WO2023240652A1 - 资源确定的方法、装置 - Google Patents

资源确定的方法、装置 Download PDF

Info

Publication number
WO2023240652A1
WO2023240652A1 PCT/CN2022/099625 CN2022099625W WO2023240652A1 WO 2023240652 A1 WO2023240652 A1 WO 2023240652A1 CN 2022099625 W CN2022099625 W CN 2022099625W WO 2023240652 A1 WO2023240652 A1 WO 2023240652A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
candidate
present disclosure
time slot
consecutive
Prior art date
Application number
PCT/CN2022/099625
Other languages
English (en)
French (fr)
Inventor
赵文素
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001871.8A priority Critical patent/CN115245023A/zh
Priority to PCT/CN2022/099625 priority patent/WO2023240652A1/zh
Publication of WO2023240652A1 publication Critical patent/WO2023240652A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method, device, equipment and storage medium for resource determination.
  • the resource selection mechanism of the sidelink (sidelink direct link) of R16 or R17 working in the licensed frequency band does not support the selection of continuous multi-slot resources. It only supports the selection of single time slot resources, and does not support selection. For resources with multiple adjacent time slots, R18 needs to study sidelink work.
  • LBT needs to be performed, but the result of LBT is uncertain. If LBT fails, data cannot be sent on the selected resource, so in order To reduce the impact of LBT failure, you can support the transmission of TB in multiple consecutive time slots after one LBT is successful, such as the repeated transmission of 1 TB in multiple consecutive time slots, or multiple TB in multiple consecutive time slots.
  • the method, device, equipment and storage medium for resource determination proposed by this disclosure can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots, which can improve The convenience of resource determination improves the reliability of data transmission.
  • An embodiment of the present disclosure provides a method for determining resources.
  • the method is executed by a terminal device.
  • the method includes:
  • the first resource Based on the time slot parameter M, determine the first resource, where the time domain length of the first resource is M consecutive time slots, M is a positive integer and M>1, and the first resource is used for the physical side chain The transmission of the path shared channel PSSCH or the physical side link control channel PSCCH.
  • determining the first resource based on the time slot parameter M includes:
  • time slot parameter M sent by the network side device, where the time slot parameter M is used to indicate the number of consecutive transmission time slots for the PSSCH or the PSCCH;
  • random resource selection is performed in the candidate resource set to determine the first resource, where the time slot length of each candidate resource in the candidate resource set is M time slots.
  • the first resource also includes continuous or discrete L subchannel subchannels in the frequency domain
  • the frequency domain resources between adjacent time slots are the same or different, wherein L subCH is a positive integer.
  • the first resource also includes X continuous or discrete comb rule resource block indexes IRB index in the frequency domain, then between the adjacent time slots
  • the starting position and ending position of the frequency domain resources are the same or different, where X is a positive integer.
  • determining the first resource based on the time slot parameter M includes:
  • the first resource is determined from a set of candidate resources, wherein the time domain length of each candidate resource in the set of candidate resources is a single time slot.
  • the first resource is determined from the candidate resource set based on the time slot parameter M, including at least one of the following:
  • time slot parameter M Based on the time slot parameter M, perform multiple resource selections from the candidate resource set to determine the first resource, wherein the time slot length of each selected resource is a single time slot;
  • a resource selection is performed from the candidate resource set to determine the first resource, wherein the time slot length of a selected resource is M time slots.
  • performing multiple resource selections from the candidate resource set based on the time slot parameter M to determine the first resource includes:
  • M consecutive candidate resources corresponding to the time domain are selected from the candidate resource set and used as the first resource.
  • the method further includes:
  • a second candidate resource x is re-selected from the candidate resource set and based on the first The second candidate resource x again selects the first resource from the candidate resource set.
  • selecting M consecutive candidate resources corresponding to the time domain from the candidate resource set and serving as the first resource includes:
  • the method further includes:
  • N is a positive integer less than M
  • the second resource and the third resource are combined into the first resource.
  • the second selection sequence is opposite to the first selection sequence.
  • performing a resource selection from the candidate resource set based on the time slot parameter M to determine the first resource includes:
  • the method further includes:
  • the transmission of the TB is stopped.
  • the method further includes:
  • the first resource does not exist in the candidate resource set, randomly select a fourth resource in the candidate resource set, and the time domain length of the fourth resource is a single time slot;
  • One TB is sent in the single slot.
  • the method further includes:
  • the first resource does not exist in the candidate resource set, select a fifth resource in the candidate set, where the time domain length of the fifth resource is L consecutive L time slots, L is a positive integer, and L is a positive integer less than M.
  • the method further includes:
  • the same TB or different TBs are repeatedly transmitted in the M consecutive time slots or in the consecutive L time slots.
  • Another aspect of the present disclosure provides a method for determining resources.
  • the method is executed by a network side device.
  • the method includes:
  • the method further includes:
  • the resource pool to which the resource to be reported belongs
  • An embodiment of the present disclosure provides a device for determining resources.
  • the device includes:
  • Determining module configured to determine the first resource based on the time slot parameter M, wherein the time domain length of the first resource is M consecutive time slots, M is a positive integer and M>1, and the first resource is For transmission on PSCCH or PSSCH.
  • the device includes:
  • the sending module is used to send the time slot parameter M to the terminal device, where M is a positive integer and M>1.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device performs the method proposed in the embodiment of the above aspect.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The apparatus performs a method as proposed in another aspect of the embodiment.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to perform the method proposed in the embodiment of one aspect.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to perform the method proposed in another embodiment.
  • a computer-readable storage medium provided by an embodiment of another aspect of the present disclosure is used to store instructions. When the instructions are executed, the method proposed by the embodiment of the present disclosure is implemented.
  • a computer-readable storage medium provided by an embodiment of another aspect of the present disclosure is used to store instructions. When the instructions are executed, the method proposed by the embodiment of another aspect is implemented.
  • the first resource is determined based on the time slot parameter M, where the time domain length of the first resource is M consecutive time slots, M is a positive integer and M>1,
  • the first resource is used for the transmission of PSSCH or PSCCH.
  • the time slot parameter M through the time slot parameter M, resources with a time domain length of M consecutive time slots can be selected, solving the problem that continuous multi-time slot resource selection cannot be performed based on the R16 or R17 sidelink resource selection mechanism.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 1 is a schematic diagram of an example of a resource determination method provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a resource determination method provided by another embodiment of the present disclosure.
  • Figure 4 is a schematic diagram illustrating an example of a starting position and an ending position of a resource provided by an embodiment of the present disclosure
  • Figure 5 is a schematic diagram illustrating an example of a starting position and an ending position of a resource provided by an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of an example of an IRB provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of an example of an IRB provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 9 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 10 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 11 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 12 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 13 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 14 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 15 is a schematic diagram of an example of a resource determination method provided by an embodiment of the present disclosure.
  • Figure 16 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 17 is a schematic flowchart of a method for determining a candidate resource subset provided by an embodiment of the present disclosure
  • Figure 18 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 19 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 20 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 21 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 22 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 23 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 24 is a schematic flowchart of a resource determination method provided by yet another embodiment of the present disclosure.
  • Figure 25 is a schematic structural diagram of a resource determination device provided by an embodiment of the present disclosure.
  • Figure 26 is a schematic structural diagram of a resource determination device provided by an embodiment of the present disclosure.
  • Figure 27 is a schematic structural diagram of a resource determination device provided by an embodiment of the present disclosure.
  • Figure 28 is a schematic structural diagram of a resource determination device provided by an embodiment of the present disclosure.
  • Figure 29 is a block diagram of a terminal device provided by an embodiment of the present disclosure.
  • Figure 30 is a block diagram of a network side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • the network elements or network functions involved in the embodiments of the present disclosure can be implemented by independent hardware devices or by software in the hardware devices. This is not limited in the embodiments of the present disclosure.
  • Figure 1 is a schematic diagram of an example of a resource determination method provided by an embodiment of the present disclosure.
  • the transmission block TB in the unlicensed frequency band, in order to reduce the impact of listen before talk (LBT) failure, the transmission block TB can be supported in multiple consecutive times after one LBT success. time slot transmission.
  • the transmission of TB in multiple consecutive time slots can be the continuous transmission of the same TB in multiple time slots.
  • Figure 2 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 2, the method may include the following steps:
  • Step 201 Determine the first resource based on the time slot parameter M, where the time domain length of the first resource is M consecutive time slots, M is a positive integer and M>1, and the first resource is used for physical side links. Transmission of the shared channel PSSCH or the physical side link control channel PSCCH.
  • the terminal device may be a device that provides voice and/or data connectivity to the user.
  • Terminal devices can communicate with one or more core networks via RAN (Radio Access Network).
  • Terminal devices can be IoT terminals, such as sensor devices, mobile phones (or "cellular" phones) and devices with The computer of the Internet of Things terminal, for example, can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access terminal access terminal
  • user device user terminal
  • user agent useragent
  • the terminal device may also be a device of an unmanned aerial vehicle.
  • the terminal device may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected to an external trip computer.
  • the terminal device may also be a roadside device, for example, it may be a street light, a signal light or other roadside device with wireless communication function.
  • R18 needs to study sidelink work, and LBT needs to be performed in the unlicensed frequency band.
  • LBT needs to be performed in the unlicensed frequency band.
  • the same TB or different TBs can be repeatedly transmitted in M consecutive time slots.
  • determine the first resource including:
  • time slot parameter M sent by the network side device, where the time slot parameter M is used to indicate the number of consecutive transmission time slots of PSSCH or PSCCH;
  • random resource selection is performed in the candidate resource set to determine the first resource, where the time slot length of each candidate resource in the candidate resource set is M time slots.
  • the starting position and ending position of the frequency domain resources between adjacent time slots are the same. Or different, where L subCH is a positive integer.
  • the first resource also includes X continuous or discrete comb ruler resource block index IRB index in the frequency domain, then the starting position of the frequency domain resource between adjacent time slots The same as or different from the end position, where X is a positive integer.
  • determining the first resource based on the time slot parameter M includes:
  • the first resource is determined from the candidate resource set, where the time domain length of each candidate resource in the candidate resource set is a single time slot.
  • a single time slot can refer to 1 time slot.
  • the first resource is determined from the candidate resource set, including at least one of the following:
  • time slot parameter M Based on the time slot parameter M, perform multiple resource selections from the candidate resource set to determine the first resource, wherein the time slot length of each selected resource is a single time slot;
  • a resource selection is performed from the candidate resource set to determine the first resource, where the time slot length of a selected resource is M time slots.
  • multiple resource selections are performed from the candidate resource set to determine the first resource, including:
  • M consecutive candidate resources corresponding to the time domain are selected from the candidate resource set and used as the first resource.
  • the method further includes:
  • the second candidate resource x is re-selected from the candidate resource set, and the second candidate resource x is selected from the candidate resource set again based on the second candidate resource x. Select the first resource.
  • M consecutive candidate resources corresponding to the time domain are selected from the candidate resource set and used as the first resource, including:
  • the first order may be in the order of increasing time slots or in the order of decreasing time slots, which is not limited by this disclosure.
  • the method further includes:
  • N consecutive candidate resources corresponding to the time domain selected in the first selection order are obtained and used as the Two resources, where N is a positive integer less than M;
  • the second selection sequence is opposite to the first selection sequence.
  • a resource selection is performed from the candidate resource set to determine the first resource, including:
  • the method further includes:
  • the transmission of the TB is stopped.
  • the method further includes:
  • a fourth resource is randomly selected from the candidate resource set, and the time domain length of the fourth resource is a single time slot;
  • the method further includes:
  • the first resource does not exist in the candidate set, select the fifth resource in the candidate set, where the time domain length of the fifth resource is L consecutive L time slots, L is a positive integer, and L is a positive integer less than M Or a different TB.
  • the method further includes:
  • the same TB or different TBs are repeatedly transmitted in M consecutive time slots or in consecutive L time slots.
  • the first resource is determined based on the time slot parameter M, where the time domain length of the first resource is M consecutive time slots, M is a positive integer and M>1,
  • the first resource is used for the transmission of PSSCH or PSCCH.
  • the time slot parameter M through the time slot parameter M, resources with a time domain length of M consecutive time slots can be selected, solving the problem that continuous multi-time slot resource selection cannot be performed based on the R16 or R17 sidelink resource selection mechanism.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 3 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 3, the method may include the following steps:
  • Step 301 Receive the time slot parameter M sent by the network side device, where the time slot parameter M is used to indicate the number of consecutive transmission time slots of PSSCH or PSCCH;
  • Step 302 Based on the time slot parameter M, perform random resource selection in the candidate resource set to determine the first resource, where the time slot length of each candidate resource in the candidate resource set is M time slots.
  • the first resource also includes continuous or discrete L subCH subchannels in the frequency domain, then the starting position and ending position of the frequency domain resources between adjacent time slots are the same or Different, where L subCH is a positive integer.
  • the subchannel subchannel is a set of consecutive numbers of RBs (resource blocks) used for the transmission of PSCCH or PSSCH.
  • the transmission resources of the sidelink sidelink UE are based on the subchannel. Granular resource allocation.
  • the time slot length of the candidate resource may be, for example, 3 time slots.
  • FIG. 4 is a schematic diagram illustrating an example of a starting position and an ending position of a resource provided by an embodiment of the present disclosure. As shown in Figure 4, the first resource also includes continuous or discrete L subchannel subchannels in the frequency domain, then the starting position and ending position of the frequency domain resource between adjacent time slots are the same.
  • the time slot length of the candidate resource may be, for example, 3 time slots.
  • FIG. 5 is a schematic diagram illustrating an example of a starting position and an ending position of a resource provided by an embodiment of the present disclosure.
  • the first resource also includes continuous or discrete L subchannel subchannels in the frequency domain, so the starting position and ending position of the frequency domain resource between adjacent time slots are different.
  • each candidate resource can correspond to a sub-channel.
  • the first resource also includes X continuous or discrete interlaced resource block (IRB) index index in the frequency domain, then the index between adjacent time slots is The starting position and ending position of the frequency domain resource are the same or different, where X is a positive integer.
  • IRB resource block
  • an Interlaced Resource Block can be introduced in a 5G air interface (NewRadio in Unlicensed Spectrum, NR-U) system operating in a license-free frequency band, That is, two consecutive available resource blocks are separated by M resource blocks.
  • the Physical Resource Block (PRB) it includes can be, for example, ⁇ m, M+m, 2M+m, 3M+m,... ⁇ , where m ⁇ 0,1,...,M -1 ⁇ .
  • the IRB structure is defined for the two sub-carrier intervals of 15kHz and 30kHz, as shown in Table 1.
  • FIG. 6 is a schematic diagram of an IRB provided by the embodiment of the present disclosure.
  • the comb resource block contained in the comb index may be, for example, PRB ⁇ 0,5,10,15,20,25,30,35,40,45 ⁇ .
  • the terminal device performs random resource selection from the candidate resource set based on the time slot parameter M, and determines the first resource.
  • the time domain length of the first resource is M consecutive M time slots, and the terminal device can repeatedly send the same transmission block (TB) in M consecutive M time slots. That is to say, the first resource is used for repeated transmission of the same TB, and can also be used for continuous transmission of M TBs on M time slots.
  • the terminal device when the terminal device obtains the time slot parameter M, the terminal device may also receive at least one of the following parameters to determine the first resource:
  • the resource pool to which the resource to be reported belongs
  • the number of subchannels or IRB index used for PSSCH or PSCCH transmission in a time slot is the number of subchannels or IRB index used for PSSCH or PSCCH transmission in a time slot
  • the terminal device receives the time slot parameter M, the resource pool to which the resource to be reported belongs, the L1 priority, the remaining packet delay budget, and the time slot for PSSCH or PSCCH.
  • the terminal device can determine the candidate resource set to determine the first resource.
  • the parameters received by the terminal device may include, for example, the time slot parameter M, the resource pool to which the resource to be reported belongs, the layer one L1 priority, the remaining packet delay budget, a time The number of subchannels or the number of IRB indexes used for PSSCH or PSCCH transmission in the slot and the resource reservation interval.
  • the terminal device can determine a candidate resource set based on these parameters, perform random resource selection among the candidate resource sets, and determine the first resource.
  • the terminal device can, for example, determine the candidate resource set through sensing and resource exclusion. For example, the terminal device can follow the process of determining the candidate resource set by sidelink in the 5G R16 or R17 international standard R16 or R17.
  • the time slot parameter M sent by the network side device is received, where the time slot parameter M is used to indicate the number of consecutive transmission time slots of PSSCH or PSCCH. Based on the time slot parameter M, it is determined The first resource, M is a positive integer and M>1, and the first resource is used for the transmission of PSSCH or PSCCH.
  • the first resource, M is a positive integer and M>1, and the first resource is used for the transmission of PSSCH or PSCCH.
