WO2023077525A1 - 一种信号发送方法、装置、用户设备、ris阵列及存储介质 - Google Patents

一种信号发送方法、装置、用户设备、ris阵列及存储介质 Download PDF

Info

Publication number
WO2023077525A1
WO2023077525A1 PCT/CN2021/129391 CN2021129391W WO2023077525A1 WO 2023077525 A1 WO2023077525 A1 WO 2023077525A1 CN 2021129391 W CN2021129391 W CN 2021129391W WO 2023077525 A1 WO2023077525 A1 WO 2023077525A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
active
array
mapping relationship
different
Prior art date
Application number
PCT/CN2021/129391
Other languages
English (en)
French (fr)
Inventor
池连刚
刘昊翔
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/129391 priority Critical patent/WO2023077525A1/zh
Priority to CN202180103210.1A priority patent/CN118104352A/zh
Publication of WO2023077525A1 publication Critical patent/WO2023077525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the technical field of communication, and in particular to a signal sending method, device, user equipment, RIS array and storage medium.
  • RIS Reconfigurable Intelligent Surface
  • UE User Equipment, terminal equipment
  • the array element sends a pilot signal to the UE, and the UE performs channel estimation on the channel between the RIS array and the UE based on the received pilot signal.
  • the present disclosure proposes a signal sending method, device, user equipment, RIS array and storage medium to provide a mapping relationship between pilot signals sent by the RIS array and time domain resources.
  • a signal sending method proposed in an embodiment of the present disclosure, which is applied to a RIS array includes:
  • a signal sending method proposed by another embodiment of the present disclosure, which is applied to a UE, includes:
  • the pilot signals sent by the active RIS elements in the RIS array are acquired from time-frequency resources based on the mapping relationship.
  • a determining module configured to determine the mapping relationship between active RIS array elements and time domain resources in the RIS array
  • a sending module configured to send the mapping relationship to the user equipment UE
  • a mapping module configured to map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element, so as to send the pilot signal to the UE.
  • the first obtaining module is used to obtain the mapping relationship sent by the RIS array
  • the second acquiring module is configured to acquire the pilot signals sent by the active RIS elements in the RIS array from time-frequency resources based on the mapping relationship.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the above embodiment of another aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send The UE sends the mapping relationship, and then maps the pilot signal sent by the active RIS element to the time-frequency resource corresponding to the active RIS element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • Fig. 1a is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure
  • FIG. 1b is a schematic structural diagram of an active RIS element in an RIS array provided by an embodiment of the present disclosure
  • Fig. 2a is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 2b is a schematic diagram of dividing active RIS array elements by rows according to an embodiment of the present disclosure
  • FIG. 2c is a schematic diagram of dividing active RIS array elements by columns according to an embodiment of the present disclosure
  • FIG. 2d is a schematic structural diagram of a first mapping relationship corresponding to one of the above situations provided by an embodiment of the present disclosure
  • FIG. 2e is a schematic structural diagram of a first mapping relationship corresponding to the above-mentioned scenario 2 provided by an embodiment of the present disclosure
  • FIG. 2f is a schematic structural diagram of an active RIS element corresponding to n subcarriers provided by an embodiment of the present disclosure
  • FIG. 2g is a schematic structural diagram of an active RIS element corresponding to n subcarriers provided by an embodiment of the present disclosure
  • FIG. 2h is a schematic structural diagram of an active RIS array element corresponding to n ⁇ m subcarriers provided by an embodiment of the present disclosure
  • Fig. 3a is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 3b is a schematic structural diagram of a second mapping relationship corresponding to the above scenario 3 provided by an embodiment of the present disclosure
  • FIG. 3c is a schematic structural diagram of a second mapping relationship corresponding to the above scenario 3 provided by an embodiment of the present disclosure
  • FIG. 4a is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure.
  • FIG. 4b is a schematic structural diagram of a third mapping relationship provided by an embodiment of the present disclosure.
  • FIG. 4c is a schematic structural diagram of a third mapping relationship provided by an embodiment of the present disclosure.
  • FIG. 4d is a schematic structural diagram of a third mapping relationship provided by an embodiment of the present disclosure.
  • FIG. 4e is a schematic structural diagram of another third mapping relationship provided by an embodiment of the present disclosure.
  • Fig. 5a is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 5b is a schematic structural diagram of a fourth mapping relationship provided by an embodiment of the present disclosure.
  • Fig. 6a is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 6b is a schematic structural diagram of a fifth mapping relationship provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a signal sending method provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a signal sending device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a signal sending device provided by another embodiment of the present disclosure.
  • Fig. 15 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 16 is a block diagram of a network side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • Fig. 1a is a schematic flow chart of a signal sending method provided by an embodiment of the present disclosure, the method is executed by an RIS array, as shown in Fig. 1a, the signal sending method may include the following steps:
  • Step 101 Determine the mapping relationship between active RIS array elements and time domain resources in the RIS array.
  • FIG. 1b is a schematic structural diagram of an active RIS array element in an RIS array provided by an embodiment of the present disclosure.
  • the RIS array is a 7 ⁇ 9 array, wherein, the RIS array includes 12 active RIS array elements, namely active RIS array element 1, active RIS array element 2, active RIS array element The array element 3 ... the active RIS array element 12 can use each of the above active RIS array elements to send a pilot signal to the UE.
  • the above-mentioned time-domain resource may include at least one OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol, and each OFDM symbol may include at least one sub Carrier (or RE (Resource Element, resource element)).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • each OFDM symbol may include at least one sub Carrier (or RE (Resource Element, resource element)).
  • RE Resource Element, resource element
  • mapping relationships between the active RIS elements in the RIS array and the time domain resources there may be many different mapping relationships between the active RIS elements in the RIS array and the time domain resources, regarding the determination of the active RIS elements in the RIS array and the time domain resources Various mapping relationships of resources will be introduced in detail in subsequent embodiments.
  • Step 102 sending the mapping relationship to the UE.
  • the communication device may be a UE, wherein the UE may be a device that provides voice and/or data connectivity to a user.
  • UE can communicate with one or more core networks via RAN (Radio Access Network, wireless access network).
  • RAN Radio Access Network, wireless access network
  • UE can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the computer of the terminal for example, may be a fixed, portable, pocket, hand-held, computer-built-in or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the determined mapping relationship can be sent to the UE, so that the UE can subsequently use the mapping relationship based on the mapping relationship.
  • the relation is to receive the pilot signal sent by the active RIS element on the corresponding time domain resource.
  • Step 103 Map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • mapping the pilot signal sent by the active RIS array to the corresponding time-frequency resource is specifically mapping the pilot signal sent by the active RIS array to the active RIS on the subcarriers corresponding to the array elements, so as to send the pilot signal to the UE by using the subcarriers.
  • the RIS array can also send location information to the UE, where the location information is used to indicate the location of the active RIS array element in the RIS array, so that subsequent UEs can to receive the pilot signals sent by each active RIS array element.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • Fig. 2a is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure, the method is executed by an RIS array, as shown in Fig. 2a, the signal sending method may include the following steps:
  • Step 201 group the active RIS elements in the RIS array to obtain at least two groups of RIS element groups, and each group of RIS element groups includes at least one active RIS element.
  • the method for grouping the active RIS elements in the RIS array may include at least one of the following:
  • FIG. 2b is a schematic diagram of dividing the active RIS array elements by row provided by the embodiment of the present disclosure.
  • active RIS array elements 1 , 5 , and 9 can be divided into a first RIS array element group
  • active RIS array elements 2 , 6 , and 10 can be divided into a second RIS array element group, and so on.
  • Method 2 Divide the active RIS array elements located in the same column (that is, divide them by column) into the same RIS array element group, wherein, FIG. 2c is a schematic diagram of dividing the active RIS array elements by column provided by the embodiment of the present disclosure. As shown in Figure 2c, the active RIS array elements 1, 2, 3, and 4 can be divided into the first RIS array element group, and the active RIS array elements 5, 6, 7, and 8 can be divided into the second RIS array element group wait.
  • Step 202 Determine the mapping relationship between active RIS array elements and time domain resources in the RIS array as the first mapping relationship.
  • the first mapping relationship may include: mapping each active RIS element in the same RIS element group to different subcarriers of one OFDM symbol of the time domain resource, Wherein, the OFDM symbols mapped to different RIS element groups are different.
  • the above-mentioned situation where different OFDM symbols mapped by different RIS element groups may include:
  • Scenario 1 The subcarriers mapped to the i-th active RIS element in different OFDM symbols in different RIS element groups are the same, where i is a positive integer.
  • Fig. 2d is a schematic structural diagram of a first mapping relationship corresponding to the above situation provided by an embodiment of the present disclosure, wherein, as shown in Fig. 2d, the active RIS elements are divided by columns and belong to The active RIS elements 1, 2, 3, and 4 of the RIS element group are mapped to different subcarriers of the first OFDM symbol, and the active RIS elements 5, 6, 7, and 5 belonging to the second RIS element group 8 is mapped to a different subcarrier of the second OFDM symbol, and the first active RIS element 1 in the first RIS element group is mapped to the first subcarrier of the first OFDM symbol, and the second The first active RIS element 5 in the RIS element group is mapped to the first subcarrier of the second OFDM symbol, that is, the i-th active RIS element in different RIS element groups is in different OFDM symbols The subcarriers mapped in are the same.
  • Scenario 2 The i-th active RIS element in different RIS element groups maps different subcarriers in different OFDM symbols, where i is a positive integer.
  • Fig. 2e is a schematic structural diagram of the first mapping relationship corresponding to the above situation 2 provided by an embodiment of the present disclosure, wherein, as shown in Fig. 2e, the active RIS array elements are divided by columns and belong to the first The active RIS elements 1, 2, 3, and 4 of the RIS element group are mapped to different subcarriers of the first OFDM symbol, and the active RIS elements 5, 6, 7, and 5 belonging to the second RIS element group 8 is mapped to a different subcarrier of the second OFDM symbol, and the first active RIS element 1 in the first RIS element group is mapped to the first subcarrier of the first OFDM symbol, and the second The first active RIS element 5 in the RIS element group is mapped to the second subcarrier of the second OFDM symbol, that is, the i-th active RIS element in different RIS element groups is in a different OFDM symbol The mapped subcarriers are different.
  • Step 203 sending the first mapping relationship to the UE.
  • Step 204 Map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element according to the first mapping relationship, so as to send the pilot signal to the UE.
  • a pilot signal sent by an active RIS element may occupy one or more subcarriers.
  • the pilot signal sent by an active RIS element may only occupy one subcarrier.
  • the number of subcarriers mapped by an active RIS element is one (For example, you can refer to Figures 2d and 2e above);
  • the pilot signal sent by an active RIS element may occupy n subcarriers, and at this time, the number of subcarriers mapped to an active RIS element is n, wherein, n is a positive integer greater than 1.
  • FIG. 2f is a schematic structural diagram of an active RIS element corresponding to n subcarriers provided by an embodiment of the present disclosure. As shown in FIG. 2f, active RIS element 1 corresponds to subcarrier 1-1, subcarrier 1- 2...subcarriers 1-n.
  • subcarrier 1-1 to subcarrier 1-n belong to different OFDM symbols, and different subcarriers have the same positions in different OFDM symbols, that is, subcarrier 1-1 is the second OFDM symbol
  • subcarrier 1-2 is the second subcarrier of the third OFDM symbol.
  • FIG. 2g is a schematic structural diagram of an active RIS element corresponding to n subcarriers provided by an embodiment of the present disclosure.
  • active RIS element 1 corresponds to subcarrier 1-1, subcarrier 2- 1...subcarrier n-1.
  • the subcarrier 1-1 to subcarrier n-1 belong to the same OFDM symbol.
  • the pilot signal sent by an active RIS array element will occupy n ⁇ m subcarriers, and at this time, the number of subcarriers mapped by an active RIS array element is n ⁇ m pieces, where n and m are both positive integers.
  • FIG. 2h is a schematic structural diagram of an active RIS element corresponding to n ⁇ m subcarriers provided by an embodiment of the present disclosure.
  • mapping relationship in this embodiment is described by taking one active RIS array corresponding to one subcarrier as an example.
  • the mapping relationship mentioned in the disclosed embodiments is mapped.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • Fig. 3a is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by an RIS array. As shown in Fig. 3a, the signal sending method may include the following steps:
  • Step 301 Group the active RIS elements in the RIS array to obtain at least two groups of RIS element groups, and each group of RIS element groups includes at least one active RIS element.
  • step 301 For the relevant introduction of step 301, reference may be made to the description of the foregoing embodiments, and the embodiments of the present disclosure are not described in detail here.
  • Step 302. Determine the mapping relationship between active RIS array elements and time domain resources in the RIS array as the second mapping relationship.
  • the second mapping relationship may include: mapping each active RIS element in the same RIS element group to different OFDM symbols of time domain resources, and the same group of RIS elements Each active RIS element in the tuple is mapped to the same subcarrier in different OFDM symbols, and the subcarriers mapped to different RIS element groups are different.
  • the above-mentioned situation where different subcarriers mapped by different RIS element groups include at least one of the following:
  • Case 3 The subcarriers mapped to the i-th active RIS element in different RIS element groups belong to the same OFDM symbol, where i is a positive integer.
