B2、C2、D2和E2的值进行插值,通过从N(0, )中添加方差为 的随机值如下所示:
重复上述过程,并从N(0, )在每次线性插值后生成一个节点数为(2n+1) 2、大小为 的目标断裂面,其中 可以表示为:
也即,所述预设的更新公式为:
其中H为赫斯特指数,取值范围为0-1。
优选地,在本发明的一些实施例H等于0.1。
步骤S4、根据赫斯特指数确定分形维数,并将所述分形维数和目标断裂面输入预设的建模算法中,生成三维的管道模型。
具体地,结合图2所示,分形维数D是描述断裂表面粗糙度的一个重要参数可以用分形特征反映其复杂性和不规则性。一般来说,分形维数D越大,断裂面越粗糙。以往的研究表明,分形维数D与赫斯特指数H可以写成方程式D=3-H,用于构建三维图形。
工业实用性
最终,在本发明的一些实施例中,可以首先通过MATLAB编程方法生成粗糙表面的原始数据,然后使用参数化曲面工具基于有限元分析软件COMSOL调用的fBm进行曲面放样,通过调整最大节点数和相对公差,减小了参数化坐标与实际坐标之间的相对误差,提高参数化的精度。最后,模拟了长15m直径1.2m的管道粗糙表面,如图4所示,赫斯特指数为0.1,分维D为2.9。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (4)

  1. 一种基于分数布朗运动的管道建模方法,其特征在于,包括如下步骤:
    步骤S1、设定初始断裂面参数,所述初始断裂面参数包括断裂面的四角的节点的坐标以及所述初始断裂面对应的Z轴需服从的第一高斯分布,所述第一高斯分布为均值为零、方差为σ 2的高斯分布M(0,σ 2);
    步骤S2、对断裂面的四角的节点的坐标进行第一次线性插值,得到初始断裂面的四条边的中点坐标及中心点坐标,同时更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),其中 根据预设的赫斯特指数和预设的更新公式求的;
    步骤S3、以步骤S2为基本递归过程,对初始断裂面再进行n-1次线性插值,生成一个节点数为(2n+1) 2、大小为 的目标断裂面,并更新第一高斯分布为均值为零、方差为 的高斯分布M (0, ),其中 根据预设的赫斯特指数和预设的更新公式求的,n为大于1的正整数;
    步骤S4、根据赫斯特指数确定分形维数,并将所述分形维数和目标断裂面输入预设的建模算法中,生成三维的管道模型。
  2. 如权利要求1所述的基于分数布朗运动的管道建模方法,其特征在于,所述预设的更新公式为:
    其中H为赫斯特指数,取值范围为0-1。
  3. 如权利要求1所述的基于分数布朗运动的管道建模方法,其特征在于,根据赫斯特指数确定分形维数方法为D=3-H,其中D为分形维数,H为赫斯特指数。
  4. 如权利要求1所述的基于分数布朗运动的管道建模方法,其特征在于,所述管道建模在MATLAB软件中完成。
PCT/CN2022/130262 2022-06-14 2022-11-07 基于分数布朗运动的管道建模方法 WO2023240907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210668274.2A CN115130340A (zh) 2022-06-14 2022-06-14 基于分数布朗运动的管道建模方法
CN202210668274.2 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023240907A1 true WO2023240907A1 (zh) 2023-12-21

Family

ID=83378321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130262 WO2023240907A1 (zh) 2022-06-14 2022-11-07 基于分数布朗运动的管道建模方法

Country Status (2)