  • resources with a time domain length of M consecutive time slots can be selected, solving the problem that continuous multi-time slot resource selection cannot be performed based on the R16 or R17 sidelink resource selection mechanism.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 8 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 8, the method may include the following steps:
  • Step S801 Based on the time slot parameter M, determine the first resource from the candidate resource set, where the time domain length of each candidate resource in the candidate resource set is a single time slot.
  • the terminal device can determine the candidate resource set using the process specified in R16 or R17. That is to say, the candidate resource set is the resource set determined by the terminal device through the resource determination method of R16 or R17. .
  • the candidate resource set does not specifically refer to a fixed set. For example, when the number of candidate resources included in the candidate resource set changes, the candidate resource set may also change accordingly.
  • the first resource is determined from the candidate resource set based on the time slot parameter M, where the time domain length of each candidate resource in the candidate resource set is a single time slot.
  • resources with a time domain length of M consecutive time slots can be selected from a set of candidate resources in which the time domain length of each candidate resource is a single time slot, solving the problem that cannot be based on The R16 or R17 sidelink resource selection mechanism selects continuous multi-slot resources.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 9 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 9, the method may include the following steps:
  • Step 901 Based on the time slot parameter M, perform multiple resource selections from the candidate resource set to determine the first resource, where the time slot length of each selected resource is a single time slot.
  • the terminal device can perform multiple resource selections from the candidate resource set.
  • the time slot length of each selected resource is a single time slot, and the length of the selected resource can be M. Continuous resources for time slots.
  • multiple resource selections are performed from the candidate resource set to determine the first resource, where the time slot length of each selected resource is a single time slot.
  • the time slot length of each selected resource in the candidate resource set is a single time slot
  • multiple resource selections can be performed based on the time slot parameter M, and the selection time domain length is M consecutive time slot resources to reduce the situation where continuous multi-time slot resource selection cannot be selected.
  • multiple resource selections are performed to determine the characteristics of the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 10 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 10, the method may include the following steps:
  • Step 1001 Based on the time slot parameter M, perform a resource selection from the candidate resource set to determine the first resource, where the time slot length of a selected resource is M time slots.
  • a resource selection is performed from the candidate resource set to determine the first resource, where the time slot length of a selected resource is M time slots.
  • resources with a time domain length of M consecutive time slots can be selected from the candidate resource set at one time, solving the problem that continuous multi-slot resource selection cannot be performed based on the R16 or R17 sidelink resource selection mechanism.
  • resource selection is performed once to determine the characteristics of the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 11 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 11, the method may include the following steps:
  • Step 1101 Randomly select a first candidate resource x from the candidate resource set
  • Step 1102 Based on the first candidate resource x, select M consecutive candidate resources corresponding to the time domain from the candidate resource set as the first resource.
  • the time domain length of the first candidate resource x is 1 time slot, and the first candidate resource belongs to the resource in the candidate resource set.
  • the terminal device when the terminal device selects the first candidate resource x, it can select M consecutive candidate resources corresponding to the time domain from the candidate resource set based on the first candidate resource x. , and serve as the first resource.
  • a first candidate resource x is randomly selected from the candidate resource set, and based on the first candidate resource x, M consecutive time domain corresponding candidates are selected from the candidate resource set. resources and serve as the first resource.
  • resources with a time domain length of M consecutive M time slots can be selected from the candidate resource set to solve the problem that continuous multi-slot resource selection cannot be performed based on the R16 or R17 sidelink resource selection mechanism.
  • multiple resource selections are performed to determine the characteristics of the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 12 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 12, the method may include the following steps:
  • Step 1201 Randomly select a first candidate resource x from the candidate resource set
  • Step 1202 If the first resource cannot be selected from the candidate resource set based on the first candidate resource x, reselect the second candidate resource x from the candidate resource set, and select the second candidate resource x from the candidate resource set again based on the second candidate resource x. Select the first resource from the resource collection.
  • the time domain length of the first candidate resource x is 1 time slot, and the first candidate resource belongs to the resource in the candidate resource set.
  • the terminal device when the terminal device selects the first candidate resource x, the terminal device can select M consecutive time domain corresponding resources from the candidate resource set based on the first candidate resource x. Candidate resources. If the first resource cannot be selected from the candidate resource set based on the first candidate resource x, the second candidate resource x is re-selected from the candidate resource set, and the second candidate resource x is selected from the candidate resource set again based on the second candidate resource x. Select the first resource.
  • the second of the second candidate resources x is only used to distinguish it from other candidate resources, and does not specifically refer to a fixed candidate resource.
  • the terminal device may select the first resource from the candidate resource set based on the first candidate resource x. If the terminal device does not select the first resource from the candidate resource set, the terminal device, for example, reselects the second candidate resource x from the candidate resource set, and again selects the first resource from the candidate resource set based on the second candidate resource x. resource.
  • the second candidate resource x may be re-selected from the candidate resource set except the first candidate resource x, and the first resource may be selected again from the candidate resource set based on the second candidate resource x.
  • the third candidate resource x is reselected from the candidate resource set, And based on the third candidate resource x, the first resource is selected again from the candidate resource set.
  • the second candidate resource x is re-selected from the candidate resource set, And based on the second candidate resource x, the first resource is selected again from the candidate resource set.
  • the time slot parameter M resources with a time domain length of M consecutive M time slots can be selected from the candidate resource set, solving the problem of inability to select continuous multi-time slot resources based on the R16 or R17 sidelink resource selection mechanism. choice situation.
  • multiple resource selections are performed according to the first selection order.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 13 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 13, the method may include the following steps:
  • Step 1301 Select M consecutive candidate resources corresponding to the time domain from the candidate resource set according to the first selection order and use them as the first resources.
  • the first selection order does not specifically refer to a fixed selection order.
  • the first in the selection sequence is used only to distinguish it from the remaining selection sequences. For example, based on the first candidate resource x, the terminal device may select M consecutive candidate resources corresponding to the time domain from the candidate resource set according to the first selection order and use them as the first resources.
  • the time domain corresponding to the first candidate resource x may be a, for example.
  • the first selection order may be, for example, the selection order from a-1 time domain to a-M+1 time domain.
  • the selection sequence from time domain a-1 to time domain a-M+1 may refer to the selection sequence from time slot a-1 to time slot a-M+1, or from time a-1 to time a-M+1 selection order.
  • the first selection order may be, for example, the selection order from a-1 time domain to a-M+1 time domain.
  • the terminal device may select a candidate resource from the a-1 time domain to a-M+1 time domain respectively in the first selection order from a-1 time domain to a-M+1 time domain to determine the first resource.
  • the terminal device may first select a candidate resource in the a-1 time domain. If the terminal device selects a resource in the a-1 time domain, the terminal device can continue to select a resource in the a-2 time domain according to the first selection sequence. If the terminal device selects a resource in the a-2 time domain, the terminal device can continue to select a resource in the a-3 time domain according to the first selection sequence.
  • the first selection sequence if from the a-1 time domain to Select one resource in the a-M+1 time domain, then all the selected resources can form the first resource, that is, they can form the first resource whose time domain length is M consecutive M time slots.
  • the terminal device may select M consecutive candidate resources corresponding to the time domain from the candidate resource set according to the first selection order and use them as the first resource.
  • the time domain corresponding to the second candidate resource x may be c, for example.
  • the terminal device selects candidate resources corresponding to M consecutive time domains from the candidate resource set in the first selection order from c-1 time domain to c-M+1 time domain, and uses them as the first resources. For example, the terminal device can first select a candidate resource in the c-1 time domain. If the terminal device selects a resource in the c-1 time domain, the terminal device can continue to select a resource in the c-2 time domain according to the first selection sequence. If the terminal device selects a resource in the c-2 time domain, the terminal device can continue to select a resource in the c-3 time domain according to the first selection sequence.
  • the first selection sequence if from the c-1 time domain to If one resource is selected in the c-M+1 time domain, all the selected resources can form the first resource, that is, the first resource can form a first resource with a time domain length of M consecutive time slots.
  • M consecutive candidate resources corresponding to the time domain are selected from the candidate resource set according to the first selection order and used as the first resource.
  • resources with a time domain length of M consecutive M time slots can be selected from the candidate resource set to solve the problem that continuous multi-slot resource selection cannot be performed based on the R16 or R17 sidelink resource selection mechanism.
  • multiple resource selections are performed to determine the characteristics of the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 14 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 14, the method may include the following steps:
  • Step 1401 If candidate resources corresponding to M consecutive time domains cannot be selected in the candidate resource set according to the first selection order, obtain candidate resources corresponding to N consecutive time domains selected in the first selection order, And as the second resource, where N is a positive integer less than M;
  • Step 1402 Based on the first candidate resource x again, select M-N consecutive candidate resources corresponding to the time domain from the candidate resource set according to the second selection order, and use them as third resources;
  • Step 1403 Combine the second resource and the third resource as the first resource.
  • the first selection order does not specifically refer to a fixed order.
  • the first in the first selection sequence is only used to distinguish it from the second selection sequence.
  • the second selection order does not refer to a fixed selection order.
  • the second in the second selection sequence is only used to distinguish it from other selection sequences.
  • the second selection sequence is opposite to the first selection sequence.
  • FIG. 15 is a schematic diagram of an example of a resource determination method provided by an embodiment of the present disclosure.
  • the terminal device can obtain candidate resources corresponding to N consecutive time domains selected in the first selection order, and as the second resource, select consecutive M-N from the candidate resource set in the second selection order.
  • a candidate resource corresponding to a time domain is used as the third resource, and the second resource and the third resource are combined as the first resource.
  • the time domain corresponding to the first candidate resource x may be a, for example.
  • the first selection order may be, for example, the selection order from a-1 time domain to a-M+1 time domain.
  • the terminal device may select candidate resources corresponding to M consecutive time domains according to the first selection order from the a-1 time domain to a-M+1 time domain, for example, from the a-1 time domain to a-M+ respectively. 1Select a resource in the time domain.
  • the terminal device can obtain the candidate resources corresponding to the N consecutive time domains selected in the first selection order as the second resource, and do not select Candidate resources between a-N-1 time domain and a-M+1.
  • the time domain length of the second resource is N consecutive time slots, that is to say, the terminal device can determine N time slots.
  • the terminal device can obtain the difference between M and N, that is, the terminal device can determine M-N consecutive time domains, and the M-N time domains can be, for example, R time domains.
  • the terminal device may select one resource from the a+1 time domain to a+M+1 time domain among the candidate resource sets according to the second selection order from a+1 time domain to a+M-1 time domain.
  • the terminal device can determine consecutive R time slots and use them as the third resource.
  • the terminal device may combine the second resource and the third resource as the first resource, that is, the terminal device may combine consecutive N time slots and consecutive R time slots into consecutive M time slots.
  • the terminal device combines the second resource and the third resource as the first resource, and the terminal device no longer continues resource selection.
  • the terminal device may select resources according to the second selection order from the a+1 time domain to the a+M-1 time domain. For example, among the candidate resource sets, the terminal device You can select a resource from the a+1 time domain to a+M+1 time domain respectively. According to the second selection sequence from time domain a+1 to time domain a+M-1, if there is any candidate resource in time domain a+B that is not selected, the terminal device does not select time domain a-B to a+M +1 candidate resources between time domains.
  • the terminal device may re-randomly select a second candidate resource x from a set of candidate resources other than the first candidate resource x, where the second candidate resource x is different from the first candidate resource x.
  • the terminal device may, for example, based on the second candidate resource x, select M consecutive candidate resources corresponding to the time domain from the candidate resource set in the first selection order and serve as the first resource. If based on the second candidate resource x, M consecutive candidate resources corresponding to time domains cannot be selected in the first selection order among the candidate resource sets, then N consecutive N time domain correspondences selected in the first selection order are obtained.
  • the terminal device may combine the second resource and the third resource as the first resource.
  • the time domain corresponding to the second candidate resource x may be c, for example.
  • the terminal device selects candidate resources corresponding to M consecutive time domains from the candidate resource set in the first selection order from c-1 time domain to c-M+1 time domain, and uses them as the first resources. For example, the terminal device can first select a candidate resource in the c-1 time domain. If the terminal device selects a resource in the c-1 time domain, the terminal device can continue to select a resource in the c-2 time domain according to the first selection sequence. If the terminal device selects a resource in the c-2 time domain, the terminal device can continue to select a resource in the c-3 time domain according to the first selection sequence.
  • the terminal device can obtain the candidate resources corresponding to the N consecutive time domains selected in the first selection order as the second resource, and do not select Candidate resources between c-N-1 time domain and c-M+1 time domain.
  • the time domain length of the second resource is N consecutive time slots.
  • the terminal device can obtain the difference between M and N, that is, the terminal device can determine consecutive M-N time domains. For example, the terminal device may select one resource from the c+1 time domain to the c+M+1 time domain among the candidate resource sets according to the second selection order from the c+1 time domain to the c+M+1 time domain. , the terminal device can determine M-N time slots and use them as third resources. The terminal device may combine the second resource and the third resource as the first resource, that is, the terminal device may combine consecutive N time slots and consecutive M-N time slots into consecutive M time slots.
  • the consecutive M time domain corresponding candidate resources selected according to the first selection order are obtained.
  • select M-N consecutive M-N resources from the candidate resource set according to the second selection order is used as the third resource, and the second resource and the third resource are combined as the first resource.
  • the first resource with a time domain length of M consecutive M time slots can be selected from the candidate resource set, solving the problem of being unable to perform continuous multi-time slots based on the R16 or R17 sidelink resource selection mechanism. Selection of gap resources.
  • multiple resource selections are performed according to the first selection sequence and the second selection sequence to determine the characteristics of the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 16 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 16, the method may include the following steps:
  • Step 1601. Determine multiple candidate resource subsets, where the time domain resources of the candidate resource subsets are continuous, and the length of the time domain continuous is equal to or greater than M time slots;
  • Step 1602 Select any candidate resource subset, and select candidate resources corresponding to M consecutive time domains as the first resource.
  • FIG. 17 is a schematic flowchart of a method for determining a candidate resource subset provided by an embodiment of the present disclosure.
  • the time domain resources of the candidate resource subset may be continuous, for example, and the length of the time domain continuity is equal to or greater than 3 time slots.
  • the terminal device can identify at least one candidate resource in the candidate resource set, and select multiple candidate subsets with a continuous length in the time domain equal to or greater than 3 time slots.
  • the time slot parameter M may be 3, for example. Based on the time slot parameter M, candidate resources corresponding to three consecutive time domains can be selected from the candidate resource subset as the first resource. If there are multiple candidate resources corresponding to M consecutive time domains in the candidate resource subset, the terminal device may randomly select a candidate resource from the multiple M consecutive candidate resources corresponding to the time domain as the first resource.
  • multiple candidate resource subsets are determined, wherein the time domain resources of the candidate resource subsets are continuous, and the length of the time domain continuity is equal to or greater than M time slots, Random resource selection is performed for any candidate resource subset, and candidate resources corresponding to M consecutive time domains are selected as the determined first resources.
  • the time slot parameter M resources with a time domain length of M consecutive M time slots can be selected from the candidate resource set, solving the problem of inability to select continuous multi-time slot resources based on the R16 or R17 sidelink resource selection mechanism. choice situation.
  • resource selection is performed once to determine the characteristics of the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 18 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 18, the method may include the following steps:
  • Step 1801 Determine a first resource that is continuous in time domain and has a length of M time slots in the selection order from long to short in the length of time domain contiguousness included in at least one candidate resource in the candidate resource subset, where the first resource is The time domain length is M time slots.
  • the terminal device can select the first time domain continuation with a length of Candidate resources of M time slots are used as the first resources.
  • the time domain is continuous and the length is M time slots.
  • the first resource wherein the time domain length of the first resource is M time slots.
  • resources with a time domain length of M consecutive M time slots can be selected from the candidate resource set, solving the problem of inability to select continuous multi-time slot resources based on the R16 or R17 sidelink resource selection mechanism. choice situation.
  • resource selection is performed once to determine the characteristics of the first resource.
  • the accuracy of obtaining the candidate resource subset can be improved.