  • FIG. 3b is a schematic structural diagram of a second mapping relationship corresponding to the above-mentioned situation 3 provided by an embodiment of the present disclosure, wherein, as shown in FIG.
  • the active RIS elements 1, 2, 3, and 4 of the RIS element group are respectively mapped to different OFDM symbols, and the active RIS elements in the same group of RIS elements are mapped in different OFDM symbols
  • the carriers are the same, wherein active RIS element 1 is mapped to the first subcarrier of the first OFDM symbol, active RIS element 2 is mapped to the first subcarrier of the second OFDM symbol, and
  • the source RIS element 3 is mapped to the first subcarrier of the third OFDM symbol, and the active RIS element 4 is mapped to the first subcarrier of the fourth OFDM symbol.
  • the subcarriers mapped to the i-th active RIS element in different RIS element groups belong to the same OFDM symbol, that is, the first active RIS element 1 in the first RIS element group is mapped to the On the subcarrier of an OFDM symbol, the first active RIS element 5 in the second RIS element group is also mapped to the subcarrier of the first OFDM symbol.
  • FIG. 3c is a schematic structural diagram of a second mapping relationship corresponding to the above-mentioned situation 3 provided by an embodiment of the present disclosure, wherein, as shown in FIG.
  • the active RIS elements 1, 2, 3, and 4 of the RIS element group are respectively mapped to different OFDM symbols, and the active RIS elements in the same group of RIS elements are mapped in different OFDM symbols
  • the carriers are the same, wherein active RIS element 1 is mapped to the first subcarrier of the first OFDM symbol, active RIS element 2 is mapped to the first subcarrier of the second OFDM symbol, and
  • the source RIS element 3 is mapped to the first subcarrier of the third OFDM symbol, and the active RIS element 4 is mapped to the first subcarrier of the fourth OFDM symbol.
  • the subcarriers mapped to the i-th active RIS element in different RIS element groups belong to different OFDM symbols, that is, the first active RIS element 1 in the first RIS element group is mapped to the On the subcarrier of one OFDM symbol, the first active RIS element 5 in the second RIS element group is also mapped to the subcarrier of the second OFDM symbol.
  • Step 303 sending the second mapping relationship to the UE.
  • Step 304 Map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element according to the second mapping relationship, so as to send the pilot signal to the UE.
  • step 304 For the relevant introduction about step 304, reference may be made to the description of the foregoing embodiments, and the embodiments of the present disclosure are not described in detail here.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • Fig. 4a is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by an RIS array. As shown in Fig. 4a, the signal sending method may include the following steps:
  • Step 401 arrange all the active RIS elements in the RIS array in rows or columns to obtain the arranged active RIS elements.
  • active RIS array elements 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 are obtained.
  • active RIS array elements 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, and 12 are obtained.
  • Step 402. Determine the mapping relationship between active RIS array elements and time domain resources in the RIS array as the third mapping relationship.
  • the third mapping relationship includes: respectively mapping the arranged active RIS array elements to different subcarriers of the same OFDM symbol, and/or mapping the arranged active RIS elements to different subcarriers of the same OFDM symbol;
  • the RIS array elements are respectively mapped to the same subcarriers of different OFDM symbols, and/or, the arranged active RIS array elements are respectively mapped to different subcarriers of different OFDM symbols.
  • FIG. 4b is a schematic structural diagram of a third mapping relationship provided by an embodiment of the present disclosure. As shown in FIG. 4b , all active RIS elements arranged in columns are respectively mapped to the same subcarriers of different OFDM symbols.
  • Fig. 4c is a schematic structural diagram of a third mapping relationship provided by an embodiment of the present disclosure. As shown in Fig. 4c, all active RIS array elements arranged in rows are respectively mapped to the same subcarriers of different OFDM symbols.
  • FIG. 4d is a schematic structural diagram of a third mapping relationship provided by an embodiment of the present disclosure. As shown in FIG. 4d , all active RIS array elements arranged in columns are respectively mapped to different subcarriers of the same OFDM symbol.
  • FIG. 4e is a schematic structural diagram of another third mapping relationship provided by an embodiment of the present disclosure. As shown in FIG. 4e , all active RIS array elements arranged in rows are respectively mapped to different subcarriers of the same OFDM symbol.
  • Step 403 sending the third mapping relationship to the UE.
  • Step 404 Map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element according to the third mapping relationship, so as to send the pilot signal to the UE.
  • step 404 for the related introduction of step 404, reference may be made to the description of the above-mentioned embodiments, and the embodiments of the present disclosure are not repeated here.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • Fig. 5a is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by an RIS array. As shown in Fig. 5a, the signal sending method may include the following steps:
  • Step 501 Group the active RIS elements in the RIS array to obtain at least two groups of RIS element groups, and each group of RIS element groups includes at least one active RIS element.
  • step 501 For the relevant introduction about step 501, reference may be made to the description of the foregoing embodiments, and details are not described in this embodiment of the present disclosure.
  • Step 502 Group each RIS element group to obtain at least two RIS element subgroups, wherein each RIS element subgroup includes at least one active RIS element.
  • the active RIS elements 1 and 2 in the first RIS element group may be divided into the first RIS element subgroups, and the first RIS element group
  • the active RIS array elements 3, 4 are divided into second subgroups of RIS array elements.
  • each element group is divided into at least two RIS element subgroups.
  • Step 503 determining the mapping relationship between the active RIS array elements and the time domain resources in the RIS array as the fourth mapping relationship.
  • the fourth mapping relationship includes: mapping different RIS element subgroups to different OFDM symbols, and the i-th group of RIS element subgroups of different RIS element groups are in different The subcarriers mapped in the OFDM symbols are the same, where i is a positive integer.
  • FIG. 5b is a schematic structural diagram of a fourth mapping relationship provided by an embodiment of the present disclosure.
  • different RIS element subgroups in the first RIS element group (1, 2, 3, 4) are mapped to On different OFDM symbols, specifically, the first RIS element subgroup (1, 2) in the first RIS element group is mapped to the first OFDM symbol, and the first RIS element group in the first RIS element group The element subgroup (3, 4) is mapped to the third OFDM symbol, and the first RIS element subgroup (5, 6) in the second RIS element group (5, 6, 7, 8) is mapped to the second On OFDM symbols, the first RIS element subgroup (7, 8) in the first RIS element group is mapped to the fourth OFDM symbol, and the i-th group of RIS element subgroups of different RIS element groups are in The subcarriers mapped in different OFDM symbols are the same, that is, the first RIS element subgroup (1, 2) in the first RIS element subgroup (1, 2, 3, 4) is mapped to On different OF
  • Step 504 sending the fourth mapping relationship to the UE.
  • Step 505 Map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element according to the fourth mapping relationship, so as to send the pilot signal to the UE.
  • step 404 for the related introduction of step 404, reference may be made to the description of the above-mentioned embodiments, and the embodiments of the present disclosure are not repeated here.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • Fig. 6a is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by an RIS array. As shown in Fig. 6a, the signal sending method may include the following steps:
  • Step 601. Determine the mapping relationship between active RIS array elements and time domain resources in the RIS array as the fifth mapping relationship.
  • the fifth mapping relationship includes: mapping the active RIS array elements to the subcarriers of the time domain resources according to the spatial position arrangement of the active RIS array elements in the RIS array.
  • FIG. 6b is a schematic structural diagram of a fifth mapping relationship provided by an embodiment of the present disclosure.
  • the active RIS array can be directly arranged based on the spatial position arrangement of the active RIS array elements in the RIS array in FIG. 1b.
  • the spatial position of the active RIS element 1 in the RIS array is the second row and the second column, then determine the subcarrier mapped by the active RIS element 1
  • the spatial position in the time domain resource is the second row and the second column.
  • Step 602 Send the fifth mapping relationship to the UE.
  • Step 603 Map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element according to the fifth mapping relationship, so as to send the pilot signal to the UE.
  • step 404 for the related introduction of step 404, reference may be made to the description of the above-mentioned embodiments, and the embodiments of the present disclosure are not repeated here.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • FIG. 7 is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 7 , the signal sending method may include the following steps:
  • Step 701. Obtain the mapping relationship sent by the RIS array, where the mapping relationship is the mapping relationship between active RIS array elements and time domain resources in the RIS array.
  • Step 702 Acquire pilot signals sent by active RIS elements in the RIS array from time-frequency resources based on the mapping relationship.
  • the UE will also acquire the location information sent by the base station, where the location information is used to indicate the location of the active RIS element in the RIS array. Afterwards, based on the location information and the received mapping relationship, the UE can obtain the pilot signal sent by the active RIS element in the RIS array from the time-frequency resource, so that subsequent operations can be performed based on the received pilot signal. channel estimation.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • FIG. 8 is a schematic flowchart of a method for sending a signal provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 8 , the method for sending a signal may include the following steps:
  • Step 801 obtain the first mapping relationship sent by the RIS array, wherein the active RIS elements in the RIS array are divided into at least two groups of RIS elements, and each group of RIS elements includes at least one active RIS element .
  • the first mapping relationship includes: mapping each active RIS element in the same RIS element group to different subcarriers of one OFDM symbol in the time domain resource, wherein the OFDM symbols mapped by different RIS element groups different.
  • the situation that different OFDM symbols mapped to different RIS element groups include:
  • the subcarriers mapped to the i-th active RIS element in different OFDM symbols in different RIS element groups are the same, where i is a positive integer; or
  • the i-th active RIS element in different RIS element groups maps different subcarriers in different OFDM symbols, where i is a positive integer.
  • the RIS element group corresponding to the first mapping may include:
  • Each active RIS element in the same RIS element group belongs to the same row, or, each active RIS element in the same RIS element group belongs to the same column.
  • Step 802 Acquire pilot signals sent by active RIS elements in the RIS array from time-frequency resources based on the first mapping relationship.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • FIG. 9 is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 9 , the signal sending method may include the following steps:
  • Step 901 Obtain the second mapping relationship sent by the RIS array, wherein the active RIS elements in the RIS array are divided into at least two groups of RIS elements, and each group of RIS elements includes at least one active RIS element .
  • the second mapping relationship includes: mapping each active RIS element in the same RIS element group to different OFDM symbols of time domain resources, and each active RIS element in the same group of RIS elements is in different OFDM
  • the subcarriers mapped to the symbols are the same, and the subcarriers mapped to different RIS element groups are different.
  • the situation that the subcarriers mapped to different RIS element groups are different includes at least one of the following:
  • the subcarriers mapped by the i-th active RIS element in different RIS element groups belong to the same OFDM symbol, where i is a positive integer;
  • the subcarriers mapped to the i-th active RIS element in different RIS element groups belong to different OFDM symbols, where i is a positive integer.
  • the RIS element group corresponding to the second mapping may include:
  • Each active RIS element in the same RIS element group belongs to the same row, or, each active RIS element in the same RIS element group belongs to the same column.
  • Step 902 Acquire pilot signals sent by active RIS elements in the RIS array from time-frequency resources based on the second mapping relationship.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • FIG. 10 is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 10 , the signal sending method may include the following steps:
  • Step 1001. Obtain the third mapping relationship sent by the RIS array, wherein all active RIS array elements in the RIS array are arranged in rows or columns.
  • the third mapping relationship includes: respectively mapping the arranged active RIS array elements to different subcarriers of the same OFDM symbol, and/or respectively mapping the arranged active RIS array elements to the same subcarriers of different OFDM symbols. on subcarriers, and/or, mapping the arranged active RIS elements to different subcarriers of different OFDM symbols.
  • Step 1002 Acquire pilot signals sent by active RIS elements in the RIS array from time-frequency resources based on the third mapping relationship.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • FIG. 11 is a schematic flowchart of a method for sending a signal provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 11 , the method for sending a signal may include the following steps:
  • Step 1101 obtain the fourth mapping relationship sent by the RIS array, wherein the active RIS elements in the RIS array are divided into at least two groups of RIS elements, and each group of RIS elements includes at least one active RIS element and, each RIS array element group is divided into at least two RIS array element subgroups, wherein each RIS array element subgroup includes at least one active RIS array element.
  • the fourth mapping relationship includes: mapping different RIS array element subgroups to different OFDM symbols respectively, and the i-th group of RIS array element subgroups of different RIS array element groups are mapped to the same subcarriers in different OFDM symbols, Among them, i is a positive integer.
  • Step 1102 Acquire pilot signals sent by active RIS elements in the RIS array from time-frequency resources based on the fourth mapping relationship.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • FIG. 12 is a schematic flowchart of a signal sending method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 12 , the signal sending method may include the following steps:
  • Step 1201 acquire the fifth mapping relationship sent by the RIS array.
  • the fifth mapping relationship includes: mapping the active RIS array elements to the subcarriers of the time-domain resources according to the spatial position arrangement of the active RIS array elements in the RIS array.
