WO2023279349A1 - 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质 - Google Patents

一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质 Download PDF

Info

Publication number
WO2023279349A1
WO2023279349A1 PCT/CN2021/105343 CN2021105343W WO2023279349A1 WO 2023279349 A1 WO2023279349 A1 WO 2023279349A1 CN 2021105343 W CN2021105343 W CN 2021105343W WO 2023279349 A1 WO2023279349 A1 WO 2023279349A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
dmrs
time domain
offset value
domain position
Prior art date
Application number
PCT/CN2021/105343
Other languages
English (en)
French (fr)
Inventor
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002118.6A priority Critical patent/CN113661679A/zh
Priority to PCT/CN2021/105343 priority patent/WO2023279349A1/zh
Publication of WO2023279349A1 publication Critical patent/WO2023279349A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a reference signal time-domain position configuration method, device, user equipment, base station, and storage medium.
  • the uplink symbol resources in the special slot (special time slot) allocated by the base station are usually used for uplink TBoMS (Transmission Block processing over multi-slots transmission, transmission block processing over multi-slot transmission) transmission.
  • uplink TBoMS Transmission Block processing over multi-slots transmission, transmission block processing over multi-slot transmission
  • the time domain position of the DRMS in the special slot is the same as the time domain position of the DRMS in the uplink time slot.
  • the DMRS time domain position determined by the method in the related art may include unusable symbols (such as downlink symbols or guard interval symbols used for uplink and downlink conversion, etc.), resulting in that the DMRS time domain position cannot be used for transmission, resulting in The waste of resources reduces the coding gain.
  • the reference signal time-domain position configuration method, device, user equipment, base station, and storage medium proposed in the present disclosure are used to solve the technical problems in the related art that the reference signal time-domain position configuration method easily leads to waste of resources and low coding gain.
  • the reference signal time-domain position configuration method proposed by an embodiment of the present disclosure is executed by the UE, including:
  • Another embodiment of the present disclosure proposes a reference signal time-domain position configuration method, which is executed by a base station, including:
  • the reference signal time domain position device proposed by the embodiment includes:
  • a processing module configured to determine available symbols in special slots, acquire parameters configured and/or indicated by the base station, and determine symbol resources for data transmission in special slots and at least one first demodulation reference based on the parameters Signal DMRS symbol offset value;
  • the processing module is further configured to determine a first time domain position of the DMRS based on the first available symbol in the symbol resource and the at least one first DMRS symbol offset value.
  • the reference signal time domain position device proposed by the embodiment includes:
  • a processing module configured to determine available symbols and parameters in the special slot, and determine symbol resources for data transmission in the special slot and at least one first DMRS symbol offset value based on the parameters;
  • the processing module is further configured to determine a first time domain position of the DMRS based on the first available symbol in the symbol resource and the at least one first DMRS symbol offset value.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of still another aspect above.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method as described in the above embodiment.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method described in the embodiment of the still further aspect above.
  • the computer storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method as described in the first embodiment is implemented.
  • the computer storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method described in another embodiment is implemented.
  • the UE can determine the available symbols in the special slot, and obtain the base station configuration and/or indicated parameter, and determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value based on the parameter, and then determine based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 1 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for configuring a reference signal time-domain position according to yet another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for configuring a reference signal time-domain position according to yet another embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for configuring a time-domain position of a reference signal provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for configuring a reference signal time-domain position according to yet another embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of a method for configuring a time-domain position of a reference signal provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for configuring a time-domain position of a reference signal provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a method for configuring a time-domain position of a reference signal provided by another embodiment of the present disclosure
  • FIG. 13 is a schematic flowchart of a method for configuring a time-domain position of a reference signal provided by another embodiment of the present disclosure
  • FIG. 14 is a schematic flowchart of a method for configuring a time domain position of a reference signal provided by another embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart of a method for configuring a time-domain position of a reference signal provided by another embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of an apparatus for configuring a time-domain position of a reference signal provided by an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of an apparatus for configuring a time-domain position of a reference signal provided by another embodiment of the present disclosure.