  • Determining the first resource by selecting the consecutive lengths of the time domain included in the resource from long to short can improve the accuracy of determining the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 19 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 19, the method may include the following steps:
  • Step 1901 Determine the first resource according to the selection order from short to long of the time domain continuous lengths included in at least one candidate resource in the candidate resource subset, where the time domain length of the first resource is M time slots.
  • the terminal device can select the first time domain continuity with a length of Candidate resources of M time slots are used as the first resources.
  • the first resource is determined according to the selection order from short to long of the time domain continuous lengths included in at least one candidate resource in the candidate resource subset, where the time domain of the first resource
  • the length is M slots.
  • resources of M consecutive time slots in the time domain can be selected from the candidate resource set, solving the problem that continuous multi-time slot resources cannot be selected based on the R16 or R17 sidelink resource selection mechanism.
  • resource selection is performed once to determine the characteristics of the first resource. By identifying at least one candidate resource in the candidate resource set, the accuracy of obtaining the candidate resource subset can be improved.
  • At least one candidate resource Determining the first resource by selecting the consecutive lengths of the time domain included in the resource from short to long can improve the accuracy of determining the first resource.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • Figure 20 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 20, the method may include the following steps:
  • Step 2001 If the first resource does not exist in the candidate resource set, stop the transmission of the TB.
  • the terminal device may select the first resource from the candidate resource set based on the time slot parameter. If the first resource does not exist in the candidate resource set, the terminal device may stop the transmission of the TB.
  • the transmission of the TB is stopped.
  • the transmission of the TB by determining that if the first resource does not exist in the candidate resource set, the transmission of the TB can be stopped, thereby reducing resource loss caused by the transmission of the same TB.
  • the present disclosure provides a processing method for a "resource determination" situation. If the first resource does not exist in the candidate resource set, the transmission of the TB can be stopped to reduce the loss of resources.
  • Figure 21 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 21, the method may include the following steps:
  • Step 2101. If the first resource does not exist in the candidate resource set, randomly select a fourth resource from the candidate resource set, and the time domain length of the fourth resource is a single time slot;
  • Step 2102 Send one TB in a single time slot.
  • the terminal device may select the first resource from the candidate resource set based on the time slot parameter. If the first resource does not exist in the candidate resource set, the fourth resource is randomly selected in the candidate resource set. Since the time domain length of the fourth resource is a single time slot, that is, the terminal device can randomly select a single time slot in the candidate resource set. , and send one TB in a single slot. When the terminal device randomly selects the fourth resource from the candidate resource set, the terminal device may perform the R16 process, that is, randomly select the fourth resource of a single time slot. That is, the terminal device does not perform transmission for M consecutive time slots.
  • the fourth resource does not specifically refer to a fixed resource.
  • the fourth resource may also change accordingly.
  • the fourth resource is randomly selected in the candidate resource set.
  • the time domain length of the fourth resource is a single time slot, which can be One TB is sent in a single time slot.
  • one TB can be sent in a single time slot to reduce the inability to use the same TB. transmission situation.
  • This disclosure provides a processing method for a "resource determination" situation where one TB can be sent in a single time slot.
  • Figure 22 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 22, the method may include the following steps:
  • Step 2201. If the first resource does not exist in the candidate set, select the fifth resource in the candidate set, where the time domain length of the fifth resource is L consecutive L time slots, L is a positive integer, and L is less than M a positive integer;
  • Step 2202 Repeatly transmit the same TB or different TBs in L consecutive time slots.
  • the fifth resource does not specifically refer to a fixed resource.
  • the fifth resource may also change accordingly.
  • the fifth resource is selected in the candidate set, where the time domain length of the fifth resource is L consecutive L time slots, L is a positive integer, and L is a positive integer less than M.
  • the same TB or different TBs are sent repeatedly in consecutive L time slots.
  • the present disclosure provides a processing method for a "resource determination" situation, which can repeatedly send the same TB or different TBs in consecutive L time slots.
  • Figure 23 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 23, the method may include the following steps:
  • Step 2301 Determine the first resource based on the time slot parameter M, where the time domain length of the first resource is M consecutive time slots, M is a positive integer and M>1;
  • Step 2302 Repeatly transmit the same TB or different TBs in M consecutive time slots.
  • the first resource is determined based on the time slot parameter M, where the time domain length of the first resource is M consecutive time slots, M is a positive integer and M>1,
  • M is a positive integer and M>1
  • the same TB or different TBs are sent repeatedly in M consecutive time slots.
  • the same TB or different TBs can be repeatedly transmitted in M consecutive time slots, thereby reducing the situation where the same TB or different TBs cannot be transmitted.
  • the present disclosure provides a processing method for a "resource determination" situation, which can repeatedly send the same TB or different TBs in M consecutive time slots.
  • Figure 24 is a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 24, the method may include the following steps:
  • Step 2401 Send the time slot parameter M to the terminal device, where M is a positive integer and M>1.
  • the time slot parameter M is sent to the terminal device, where M is a positive integer and M>1.
  • the terminal device can select resources of M consecutive time slots in the time domain, solving the problem of being unable to perform continuous multi-slot resources based on the R16 or R17 sidelink resource selection mechanism. choice situation. .
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination.
  • the method further includes:
  • the resource pool to which the resource to be reported belongs
  • the number of subchannels or IRB index used for PSSCH or PSCCH transmission in a time slot is the number of subchannels or IRB index used for PSSCH or PSCCH transmission in a time slot
  • the network side device may send the time slot parameter M, the resource pool to which the resource to be reported belongs, the L1 priority, the remaining packet delay budget, the time slot used for PSSCH or The number of sub-channels or the number of IRB indexes transmitted by PSCCH and the resource reservation interval are sent to the terminal equipment.
  • the terminal device can receive the time slot parameter M, the resource pool to which the resource to be reported belongs, the L1 priority, the remaining packet delay budget, the number of subchannels or IRB indexes used for PSSCH or PSCCH transmission in a time slot and the resource reservation. interval, the terminal device may determine a set of candidate resources to determine the first resource.
  • Figure 25 is a schematic structural diagram of a resource determination device provided by an embodiment of the present disclosure. As shown in Figure 25, the device 2500 may include:
  • the determination module 2501 is configured to determine the first resource based on the time slot parameter M, where the time domain length of the first resource is M consecutive M time slots, M is a positive integer and M>1, and the first resource is used for PSSCH or Transmission of PSCCH.
  • the first resource is determined based on the time slot parameter M through the determination module, where the time domain length of the first resource is M consecutive M time slots, M It is a positive integer and M>1, and the first resource is used for the transmission of PSSCH or PSCCH.
  • the time slot parameter M through the time slot parameter M, resources with a time domain length of M consecutive time slots can be selected, solving the problem that continuous multi-time slot resource selection cannot be performed based on the R16 or R17 sidelink resource selection mechanism.
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination and improve the reliability of data transmission.
  • the determination module 2501 is configured to determine the first resource based on the time slot parameter M, specifically for:
  • time slot parameter M sent by the network side device, where the time slot parameter M is used to indicate the number of consecutive transmission time slots of PSSCH or PSCCH;
  • random resource selection is performed in the candidate resource set to determine the first resource, where the time slot length of each candidate resource in the candidate resource set is M time slots.
  • the frequency domain resource starting positions between adjacent time slots and The end positions are the same or different, where L subCH is a positive integer.
  • the first resource also includes X continuous or discrete comb rule resource block indexes IRB index in the frequency domain, then the frequency domain resources between adjacent time slots
  • the starting position and the ending position are the same or different, where X is a positive integer.
  • the determination module 2501 is configured to determine the first resource based on the time slot parameter M, specifically for:
  • the first resource is determined from the candidate resource set, where the time domain length of each candidate resource in the candidate resource set is a single time slot.
  • the determination module 2501 is configured to determine the first resource from the candidate resource set based on the time slot parameter M, including at least one of the following:
  • time slot parameter M Based on the time slot parameter M, perform multiple resource selections from the candidate resource set to determine the first resource, wherein the time slot length of each selected resource is a single time slot;
  • a resource selection is performed from the candidate resource set to determine the first resource, where the time slot length of a selected resource is M time slots.
  • the determination module 2501 is configured to perform multiple resource selections from the candidate resource set based on the time slot parameter M to determine the first resource, specifically for:
  • M consecutive candidate resources corresponding to the time domain are selected from the candidate resource set and used as the first resource.
  • the determining module 2501 is also used to:
  • the second candidate resource x is re-selected from the candidate resource set, and the second candidate resource x is selected from the candidate resource set again based on the second candidate resource x. Select the first resource.
  • the determination module 2501 is configured to select M consecutive candidate resources corresponding to the time domain from the candidate resource set and serve as the first resource, specifically for:
  • the determining module 2501 is also used to:
  • N consecutive candidate resources corresponding to the time domain selected in the first selection order are obtained and used as the Two resources, where N is a positive integer less than M;
  • the second selection sequence is opposite to the first selection sequence.
  • the determination module 2501 is configured to perform a resource selection from the candidate resource set based on the time slot parameter M to determine the first resource, specifically for:
  • Figure 26 is a schematic structural diagram of a resource determination device provided by an embodiment of the present disclosure.
  • the device 2500 may also include a stop module 2502, Used to stop the transmission of TB if the first resource does not exist in the candidate resource set.
  • Figure 27 is a schematic structural diagram of a device for resource determination provided by an embodiment of the present disclosure.
  • the device 2500 may also include a sending module 2503, Used to randomly select a fourth resource from the candidate resource set if the first resource does not exist in the candidate resource set, and the time domain length of the fourth resource is a single time slot;
  • the determining module 2501 is also used to:
  • the first resource does not exist in the candidate set, select the fifth resource in the candidate set, where the time domain length of the fifth resource is L consecutive L time slots, L is a positive integer, and L is a positive integer less than M .
  • the sending module 2503 is also used to:
  • the same TB or different TBs are repeatedly transmitted in M consecutive time slots or in consecutive L time slots.
  • Figure 28 is a schematic structural diagram of a resource determination device provided by an embodiment of the present disclosure. As shown in Figure 28, the device 2800 may include:
  • the sending module 2801 is used to send the time slot parameter M to the terminal device, where M is a positive integer and M>1.
  • the time slot parameter M is sent to the terminal device through the sending module, where M is a positive integer and M>1.
  • the terminal device can select resources of M consecutive time slots in the time domain, solving the problem of being unable to perform continuous multi-slot resources based on the R16 or R17 sidelink resource selection mechanism. choice situation. .
  • This disclosure provides a processing method for a "resource determination" situation, which can support the selection of continuous multi-slot resources during resource selection to determine resources with a time domain length of M consecutive time slots. Improve the convenience of resource determination.
  • the sending module 2801 is also configured to send at least one of the following parameters to the terminal device, where the terminal device is used to determine the candidate resource set based on at least one parameter:
  • the resource pool to which the resource to be reported belongs
  • the number of subchannels or IRB index used for PSSCH or PSCCH transmission in a time slot is the number of subchannels or IRB index used for PSSCH or PSCCH transmission in a time slot
  • FIG. 29 is a block diagram of a terminal device UE2900 provided by an embodiment of the present disclosure.
  • UE2900 can be a mobile phone, computer, digital broadcast terminal device, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • UE 2900 may include at least one of the following components: a processing component 2902, a memory 2904, a power supply component 2906, a multimedia component 2908, an audio component 2910, an input/output (I/O) interface 2912, a sensor component 2914, and a communication component. 2916.
  • Processing component 2902 generally controls the overall operations of UE 2900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2902 may include at least one processor 2920 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 2902 may include at least one module that facilitates interaction between processing component 2902 and other components. For example, processing component 2902 may include a multimedia module to facilitate interaction between multimedia component 2908 and processing component 2902.
  • Memory 2904 is configured to store various types of data to support operations at UE 2900. Examples of this data include instructions for any application or method operating on the UE2900, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 2904 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 2906 provides power to various components of UE 2900.
  • Power component 2906 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power to UE 2900.
  • Multimedia component 2908 includes a screen that provides an output interface between the UE 2900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes at least one touch sensor to sense touches, slides, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding operation, but also detect the wake-up time and pressure related to the touch or sliding operation.
  • multimedia component 2908 includes a front-facing camera and/or a rear-facing camera. When the UE2900 is in an operating mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 2910 is configured to output and/or input audio signals.
  • audio component 2910 includes a microphone (MIC) configured to receive external audio signals when UE 2900 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 2904 or sent via communication component 2916.
  • audio component 2910 also includes a speaker for outputting audio signals.
  • the I/O interface 2912 provides an interface between the processing component 2902 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 2914 includes at least one sensor for providing various aspects of status assessment for UE 2900 .
  • the sensor component 2914 can detect the open/closed state of the device 2900, the relative positioning of components, such as the display and keypad of the UE2900, the sensor component 2914 can also detect the position change of the UE2900 or a component of the UE2900, the user Presence or absence of contact with the UE2900, UE2900 orientation or acceleration/deceleration and temperature changes of the UE2900.
  • Sensor assembly 2914 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2914 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2916 is configured to facilitate wired or wireless communication between UE 2900 and other devices.
  • UE2900 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 2916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 2916 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • UE 2900 may be configured by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic component implementation for executing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic component implementation for executing the above method.
  • Figure 30 is a block diagram of a network side device 3000 provided by an embodiment of the present disclosure.
  • the network side device 3000 may be provided as a network side device.
  • the network side device 3000 includes a processing component 3022, which further includes at least one processor, and a memory resource represented by a memory 3032 for storing instructions, such as application programs, that can be executed by the processing component 3022.
  • the application program stored in memory 3032 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 3022 is configured to execute instructions to perform any of the foregoing methods applied to the network side device, for example, the method shown in Figure 24.
  • the network side device 3000 may also include a power supply component 3026 configured to perform power management of the network side device 3000, a wired or wireless network interface 3050 configured to connect the network side device 3000 to the network, and an input/output (I/O). O) Interface 3058.
  • the network side device 3000 can operate based on an operating system stored in the memory 3032, such as Windows Server TM, Mac OS X TM, Unix TM, Linux TM, Free BSD TM or similar.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of network side equipment and UE respectively.
  • the network side device and the UE may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of network side equipment and UE respectively.
  • the network side device and the UE may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module may implement the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiment), a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device may be a network device, or may be a terminal device (such as the terminal device in the foregoing method embodiment), or may be a chip, chip system, or processor that supports the network device to implement the above method, or may be a terminal device that supports A chip, chip system, or processor that implements the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • a communications device may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor, etc.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control and execute communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program processes data for a computer program.
  • the communication device may also include one or more memories, on which a computer program may be stored, and the processor executes the computer program, so that the communication device performs the method described in the above method embodiment.
  • data may also be stored in the memory.
  • the communication device and the memory can be provided separately or integrated together.
  • the communication device may also include a transceiver and an antenna.
  • the transceiver can be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver can include a receiver and a transmitter.
  • the receiver can be called a receiver or a receiving circuit, etc., and is used to implement the receiving function;
  • the transmitter can be called a transmitter or a transmitting circuit, etc., and is used to implement the transmitting function.
  • one or more interface circuits may also be included in the communication device.
  • Interface circuitry is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to cause the communication device to perform the method described in the above method embodiment.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiment): the processor is configured to execute the method shown in any one of Figures 2 to 23.
  • the communication device is a network-side device: the processor is used to execute the method shown in Figure 24.
  • a transceiver for implementing receiving and transmitting functions may be included in the processor.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor, which can cause the communication device to perform the method described in the above method embodiment.
  • the computer program may be embedded in the processor, in which case the processor may be implemented in hardware.
  • the communication device may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiment), but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited to limits.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a system on a chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be multiple.
  • the chip also includes a memory for storing necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种资源确定的方法、装置、设备及存储介质,属于通信技术领域。该方法包括基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且M>1,第一资源用于物理侧边链路共享信道PSSCH或者物理侧边链路控制信道PSCCH的发送。本公开针对一种"资源确定"这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。