  • Step 1202 Acquire pilot signals sent by active RIS elements in the RIS array from time-frequency resources based on the fifth mapping relationship.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • FIG. 13 is a schematic structural diagram of a signal sending device 1300 provided by an embodiment of the present disclosure, which is applied to a RIS array element. As shown in FIG. 13 , the signal sending device 1300 may include:
  • a determining module 1301, configured to determine a mapping relationship between active RIS array elements and time domain resources in the RIS array
  • the mapping module 1303 is configured to map the pilot signal sent by the active RIS array element to the time-frequency resource corresponding to the active RIS array element, so as to send the pilot signal to the UE.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • the device is also used for:
  • the active RIS elements in the RIS array are grouped to obtain at least two groups of RIS element groups, and each group of RIS element groups includes at least one active RIS element.
  • the device is also used for:
  • the determining module is further configured to:
  • the first mapping relationship includes: mapping each active RIS element in the same RIS element group to one of the orthogonal frequency division multiplexing (OFDM) elements of the time domain resource On different subcarriers of the symbol, different OFDM symbols mapped to different RIS element groups are different.
  • OFDM orthogonal frequency division multiplexing
  • the situation that the OFDM symbols mapped to different RIS element groups are different includes:
  • the subcarriers mapped to the i-th active RIS element in different OFDM symbols in different RIS element groups are the same, where i is a positive integer; or
  • the i-th active RIS element in different RIS element groups maps different subcarriers in different OFDM symbols, where i is a positive integer.
  • the determining module is further configured to:
  • the second mapping relationship includes: mapping each active RIS element in the same RIS element group to different OFDM symbols of the time domain resources, and the same group Each active RIS element group in the RIS element group maps the same subcarriers in different OFDM symbols, and different RIS element groups map different subcarriers.
  • the situation that the subcarriers mapped to different RIS element groups are different includes at least one of the following:
  • the subcarriers mapped by the i-th active RIS element in different RIS element groups belong to the same OFDM symbol, where i is a positive integer;
  • the subcarriers mapped to the i-th active RIS element in different RIS element groups belong to different OFDM symbols, where i is a positive integer.
  • the device is also used for:
  • All the active RIS elements in the RIS array are arranged in rows or columns to obtain the arranged active RIS elements.
  • the determining module is also used to
  • the third mapping relationship includes: respectively mapping the arranged active RIS array elements to different subcarriers of the same OFDM symbol, and/or, mapping the arranged The rearranged active RIS array elements are respectively mapped to the same subcarriers of different OFDM symbols, and/or, the arranged active RIS array elements are respectively mapped to different subcarriers of different OFDM symbols.
  • the third mapping relationship includes: respectively mapping the arranged active RIS array elements to different subcarriers of the same OFDM symbol, and/or, mapping the arranged The rearranged active RIS array elements are respectively mapped to the same subcarriers of different OFDM symbols, and/or, the arranged active RIS array elements are respectively mapped to different subcarriers of different OFDM symbols.
  • the device is also used for:
  • Each set of RIS element groups is grouped to obtain at least two RIS element subgroups, wherein each RIS element subgroup includes at least one active RIS element.
  • the determining module is further configured to:
  • the fourth mapping relationship includes: mapping different RIS element subgroups to different OFDM symbols, and the i-th group of RIS element subgroups of different RIS element groups are in The subcarriers mapped in different OFDM symbols are the same, where i is a positive integer.
  • the determining module is further configured to:
  • the fifth mapping relationship includes: mapping the active RIS array element to the on subcarriers of time domain resources.
  • the pilot signal sent by one active RIS element occupies one subcarrier, and the number of subcarriers mapped to one active RIS element is one.
  • the pilot signal sent by one active RIS element occupies n subcarriers, and the number of subcarriers mapped by the one active RIS element is n, Wherein, n is a positive integer greater than 1.
  • the n subcarriers mapped to the one active RIS element belong to the same OFDM symbol, and/or, the n subcarriers mapped to the one active RIS element Carriers belong to different OFDM symbols.
  • the pilot signal sent by one active RIS element occupies n ⁇ m subcarriers, and the number of subcarriers mapped to one active RIS element is n ⁇ m, where n and m are both positive integers.
  • the device is also used for:
  • location information to the UE, where the location information is used to indicate the location of the active RIS array element in the RIS array.
  • FIG. 14 is a schematic structural diagram of a signal sending apparatus 1400 provided by an embodiment of the present disclosure, which is applied to a UE.
  • the signal sending apparatus 1400 may include:
  • the first acquiring module 1401 is configured to acquire the mapping relationship sent by the RIS array
  • the second obtaining module 1402 is configured to obtain the pilot signal sent by the active RIS element in the RIS array from the time-frequency resource based on the mapping relationship.
  • the RIS array can determine the mapping relationship between the active RIS elements in the array and the time domain resources, and send the mapping relationship to the UE, and then the active RIS The pilot signal sent by the array element is mapped to the time-frequency resource corresponding to the active RIS array element to send the pilot signal to the UE.
  • the RIS array will predetermine the mapping relationship between the active RIS element and the time domain resource, and when the active RIS element sends the pilot signal to the UE, it can be based on the predetermined mapping relationship to map the pilot signal sent by the active RIS array element to the corresponding time-domain resource to send to the UE, which ensures the stability of the pilot signal transmission, and at the same time, when the subsequent channel estimation based on the pilot signal , which can ensure the accuracy of channel estimation.
  • the active RIS elements in the RIS array are divided into at least two groups of RIS elements, and each group of RIS elements includes at least one active RIS element .
  • each active RIS element in the same RIS element group belongs to the same row, or, each active RIS element in the same RIS element group belongs to the same column.
  • the first acquiring module is further configured to:
  • the first mapping relationship includes: mapping each active RIS element in the same RIS element group to a different subcarrier of one OFDM symbol of the time domain resource, Wherein, the OFDM symbols mapped to different RIS element groups are different.
  • the situation that the OFDM symbols mapped to different RIS element groups are different includes:
  • the subcarriers mapped to the i-th active RIS element in different OFDM symbols in different RIS element groups are the same, where i is a positive integer; or
  • the i-th active RIS element in different RIS element groups maps different subcarriers in different OFDM symbols, where i is a positive integer.
  • the first acquiring module is further configured to:
  • the second mapping relationship includes: mapping each active RIS element in the same RIS element group to different OFDM symbols of the time domain resource, and the same group of RIS The subcarriers mapped to different OFDM symbols by each active RIS element group in the element group are the same, and the subcarriers mapped to different RIS element groups are different.
  • the situation that the subcarriers mapped to different RIS element groups are different includes at least one of the following:
  • the subcarriers mapped by the i-th active RIS element in different RIS element groups belong to the same OFDM symbol, where i is a positive integer;
  • the subcarriers mapped to the i-th active RIS element in different RIS element groups belong to different OFDM symbols, where i is a positive integer.
  • all active RIS elements in the RIS array are arranged in rows or columns.
  • the first acquiring module is further configured to:
  • the third mapping relationship includes: respectively mapping the arranged active RIS array elements to different subcarriers of the same OFDM symbol, and/or, mapping the arranged active RIS elements
  • the source RIS array elements are respectively mapped to the same subcarriers of different OFDM symbols, and/or, the arranged active RIS array elements are respectively mapped to different subcarriers of different OFDM symbols.
  • each RIS element group is divided into at least two RIS element subgroups, wherein each RIS element subgroup includes at least one active RIS element.
  • the first acquiring module is further configured to:
  • the fourth mapping relationship includes: mapping different RIS element subgroups to different OFDM symbols, and the i-th group of RIS element subgroups of different RIS element groups are in different The subcarriers mapped in the OFDM symbols are the same, where i is a positive integer.
  • the first acquiring module is further configured to:
  • the fifth mapping relationship includes: mapping the active RIS array element to the time on subcarriers of domain resources.
  • the pilot signal sent by one active RIS element occupies one subcarrier, and the number of subcarriers mapped to one active RIS element is one.
  • the pilot signal sent by one active RIS element occupies n subcarriers, and the number of subcarriers mapped by the one active RIS element is n, Wherein, n is a positive integer greater than 1.
  • the n subcarriers mapped to the one active RIS element belong to the same OFDM symbol, and/or, the n subcarriers mapped to the one active RIS element Carriers belong to different OFDM symbols.
  • the pilot signal sent by one active RIS element occupies n ⁇ m subcarriers, and the number of subcarriers mapped to one active RIS element is n ⁇ m, where n and m are both positive integers.
  • the device is also used for:
  • the second acquiring module is further configured to:
  • Fig. 15 is a block diagram of a user equipment UE1500 provided by an embodiment of the present disclosure.
  • the UE 1500 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1500 may include at least one of the following components: a processing component 1502, a memory 1504, a power supply component 1506, a multimedia component 1508, an audio component 1510, an input/output (I/O) interface 1512, a sensor component 1513, and a communication component 1516.
  • a processing component 1502 may include at least one of the following components: a memory 1504, a power supply component 1506, a multimedia component 1508, an audio component 1510, an input/output (I/O) interface 1512, a sensor component 1513, and a communication component 1516.
  • a processing component 1502 may include at least one of the following components: a processing component 1502, a memory 1504, a power supply component 1506, a multimedia component 1508, an audio component 1510, an input/output (I/O) interface 1512, a sensor component 1513, and a communication component 1516.
  • I/O input/output
  • Processing component 1502 generally controls the overall operations of UE 1500, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1502 may include at least one processor 1520 to execute instructions, so as to complete all or part of the steps of the above method.
  • processing component 1502 can include at least one module to facilitate interaction between processing component 1502 and other components.
  • processing component 1502 may include a multimedia module to facilitate interaction between multimedia component 1508 and processing component 1502 .
  • the memory 1504 is configured to store various types of data to support operations at the UE 1500 . Examples of such data include instructions for any application or method operating on UE1500, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1504 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1506 provides power to various components of the UE 1500.
  • Power component 1506 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1500 .
  • the multimedia component 1508 includes a screen providing an output interface between the UE 1500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1508 includes a front camera and/or a rear camera. When UE1500 is in operation mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1510 is configured to output and/or input audio signals.
  • the audio component 1510 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1500 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1504 or sent via communication component 1516 .
  • the audio component 1510 also includes a speaker for outputting audio signals.
  • the I/O interface 1512 provides an interface between the processing component 1502 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1513 includes at least one sensor for providing various aspects of status assessment for the UE 1500 .
  • the sensor component 1513 can detect the open/close state of the device 1500, the relative positioning of components, such as the display and the keypad of the UE1500, the sensor component 1513 can also detect the position change of the UE1500 or a component of the UE1500, and the user and Presence or absence of UE1500 contact, UE1500 orientation or acceleration/deceleration and temperature change of UE1500.
  • Sensor assembly 1513 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1513 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1513 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1516 is configured to facilitate wired or wireless communications between UE 1500 and other devices.
  • UE1500 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or their combination.
  • the communication component 1516 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1516 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 1500 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 16 is a block diagram of a network side device 1600 provided by an embodiment of the present disclosure.
  • the network side device 1600 may be provided as a network side device.
  • the network side device 1600 includes a processing component 1611, which further includes at least one processor, and a memory resource represented by a memory 1632 for storing instructions executable by the processing component 1622, such as an application program.
  • the application programs stored in memory 1632 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1610 is configured to execute instructions, so as to execute any method of the foregoing method applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 1600 may also include a power supply component 1626 configured to perform power management of the network side device 1600, a wired or wireless network interface 1650 configured to connect the network side device 1600 to the network, and an input/output (I/O ) interface 1658.
  • the network side device 1600 can operate based on the operating system stored in the memory 1632, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the RIS array and the UE respectively.
  • the UE may include a hardware structure and a software module, and implement the above various functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the RIS array and the UE respectively.
  • the UE may include a hardware structure and a software module, and implement the above various functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the aforementioned method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiments): the processor is configured to execute any of the methods shown in FIGS. 1-4 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 5-Fig. 7 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the foregoing embodiments and a communication device as a network device, Alternatively, the system includes the communication device as the terminal device in the foregoing embodiments (such as the first terminal device in the foregoing method embodiment) and the communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号发送方法、装置、用户设备、RIS阵列及存储介质,属于通信技术领域。方法包括:RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。本方法可以确保导频信号的传输稳定性,进而确保信道估计的精度。