  • Fig. 18 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 19 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • the UE can determine the symbols available for uplink transmission in the special slot, obtain the parameters configured and/or indicated by the base station, and based on the configured/indicated parameters of the base station The parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the first DMRS symbol based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value. time domain location.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 1 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by an embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 1 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 101 Determine available symbols in the special slot, and determine symbol resources for data transmission in the special slot and at least one first DMRS symbol offset value based on parameters configured and/or indicated by the base station.
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • UE can communicate with one or more core networks via RAN (Radio Access Network, wireless access network).
  • RAN Radio Access Network, wireless access network
  • UE can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the computer of the terminal for example, may be a fixed, portable, pocket, hand-held, computer-built-in or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the reference signal time-domain position configuration method in the embodiment of the present disclosure is applied in a scenario of frequency hopping within an unenabled time slot.
  • the method for determining the available symbols in the special slot may include: dynamically indicating signaling and/or semi-static timing based on SFI (Slot Format Indication) sent by the base station
  • SFI Slot Format Indication
  • the slot format configuration signaling and/or other dynamic indication signaling and/or other high-layer configuration signaling determine the unavailable symbols from the special slot, and determine that the available symbols are symbols other than the unavailable symbols in the special slot.
  • the unavailable symbols include at least one of the following:
  • SSB Synchronization Signal Block, synchronization signal block
  • Symbols allocated for CSS (Common Search Space, public search space) (for example, CSS#0);
  • CI Code Indication, transmission cancellation
  • the above parameters may include at least one of the following:
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel mapping type (mapping type), wherein, in an embodiment of the present disclosure, the PUSCH mapping type includes type A and type B;
  • DMRS-type A Position pre-DMRS position of type A
  • the DMRS-type A Position parameter is a parameter for PUSCHmapping type A. Based on this, when the PUSCH mapping type is type B, the DMRS-type A Position parameter is invalid. When the PUSCH mapping type is type A, the DMRS-type A Position parameter is valid.
  • the UE can query the following table 1 according to the configuration type of the DMRS and the number of DMRS ports in the above parameters to determine whether the symbol type of the DMRS is single-symbol DMRS or double-symbol DMRS .
  • the configuration type of the DMRS may be configured by the base station to the UE through an RRC (Radio Resource Control, radio resource control) high layer parameter.
  • the configuration types of the DMRS include type 1 and type 2.
  • the method for obtaining the "DMRS-Additional Position" in the parameters may include: obtaining through RRC (Radio Resource Control, radio resource control) high-level signaling sent by the base station.
  • RRC Radio Resource Control, radio resource control
  • the method for obtaining "DMRS-typeA Position" in the parameters may include: obtaining through a system broadcast message master information block (Master Information Block, MIB) sent by the base station.
  • MIB Master Information Block
  • the acquisition of "PUSCH mapping type, or symbol length for data transmission in special slot, or start symbol position for data transmission in special slot" in the parameter can be obtained by Including: high-level signaling sent by the base station and acquisition of dynamic instructions from the base station.
  • the PUSCH mapping type, or the symbol length used for data transmission in the special slot, or the data transmission in the special slot is obtained through the high-layer signaling sent by the base station and the dynamic instruction of the base station
  • the method for the position of the starting symbol may specifically include: the UE obtains the time domain resource allocation table sent by the base station through high-layer signaling, wherein the uplink time domain resource allocation table includes at least one group of time domain resources, and each group of time domain resources Each resource corresponds to an index (index), and each group of time domain resources includes at least one of the following parameters: PUSCH mapping type, symbol length for data transmission in special slot, start symbol position for data transmission in special slot ; After that, acquire the index dynamically indicated by the base station, so as to determine the time domain resource matching the index from the time domain resource allocation table according to the dynamically indicated index.