Description

资源确定的方法、装置 技术领域
本公开涉及通信技术领域,尤其涉及一种资源确定的方法、装置、设备及存储介质。
背景技术
在通信系统中,R16或R17的工作在授权频段的sidelink(侧行直连链路)的资源选择机制不支持连续的多时隙资源的选择,只支持选择单个时隙的资源,而且不支持选择相邻的多个时隙的资源,R18需要研究sidelink工作,在非授权频段下,需要进行LBT,但是LBT的结果是不确定的,LBT失败,则无法在选择的资源上发送数据,所以为了减小LBT失败的带来的影响,可以在1次LBT成功后,支持TB在连续的多个时隙的传输,如1个TB在连续的多个时隙的重复传输,或者多个TB在连续的多个时隙传输,这样可以减小LBT失败的带来的影响,提高了数据传输的可靠性。因此,亟需一种“资源确定”的方法,在资源选择时,可以支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
发明内容
本公开提出的一种资源确定的方法、装置、设备及存储介质,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
本公开一方面实施例提出的一种资源确定的方法,所述方法由终端设备执行,所述方法包括:
基于时隙参数M,确定第一资源,其中,所述第一资源的时域长度为连续的M个时隙,M为正整数且M>1,所述第一资源用于物理侧边链路共享信道PSSCH或者物理侧边链路控制信道PSCCH的发送。
可选地,在本公开的一个实施例之中,所述基于时隙参数M,确定第一资源,包括:
接收网络侧设备发送的时隙参数M,其中,所述时隙参数M用于指示所述PSSCH或者所述PSCCH连续发送时隙的数量;
基于所述时隙参数M,在候选资源集合中进行随机资源选择,确定所述第一资源,其中,所述候选资源集合中的每个候选资源的时隙长度是M个时隙。
可选地,在本公开的一个实施例之中,其中,所述第一资源还包括频域上连续或者离散的L subCH个子信道subchannel,则相邻的所述时隙之间的频域资源起始位置和结束位置相同或者不同,其中,所述L subCH为正整数。
可选地,在本公开的一个实施例之中,其中,所述第一资源还包括频域上连续或者离散的X个梳尺资源块索引IRB index,则相邻的所述时隙之间的频域资源起始位置和结束位置相同或者不同,其中,X为正整数。
可选地,在本公开的一个实施例之中,所述基于时隙参数M,确定第一资源,包括:
基于所述时隙参数M,从候选资源集合中确定所述第一资源,其中,所述候选资源集合中每个候选资源的时域长度是单个时隙。
可选地,在本公开的一个实施例之中,所述基于时隙参数M,从候选资源集合中确定第一资源,包括以下至少一种:
基于所述时隙参数M,从所述候选资源集中执行多次资源选择,以确定所述第一资源,其中,每次选择资源的时隙长度为单个时隙;
基于所述时隙参数M,从所述候选资源集中执行一次资源选择,以确定所述第一资源,其中,一次选择资源的时隙长度为M个时隙。
可选地,在本公开的一个实施例之中,所述基于所述时隙参数M,从所述候选资源集中执行多次资源选择,以确定所述第一资源,包括:
从所述候选资源集合中随机选择一个第一候选资源x;
基于所述第一候选资源x,从所述候选资源集合之中选择连续的M个时域对应的候选资源,并作为所述第一资源。
可选地,在本公开的一个实施例之中,所述方法还包括:
如果基于所述第一候选资源x,未能从所述候选资源集合之中选择到所述第一资源,则在所述候选资源集合之中重新选择第二候选资源x,并基于所述第二候选资源x再次从所述候选资源集合之中选择所述第一资源。
可选地,在本公开的一个实施例之中,所述从所述候选资源集合之中选择连续的M个时域对应的候选资源,并作为所述第一资源,包括:
从所述候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为所述第一资源。
可选地,在本公开的一个实施例之中,所述方法还包括:
如果在所述候选资源集合之中未能按照所述第一选择顺序选择到连续的M个时域对应的候选资源,则获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,其中,N为小于M的正整数;
再次基于所述第一候选资源x,从所述候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源;
将所述第二资源和所述第三资源合并作为所述第一资源。
可选地,在本公开的一个实施例之中,所述第二选择顺序与所述第一选择顺序方向相反。
可选地,在本公开的一个实施例之中,所述基于所述时隙参数M,从所述候选资源集中执行一次资源选择,以确定所述第一资源,包括:
确定多个候选资源子集,其中,所述候选资源子集的时域资源为连续的,且为时域连续的长度等于或者大于所述M个时隙;
对任一候选资源子集进行选择,选择连续的M个时域对应的候选资源,作为所述第一资源。
可选地,在本公开的一个实施例之中,所述方法还包括:
如果候选资源集合中未存在所述第一资源,则停止TB的传输。
可选地,在本公开的一个实施例之中,所述方法还包括:
如果候选资源集合中未存在所述第一资源,则在所述候选资源集合中随机选择第四资源,所述第四资源的时域长度为单个时隙;
在所述单个时隙中发送一个TB。
可选地,在本公开的一个实施例之中,所述方法还包括:
如果候选资源集合中未存在所述第一资源,则在所述候选集合中选择第五资源,其中,所述第五资源的时域长度为连续的L个时隙,L为正整数,且L为小于M的正整数。
可选地,在本公开的一个实施例之中,所述方法还包括:
在所述连续的M个时隙中或者在所述连续的L个时隙中重复发送同一个TB或者不同的TB。
本公开另一方面实施例提出的一种资源确定的方法,所述方法由网络侧设备执行,所述方法包括:
发送时隙参数M至终端设备,其中,M为正整数且M>1。
可选地,在本公开的一个实施例之中,所述方法还包括:
发送以下至少一个参数至所述终端设备,其中,所述终端设备用于根据所述至少一个参数确定候选资源集合:
将要报告的资源所属的资源池;
层一L1优先级;
剩余数据包延迟预算;
一个时隙中用于所述PSSCH或者所述PSCCH传输的子信道数或者IRB index数目;
资源预留间隔。
本公开一方面实施例提出的一种资源确定的装置,所述装置包括:
确定模块,用于基于时隙参数M,确定第一资源,其中,所述第一资源的时域长度为连续的M个时隙,M为正整数且M>1,所述第一资源用于PSCCH或者PSSCH的发送。
本公开另一方面实施例提出的一种资源确定的装置,所述装置包括:
发送模块,用于发送时隙参数M至终端设备,其中,M为正整数且M>1。
本公开又一方面实施例提出的一种终端设备,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种网络侧设备,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开实施例之中,基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且M>1,第一资源用于PSSCH或者PSCCH的发送。在本公开实施例之中,通过时隙参数M,可以选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的一种资源确定的方法的举例示意图;
图2为本公开一个实施例所提供的一种资源确定的方法的流程示意图;
图3为本公开另一个实施例所提供的一种资源确定的方法的流程示意图;
图4为本公开实施例所提供的一种资源起始位置和结束位置的举例示意图;
图5为本公开实施例所提供的一种资源起始位置和结束位置的举例示意图;
图6为本公开实施例所提供的一种IRB的举例示意图
图7为本公开实施例所提供的一种IRB的举例示意图;
图8为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图9为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图10为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图11为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图12为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图13为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图14为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图15为本公开实施例所提供的一种资源确定的方法的举例示意图;
图16为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图17为本公开实施例所提供的一种候选资源子集确定方法的流程示意图;
图18为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图19为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图20为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图21为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图22为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图23为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图24为本公开又一个实施例所提供的一种资源确定的方法的流程示意图;
图25为本公开一个实施例所提供的一种资源确定的装置的结构示意图;
图26为本公开一个实施例所提供的一种资源确定的装置的结构示意图;
图27为本公开一个实施例所提供的一种资源确定的装置的结构示意图;
图28为本公开一个实施例所提供的一种资源确定的装置的结构示意图;
图29是本公开一个实施例所提供的一种终端设备的框图;
图30是本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本公开实施例中涉及的网元或是网络功能,其既可以是独立的硬件设备实现,也可以通过硬件设备中的软件实现,本公开实施例中并不对此做出限定。
图1为本公开一个实施例所提供的一种资源确定的方法的举例示意图。如图1所示,在非授权频段下,为了减小先听后说(listen before talk,LBT)失败的带来的影响,可以在1次LBT成功后,支持传输块TB在连续的多个时隙的传输。TB在连续的多个时隙的传输,可以是同一个TB在多个时隙的连续传输,但要支持TB在连续的多时隙的发送,则需要为同一个TB选择连续的多个资源,例如可以是时域上连续的M个资源。
下面参考附图对本公开实施例所提供的一种资源确定的方法、装置、设备及存储介质进行详细描述。
图2为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图2所示,该方法可以包括以下步骤:
步骤201、基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且M>1,第一资源用于物理侧边链路共享信道PSSCH或者物理侧边链路控制信道PSCCH的发送。
需要说明的是,在本公开的一个实施例之中,终端设备可以是指向用户提供语音和/或数据连通性的设备。终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,终端设备可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,终端设备也可以是无人飞行器的设备。或者,终端设备也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,终端设备也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,R18需要研究sidelink工作,在非授权频段下,需要进行LBT。为了减小LBT失败的带来的影响,在1次LBT成功后,对于PSSCH或者PSCCH的连续发送,可以在连续的M个时隙中重复发送同一个TB或者不同的TB。
基于时隙参数M,确定第一资源,包括:
接收网络侧设备发送的时隙参数M,其中,时隙参数M用于指示PSSCH或者PSCCH连续发送时隙的数量;
基于时隙参数M,在候选资源集合中进行随机资源选择,确定第一资源,其中,候选资源集合中的每个候选资源的时隙长度是M个时隙。
以及,在本公开的一个实施例中,其中,第一资源还包括频域上连续或者离散的L subCH个子信道subchannel,则相邻的时隙之间的频域资源起始位置和结束位置相同或者不同,其中,L subCH为正整数。
以及,在本公开的一个实施例中,其中,第一资源还包括频域上连续或者离散的X个梳尺资源块索引IRB index,则相邻的时隙之间的频域资源起始位置和结束位置相同或者不同,其中,X为正整数。
以及,在本公开的一个实施例中,基于时隙参数M,确定第一资源,包括:
基于时隙参数M,从候选资源集合中确定第一资源,其中,候选资源集合中每个候选资源的时域长度是单个时隙。其中,单个时隙可以指1个时隙。
以及,在本公开的一个实施例中,基于时隙参数M,从候选资源集合中确定第一资源,包括以下至少一种:
基于时隙参数M,从候选资源集中执行多次资源选择,以确定第一资源,其中,每次选择资源的时隙长度为单个时隙;
基于时隙参数M,从候选资源集中执行一次资源选择,以确定第一资源,其中,一次选择资源的时隙长度为M个时隙。
示例地,在本公开的一个实施例中,基于时隙参数M,从候选资源集中执行多次资源选择,以确定第一资源,包括:
从候选资源集合中随机选择一个第一候选资源x;
基于第一候选资源x,从候选资源集合之中选择连续的M个时域对应的候选资源,并作为第一资源。
进一步地,在本公开的一个实施例中,该方法还包括:
如果基于第一候选资源x,未能从候选资源集合之中选择到第一资源,则在候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。
进一步地,在本公开的一个实施例中,从候选资源集合之中选择连续的M个时域对应的候选资源,并作为第一资源,包括:
从候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。
该第一顺序可以是按照时隙递增的顺序或时隙递减的顺序,本公开不做限定。
进一步地,在本公开的一个实施例中,该方法还包括:
如果在候选资源集合之中未能按照第一选择顺序选择到连续的M个时域对应的候选资源,则获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,其中,N为小于M的正整数;
再次基于第一候选资源x,从候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源;
将第二资源和第三资源合并作为第一资源。
进一步地,在本公开的一个实施例中,第二选择顺序与第一选择顺序方向相反。
进一步地,在本公开的一个实施例中,基于时隙参数M,从候选资源集中执行一次资源选择,以确定第一资源,包括:
确定多个候选资源子集,其中,候选资源子集的时域资源为连续的,且为时域连续的长度等于或者大于M个时隙;
对任一候选资源子集进行选择,选择连续的M个时域对应的候选资源,作为第一资源。
示例地,在本公开的一个实施例中,该方法还包括:
如果候选资源集合中未存在第一资源,则停止TB的传输。
进一步地,在本公开的一个实施例中,该方法还包括:
如果候选资源集合中未存在第一资源,则在候选资源集合中随机选择第四资源,第四资源的时域长度为单个时隙;
在单个时隙中发送一个TB。
进一步地,在本公开的一个实施例中,该方法还包括:
如果候选集合中未存在第一资源,则在候选集合中选择第五资源,其中,第五资源的时域长度为连续的L个时隙,L为正整数,且L为小于M的正整数或者不同的TB。
进一步地,在本公开的一个实施例中,该方法还包括:
在连续的M个时隙中或者在连续的L个时隙中重复发送同一个TB或者不同的TB。
综上所述,在本公开实施例之中,基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且M>1,第一资源用于PSSCH或者PSCCH的发送。在本公开实施例之中,通过时隙参数M,可以选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图3为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图3所示,该方法可以包括以下步骤:
步骤301、接收网络侧设备发送的时隙参数M,其中,时隙参数M用于指示PSSCH或者PSCCH连续发送时隙的数量;
步骤302、基于时隙参数M,在候选资源集合中进行随机资源选择,确定第一资源,其中,候选资源集合中的每个候选资源的时隙长度是M个时隙。