Description

一种信号发送方法、装置、用户设备、RIS阵列及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种信号发送方法、装置、用户设备、RIS阵列及存储介质。
背景技术
为了确保无线通信网络的覆盖增强和容量提升,在无线通信系统中引入了RIS(Reconfigurable Intelligent Surface,可重构智能表面)技术。其中,在基于RIS技术进行通信时,为了确保信号传输的准确性,通常需要对RIS阵列与UE(User Equipment,终端设备)之间的信道进行信道估计,具体的,会使得RIS阵列中有源阵元向UE发送导频信号,以及,UE基于其接收到的导频信号来对RIS阵列与UE之间的信道进行信道估计。
需要说明的是,RIS阵列在向UE发送导频信号时,该导频信号在时域资源上的位置会影响到信道估计的精度和准确度,因此,亟需一种“RIS阵列所发送的导频信号与时域资源之间映射关系的设置方法”,以确保基于导频信号的信道估计的精度和准确度。
发明内容
本公开提出的一种信号发送方法、装置、用户设备、RIS阵列及存储介质,以提供RIS阵列所发送的导频信号与时域资源之间的映射关系。
本公开一方面实施例提出的一种信号发送方法,应用于RIS阵列,包括:
确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系;
向用户设备UE发送所述映射关系;
将所述有源RIS阵元所发送的导频信号映射至所述有源RIS阵元对应的时频资源上以将所述导频信号发送至所述UE。
本公开另一方面实施例提出的一种信号发送方法,应用于UE,包括:
获取RIS阵列发送的映射关系;
基于所述映射关系从时频资源中获取所述RIS阵列中的有源RIS阵元所发送的导频信号。
本公开又一方面实施例提出的一种信号发送装置,包括:
确定模块,用于确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系;
发送模块,用于向用户设备UE发送所述映射关系;
映射模块,用于将所述有源RIS阵元所发送的导频信号映射至所述有源RIS阵元对应的时频资源上以将所述导频信号发送至所述UE。
本公开又一方面实施例提出的一种信号发送装置,包括:
第一获取模块,用于获取RIS阵列发送的映射关系;
第二获取模块,用于基于所述映射关系从时频资源中获取所述RIS阵列中的有源RIS阵元所发送的导频信号。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的信号发送方法、装置、用户设备、基站及存储介质之中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1a为本公开一个实施例所提供的一种信号发送方法的流程示意图;
图1b为本公开实施例提供的一种RIS阵列中的有源RIS阵元的结构示意图;
图2a为本公开另一个实施例所提供的一种信号发送方法的流程示意图;
图2b为本公开实施例所提供按行划分有源RIS阵元的示意图;
图2c为本公开实施例所提供按列划分有源RIS阵元的示意图;
图2d为本公开实施例所提供的一种上述情形一对应的第一映射关系的结构示意图;
图2e为本公开实施例所提供的一种上述情形二对应的第一映射关系的结构示意图;
图2f为本公开实施例所提供的一个有源RIS阵元对应n个子载波的结构示意图;
图2g为本公开实施例所提供的一个有源RIS阵元对应n个子载波的结构示意图;
图2h为本公开实施例所提供的一个有源RIS阵元对应n×m个子载波的结构示意图;
图3a为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图3b为本公开实施例所提供的一种上述情形三对应的第二映射关系的结构示意图;
图3c为本公开实施例所提供的一种上述情形三对应的第二映射关系的结构示意图;
图4a为本公开实施例所提供的一种信号发送方法的流程示意图;
图4b为本公开实施例提供的一种第三映射关系的结构示意图;
图4c为本公开实施例提供的一种第三映射关系的结构示意图;
图4d为本公开实施例提供的一种第三映射关系的结构示意图;
图4e为本公开实施例提供的另一种第三映射关系的结构示意图;
图5a为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图5b为本公开实施例提供的一种第四映射关系的结构示意图;
图6a为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图6b为本公开实施例提供的一种第五映射关系的结构示意图;
图7为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图8为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图9为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图10为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图11为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图12为本公开又一个实施例所提供的一种信号发送方法的流程示意图;
图13为本公开一个实施例所提供的一种信号发送装置的结构示意图;
图14为本公开另一个实施例所提供的一种信号发送装置的结构示意图;
图15是本公开一个实施例所提供的一种用户设备的框图;
图16为本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面参考附图对本公开实施例所提供的测量方法、装置、用户设备、RIS阵列及存储介质进行详细描述。
图1a为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由RIS阵列执行,如图1a所示,该信号发送方法可以包括以下步骤:
步骤101、确定RIS阵列中的有源RIS阵元与时域资源的映射关系。
其中,在本公开的一个实施例之中,RIS阵列本身是近乎无源的,但是RIS阵列中包括有有源RIS阵元,该有源RIS阵元可以用于向UE发送信号(例如导频信号),以使得UE基于其接收到的导频信号来对RIS阵列和UE之间的信道进行信道估计。示例的图1b为本公开实施例提供的一种RIS阵列中的有源RIS阵元的结构示意图。如图1b所示,RIS阵列为一7×9阵列,其中,该RIS阵列中包括有12个有源RIS阵元,分别为有源RIS阵元1、有源RIS阵元2、有源RIS阵元3....有源RIS阵元12,则可以利用上述各个有源RIS阵元来向UE发送导频信号。
进一步地,在本公开的一个实施例之中,上述的时域资源可以包括至少一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)符号,以及,每一个OFDM符号可以包括至少一个子载波(或RE(Resource Element,资源元素))。其中,具体是将有源RIS阵元所发送的导频信号映射至子载波(或RE)上以发送至UE。
以及,在本公开的一个实施例之中,RIS阵列中的有源RIS阵元与时域资源之间可以存在多种不同的映射关系,关于确定RIS阵列中的有源RIS阵元与时域资源的多种不同的映射关系会在后续实施例会进行详细介绍。
步骤102、向UE发送映射关系。
在本公开的一个实施例之中,通信设备可以为UE,其中,UE可以是指向用户提供语音和/或数据连通性的设备。UE可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如, 可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,当RIS阵列确定了有源RIS阵元与时域资源的映射关系之后,可以将该所确定的映射关系发送至UE,以便UE后续可以基于该映射关系在对应的时域资源上接收有源RIS阵元所发送的导频信号。
步骤103、将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。
其中,在本公开的一个实施例之中,将有源RIS阵列所发送的导频信号映射至对应的时频资源上具体是将有源RIS阵列所发送的导频信号映射至该有源RIS阵元对应的子载波上,以利用子载波将导频信号发送至UE。
以及,在本公开的一个实施例之中,RIS阵列还可以向UE发送位置信息,其中,该位置信息用于指示有源RIS阵元在RIS阵列中的位置,以便后续UE可以基于该位置信息来接收各个有源RIS阵元所发送的导频信号。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图2a为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由RIS阵列执行,如图2a所示,该信号发送方法可以包括以下步骤:
步骤201、对RIS阵列中的有源RIS阵元进行分组以得到至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
其中,在本公开的一个实施例之中,对RIS阵列中的有源RIS阵元进行分组的方法可以包括以下至少一种:
方法一、将位于同一行的有源RIS阵元划分(即按行划分)至同一RIS阵元组中,其中,图2b为本公开实施例所提供按行划分有源RIS阵元的示意图,如图2b所示,可以将有源RIS阵元1、5、9划分至第一RIS阵元组,将有源RIS阵元2、6、10划分至第二RIS阵元组等。
方法二、将位于同一列的有源RIS阵元划分(即按列划分)至同一RIS阵元组中,其中,图2c为本公开实施例所提供按列划分有源RIS阵元的示意图,如图2c所示,可以将有源RIS阵元1、2、3、4划分至第一RIS阵元组,将有源RIS阵元5、6、7、8划分至第二RIS阵元组等。
步骤202、确定RIS阵列中的有源RIS阵元与时域资源的映射关系为第一映射关系。
其中,在本公开的一个实施例之中,该第一映射关系可以包括:将同一RIS阵元组中的各个有源RIS阵元映射至时域资源的其中一个OFDM符号的不同子载波上,其中,不同RIS阵元组所映射的OFDM符号不同。
需要说明的是,在本公开的一个实施例之中,上述的不同RIS阵元组所映射的OFDM符号不同的情形可以包括:
情形一、不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,i为正整数。
图2d为本公开实施例所提供的一种上述情形一对应的第一映射关系的结构示意图,其中,如图2d所示,有源RIS阵元的划分方式为按列划分,以及属于第一RIS阵元组的有源RIS阵元1、2、3、4被映射至第一个OFDM符号的不同子载波上、属于第二RIS阵元组的有源RIS阵元5、6、7、8被映射至第二个OFDM符号的不同子载波上,且第一RIS阵元组中的第1个有源RIS阵元1映射至第一个OFDM符号的第一个子载波上,第二RIS阵元组中的第1个有源RIS阵元5映射至第二个OFDM符号的第一个子载波上,即:不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波相同。
情形二、不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波不同,其中,i为正整数。
图2e为本公开实施例所提供的一种上述情形二对应的第一映射关系的结构示意图,其中,如图2e所示,有源RIS阵元的划分方式为按列划分,以及属于第一RIS阵元组的有源RIS阵元1、2、3、4被映射至第一个OFDM符号的不同子载波上、属于第二RIS阵元组的有源RIS阵元5、6、7、8被映射至第二个OFDM符号的不同子载波上,且第一RIS阵元组中的第1个有源RIS阵元1映射至第一个OFDM符号的第一个子载波上,第二RIS阵元组中的第1个有源RIS阵元5映射至第二个OFDM符号的第二个子载波上,即:不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波不同。
步骤203、向UE发送第一映射关系。
步骤204、将有源RIS阵元所发送的导频信号按照第一映射关系映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。
需要说明的是,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号可以占用一个或多个子载波。
具体的,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号可以只占用一个子载波,此时,一个有源RIS阵元所映射的子载波个数为一个(例如可以参考上图2d和2e所示);
在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号可以占用n个子载波,此时,一个有源RIS阵元所映射的子载波个数为n个,其中,n为大于1的正整数。
以及,需要说明的是,在本公开的一个实施例之中,当一个有源RIS阵元所映射的子载波个数为n个时,该一个有源RIS阵元所映射的n个子载波可以属于不同OFDM符号,其中,当该n个子载波属于不同OFDM符号时,该n个子载波在不同OFDM符号所处的位置可以相同或不同。例如,图2f为本公开实施例所提供的一个有源RIS阵元对应n个子载波的结构示意图,如图2f所示,有源RIS阵元1对应有子载波1-1、子载波1-2……子载波1-n。其中,该子载波1-1至子载波1-n属于不同的OFDM符号,且,不同的子载波在不同的OFDM符号中所处的位置相同,即子载波1-1为第二个OFDM符号的第二个子载波,子载波1-2为第三个OFDM符号的第二个子载波。
在本公开的另一个实施例之中,当一个有源RIS阵元所映射的子载波个数为n个时,该一个有源RIS阵元所映射的n个子载波可以属于相同OFDM符号。例如,图2g为本公开实施例所提供的一个有源RIS阵元对应n个子载波的结构示意图,如图2f所示,有源RIS阵元1对应有子载波1-1、子载波2-1……子载波n-1。其中,该子载波1-1至子载波n-1属于相同的OFDM符号。
进一步地,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号会占用n×m个子载波,此时,一个有源RIS阵元所映射的子载波个数为n×m个,其中,n和m均为正整数。以及,图2h为本公开实施例所提供的一个有源RIS阵元对应n×m个子载波的结构示意图。
此外,需要说明的是,本实施例中的映射关系均是以一个有源RIS阵列对应一个子载波为例进行说明,其中,当一个有源RIS阵列对应多个子载波时,其同样可以按照本公开实施例中所提到的映射关系进行映射。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图3a为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由RIS阵列执行,如图3a所示,该信号发送方法可以包括以下步骤:
步骤301、对RIS阵列中的有源RIS阵元进行分组以得到至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
其中,关于步骤301的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤302、确定RIS阵列中的有源RIS阵元与时域资源的映射关系为第二映射关系。