  • Table 2 is an uplink time-domain resource allocation table provided by an embodiment of the present disclosure.
  • index value (index) PUSCH mapping type K 2 S L 1 Type A j 0 14 2 Type A j 0 12 3 Type A j 0 10 4 Type B j 2 10 5 Type B j 4 10 6 Type B j 4 8 7 Type B j 4 6 8 Type A j+1 0 14 9 Type A j+1 0 12 10 Type A j+1 0 10 11 Type A j+2 0 14 12 Type A j+2 0 12 13 Type A j+2 0 10 14 Type B j 8 6 15 Type A j+3 0 14 16 Type A j+3 0 10
  • the value of ⁇ can be determined based on the corresponding relationship and the subcarrier spacing of the BWP where the current transmission is located.
  • the corresponding relationship between the value of ⁇ and the subcarrier spacing of the BWP where the current transmission is located may be sent by the base station to the UE through RRC high layer signaling.
  • the symbol length L 10.
  • the UE can directly determine the PUSCH mapping type, or the symbol length used for data transmission in the special slot, or the special slot based on the parameter The starting symbol position for data transmission in .
  • the method for acquiring the number of DMRS ports in the parameter or whether to enable intra-slot frequency hopping includes: acquiring the number of DMRS ports dynamically indicated by the base station or whether to enable intra-slot frequency hopping.
  • the base station always dynamically indicates not to enable frequency hopping within a time slot.
  • the base station does not perform frequency hopping configuration.
  • the UE can successfully obtain the parameters configured and/or indicated by the base station.
  • the UE after the UE acquires the parameters configured and/or indicated by the base station, it can determine the symbol resource used for uplink TBoMS transmission in the special slot based on the parameters.
  • the method for determining the symbol resource used for uplink TBoMS transmission in the special slot may specifically include: determining the symbol numbered [S, S+L-1] in the special slot as Symbol resources used for uplink TBoMS transmission.
  • the position and symbol length of the start symbol are also different.
  • the starting symbol position S is symbol#0
  • the symbol length can be 5, so that it can be determined that the symbol resource allocated by the base station for uplink TBoMS transmission is: symbol# in the special slot 0 ⁇ symbol #4.
  • the starting symbol position S when the PUSCH mapping type is type B, the starting symbol position S ⁇ [symbol#0, symbol#13] allocated by the base station, the symbol length L can be between [1,14] Between, that is, L ⁇ [1,14], and S+L ⁇ 14.
  • the starting symbol position S can be symbol#2
  • the symbol length can be 5, so that it can be determined that the symbol resource allocated by the base station for uplink TBoMS transmission is: symbol# in special slot 2 ⁇ symbol#6.
  • the UE will also determine at least one first DMRS symbol offset value based on parameters, where the first DMRS symbol offset value is specifically used to determine the DMRS symbol in the special slot s position.
  • the methods for the UE to determine at least one first DMRS symbol offset value based on the parameters are also different.
  • the UE may determine at least one first DMRS symbol offset value according to the type B mapping rule.
  • the UE may determine at least one first DMRS symbol offset value according to the mapping rule of type A or according to the mapping rule of type B .
  • the UE when the PUSCH time domain type included in the parameters is type A, the number of DMRS ports is single, and the number of available symbols in the special slot is less than 4, the UE can follow the mapping of type B The rules determine at least one first DMRS symbol offset value.
  • Step 102 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the method for determining the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value may include: determining the first available symbol The sum of the symbol number and each first DMRS symbol offset value to obtain at least one first sum value, and determine the first time domain position of the DMRS as the symbol corresponding to the symbol number and the first sum value.
  • the UE can determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or The indicated parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 2 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 2 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 201 determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, the PUSCH time domain type included in the parameters is type B, determine the symbol resources used for data transmission in the special slot based on the parameters, and follow The mapping rule of type B determines at least one first DMRS symbol offset value.