其中,在本公开的一个实施例之中,第一资源还包括频域上连续或者离散的L subCH个子信道subchannel,则相邻的时隙之间的频域资源起始位置和结束位置相同或者不同,其中,L subCH为正整数。
以及,在本公开的一个实施例之中,子信道subchannel是含有连续数目的RB(资源块)集合,用于PSCCH或PSSCH的传输,侧行链路sidelink UE的传输资源,是以子信道为粒度进行资源分配的。
示例地,在本公开的一个实施例之中,候选资源的时隙长度例如可以是3个时隙。图4为本公开实施例所提供的一种资源起始位置和结束位置的举例示意图。如图4所示,第一资源还包括频域上连续或者离散的L subCH个子信道subchannel,则相邻的时隙之间的频域资源起始位置和结束位置相同。
示例地,在本公开的一个实施例之中,候选资源的时隙长度例如可以是3个时隙。图5为本公开实施例所提供的一种资源起始位置和结束位置的举例示意图。如图5所示,第一资源还包括频域上连续或者离散的L subCH个子信道subchannel,则相邻的时隙之间的频域资源起始位置和结束位置不同。其中,每个候选资源可以对应一个子信道。
示例地,在本公开的一个实施例之中,第一资源还包括频域上连续或者离散的X个梳尺资源块(Interlaced  Resource Block,IRB)索引index,则相邻的时隙之间的频域资源起始位置和结束位置相同或者不同,其中,X为正整数。
示例地,在本公开的一个实施例之中,在工作于免许可频段的5G空中接口(NewRadio in Unlicensed Spectrum,NR-U)系统中可以引入了梳尺资源块(Interlaced Resource Block,IRB),即连续的两个可用资源块间隔M个资源块。对于IRB索引m,其包括的物理资源块(Physical Resource Block,PRB)例如可以为{m,M+m,2M+m,3M+m,…},其中m∈{0,1,…,M-1}。在NR-U系统中,针对15kHz和30kHz两种子载波间隔分别定义了IRB结构,具体可以如表1所示。
表1
μ M
0 10
1 5
示例地,在本公开的一个实施例之中,图6为本公开实施例所提供的一种IRB的举例示意图。如图6所示,子载波间隔(sub-carrierspace,SCS)例如可以是30kHz,即SCS=30kHz,M=5时,共有5个梳尺索引。对于一个梳尺索引,即IRB索引0,该梳尺索引中含有梳尺资源块例如可以为PRB{0,5,10,15,20,25,30,35,40,45}。图7为本公开实施例所提供的一种IRB的举例示意图。如图7所示,SCS=15kHz,M=10。
示例地,在本公开的一个实施例之中,终端设备基于时隙参数M,在候选资源集合中进行随机资源选择,确定第一资源。第一资源的时域长度为连续的M个时隙,终端设备可以在连续的M个时隙中重复发送同一个传输块(transmission block,TB)。也就是说,第一资源用于同一个TB的重复发送,也可以用于M个TB在M个时隙上的连续发送。
示例地,在本公开的一个实施例之中,当终端设备获取到时隙参数M时,终端设备还可以接收以下至少一个参数以确定第一资源:
将要报告的资源所属的资源池;
层一L1优先级;
剩余数据包延迟预算;
一个时隙中用于PSSCH或者PSCCH传输的子信道数或者IRB index数目;
资源预留间隔。
示例地,在本公开的一个实施例之中,终端设备接收到时隙参数M、将要报告的资源所属的资源池、L1优先级、剩余数据包延迟预算、一个时隙中用于PSSCH或者PSCCH传输的子信道数或者IRB index数目和资源预留间隔时,终端设备可以确定候选资源集合,以确定第一资源。
示例地,在本公开的一个实施例之中,终端设备接收到的参数例如可以包括时隙参数M、将要报告的资源所属的资源池、层一L1优先级、剩余数据包延迟预算、一个时隙中用于PSSCH或者PSCCH传输的子信道数或者IRB index数目以及资源预留间隔。终端设备基于这些参数可以确定候选资源集合,并在候选资源集合中进行随机资源选择,可以确定第一资源。终端设备确定候选资源集合时终端设备例如可以通过监听(sensing)和资源排除来确定的候选资源集合,例如可以沿用5G R16或R17国际标准R16或R17中sidelink确定候选资源集合的过程。
综上所述,在本公开实施例之中,接收网络侧设备发送的时隙参数M,其中,时隙参数M用于指示PSSCH或者PSCCH连续发送时隙的数量,基于时隙参数M,确定第一资源,M为正整数且M>1,第一资源用于PSSCH或者PSCCH的发送。在本公开实施例之中,通过时隙参数M,可以选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图8为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图8所示,该方法可以包括以下步骤:
步骤S801,基于时隙参数M,从候选资源集合中确定第一资源,其中,候选资源集合中每个候选资源的时域长度是单个时隙。
其中,在本公开的一个实施例之中,终端设备可以采用R16或R17规定的过程确定候选资源集合,也就是说,该候选资源集合是终端设备通过R16或R17的资源确定方法确定的资源集合。该候选资源集合并不特指某一固定集合。例如,当候选资源集合包括的候选资源的数量发生变化时,该候选资源集合也可以相应变化。
综上所述,在本公开实施例之中,基于时隙参数M,从候选资源集合中确定第一资源,其中,候选资源集合中每个候选资源的时域长度是单个时隙。在本公开实施例之中,通过时隙参数M,可以在每个候选资源的时域长度是 单个时隙的候选资源集合中选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图9为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图9所示,该方法可以包括以下步骤:
步骤901、基于时隙参数M,从候选资源集中执行多次资源选择,以确定第一资源,其中,每次选择资源的时隙长度为单个时隙。
其中,在本公开的一个实施例之中,基于时隙参数M,终端设备可以从候选资源集中执行多次资源选择,每次选择资源的时隙长度为单个时隙,可以选择出长度为M个时隙的连续资源。
综上所述,在本公开实施例之中,基于时隙参数M,从候选资源集中执行多次资源选择,以确定第一资源,其中,每次选择资源的时隙长度为单个时隙。在本公开实施例之中,由于在候选资源集合中每次选择资源的时隙长度为单个时隙,因此,可以基于时隙参数M执行多次资源选择,选择时域长度为连续的M个时隙的资源,减少无法选择连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明执行多次资源选择,确定第一资源的特征。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图10为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图10所示,该方法可以包括以下步骤:
步骤1001、基于时隙参数M,从候选资源集中执行一次资源选择,以确定第一资源,其中,一次选择资源的时隙长度为M个时隙。
综上所述,在本公开实施例之中,基于时隙参数M,从候选资源集中执行一次资源选择,以确定第一资源,其中,一次选择资源的时隙长度为M个时隙。在本公开实施例之中,可以在候选资源集合中一次选择出时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明执行一次资源选择,确定第一资源的特征。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图11为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图11所示,该方法可以包括以下步骤:
步骤1101、从候选资源集合中随机选择一个第一候选资源x;
步骤1102、基于第一候选资源x,从候选资源集合之中选择连续的M个时域对应的候选资源,并作为第一资源。
其中,在本公开的一个实施例之中,第一候选资源x的时域长度为1个时隙,该第一候选资源属于候选资源集合中的资源。
示例地,在本公开的一个实施例之中,当终端设备选择到第一候选资源x时,可以基于第一候选资源x,从候选资源集合之中选择连续的M个时域对应的候选资源,并作为第一资源。
综上所述,在本公开实施例之中,从候选资源集合中随机选择一个第一候选资源x,基于第一候选资源x,从候选资源集合之中选择连续的M个时域对应的候选资源,并作为第一资源。在本公开实施例之中,可以在候选资源集合中选择出时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明按照第一选择顺序,执行多次资源选择,确定第一资源的特征。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图12为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图12所示,该方法可以包括以下步骤:
步骤1201、从候选资源集合中随机选择一个第一候选资源x;
步骤1202、如果基于第一候选资源x,未能从候选资源集合之中选择到第一资源,则在候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。
其中,在本公开的一个实施例之中,第一候选资源x的时域长度为1个时隙,该第一候选资源属于候选资源集合中的资源。
示例地,在本公开的一个实施例之中,当终端设备选择到第一候选资源x时,终端设备可以基于第一候选资源 x,从候选资源集合之中选择连续的M个时域对应的候选资源。如果基于第一候选资源x,未能从候选资源集合之中选择到第一资源,则在候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。
其中,在本公开的一个实施例之中,第二候选资源x中的第二仅用于与其他候选资源进行区别,并不特指某一固定候选资源。终端设备例如可以基于第一候选资源x,从候选资源集合之中选择到第一资源。如果终端设备未从候选资源集合之中选择到第一资源,终端设备例如在候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。例如可以是,在除第一候选资源x之外的候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。
示例地,在本公开的一个实施例之中,如果基于第二候选资源x,未能从候选资源集合之中选择到第一资源,则在候选资源集合之中重新选择第三候选资源x,并基于第三候选资源x再次从候选资源集合之中选择第一资源。
综上所述,在本公开实施例之中,如果基于第一候选资源x,未能从候选资源集合之中选择到第一资源,则在候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。在本公开实施例之中,通过时隙参数M,可以在候选资源集合中选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明按照第一选择顺序,执行多次资源选择,无法基于第一候选资源x确定第一资源时可以基于第二候选资源x确定第一资源的特征。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图13为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图13所示,该方法可以包括以下步骤:
步骤1301、从候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。
其中,在本公开的一个实施例之中,第一选择顺序并不特指某一固定选择顺序。第一选择顺序中的第一仅用于与其余选择顺序进行区分。终端设备例如可以基于第一候选资源x,从候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。
示例地,在本公开的一个实施例之中,例如,第一候选资源x对应的时域例如可以为a。第一选择顺序例如可以为a-1时域至a-M+1时域的选择顺序。其中,a-1时域至a-M+1时域的选择顺序可以指从时隙a-1至时隙a-M+1的选择顺序,或者时间a-1至时间a-M+1的选择顺序。
示例地,在本公开的一个实施例之中,第一选择顺序例如可以为a-1时域至a-M+1时域的选择顺序。终端设备按照a-1时域至a-M+1时域的第一选择顺序,可以分别从a-1时域至a-M+1时域中选择一个候选资源,以确定第一资源。终端设备例如可以先a-1时域中选择一个候选资源。如果终端设备在a-1时域中选择出一个资源,终端设备可以继续按照第一选择顺序,在a-2时域中选择一个资源。如果终端设备在a-2时域中选择出一个资源,终端设备可以继续按照第一选择顺序,在a-3时域中选择一个资源,按照第一选择顺序,如果从a-1时域至a-M+1时域中均选择一个资源,则所有选择出的资源可以组成第一资源,即可以组成时域长度为连续的M个时隙的第一资源。
示例地,在本公开的一个实施例之中,如果基于第一候选资源x,未能从候选资源集合之中选择到第一资源,则在候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。终端设备可以基于第二候选资源x,从候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。
示例地,在本公开的一个实施例之中,第二候选资源x对应的时域例如可以是c。终端设备从候选资源集合之中按照c-1时域至c-M+1时域的第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。例如终端设备可以先c-1时域中选择一个候选资源。如果终端设备在c-1时域中选择出一个资源,终端设备可以继续按照第一选择顺序,在c-2时域中选择一个资源。如果终端设备在c-2时域中选择出一个资源,终端设备可以继续按照第一选择顺序,在c-3时域中选择一个资源,按照第一选择顺序,如果从c-1时域至c-M+1时域中均选择一个资源,则所有选择出的资源可以组成第一资源,即可以组成时域长度为连续的M个时隙的第一资源。
综上所述,在本公开实施例之中,从候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。在本公开实施例之中,可以在候选资源集合中选择出时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明按照第一选择顺序,执行多次资源选择,确定第一资源的特征。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图14为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图14所示,该 方法可以包括以下步骤:
步骤1401、如果在候选资源集合之中未能按照第一选择顺序选择到连续的M个时域对应的候选资源,则获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,其中,N为小于M的正整数;
步骤1402、再次基于第一候选资源x,从候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源;
步骤1403、将第二资源和第三资源合并作为第一资源。
示例地,在本公开的一个实施例之中,第一选择顺序并不特指某一固定顺序。第一选择顺序中的第一仅用于与第二选择顺序进行区分。第二选择顺序并不特指某一固定选择顺序。第二选择顺序中的第二仅用于与其他选择顺序进行区别。其中,第二选择顺序与第一选择顺序方向相反。
其中,在本公开的一个实施例之中,图15为本公开实施例所提供的一种资源确定的方法的举例示意图。如图15所示,终端设备例如可以获取获取按照第一选择顺序选择的连续的N个时域对应的候选资源,作为第二资源,从候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源,将第二资源和第三资源合并作为第一资源。
示例地,在本公开的一个实施例之中,例如,第一候选资源x对应的时域例如可以为a。第一选择顺序例如可以为a-1时域至a-M+1时域的选择顺序。终端设备例如可以按照a-1时域至a-M+1时域的第一选择顺序,选择连续的M个时域对应的候选资源,例如可以分别从a-1时域至a-M+1时域中选择一个资源。如果存在任一时域a-N-1时域的候选资源未被选出,则终端设备可以获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,且不选择a-N-1时域至a-M+1之间的候选资源。其中,第二资源的时域长度为连续的N个时隙,也就是说终端设备可以确定N个时隙。