其中,在本公开的一个实施例之中,第二映射关系可以包括:将同一RIS阵元组中的各个有源RIS阵元分别映射至时域资源的不同OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,以及,不同RIS阵元组所映射的子载波不同。
进一步地,在本公开的一个实施例之中,上述的不同RIS阵元组所映射的子载波不同的情形包括以下至少一种:
情形三、不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于相同的OFDM符号,其中,i为正整数。
图3b为本公开实施例所提供的一种上述情形三对应的第二映射关系的结构示意图,其中,如图3b所示,有源RIS阵元的划分方式为按列划分,以及属于第一RIS阵元组的有源RIS阵元1、2、3、4分别映射至不同的OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,有源RIS阵元1被映射至第一个OFDM符号的第一个子载波上、有源RIS阵元2被映射至第二个OFDM符号的第一个子载波上、有源RIS阵元3被映射至第三个OFDM符号的第一个子载波上、有源RIS阵元4被映射至第四个OFDM符号的第一个子载波上。同时,不同的RIS阵元组中第i个有源RIS阵元所映射的子载波属于相同的OFDM符号,即:第一RIS阵元组中的第1个有源RIS阵元1映射至第一个OFDM符号的子载波上,第二RIS阵元组中的第1个有源RIS阵元5也映射至第一个OFDM符号的子载波上。
情形四、不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于不同的OFDM符号,其中,i为正整数。
图3c为本公开实施例所提供的一种上述情形三对应的第二映射关系的结构示意图,其中,如图3c所示,有源RIS阵元的划分方式为按列划分,以及属于第一RIS阵元组的有源RIS阵元1、2、3、4分别映射至不同的OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,有源RIS阵元1被映射至第一个OFDM符号的第一个子载波上、有源RIS阵元2被映射至第二个OFDM符号的第一个子载波上、有源RIS阵元3被映射至第三个OFDM符号的第一个子载波上、有源RIS阵元4被映射至第四个OFDM符号的第一个子载波上。同时,不同的RIS阵元组中第i个有源RIS阵元所映射的子载波属于不同的OFDM符号,即:第一RIS阵元组中的第1个有源RIS阵元1映射至第一个OFDM符号的子载波上,第二RIS阵元组中的第1个有源RIS阵元5也映射至第二个OFDM符号的子载波上。
步骤303、向UE发送第二映射关系。
步骤304、将有源RIS阵元所发送的导频信号按照第二映射关系映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。
其中,关于步骤304的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图4a为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由RIS阵列执行,如图4a所示,该信号发送方法可以包括以下步骤:
步骤401、将RIS阵列中的所有有源RIS阵元按行排列或按列排列,以得到排列后的有源RIS阵元。
其中,例如将图1b所示的所有有源RIS阵元按列排列之后得到有源RIS阵元1、2、3、4、5、6、7、8、9、10、11、12。将图1b所示的所有有源RIS阵元按行排列之后得到有源RIS阵元1、5、9、2、6、10、3、7、11、4、8、12。
步骤402、确定RIS阵列中的有源RIS阵元与时域资源的映射关系为第三映射关系。
其中,在本公开的一个实施例之中,该第三映射关系包括:将排列后的有源RIS阵元分别映射至同一OFDM符号的不同子载波上,和/或,将排列后的有源RIS阵元分别映射至不同OFDM符号的相同子载波上,和/或,将排列后的有源RIS阵元分别映射至不同OFDM符号的不同子载波上。
其中,图4b为本公开实施例提供的一种第三映射关系的结构示意图,如图4b所示,按列排列之后的所有有源RIS阵元分别映射至不同OFDM符号的相同子载波上。图4c为本公开实施例提供的一种第三映射关系的结构示意图,如图4c所示,按行排列之后的所有有源RIS阵元分别映射至不同OFDM符号的相同子载波上。图4d为本公开实施例提供的一种第三映射关系的结构示意图,如图4d所示,按列排列之后的所有有源RIS阵元分别映射至同一个OFDM符号的不同子载波上。图4e为本公开实施例提供的另一种第三映射关系的结构示意图,如图4e所示,按行排列之后的所有有源RIS阵元分别映射至同一个OFDM符号的不同子载波上。
步骤403、向UE发送第三映射关系。
步骤404、将有源RIS阵元所发送的导频信号按照第三映射关系映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。
其中,关于步骤404的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图5a为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由RIS阵列执行,如图5a所示,该信号发送方法可以包括以下步骤:
步骤501、对RIS阵列中的有源RIS阵元进行分组以得到至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
其中,关于步骤501的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤502、对每组RIS阵元组进行分组,以得到至少两个RIS阵元子组,其中,每组RIS阵元子组包括至少一个有源RIS阵元。
示例的,在本公开的一个实施例之中,例如可以将第一RIS阵元组中的有源RIS阵元1、2划分为第一RIS阵元子组,将第一RIS阵元组中的有源RIS阵元3、4划分为第二RIS阵元子组。以此类推,将各个阵元组划分出至少两个RIS阵元子组。
步骤503、确定RIS阵列中的有源RIS阵元与时域资源的映射关系为第四映射关系。
其中,在本公开的一个实施例之中,第四映射关系包括:将不同RIS阵元子组分别映射至不同OFDM符号上,且不同RIS阵元组的第i组RIS阵元子组在不同OFDM符号中所映射的子载波相同,其中,i为正整数。
图5b为本公开实施例提供的一种第四映射关系的结构示意图,如图5b所示,第一RIS阵元组(1、2、3、4)中的不同RIS阵元子组映射至不同的OFDM符号上,具体的,第一RIS阵元组中的第一RIS阵元子组(1、2)映射至第一个OFDM符号上,第一RIS阵元组中的第一RIS阵元子组(3、4)映射至第三个OFDM符号上,第二RIS阵元组(5、6、7、8)中的第一RIS阵元子组(5、6)映射至第二个OFDM符号上,第一RIS阵元组中的第一RIS阵元子组(7、8)映射至第四个OFDM符号上,且不同RIS阵元组的第i组RIS阵元子组在不同OFDM符号中所映射的子载波相同,即:第一RIS阵元子组(1、2、3、4)中的第一RIS阵元子组(1、2)映射至第一个OFDM符号的第一个子载波和第二个子载波上,第二RIS阵元组(5、6、7、8)中的第一RIS阵元子组(5、6)也映射至第二个OFDM符号的第一个子载波和第二个子载波上。
步骤504、向UE发送第四映射关系。
步骤505、将有源RIS阵元所发送的导频信号按照第四映射关系映射至有源RIS阵元对应的时频资 源上以将导频信号发送至UE。
其中,关于步骤404的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图6a为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由RIS阵列执行,如图6a所示,该信号发送方法可以包括以下步骤:
步骤601、确定RIS阵列中的有源RIS阵元与时域资源的映射关系为第五映射关系。
其中,在本公开的一个实施例之中,第五映射关系包括:按照有源RIS阵元在RIS阵列中的空间位置排列方式将有源RIS阵元映射至时域资源的子载波上。
图6b为本公开实施例提供的一种第五映射关系的结构示意图,如图6b所示,可以直接基于图1b中有源RIS阵元在RIS阵列中的空间位置排列方式将有源RIS阵元映射至子载波上,例如,参考图1b可知,有源RIS阵元1在RIS阵列中的空间位置为第2行、第2列,则确定该有源RIS阵元1所映射的子载波在时域资源中的空间位置为第2行、第2列。
步骤602、向UE发送第五映射关系。
步骤603、将有源RIS阵元所发送的导频信号按照第五映射关系映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。
其中,关于步骤404的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图7为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由UE执行,如图7所示,该信号发送方法可以包括以下步骤:
步骤701、获取RIS阵列发送的映射关系,其中,该映射关系为RIS阵列中的有源RIS阵元与时域资源的映射关系。
步骤702、基于映射关系从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号。
以及,在本公开的一个实施例之中,UE还会获取到基站发送的位置信息,该位置信息为用于指示所述有源RIS阵元在RIS阵列中的位置。之后,UE可以基于该位置信息和所接收到的映射关系来从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号,以便后续可以基于该接收到的导频信号进行信道估计。
以及,关于上述步骤701-702的详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图8为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由UE执行,如图8所示,该信号发送方法可以包括以下步骤:
步骤801、获取RIS阵列发送的第一映射关系,其中,该RIS阵列中的有源RIS阵元被划分为至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
其中,第一映射关系包括:将同一RIS阵元组中的各个有源RIS阵元映射至时域资源的其中一个OFDM符号的不同子载波上,其中,不同RIS阵元组所映射的OFDM符号不同。
在本公开的一个实施例之中,不同RIS阵元组所映射的OFDM符号不同的情形包括:
不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,i为正整数;或者
不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波不同,其中,i为正整数。
以及,第一映射对应的RIS阵元组可以包括:
同一RIS阵元组中的各个有源RIS阵元属于同一行,或者,同一RIS阵元组中的各个有源RIS阵元属于同一列。
步骤802、基于第一映射关系从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图9为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由UE执行,如图9所示,该信号发送方法可以包括以下步骤:
步骤901、获取RIS阵列发送的第二映射关系,其中,该RIS阵列中的有源RIS阵元被划分为至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
第二映射关系包括:将同一RIS阵元组中的各个有源RIS阵元分别映射至时域资源的不同OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,以及,不同RIS阵元组所映射的子载波不同。
在本公开的一个实施例之中,不同RIS阵元组所映射的子载波不同的情形包括以下至少一种:
不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于相同的OFDM符号,其中,i为正整数;
不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于不同的OFDM符号,其中,i为正整数。
以及,第二映射对应的RIS阵元组可以包括:
同一RIS阵元组中的各个有源RIS阵元属于同一行,或者,同一RIS阵元组中的各个有源RIS阵元属于同一列。
步骤902、基于第二映射关系从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图10为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由UE执行,如图10所示,该信号发送方法可以包括以下步骤:
步骤1001、获取RIS阵列发送的第三映射关系,其中,该RIS阵列中的所有有源RIS阵元被按行排列或按列排列。
其中,第三映射关系包括:将排列后的有源RIS阵元分别映射至同一OFDM符号的不同子载波上,和/或,将排列后的有源RIS阵元分别映射至不同OFDM符号的相同子载波上,和/或,将排列后的有源 RIS阵元分别映射至不同OFDM符号的不同子载波上。
步骤1002、基于第三映射关系从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图11为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由UE执行,如图11所示,该信号发送方法可以包括以下步骤:
步骤1101、获取RIS阵列发送的第四映射关系,其中,该RIS阵列中的有源RIS阵元被划分为至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元;以及,每组RIS阵元组被划分为至少两个RIS阵元子组,其中,每组RIS阵元子组包括至少一个有源RIS阵元。
其中,第四映射关系包括:将不同RIS阵元子组分别映射至不同OFDM符号上,且不同RIS阵元组的第i组RIS阵元子组在不同OFDM符号中所映射的子载波相同,其中,i为正整数。
步骤1102、基于第四映射关系从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图12为本公开实施例所提供的一种信号发送方法的流程示意图,该方法由UE执行,如图12所示,该信号发送方法可以包括以下步骤:
步骤1201、获取RIS阵列发送的第五映射关系。
其中,第五映射关系包括:按照有源RIS阵元在所述RIS阵列中的空间位置排列方式将有源RIS阵元映射至所述时域资源的子载波上。
步骤1202、基于第五映射关系从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号。
综上所述,在本公开实施例提供的信号发送方法中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
图13为本公开一个实施例所提供的一种信号发送装置1300的结构示意图,应用于RIS阵元,如图13所示,该信号发送装置1300可以包括:
确定模块1301,用于确定RIS阵列中的有源RIS阵元与时域资源的映射关系;
发送模块1302,用于向用户设备UE发送所述映射关系;
映射模块1303,用于将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至所述UE。