  • the method for determining at least one first DMRS symbol offset value according to the mapping rule of type B may include the following methods:
  • Method 1 Determine at least one first DMRS symbol offset value based on the number of available symbols in the symbol resource and parameters other than the symbol length used for data transmission in the special slot.
  • Method 2 Determine at least one first DMRS symbol offset value based on the symbol length used for data transmission in the special slot and other parameters in the parameters except the symbol length used for data transmission in the special slot.
  • the UE may obtain at least one first DMRS symbol offset value by looking up Table 4 based on the parameters.
  • l d in the above Table 4 is the number of available symbols in the symbol resource.
  • the step of the UE determining at least one first DMRS symbol offset value using method one may include: querying the above Table 4 based on the number of available symbols in the symbol resource, DMRS-Additional Position, and PUSCH mapping Type B to perform DMRS symbol mapping, Determine at least one first DMRS symbol offset value.
  • the step for the UE to determine at least one first DMRS symbol offset value using the second method may include: querying the above table 4 based on the symbol length used for data transmission in the special slot, DMRS-Additional Position, and PUSCH mapping Type B to perform DMRS Symbol mapping, determining at least one first DMRS symbol offset value.
  • Step 202 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the method for determining the first time domain position of the DMRS when the method for determining at least one first DMRS symbol offset value in step 201 is different, the method for determining the first time domain position of the DMRS will also be different.
  • the method for determining the first time domain position of the DMRS may include: determining the symbol number of the first available symbol and the offset value of each first DMRS symbol The sum of the values is obtained to obtain at least one first sum value, and the symbol corresponding to the symbol number and the first sum value is determined as the first time domain position of the DMRS.
  • the method 2 when the method 2 is used to determine at least one first DMRS symbol offset value in the above step 201, since the length of the symbol used for data transmission in the special slot is greater than the symbol length available in the symbol resource The number of DMRS symbols will make the determined first DMRS symbol offset value larger, and then when the first time domain position of the DMRS is determined based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, the determined There may be time domain positions exceeding symbol resources in the determined first time domain positions of the DMRS, which will affect data transmission.
  • At least one first DMRS symbol offset value is determined by method 2 in the above step 201, based on the first available symbol in the symbol resource and the at least one first DMRS symbol offset value After at least one time-domain position is determined by the shift value, it is further necessary to determine whether there is a time-domain position exceeding the symbol resource in the determined at least one time-domain position.
  • at least one of the time-domain positions exceeding symbol resources in at least one time-domain position is discarded to obtain the remaining time-domain positions, and the remaining time-domain positions are Determine the first time domain position as the DMRS.
  • at least one determined time-domain position is determined as the first time-domain position of the DMRS.
  • At least one time domain position determined based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value can be symbol#1, symbol#5, symbol#9, and the symbol resource is symbol#1 ⁇ symbol#8.
  • symbol#9 exceeds the time-domain position of the symbol resource, symbol#9 is discarded, and only symbol#1 and symbol#5 are determined as the first time-domain position of the DMRS.
  • the UE can determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or The indicated parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 3 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 3 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 301 determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, the PUSCH time domain type included in the parameters is typeA, determine the resource symbols used for transmission in the special slot based on the parameters, and according to type A
  • the mapping rule determines at least one first DMRS symbol offset value.
  • the method for determining at least one first DMRS symbol offset value according to the mapping rule of type A may include the following methods:
  • Method 1 Determine at least one first DMRS symbol offset value based on the number of available symbols in the symbol resource and parameters other than the symbol length used for data transmission in the special slot.
  • Method 2 Determine at least one first DMRS symbol offset value based on the symbol length used for data transmission in the special slot and other parameters in the parameters except the symbol length used for data transmission in the special slot.
  • the PUSCH DMRS position location table shown in Table 4 above needs to be used, wherein, UE
  • the at least one first DMRS symbol offset value may be obtained by looking up Table 4 based on the above parameters.