示例地,在本公开的一个实施例之中,终端设备可以获取M与N的差值,即终端设备可以确定连续的M-N个时域,M-N个时域例如可以是R个时域。终端设备例如可以按照a+1时域至a+M-1时域的第二选择顺序,在候选资源集合之中,分别从a+1时域至a+M+1时域中选择一个资源,终端设备可以确定连续的R个时隙,并作为第三资源。终端设备可以将第二资源和第三资源合并作为第一资源,即终端设备可以连续的N个时隙和连续的R个时隙合并为连续的M个时隙。
示例地,在本公开的一个实施例之中,终端设备将第二资源和第三资源合并作为第一资源,终端设备不再继续进行资源选择。
示例地,在本公开的一个实施例之中,终端设备例如可以按照a+1时域至a+M-1时域的第二选择顺序进行资源选择,例如在候选资源集合之中,终端设备可以分别从a+1时域至a+M+1时域中选择一个资源。按照a+1时域至a+M-1时域的第二选择顺序,如果存在任一时域a+B时域的候选资源未被选出,则终端设备不选择a-B时域至a+M+1时域之间的候选资源。
示例地,在本公开的一个实施例之中,终端设备可以从除第一候选资源x之外的候选资源集合中重新随机选择一个第二候选资源x,其中,第二候选资源x不同于第一候选资源x,终端设备例如可以基于第二候选资源x,从候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。如果基于第二候选资源x,在候选资源集合之中未能按照第一选择顺序选择到连续的M个时域对应的候选资源,则获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,其中,N为小于M的正整数;再次基于第二候选资源x,从候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源。终端设备可以将第二资源和第三资源合并作为第一资源。
示例地,在本公开的一个实施例之中,第二候选资源x对应的时域例如可以是c。终端设备从候选资源集合之中按照c-1时域至c-M+1时域的第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。例如终端设备可以先c-1时域中选择一个候选资源。如果终端设备在c-1时域中选择出一个资源,终端设备可以继续按照第一选择顺序,在c-2时域中选择一个资源。如果终端设备在c-2时域中选择出一个资源,终端设备可以继续按照第一选择顺序,在c-3时域中选择一个资源,按照第一选择顺序,如果从c-1时域至c-M+1时域中均选择一个资源,则所有选择出的资源可以组成第一资源,即可以组成时域长度为连续的M个时隙的第一资源。如果存在任一时域c-N-1时域的候选资源未被选出,则终端设备可以获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,且不选择c-N-1时域至c-M+1时域之间的候选资源。其中,第二资源的时域长度为连续N个时隙。
示例地,在本公开的一个实施例之中,终端设备可以获取M与N的差值,即终端设备可以确定连续的M-N个时域。终端设备例如可以按照c+1时域至c+M-1时域的第二选择顺序,在候选资源集合之中,分别从c+1时域至c+M+1时域中选择一个资源,终端设备可以确定M-N个时隙,并作为第三资源。终端设备可以将第二资源和第三资源合并作为第一资源,即终端设备可以连续的N个时隙和连续的M-N个时隙合并为连续的M个时隙。
综上所述,在本公开实施例之中,如果在候选资源集合之中未能按照第一选择顺序选择到连续的M个时域对应的候选资源,则获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,其中,N为小于M的正整数,再次基于第一候选资源x,从候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源,将第二资源和第三资源合并作为第一资源。在本公开实施例之中,通过时隙参数M,可以在候选资源集合中选择时域长度为连续的M个时隙的第一资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明按照第一选择顺序和第二选择顺序,执行多次资源选择,确定第一资源的特征。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图16为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图16所示,该方法可以包括以下步骤:
步骤1601、确定多个候选资源子集,其中,候选资源子集的时域资源为连续的,且为时域连续的长度等于或者大于M个时隙;
步骤1602、对任一候选资源子集进行选择,选择连续的M个时域对应的候选资源,作为第一资源。
其中,在本公开的一个实施例之中,图17为本公开实施例所提供的一种候选资源子集确定方法的流程示意图。如图17所示,候选资源子集的时域资源例如可以是为连续的,且为时域连续的长度等于或者大于3个时隙。终端设备可以对候选资源集合中至少一个候选资源进行识别,选择出时域连续的长度等于或者大于3个时隙的多个候选子集。时隙参数M例如可以是3。基于时隙参数M,可以在候选资源子集中选择连续的3个时域对应的候选资源,作为第一资源。如果候选资源子集存在多个连续的M个时域对应的候选资源,则终端设备可以从多个连续的M个时域对应的候选资源中随机选择一个候选资源,作为第一资源。
综上所述,在本公开实施例之中,确定多个候选资源子集,其中,候选资源子集的时域资源为连续的,且为时域连续的长度等于或者大于M个时隙,对任一候选资源子集进行随机资源选择,选择连续的M个时域对应的候选资源,作为确定第一资源。在本公开实施例之中,通过时隙参数M,可以在候选资源集合中选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明执行一次资源选择,确定第一资源的特征,通过对候选资源集合中至少一个候选资源进行识别,可以提高候选资源子集获取的准确性,可以提高第一资源确定的准确性。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图18为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图18所示,该方法可以包括以下步骤:
步骤1801、按照候选资源子集中至少一个候选资源包括的时域连续的长度由长到短的选择顺序,确定时域连续,且长度为M个时隙的第一资源,其中,第一资源的时域长度为M个时隙。
其中,在本公开的一个实施例之中,按照候选资源子集中至少一个候选资源包括的时域连续的长度由长到短的选择顺序,终端设备可以将第一个时域连续,且长度为M个时隙的候选资源作为第一资源。
综上所述,在本公开实施例之中,按照候选资源子集中至少一个候选资源包括的时域连续的长度由长到短的选择顺序,确定时域连续,且长度为M个时隙的第一资源,其中,第一资源的时域长度为M个时隙。在本公开实施例之中,通过时隙参数M,可以在候选资源集合中选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明执行一次资源选择,确定第一资源的特征,通过对候选资源集合中至少一个候选资源进行识别,可以提高候选资源子集获取的准确性,按照至少一个候选资源包括的时域连续的长度由长到短的选择顺序确定第一资源,可以提高第一资源确定的准确性。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图19为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图19所示,该方法可以包括以下步骤:
步骤1901、按照候选资源子集中至少一个候选资源包括的时域连续的长度由短到长的选择顺序,确定第一资源,其中,第一资源的时域长度为M个时隙。
其中,在本公开的一个实施例之中,按照候选资源子集中至少一个候选资源包括的时域连续的长度由短到长的选择顺序,终端设备可以将第一个时域连续,且长度为M个时隙的候选资源作为第一资源。
综上所述,在本公开实施例之中,按照候选资源子集中至少一个候选资源包括的时域连续的长度由短到长的选 择顺序,确定第一资源,其中,第一资源的时域长度为M个时隙。在本公开实施例之中,通过时隙参数M,可以在候选资源集合中选择时域上连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。在本公开实施例之中,具体说明执行一次资源选择,确定第一资源的特征,通过对候选资源集合中至少一个候选资源进行识别,可以提高候选资源子集获取的准确性,按照至少一个候选资源包括的时域连续的长度由短到长的选择顺序确定第一资源,可以提高第一资源确定的准确性。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
图20为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图20所示,该方法可以包括以下步骤:
步骤2001、如果候选资源集合中未存在第一资源,则停止TB的传输。
其中,在本公开的一个实施例之中,终端设备基于时隙参数,可以在候选资源集合中选择第一资源。如果候选资源集合中未存在第一资源,则终端设备可以停止TB的传输。
综上所述,在本公开实施例之中,如果候选资源集合中未存在第一资源,则停止该TB的传输。在本公开实施例之中,通过确定如果候选资源集合中未存在第一资源,可以停止该TB的传输,减少同一个TB传输导致资源损耗的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在候选资源集合中未存在第一资源,停止该TB的传输,减少资源的损耗。
图21为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图21所示,该方法可以包括以下步骤:
步骤2101、如果候选资源集合中未存在第一资源,则在候选资源集合中随机选择第四资源,第四资源的时域长度为单个时隙;
步骤2102、在单个时隙中发送一个TB。
其中,在本公开的一个实施例之中,终端设备基于时隙参数,可以在候选资源集合中选择第一资源。如果候选资源集合中未存在第一资源,则在候选资源集合中随机选择第四资源,由于第四资源的时域长度为单个时隙,即终端设备可以在候选资源集合中随机选择单个时隙,并在单个时隙中发送一个TB。终端设备在候选资源集合中随机选择第四资源时,终端设备可以执行R16过程,即随机选择单个时隙的第四资源。即终端设备不执行连续的M个时隙的传输。
以及,在本公开的一个实施例之中,第四资源并不特指某一固定资源。例如,当单个时隙发生变化时,该第四资源也可以相应变化。
综上所述,在本公开实施例之中,如果候选资源集合中未存在第一资源,则在候选资源集合中随机选择第四资源,第四资源的时域长度为单个时隙,可以在单个时隙中发送一个TB。在本公开实施例之中,通过确定如果候选资源集合中未存在第一资源,无法采用连续的M个时隙发送同一个TB时,可以在单个时隙中发送一个TB,减少同一个TB无法传输的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在单个时隙中发送一个TB。
图22为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图22所示,该方法可以包括以下步骤:
步骤2201、如果候选集合中未存在第一资源,则在候选集合中选择第五资源,其中,第五资源的时域长度为连续的L个时隙,L为正整数,且L为小于M的正整数;
步骤2202、在连续的L个时隙中重复发送同一个TB或者不同的TB。
以及,在本公开的一个实施例之中,第五资源并不特指某一固定资源。例如,当L个时隙中L的数值发生变化时,该第五资源也可以相应变化。
综上所述,在本公开实施例之中,如果候选集合中未存在第一资源,则在候选集合中选择第五资源,其中,第五资源的时域长度为连续的L个时隙,L为正整数,且L为小于M的正整数,在连续的L个时隙中重复发送同一个TB或者不同的TB。在本公开实施例之中,通过确定如果候选资源集合中未存在第一资源,无法采用连续的M个时隙发送同一个TB时,可以在连续的L个时隙中重复发送同一个TB或者不同的TB,减少同一个TB或者不同的TB无法传输的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在连续的L个时隙中重复发送同一个TB或者不同的TB。
图23为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由终端设备执行,如图23所示,该方法可以包括以下步骤:
步骤2301、基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且 M>1;
步骤2302、在连续的M个时隙中重复发送同一个TB或者不同的TB。
综上所述,在本公开实施例之中,基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且M>1,在连续的M个时隙中重复发送同一个TB或者不同的TB。在本公开实施例之中,可以在连续的M个时隙中重复发送同一个TB或者不同的TB,减少同一个TB或者不同的TB无法传输的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在连续的M个时隙中重复发送同一个TB或者不同的TB。
图24为本公开实施例所提供的一种资源确定的方法的流程示意图,该方法由网络侧设备执行,如图24所示,该方法可以包括以下步骤:
步骤2401、发送时隙参数M至终端设备,其中,M为正整数且M>1。
综上所述,在本公开实施例之中,发送时隙参数M至终端设备,其中,M为正整数且M>1。在本公开实施例之中,通过发送时隙参数M至终端设备,终端设备可以选择时域上连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性。
其中,在本公开的一个实施例之中,该方法还包括:
发送以下至少一个参数至终端设备:
将要报告的资源所属的资源池;
层一L1优先级;
剩余数据包延迟预算;
一个时隙中用于PSSCH或者PSCCH传输的子信道数或者IRB index数目;
资源预留间隔。
示例地,在本公开的一个实施例之中,网络侧设备可以发送时隙参数M、将要报告的资源所属的资源池、L1优先级、剩余数据包延迟预算、一个时隙中用于PSSCH或者PSCCH传输的子信道数或者IRB index数目和资源预留间隔至终端设备。终端设备可以接收时隙参数M、将要报告的资源所属的资源池、L1优先级、剩余数据包延迟预算、一个时隙中用于PSSCH或者PSCCH传输的子信道数或者IRB index数目和资源预留间隔,终端设备可以确定候选资源集合,以确定第一资源。
图25为本公开实施例所提供的一种资源确定的装置的结构示意图,如图25所示,该装置2500可以包括:
确定模块2501,用于基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且M>1,第一资源用于PSSCH或者PSCCH的发送。
综上所述,在本公开实施例的资源确定的装置之中,通过确定模块基于时隙参数M,确定第一资源,其中,第一资源的时域长度为连续的M个时隙,M为正整数且M>1,第一资源用于PSSCH或者PSCCH的发送。在本公开实施例之中,通过时隙参数M,可以选择时域长度为连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性,提高数据传输的可靠性。
可选地,在本公开的一个实施例之中,确定模块2501,用于基于时隙参数M,确定第一资源时,具体用于:
接收网络侧设备发送的时隙参数M,其中,时隙参数M用于指示PSSCH或者PSCCH连续发送时隙的数量;
基于时隙参数M,在候选资源集合中进行随机资源选择,确定第一资源,其中,候选资源集合中的每个候选资源的时隙长度是M个时隙。
可选地,在本公开的一个实施例之中,其中,第一资源还包括频域上连续或者离散的L subCH个子信道subchannel,则相邻的时隙之间的频域资源起始位置和结束位置相同或者不同,其中,L subCH为正整数。
可选地,在本公开的一个实施例之中,其中,第一资源还包括频域上连续或者离散的X个梳尺资源块索引IRB index,则相邻的时隙之间的频域资源起始位置和结束位置相同或者不同,其中,X为正整数。
可选地,在本公开的一个实施例之中,确定模块2501,用于基于时隙参数M,确定第一资源时,具体用于:
基于时隙参数M,从候选资源集合中确定第一资源,其中,候选资源集合中每个候选资源的时域长度是单个时隙。
可选地,在本公开的一个实施例之中,确定模块2501,用于基于时隙参数M,从候选资源集合中确定第一资源,包括以下至少一种:
基于时隙参数M,从候选资源集中执行多次资源选择,以确定第一资源,其中,每次选择资源的时隙长度为单个时隙;
基于时隙参数M,从候选资源集中执行一次资源选择,以确定第一资源,其中,一次选择资源的时隙长度为M个时隙。
可选地,在本公开的一个实施例之中,确定模块2501,用于基于时隙参数M,从候选资源集中执行多次资源选择,以确定第一资源时,具体用于:
从候选资源集合中随机选择一个第一候选资源x;