综上所述,在本公开实施例提供的信号发送装置中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信 号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
可选地,在本公开的一个实施例之中,所述装置,还用于:
对所述RIS阵列中的有源RIS阵元进行分组以得到至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
可选地,在本公开的一个实施例之中,所述装置,还用于:
将位于同一行的有源RIS阵元划分至同一RIS阵元组中;
将位于同一列的有源RIS阵元划分至同一RIS阵元组中。
可选地,在本公开的一个实施例之中,所述确定模块,还用于:
确定所述映射关系为第一映射关系,所述第一映射关系包括:将同一RIS阵元组中的各个有源RIS阵元映射至所述时域资源的其中一个正交频分复用OFDM符号的不同子载波上,其中,不同RIS阵元组所映射的OFDM符号不同。
可选地,在本公开的一个实施例之中,所述不同RIS阵元组所映射的OFDM符号不同的情形包括:
不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,i为正整数;或者
不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波不同,其中,i为正整数。
可选地,在本公开的一个实施例之中,所述确定模块,还用于:
确定所述映射关系为第二映射关系,所述第二映射关系包括:将同一RIS阵元组中的各个有源RIS阵元分别映射至所述时域资源的不同OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,以及,不同RIS阵元组所映射的子载波不同。
可选地,在本公开的一个实施例之中,所述不同RIS阵元组所映射的子载波不同的情形包括以下至少一种:
不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于相同的OFDM符号,其中,i为正整数;
不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于不同的OFDM符号,其中,i为正整数。
可选地,在本公开的一个实施例之中,所述装置,还用于:
将所述RIS阵列中的所有有源RIS阵元按行排列或按列排列,以得到排列后的有源RIS阵元。
可选地,在本公开的一个实施例之中,所述确定模块,还用于
确定所述映射关系为第三映射关系,所述第三映射关系包括:将所述排列后的有源RIS阵元分别映射至同一OFDM符号的不同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的相同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的不同子载波上。可选地,在本公开的一个实施例之中,
可选地,在本公开的一个实施例之中,所述装置,还用于:
对每组RIS阵元组进行分组,以得到至少两个RIS阵元子组,其中,每组RIS阵元子组包括至少一个有源RIS阵元。
可选地,在本公开的一个实施例之中,所述确定模块,还用于:
确定所述映射关系为第四映射关系,所述第四映射关系包括:将不同RIS阵元子组分别映射至不同OFDM符号上,且不同RIS阵元组的第i组RIS阵元子组在不同OFDM符号中所映射的子载波相同,其中,i为正整数。
可选地,在本公开的一个实施例之中,所述确定模块,还用于:
确定所述映射关系为第五映射关系,所述第五映射关系包括:按照所述有源RIS阵元在所述RIS阵列中的空间位置排列方式将所述有源RIS阵元映射至所述时域资源的子载波上。
可选地,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号占用一个子载波,所述一个有源RIS阵元所映射的子载波个数为一个。
可选地,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号占用n个子载波,所述一个有源RIS阵元所映射的子载波个数为n个,其中,n为大于1的正整数。
可选地,在本公开的一个实施例之中,所述一个有源RIS阵元所映射的n个子载波属于同一OFDM符号,和/或,所述一个有源RIS阵元所映射的n个子载波属于不同OFDM符号。
可选地,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号占用n×m个子载波,所述一个有源RIS阵元所映射的子载波个数为n×m个,其中,n和m均为正整数。
可选地,在本公开的一个实施例之中,所述装置,还用于:
向所述UE发送位置信息,所述位置信息用于指示所述有源RIS阵元在所述RIS阵列中的位置。
图14为本公开一个实施例所提供的一种信号发送装置1400的结构示意图,应用于UE,如图14所示,该信号发送装置1400可以包括:
第一获取模块1401,用于获取RIS阵列发送的映射关系;
第二获取模块1402,用于基于映射关系从时频资源中获取RIS阵列中的有源RIS阵元所发送的导频信号。
综上所述,在本公开实施例提供的信号发送装置中,RIS阵列可以确定阵列中的有源RIS阵元与时域资源的映射关系,并向UE发送该映射关系,之后将有源RIS阵元所发送的导频信号映射至有源RIS阵元对应的时频资源上以将导频信号发送至UE。由此,本公开实施例中,RIS阵列会预先确定好有源RIS阵元与时域资源的映射关系,以及,当有源RIS阵元向UE发送导频信号时,可以基于预先确定的映射关系来将有源RIS阵元所发送的导频信号映射至对应的时域资源中以发送至UE,则确保了导频信号传输的稳定性,同时,当后续基于导频信号进行信道估计时,可以确保信道估计的准确性。
可选地,在本公开的一个实施例之中,所述RIS阵列中的有源RIS阵元被划分为至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
可选地,在本公开的一个实施例之中,同一RIS阵元组中的各个有源RIS阵元属于同一行,或者,同一RIS阵元组中的各个有源RIS阵元属于同一列。
可选地,在本公开的一个实施例之中,所述第一获取模块,还用于:
获取RIS阵列发送的第一映射关系,所述第一映射关系包括:将同一RIS阵元组中的各个有源RIS阵元映射至所述时域资源的其中一个OFDM符号的不同子载波上,其中,不同RIS阵元组所映射的OFDM符号不同。
可选地,在本公开的一个实施例之中,所述不同RIS阵元组所映射的OFDM符号不同的情形包括:
不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,i为正整数;或者
不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波不同,其中,i为正整数。
可选地,在本公开的一个实施例之中,所述第一获取模块,还用于:
获取RIS阵列发送的第二映射关系,所述第二映射关系包括:将同一RIS阵元组中的各个有源RIS阵元分别映射至所述时域资源的不同OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,以及,不同RIS阵元组所映射的子载波不同。
可选地,在本公开的一个实施例之中,所述不同RIS阵元组所映射的子载波不同的情形包括以下至少一种:
不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于相同的OFDM符号,其中,i为正整数;
不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于不同的OFDM符号,其中,i为正整数。
可选地,在本公开的一个实施例之中,所述RIS阵列中的所有有源RIS阵元被按行排列或按列排列。
可选地,在本公开的一个实施例之中,所述第一获取模块,还用于:
获取RIS阵列发送的第三映射关系,所述第三映射关系包括:将排列后的有源RIS阵元分别映射至同一OFDM符号的不同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的相同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的不同子载波上。
可选地,在本公开的一个实施例之中,每组RIS阵元组被划分为至少两个RIS阵元子组,其中,每组RIS阵元子组包括至少一个有源RIS阵元。
可选地,在本公开的一个实施例之中,所述第一获取模块,还用于:
获取RIS阵列发送的第四映射关系,所述第四映射关系包括:将不同RIS阵元子组分别映射至不同OFDM符号上,且不同RIS阵元组的第i组RIS阵元子组在不同OFDM符号中所映射的子载波相同,其中,i为正整数。
可选地,在本公开的一个实施例之中,所述第一获取模块,还用于:
获取RIS阵列发送的第五映射关系,所述第五映射关系包括:按照所述有源RIS阵元在所述RIS阵列中的空间位置排列方式将所述有源RIS阵元映射至所述时域资源的子载波上。
可选地,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号占用一个子载波,所述一个有源RIS阵元所映射的子载波个数为一个。
可选地,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号占用n个子载波,所述一个有源RIS阵元所映射的子载波个数为n个,其中,n为大于1的正整数。
可选地,在本公开的一个实施例之中,所述一个有源RIS阵元所映射的n个子载波属于同一OFDM符号,和/或,所述一个有源RIS阵元所映射的n个子载波属于不同OFDM符号。
可选地,在本公开的一个实施例之中,一个有源RIS阵元所发送的导频信号占用n×m个子载波,所述一个有源RIS阵元所映射的子载波个数为n×m个,其中,n和m均为正整数。
可选地,在本公开的一个实施例之中,所述装置,还用于:
获取所述RIS阵列发送的位置信息,所述位置信息用于指示所述有源RIS阵元在所述RIS阵列中的位置。
可选地,在本公开的一个实施例之中,所述第二获取模块,还用于:
基于所述位置信息和所述映射关系从时频资源中获取所述RIS阵列中的有源RIS阵元所发送的导频信号。
图15是本公开一个实施例所提供的一种用户设备UE1500的框图。例如,UE1500可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图15,UE1500可以包括以下至少一个组件:处理组件1502,存储器1504,电源组件1506,多媒体组件1508,音频组件1510,输入/输出(I/O)的接口1512,传感器组件1513,以及通信组件1516。
处理组件1502通常控制UE1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1502可以包括至少一个处理器1520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1502可以包括至少一个模块,便于处理组件1502和其他组件之间的交互。例如,处理组件1502可以包括多媒体模块,以方便多媒体组件1508和处理组件1502之间的交互。
存储器1504被配置为存储各种类型的数据以支持在UE1500的操作。这些数据的示例包括用于在UE1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1506为UE1500的各种组件提供电力。电源组件1506可以包括电源管理系统,至少一个电源,及其他与为UE1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在所述UE1500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当UE1500处于 操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当UE1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1504或经由通信组件1516发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
I/O接口1512为处理组件1502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1513包括至少一个传感器,用于为UE1500提供各个方面的状态评估。例如,传感器组件1513可以检测到设备1500的打开/关闭状态,组件的相对定位,例如所述组件为UE1500的显示器和小键盘,传感器组件1513还可以检测UE1500或UE1500一个组件的位置改变,用户与UE1500接触的存在或不存在,UE1500方位或加速/减速和UE1500的温度变化。传感器组件1513可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1513还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1513还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1516被配置为便于UE1500和其他设备之间有线或无线方式的通信。UE1500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1500可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图16是本公开实施例所提供的一种网络侧设备1600的框图。例如,网络侧设备1600可以被提供为一网络侧设备。参照图16,网络侧设备1600包括处理组件1611,其进一步包括至少一个处理器,以及由存储器1632所代表的存储器资源,用于存储可由处理组件1622的执行的指令,例如应用程序。存储器1632中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1610被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备1600还可以包括一个电源组件1626被配置为执行网络侧设备1600的电源管理,一个有线或无线网络接口1650被配置为将网络侧设备1600连接到网络,和一个输入输出(I/O)接口1658。网络侧设备1600可以操作基于存储在存储器1632的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从RIS阵列、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从RIS阵列、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可 以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图1-图4任一所示的方法。
通信装置为网络设备:收发器用于执行图5-图7任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、 网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的系统,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (43)