  • the step of UE determining at least one first DMRS symbol offset value by method one may include: querying the above Table 4 based on the number of symbols available in symbol resources, DMRS-Additional Position, and PUSCH mapping Type A to perform DMRS symbol mapping, Determine at least one first DMRS symbol offset value.
  • the step for the UE to determine at least one first DMRS symbol offset value using Method 2 may include: querying the above Table 4 based on the symbol length used for data transmission in the special slot, DMRS-Additional Position, and PUSCH mapping Type A to perform DMRS Symbol mapping, determining at least one first DMRS symbol offset value.
  • Step 302 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the method for determining the first time domain position of the DMRS when the method for determining at least one first DMRS symbol offset value in step 301 is different, the method for determining the first time domain position of the DMRS will also be different.
  • the method for determining the first time domain position of the DMRS may include: determining the symbol number of the first available symbol and the offset value of each first DMRS symbol The sum of the values is obtained to obtain at least one first sum value, and the symbol corresponding to the symbol number and the first sum value is determined as the first time domain position of the DMRS.
  • At least one first DMRS symbol offset value obtained by using Method 1 in step 301 is 10, 6, 9, and the symbol of the first available symbol in the symbol resource is assumed
  • the method 2 when the method 2 is used to determine at least one first DMRS symbol offset value in the above step 301, since the length of the symbol used for data transmission in the special slot is greater than the symbol length available in the symbol resource will make the determined first DMRS symbol offset value larger, and then when at least the first time domain position of the DMRS is determined based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, There may be time domain positions exceeding symbol resources in at least the determined first time domain position of the DMRS, which will affect data transmission.
  • At least one first DMRS symbol offset value is determined by method 2 in the above step 301, based on the first available symbol in the symbol resource and the at least one first DMRS symbol offset value After at least one time-domain position of the DMRS is determined by the shift value, it is further necessary to determine whether there is a time-domain position exceeding the symbol resource in the determined at least one time-domain position.
  • at least one of the time-domain positions exceeding symbol resources in at least one time-domain position is discarded to obtain the remaining time-domain positions, and the remaining time-domain positions are Determine the first time domain position as the DMRS.
  • at least one determined time-domain position is determined as the first time-domain position of the DMRS.
  • At least one time domain position determined based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value can be symbol#3, symbol#7, symbol#10, and the symbol resource is symbol#0 ⁇ symbol#8.
  • symbol#10 exceeds the time-domain position of the symbol resource, symbol#10 is discarded, and only symbol#3 and symbol#7 are determined as the first time-domain position of the DMRS.
  • the UE can determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or The indicated parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 4 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 4 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 401 determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, the PUSCH time domain type included in the parameters is typeA, determine the symbol resources used for data transmission in the special slot based on the parameters, and according to the type
  • the mapping rule of B determines at least one first DMRS symbol offset value.
  • Step 402 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • step 402 for a detailed introduction of step 402, reference may be made to relevant introductions in the foregoing embodiments, and details are not described in this embodiment of the present disclosure.
  • the UE can determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or The indicated parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 5 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 5 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 501 determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, the PUSCH time domain type included in the parameters is type A, the number of DMRS ports is single, and the number of available symbols in the special slot is less than 4. Determine the symbol resources used for data transmission in the special slot based on the parameters, and determine at least one first DMRS symbol offset value according to the mapping rule of type B.
  • the reason why it should be determined according to the mapping rule of type B The reasons for the offset value of at least one first DMRS symbol mainly include: Table 4 is mainly a positioning table for a single DMRS symbol. Referring to Table 4, for type A, when l d is less than 4, there is no corresponding DMRS symbol The offset value (that is, the DMRS symbol offset value cannot be determined), so at least one DMRS symbol offset value can be successfully determined by using the mapping rule of type B.
  • Step 502 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • step 502 for a detailed introduction of step 502, reference may be made to relevant introductions in the foregoing embodiments, and details are not described in this embodiment of the present disclosure.