基于第一候选资源x,从候选资源集合之中选择连续的M个时域对应的候选资源,并作为第一资源。
可选地,在本公开的一个实施例之中,确定模块2501,还用于:
如果基于第一候选资源x,未能从候选资源集合之中选择到第一资源,则在候选资源集合之中重新选择第二候选资源x,并基于第二候选资源x再次从候选资源集合之中选择第一资源。
可选地,在本公开的一个实施例之中,确定模块2501,用于从候选资源集合之中选择连续的M个时域对应的候选资源,并作为第一资源时,具体用于:
从候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为第一资源。
可选地,在本公开的一个实施例之中,确定模块2501,还用于:
如果在候选资源集合之中未能按照第一选择顺序选择到连续的M个时域对应的候选资源,则获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,其中,N为小于M的正整数;
再次基于第一候选资源x,从候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源;
将第二资源和第三资源合并作为第一资源。
可选地,在本公开的一个实施例之中,第二选择顺序与第一选择顺序方向相反。
可选地,在本公开的一个实施例之中,确定模块2501,用于基于时隙参数M,从候选资源集中执行一次资源选择,以确定第一资源时,具体用于:
确定多个候选资源子集,其中,候选资源子集的时域资源为连续的,且为时域连续的长度等于或者大于M个时隙;
对任一候选资源子集进行选择,选择连续的M个时域对应的候选资源,作为第一资源。
可选地,在本公开的一个实施例之中,图26为本公开实施例所提供的一种资源确定的装置的结构示意图,如图26所示,该装置2500还可以包括停止模块2502,用于如果候选资源集合中未存在第一资源,则停止TB的传输。
可选地,在本公开的一个实施例之中,图27为本公开实施例所提供的一种资源确定的装置的结构示意图,如图27所示,该装置2500还可以包括发送模块2503,用于如果候选资源集合中未存在第一资源,则在候选资源集合中随机选择第四资源,第四资源的时域长度为单个时隙;
在单个时隙中发送一个TB。
可选地,在本公开的一个实施例之中,确定模块2501,还用于:
如果候选集合中未存在第一资源,则在候选集合中选择第五资源,其中,第五资源的时域长度为连续的L个时隙,L为正整数,且L为小于M的正整数。
可选地,在本公开的一个实施例之中,发送模块2503,还用于:
在连续的M个时隙中或者连续的L个时隙中重复发送同一个TB或者不同的TB。
图28为本公开实施例所提供的一种资源确定的装置的结构示意图,如图28所示,该装置2800可以包括:
发送模块2801,用于发送时隙参数M至终端设备,其中,M为正整数且M>1。
综上所述,在本公开实施例的资源确定的装置之中,通过发送模块发送时隙参数M至终端设备,其中,M为正整数且M>1。在本公开实施例之中,通过发送时隙参数M至终端设备,终端设备可以选择时域上连续的M个时隙的资源,解决无法基于R16或R17 sidelink资源选择机制进行连续的多时隙资源的选择的情况。。本公开针对一种“资源确定”这一情形提供了一种处理方法,可以在资源选择时,支持连续的多时隙资源的选择,以确定时域长度为连续的M个时隙的资源,可以提高资源确定的便利性。
可选地,在本公开的一个实施例之中,发送模块2801,还用于发送以下至少一个参数至终端设备,其中,终端设备用于根据至少一个参数确定候选资源集合:
将要报告的资源所属的资源池;
层一L1优先级;
剩余数据包延迟预算;
一个时隙中用于PSSCH或者PSCCH传输的子信道数或者IRB index数目;
资源预留间隔。
图29是本公开一个实施例所提供的一种终端设备UE2900的框图。例如,UE2900可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图29,UE2900可以包括以下至少一个组件:处理组件2902,存储器2904,电源组件2906,多媒体组件2908,音频组件2910,输入/输出(I/O)的接口2912,传感器组件2914,以及通信组件2916。
处理组件2902通常控制UE2900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2902可以包括至少一个处理器2920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2902可以包括至少一个模块,便于处理组件2902和其他组件之间的交互。例如,处理组件2902可以包括多媒体模块,以方便多媒体组件2908和处理组件2902之间的交互。
存储器2904被配置为存储各种类型的数据以支持在UE2900的操作。这些数据的示例包括用于在UE2900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2906为UE2900的各种组件提供电力。电源组件2906可以包括电源管理系统,至少一个电源,及其他与为UE2900生成、管理和分配电力相关联的组件。
多媒体组件2908包括在所述UE2900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件2908包括一个前置摄像头和/或后置摄像头。当UE2900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2910被配置为输出和/或输入音频信号。例如,音频组件2910包括一个麦克风(MIC),当UE2900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2904或经由通信组件2916发送。在一些实施例中,音频组件2910还包括一个扬声器,用于输出音频信号。
I/O接口2912为处理组件2902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2914包括至少一个传感器,用于为UE2900提供各个方面的状态评估。例如,传感器组件2914可以检测到设备2900的打开/关闭状态,组件的相对定位,例如所述组件为UE2900的显示器和小键盘,传感器组件2914还可以检测UE2900或UE2900的一个组件的位置改变,用户与UE2900接触的存在或不存在,UE2900方位或加速/减速和UE2900的温度变化。传感器组件2914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2916被配置为便于UE2900和其他设备之间有线或无线方式的通信。UE2900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE2900可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图30是本公开实施例所提供的一种网络侧设备3000的框图。例如,网络侧设备3000可以被提供为一网络侧设备。参照图30,网络侧设备3000包括处理组件3022,其进一步包括至少一个处理器,以及由存储器3032所代表的存储器资源,用于存储可由处理组件3022的执行的指令,例如应用程序。存储器3032中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件3022被配置为执行指令,以执行上述方法 前述应用在所述网络侧设备的任意方法,例如,如图24所示方法。
网络侧设备3000还可以包括一个电源组件3026被配置为执行网络侧设备3000的电源管理,一个有线或无线网络接口3050被配置为将网络侧设备3000连接到网络,和一个输入/输出(I/O)接口3058。网络侧设备3000可以操作基于存储在存储器3032的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选地,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选地,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选地,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图2-图23任一所示的方法。
通信装置为网络侧设备:处理器用于执行图24所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选地,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选地,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种资源确定的方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    基于时隙参数M,确定第一资源,其中,所述第一资源的时域长度为连续的M个时隙,M为正整数且M>1,所述第一资源用于物理侧边链路共享信道PSSCH或者物理侧边链路控制信道PSCCH的发送。
  2. 根据权利要求1所述的方法,其特征在于,所述基于时隙参数M,确定第一资源,包括:
    接收网络侧设备发送的时隙参数M,其中,所述时隙参数M用于指示所述PSSCH或者所述PSCCH连续发送时隙的数量;
    基于所述时隙参数M,在候选资源集合中进行随机资源选择,确定所述第一资源,其中,所述候选资源集合中的每个候选资源的时隙长度是M个时隙。
  3. 根据权利要求2所述的方法,其特征在于,其中,所述第一资源还包括频域上连续或者离散的L subCH个子信道subchannel,则相邻的所述时隙之间的频域资源起始位置和结束位置相同或者不同,其中,所述L subCH为正整数。
  4. 根据权利要求2所述的方法,其特征在于,其中,所述第一资源还包括频域上连续或者离散的X个梳尺资源块索引IRB index,则相邻的所述时隙之间的频域资源起始位置和结束位置相同或者不同,其中,X为正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述基于时隙参数M,确定第一资源,包括:
    基于所述时隙参数M,从候选资源集合中确定所述第一资源,其中,所述候选资源集合中每个候选资源的时域长度是单个时隙。
  6. 根据权利要求5所述的方法,其特征在于,所述基于时隙参数M,从候选资源集合中确定第一资源,包括以下至少一种:
    基于所述时隙参数M,从所述候选资源集中执行多次资源选择,以确定所述第一资源,其中,每次选择资源的时隙长度为单个时隙;
    基于所述时隙参数M,从所述候选资源集中执行一次资源选择,以确定所述第一资源,其中,一次选择资源的时隙长度为M个时隙。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述时隙参数M,从所述候选资源集中执行多次资源选择,以确定所述第一资源,包括:
    从所述候选资源集合中随机选择一个第一候选资源x;
    基于所述第一候选资源x,从所述候选资源集合之中选择连续的M个时域对应的候选资源,并作为所述第一资源。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    如果基于所述第一候选资源x,未能从所述候选资源集合之中选择到所述第一资源,则在所述候选资源集合之中重新选择第二候选资源x,并基于所述第二候选资源x再次从所述候选资源集合之中选择所述第一资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述从所述候选资源集合之中选择连续的M个时域对应的候选资源,并作为所述第一资源,包括:
    从所述候选资源集合之中按照第一选择顺序选择连续的M个时域对应的候选资源,并作为所述第一资源。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    如果在所述候选资源集合之中未能按照所述第一选择顺序选择到连续的M个时域对应的候选资源,则获取按照第一选择顺序选择的连续的N个时域对应的候选资源,并作为第二资源,其中,N为小于M的正整数;
    再次基于所述第一候选资源x,从所述候选资源集合之中按照第二选择顺序选择连续的M-N个时域对应的候选资源,并作为第三资源;
    将所述第二资源和所述第三资源合并作为所述第一资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第二选择顺序与所述第一选择顺序方向相反。
  12. 根据权利要求6所述的方法,其特征在于,所述基于所述时隙参数M,从所述候选资源集中执行一次资源选择,以确定所述第一资源,包括:
    确定多个候选资源子集,其中,所述候选资源子集的时域资源为连续的,且为时域连续的长度等于或者大于所述M个时隙;
    对任一候选资源子集进行选择,选择连续的M个时域对应的候选资源,作为所述第一资源。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    如果候选资源集合中未存在所述第一资源,则停止TB的传输。
  14. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    如果候选资源集合中未存在所述第一资源,则在所述候选资源集合中随机选择第四资源,所述第四资源的时域长度为单个时隙;
    在所述单个时隙中发送一个TB。
  15. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    如果候选资源集合中未存在所述第一资源,则在所述候选集合中选择第五资源,其中,所述第五资源的时域长度为连续的L个时隙,其中,L为正整数,且L为小于M的正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述连续的M个时隙中或者在所述连续的L个时隙中重复发送同一个TB或者不同的TB。
  17. 一种资源确定的方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    发送时隙参数M至终端设备,其中,M为正整数且M>1。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送以下至少一个参数至所述终端设备,其中,所述终端设备用于根据所述至少一个参数确定候选资源集合:
    将要报告的资源所属的资源池;
    层一L1优先级;
    剩余数据包延迟预算;
    一个时隙中用于所述PSSCH或者所述PSCCH传输的子信道数或者IRB index数目;
    资源预留间隔。
  19. 一种资源确定的装置,其特征在于,所述装置包括:
    确定模块,用于基于时隙参数M,确定第一资源,其中,所述第一资源的时域长度为连续的M个时隙,M为正整数且M>1,所述第一资源用于PSSCH或者PSCCH的发送。
  20. 一种资源确定的装置,其特征在于,所述装置包括:
    发送模块,用于发送时隙参数M至终端设备,其中,M为正整数且M>1。
  21. 一种终端设备,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至16中任一项所述的方法。
  22. 一种网络侧设备,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求17至18中任一项所述的方法。
  23. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至16中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求17至18中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,用于存储有指令,当所述指令被执行时,使如权利要求1至16中任一项所述的方法被实现。
  26. 一种计算机可读存储介质,其特征在于,用于存储有指令,当所述指令被执行时,使如权利要求17至18中任一项所述的方法被实现。
PCT/CN2022/099625 2022-06-17 2022-06-17 资源确定的方法、装置 WO2023240652A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001871.8A CN115245023A (zh) 2022-06-17 2022-06-17 资源确定的方法、装置
PCT/CN2022/099625 WO2023240652A1 (zh) 2022-06-17 2022-06-17 资源确定的方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099625 WO2023240652A1 (zh) 2022-06-17 2022-06-17 资源确定的方法、装置