  1. 一种信号发送方法,其特征在于,应用于RIS阵列,包括:
    确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系;
    向用户设备UE发送所述映射关系;
    将所述有源RIS阵元所发送的导频信号映射至所述有源RIS阵元对应的时频资源上以将所述导频信号发送至所述UE。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    对所述RIS阵列中的有源RIS阵元进行分组以得到至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
  3. 如权利要求2所述的方法,其特征在于,所述对所述RIS阵列中的有源RIS阵元进行分组以得到至少两组RIS阵元组的方法包括以下至少一种:
    将位于同一行的有源RIS阵元划分至同一RIS阵元组中;
    将位于同一列的有源RIS阵元划分至同一RIS阵元组中。
  4. 如权利要求2所述的方法,其特征在于,所述确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系,包括:
    确定所述映射关系为第一映射关系,所述第一映射关系包括:将同一RIS阵元组中的各个有源RIS阵元映射至所述时域资源的其中一个正交频分复用OFDM符号的不同子载波上,其中,不同RIS阵元组所映射的OFDM符号不同。
  5. 如权利要求4所述的方法,其特征在于,所述不同RIS阵元组所映射的OFDM符号不同的情形包括:
    不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,i为正整数;或者
    不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波不同,其中,i为正整数。
  6. 如权利要求2所述的方法,其特征在于,所述确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系,包括:
    确定所述映射关系为第二映射关系,所述第二映射关系包括:将同一RIS阵元组中的各个有源RIS阵元分别映射至所述时域资源的不同OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,以及,不同RIS阵元组所映射的子载波不同。
  7. 如权利要求6所述的方法,其特征在于,所述不同RIS阵元组所映射的子载波不同的情形包括以下至少一种:
    不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于相同的OFDM符号,其中,i为正整数;
    不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于不同的OFDM符号,其中,i为正整数。
  8. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述RIS阵列中的所有有源RIS阵元按行排列或按列排列,以得到排列后的有源RIS阵元。
  9. 如权利要求8所述的方法,其特征在于,所述确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系,包括:
    确定所述映射关系为第三映射关系,所述第三映射关系包括:将所述排列后的有源RIS阵元分别映射至同一OFDM符号的不同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的相同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的不同子载波上。
  10. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    对每组RIS阵元组进行分组,以得到至少两个RIS阵元子组,其中,每组RIS阵元子组包括至少一个有源RIS阵元。
  11. 如权利要求10所述的方法,其特征在于,所述确定所述RIS阵列中的有源RIS阵元与时域资 源的映射关系,包括:
    确定所述映射关系为第四映射关系,所述第四映射关系包括:将不同RIS阵元子组分别映射至不同OFDM符号上,且不同RIS阵元组的第i组RIS阵元子组在不同OFDM符号中所映射的子载波相同,其中,i为正整数。
  12. 如权利要求1所述的方法,其特征在于,所述确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系,包括:
    确定所述映射关系为第五映射关系,所述第五映射关系包括:按照所述有源RIS阵元在所述RIS阵列中的空间位置排列方式将所述有源RIS阵元映射至所述时域资源的子载波上。
  13. 如权利要求1-12任一所述的方法,其特征在于,一个有源RIS阵元所发送的导频信号占用一个子载波,所述一个有源RIS阵元所映射的子载波个数为一个。
  14. 如权利要求1-12任一所述的方法,其特征在于,一个有源RIS阵元所发送的导频信号占用n个子载波,所述一个有源RIS阵元所映射的子载波个数为n个,其中,n为大于1的正整数。
  15. 如权利要求14所述的方法,其特征在于,所述一个有源RIS阵元所映射的n个子载波属于同一OFDM符号,和/或,所述一个有源RIS阵元所映射的n个子载波属于不同OFDM符号。
  16. 如权利要求1-12任一所述的方法,其特征在于,一个有源RIS阵元所发送的导频信号占用n×m个子载波,所述一个有源RIS阵元所映射的子载波个数为n×m个,其中,n和m均为正整数。
  17. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述UE发送位置信息,所述位置信息用于指示所述有源RIS阵元在所述RIS阵列中的位置。
  18. 一种信号发送方法,其特征在于,应用于UE,包括:
    获取RIS阵列发送的映射关系;
    基于所述映射关系从时频资源中获取所述RIS阵列中的有源RIS阵元所发送的导频信号。
  19. 如权利要求18所述的方法,其特征在于,所述RIS阵列中的有源RIS阵元被划分为至少两组RIS阵元组,每组RIS阵元组包括至少一个有源RIS阵元。
  20. 如权利要求19所述的方法,其特征在于,同一RIS阵元组中的各个有源RIS阵元属于同一行,或者,同一RIS阵元组中的各个有源RIS阵元属于同一列。
  21. 如权利要求19所述的方法,其特征在于,所述获取RIS阵列发送的映射关系,包括:
    获取RIS阵列发送的第一映射关系,所述第一映射关系包括:将同一RIS阵元组中的各个有源RIS阵元映射至所述时域资源的其中一个OFDM符号的不同子载波上,其中,不同RIS阵元组所映射的OFDM符号不同。
  22. 如权利要求21所述的方法,其特征在于,所述不同RIS阵元组所映射的OFDM符号不同的情形包括:
    不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波相同,其中,i为正整数;或者
    不同RIS阵元组中第i个有源RIS阵元在不同OFDM符号中所映射的子载波不同,其中,i为正整数。
  23. 如权利要求19所述的方法,其特征在于,所述获取RIS阵列发送的映射关系,包括:
    获取RIS阵列发送的第二映射关系,所述第二映射关系包括:将同一RIS阵元组中的各个有源RIS阵元分别映射至所述时域资源的不同OFDM符号上,且同一组RIS阵元组中的各个有源RIS阵元在不同OFDM符号中所映射的子载波相同,以及,不同RIS阵元组所映射的子载波不同。
  24. 如权利要求23所述的方法,其特征在于,所述不同RIS阵元组所映射的子载波不同的情形包括以下至少一种:
    不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于相同的OFDM符号,其中,i为正整数;
    不同RIS阵元组中第i个有源RIS阵元所映射的子载波属于不同的OFDM符号,其中,i为正整数。
  25. 如权利要求18所述的方法,其特征在于,所述RIS阵列中的所有有源RIS阵元被按行排列或按列排列。
  26. 如权利要求25所述的方法,其特征在于,所述获取RIS阵列发送的映射关系,包括:
    获取RIS阵列发送的第三映射关系,所述第三映射关系包括:将排列后的有源RIS阵元分别映射至同一OFDM符号的不同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的相同子载波上,和/或,将所述排列后的有源RIS阵元分别映射至不同OFDM符号的不同子载波上。
  27. 如权利要求19所述的方法,其特征在于,每组RIS阵元组被划分为至少两个RIS阵元子组,其中,每组RIS阵元子组包括至少一个有源RIS阵元。
  28. 如权利要求27所述的方法,其特征在于,所述获取RIS阵列发送的映射关系,包括:
    获取RIS阵列发送的第四映射关系,所述第四映射关系包括:将不同RIS阵元子组分别映射至不同OFDM符号上,且不同RIS阵元组的第i组RIS阵元子组在不同OFDM符号中所映射的子载波相同,其中,i为正整数。
  29. 如权利要求18所述的方法,其特征在于,所述获取RIS阵列发送的映射关系,包括:
    获取RIS阵列发送的第五映射关系,所述第五映射关系包括:按照所述有源RIS阵元在所述RIS阵列中的空间位置排列方式将所述有源RIS阵元映射至所述时域资源的子载波上。
  30. 如权利要求18-29任一所述的方法,其特征在于,一个有源RIS阵元所发送的导频信号占用一个子载波,所述一个有源RIS阵元所映射的子载波个数为一个。
  31. 如权利要求18-29任一所述的方法,其特征在于,一个有源RIS阵元所发送的导频信号占用n个子载波,所述一个有源RIS阵元所映射的子载波个数为n个,其中,n为大于1的正整数。
  32. 如权利要求31所述的方法,其特征在于,所述一个有源RIS阵元所映射的n个子载波属于同一OFDM符号,和/或,所述一个有源RIS阵元所映射的n个子载波属于不同OFDM符号。
  33. 如权利要求18-29任一所述的方法,其特征在于,一个有源RIS阵元所发送的导频信号占用n×m个子载波,所述一个有源RIS阵元所映射的子载波个数为n×m个,其中,n和m均为正整数。
  34. 如权利要求18-29任一所述的方法,其特征在于,所述方法还包括:
    获取所述RIS阵列发送的位置信息,所述位置信息用于指示所述有源RIS阵元在所述RIS阵列中的位置。
  35. 如权利要求34所述的方法,其特征在于,所述基于所述映射关系获取所述RIS阵列中的有源RIS阵元所发送的导频信号,包括:
    基于所述位置信息和所述映射关系从时频资源中获取所述RIS阵列中的有源RIS阵元所发送的导频信号。
  36. 一种基于信号发送的装置,其特征在于,包括:
    确定模块,用于确定所述RIS阵列中的有源RIS阵元与时域资源的映射关系;
    发送模块,用于向用户设备UE发送所述映射关系;
    映射模块,用于将所述有源RIS阵元所发送的导频信号映射至所述有源RIS阵元对应的时频资源上以将所述导频信号发送至所述UE。
  37. 一种基于信号发送的装置,其特征在于,包括:
    第一获取模块,用于获取RIS阵列发送的映射关系;
    第二获取模块,用于基于所述映射关系从时频资源中获取所述RIS阵列中的有源RIS阵元所发送的导频信号。
  38. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至16中任一项所述的方法。
  39. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求17至35中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至16中任一项所述的方法。
  41. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求17至35任一所述的方法。
  42. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至16中任一项所述的方法被实现。
  43. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求17至35中任一项所述的方法被实现。
PCT/CN2021/129391 2021-11-08 2021-11-08 一种信号发送方法、装置、用户设备、ris阵列及存储介质 WO2023077525A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/129391 WO2023077525A1 (zh) 2021-11-08 2021-11-08 一种信号发送方法、装置、用户设备、ris阵列及存储介质
CN202180103210.1A CN118104352A (zh) 2021-11-08 2021-11-08 一种信号发送方法、装置、用户设备、ris阵列及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129391 WO2023077525A1 (zh) 2021-11-08 2021-11-08 一种信号发送方法、装置、用户设备、ris阵列及存储介质