Country Link
CN (1) CN115130340A (zh)
WO (1) WO2023240907A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115130340A (zh) * 2022-06-14 2022-09-30 广东粤海水务投资有限公司 基于分数布朗运动的管道建模方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147038A (zh) * 2018-08-21 2019-01-04 北京工业大学 基于三维点云处理的管道三维建模方法
WO2019174142A1 (zh) * 2018-03-14 2019-09-19 山东科技大学 一种多模式的退化过程建模及剩余寿命预测方法
CN110717274A (zh) * 2019-10-11 2020-01-21 哈尔滨工业大学 一种基于分形布朗运动的噪声描述方法
CN113722841A (zh) * 2020-05-25 2021-11-30 中国石油天然气股份有限公司 长输管道三维模型的建立方法及装置
CN115130340A (zh) * 2022-06-14 2022-09-30 广东粤海水务投资有限公司 基于分数布朗运动的管道建模方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019174142A1 (zh) * 2018-03-14 2019-09-19 山东科技大学 一种多模式的退化过程建模及剩余寿命预测方法
CN109147038A (zh) * 2018-08-21 2019-01-04 北京工业大学 基于三维点云处理的管道三维建模方法
CN110717274A (zh) * 2019-10-11 2020-01-21 哈尔滨工业大学 一种基于分形布朗运动的噪声描述方法
CN113722841A (zh) * 2020-05-25 2021-11-30 中国石油天然气股份有限公司 长输管道三维模型的建立方法及装置
CN115130340A (zh) * 2022-06-14 2022-09-30 广东粤海水务投资有限公司 基于分数布朗运动的管道建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN WANG: "The Mathematical Modeling and Parameter Analysis on Fractal Brownian Motion for Simulating the Terrain ", TRANSACTIONS OF SHENYANG LIGONG UNIVERSITY, vol. 28, no. 4, 15 August 2009 (2009-08-15), pages 1 - 5, XP093118197 *

Also Published As

Publication number Publication date
CN115130340A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN116245049B (zh) 节点式非结构网格的边界修正方法、装置、设备及介质
WO2023240907A1 (zh) 基于分数布朗运动的管道建模方法
CN111859645B (zh) 冲击波求解的改进musl格式物质点法
CN111597610A (zh) 利用Dynamo实现水泥工厂BIM设计中的非标准件快速建模的方法
CN114492250A (zh) 基于递归分解的曲面网格生成方法及系统、计算机设备
CN111444619B (zh) 一种注塑模具冷却系统在线分析方法及设备
CN113486429A (zh) 一种基于插值算法的空间汇交结构自动化建造方法
Quagliarella et al. An open-source aerodynamic framework for benchmarking multi-fidelity methods
TWI406189B (zh) 點雲三角網格面構建方法
CN111768435B (zh) 一种应用于零件自动找正的自适应步长点云配正方法
CN111859646A (zh) 一种基于b样条映射函数物质点法的冲击波变步长求解方法
JP2007156604A (ja) 曲面作成方法及び曲面作成プログラム並びに3次元形状処理装置
CN107577899B (zh) 一种岩体随机结构面的三维离散元表征方法
CN112560311A (zh) 一种快速自动提取结构信息并对结构进行分析和优化的方法
CN113821885A (zh) 基于网格自动生成技术的航空发动机叶片流场计算平台
CN113239545A (zh) 一种并联机器人多目标优化设计的高效方法
CN117763927B (zh) 一种几何-网格孪生驱动的仿真模型自动更新方法
CN112632825B (zh) 一种基于有限元超收敛性的静电场光滑有限元数值算法
CN111292422A (zh) 一种基于曲面法线改进网格生成质量的方法
CN110415350A (zh) 一种管道运输工具气动模型构建方法及系统
Zhang et al. Performance-oriented digital twin assembly of high-end equipment: a review
CN117892660B (zh) 一种低速预处理中参考马赫数选取方法及装置
Shih et al. Geometry and mesh generation for high fidelity computational simulations using non-uniform rational B-splines
CN112560358B (zh) 一种基于径向基函数的dsmc计算结果降噪处理方法
CN118095130A (zh) 一种基于cfd的双屏标准温度传感器的数值仿真方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946574

Country of ref document: EP

Kind code of ref document: A1