Publications (1)

Publication Number Publication Date
WO2023240652A1 true WO2023240652A1 (zh) 2023-12-21

Family

ID=83667563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099625 WO2023240652A1 (zh) 2022-06-17 2022-06-17 资源确定的方法、装置

Country Status (2)

Country Link
CN (1) CN115245023A (zh)
WO (1) WO2023240652A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092745A1 (zh) * 2022-11-04 2024-05-10 Oppo广东移动通信有限公司 一种资源选择方法及装置、终端
CN117998644A (zh) * 2022-11-04 2024-05-07 中信科智联科技有限公司 直通链路的资源选择方法、装置及用户设备
CN118055497A (zh) * 2022-11-07 2024-05-17 展讯通信(上海)有限公司 资源分配方法、装置以及设备
WO2024073920A1 (en) * 2022-11-11 2024-04-11 Lenovo (Beijing) Limited Methods and apparatuses for resource selection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180035427A1 (en) * 2016-07-29 2018-02-01 Qualcomm Incorporated Adapting transmissions in multi-transmission time interval (tti) sidelink communication
CN108834106A (zh) * 2017-05-05 2018-11-16 中兴通讯股份有限公司 资源分配方法、装置及存储介质
US20200112982A1 (en) * 2018-10-04 2020-04-09 Asustek Computer Inc. Method and apparatus of requesting resource for sidelink retransmission in a wireless communication system
CN111726211A (zh) * 2019-03-21 2020-09-29 华为技术有限公司 一种侧链路反馈控制信息传输方法及装置
CN111726871A (zh) * 2019-03-22 2020-09-29 华硕电脑股份有限公司 无线通信系统中用于侧链路传送的资源选择的方法和设备
CN113543336A (zh) * 2020-04-09 2021-10-22 华硕电脑股份有限公司 处理侧链路混合自动请求的时间间隙的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180035427A1 (en) * 2016-07-29 2018-02-01 Qualcomm Incorporated Adapting transmissions in multi-transmission time interval (tti) sidelink communication
CN108834106A (zh) * 2017-05-05 2018-11-16 中兴通讯股份有限公司 资源分配方法、装置及存储介质
US20200112982A1 (en) * 2018-10-04 2020-04-09 Asustek Computer Inc. Method and apparatus of requesting resource for sidelink retransmission in a wireless communication system
CN111726211A (zh) * 2019-03-21 2020-09-29 华为技术有限公司 一种侧链路反馈控制信息传输方法及装置
CN111726871A (zh) * 2019-03-22 2020-09-29 华硕电脑股份有限公司 无线通信系统中用于侧链路传送的资源选择的方法和设备
CN113543336A (zh) * 2020-04-09 2021-10-22 华硕电脑股份有限公司 处理侧链路混合自动请求的时间间隙的方法和设备

Also Published As

Publication number Publication date
CN115245023A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2023240652A1 (zh) 资源确定的方法、装置
EP4354972A1 (en) Method and apparatus for determining time-domain window, and user equipment, base station and storage medium
WO2023206183A1 (zh) 成功PScell添加或更换报告的相关信息记录方法、装置
WO2023201759A1 (zh) 成功PScell添加或更换报告的上报方法、装置
WO2023173381A1 (zh) 侧行链路通信方法及装置
CN114080844B (zh) 一种寻呼分组的方法、装置、终端设备、基站及存储介质
WO2023216079A1 (zh) 资源配置方法/装置/用户设备/网络侧设备及存储介质
WO2023178568A1 (zh) 一种测量方法及设备/存储介质/装置
WO2024016240A1 (zh) Pdsch传输方法、装置
WO2023225829A1 (zh) 多prach传输配置方法、装置
WO2023206297A1 (zh) 一种小区激活方法/装置/设备及存储介质
WO2023206176A1 (zh) 测量报告发送方法、测量报告接收方法、装置
WO2023220898A1 (zh) 信息指示方法、装置、设备及存储介质
WO2023184260A1 (zh) 一种信号传输方法/装置/设备及存储介质
WO2023173338A1 (zh) 一种测量指示方法及设备/存储介质/装置
WO2023193278A1 (zh) 一种阈值确定方法/装置/设备及存储介质
WO2023225828A1 (zh) 支持跨ssb的多prach传输配置方法、装置
WO2023184261A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023225827A1 (zh) 多prach传输配置方法、装置
WO2023206177A1 (zh) Ai波束模型确定方法、装置
WO2023173433A1 (zh) 一种信道估计方法/装置/设备及存储介质
WO2023077525A1 (zh) 一种信号发送方法、装置、用户设备、ris阵列及存储介质
WO2023201586A1 (zh) 一种物理信道重复传输的指示方法及设备/存储介质/装置
WO2023212963A1 (zh) 测距侧行链路定位方法、装置
WO2023130283A1 (zh) 一种映射方式确定方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946333

Country of ref document: EP

Kind code of ref document: A1