Publications (1)

Publication Number Publication Date
WO2023077525A1 true WO2023077525A1 (zh) 2023-05-11

Family

ID=86240616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129391 WO2023077525A1 (zh) 2021-11-08 2021-11-08 一种信号发送方法、装置、用户设备、ris阵列及存储介质

Country Status (2)

Country Link
CN (1) CN118104352A (zh)
WO (1) WO2023077525A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729091A (zh) * 2008-10-27 2010-06-09 华为技术有限公司 导频信号的配置、通知以及信道估计方法及其装置
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
US20210013619A1 (en) * 2019-07-12 2021-01-14 Arizona Board Of Regents On Behalf Of Arizona State University Large intelligent surfaces with sparse channel sensors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729091A (zh) * 2008-10-27 2010-06-09 华为技术有限公司 导频信号的配置、通知以及信道估计方法及其装置
US20210013619A1 (en) * 2019-07-12 2021-01-14 Arizona Board Of Regents On Behalf Of Arizona State University Large intelligent surfaces with sparse channel sensors
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法

Also Published As

Publication number Publication date
CN118104352A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2024011641A1 (zh) 定位辅助终端设备的确定方法、装置
WO2023060603A1 (zh) 一种寻呼分组的方法、装置、终端设备、基站及存储介质
WO2023077525A1 (zh) 一种信号发送方法、装置、用户设备、ris阵列及存储介质
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
WO2023050153A1 (zh) 一种上报方法、装置、用户设备、网路侧设备及存储介质
WO2023130283A1 (zh) 一种映射方式确定方法/装置/设备及存储介质
WO2023039910A1 (zh) 一种临时参考信号传输方法、装置及存储介质
WO2023206184A1 (zh) 一种映射方法/装置/设备及存储介质
WO2023216079A1 (zh) 资源配置方法/装置/用户设备/网络侧设备及存储介质
WO2023184260A1 (zh) 一种信号传输方法/装置/设备及存储介质
WO2023060442A1 (zh) 一种有效信息指示方法、装置、用户设备、网络侧设备及存储介质
WO2023279349A1 (zh) 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质
WO2023220898A1 (zh) 信息指示方法、装置、设备及存储介质
WO2023245589A1 (zh) 定位模型确定方法、装置
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023039838A1 (zh) 终端设备的天线切换能力的上报方法及其装置
WO2023070407A1 (zh) 一种预编码方法、装置、用户设备、可重构智能表面ris阵列及存储介质
WO2023206176A1 (zh) 测量报告发送方法、测量报告接收方法、装置
WO2023155053A1 (zh) 一种辅助通信设备的发送方法及设备/存储介质/装置
WO2023184373A1 (zh) 一种信号处理方法、装置、设备及存储介质
WO2023155200A1 (zh) 一种测量放松方法及设备、存储介质、装置
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023065075A1 (zh) 一种上报方法、装置、用户设备、网络侧设备及存储介质
WO2023184261A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023178567A1 (zh) 一种上报方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963034

Country of ref document: EP

Kind code of ref document: A1