  • the UE can determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or The indicated parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 6 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 6, the method for configuring a reference signal time-domain position may include the following steps:
  • Step 601 Determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and determine the symbol resources used for data transmission in the special slot and at least one first DMRS symbol offset value based on the parameters.
  • Step 602 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • Step 603 transmit the DMRS based on the first time domain position.
  • the UE can determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or The indicated parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 7 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a UE. As shown in FIG. 7 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 701 determine available symbols in special slot.
  • Step 702 acquiring parameters configured and/or indicated by the base station.
  • Step 703 Determine at least one second DMRS symbol offset value in the special slot based on parameters, and determine the sum of the symbol number of the first symbol in the symbol resource and each second DMRS symbol offset value to obtain at least one second sum value, and determine the symbol corresponding to the symbol number and the second sum value as the second time domain position of the DMRS.
  • the UE may obtain at least one second DMRS symbol offset value by querying the above Table 4 based on parameters, and when determining the second DMRS symbol offset value, l d in Table 4 It is the symbol length used for data transmission in special slot.
  • the principle of the method for determining the offset value of the second DMRS symbol is the same as that of the method for determining the offset value of the first DMRS symbol.
  • the time domain position of the DMRS can be determined in a special slot using conventional methods, specifically, the above step 703 can be performed In “determine the sum of the symbol number of the first symbol in the symbol resource and the offset value of each second DMRS symbol to obtain at least one second sum value, and determine the symbol corresponding to the symbol number and the second sum value as the DMRS The second time domain position", wherein the second time domain position is the time domain position of the DMRS determined in the special slot by conventional methods.
  • Step 704. Determine whether the second time domain location satisfies a preset condition. If the preset condition is met, perform step 706; when the preset condition is not met, perform step 705.
  • the preset conditions include at least one of the following:
  • Condition 2 None of the second time domain positions is located on an available symbol.
  • the preset condition may be only any one of the above conditions. In another embodiment of the present disclosure, the preset condition may be all two of the above conditions. In an embodiment of the present disclosure, when the preset condition is all two of the above conditions, the second time domain position satisfies any one of the preset conditions, that is, meets the preset condition.
  • the second time domain position when the second time domain position satisfies the preset condition, it means that none of the second time domain positions determined by conventional methods can be used for uplink TBoMS transmission, and steps need to be performed 706 to re-determine the DMRS time domain position; when the second time domain position does not meet the preset condition, it means that the second time domain position has a time domain position that can be used for uplink TBoMS transmission, and thus step 705 can be executed.
  • Step 705 Transmit the DMRS based on the time domain position on the available symbols of the special slot in the second time domain position.
  • the unavailable symbols of the special slot are symbol#0-symbol#2, and the determined second time domain positions are symbol#1, symbol#5, and symbol#9. Then the DMRS can be transmitted based on symbol#5 and symbol#9.
  • Step 706 Determine at least one first DMRS symbol offset value based on the parameters.
  • Step 707 Determine the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the UE can determine the available symbols in the special slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or The indicated parameters determine the symbol resource used for data transmission in the special slot and at least one first DMRS symbol offset value, and then determine the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 8 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 8 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 801 Determine available symbols and parameters in the special slot, and determine symbol resources for data transmission in the special slot and at least one first DMRS symbol offset value based on the parameters.
  • the reference signal time-domain position configuration method of the embodiment of the present disclosure is applied in the scenario of frequency hopping in unopened time slots.
  • the method for determining available symbols in the special slot may include: determining from the special slot based on SFI dynamic indication signaling and/or semi-static time slot format configuration signaling sent by the base station For unavailable symbols, it is determined that available symbols are symbols other than unavailable symbols in the special time slot.
  • the unavailable symbols include at least one of the following:
  • Symbols assigned for CSS e.g. CSS#0;
  • the above parameters may include at least one of the following:
  • the PUSCH mapping type includes type A and type B;
  • the DMRS-type A Position parameter is a parameter for PUSCHmapping type A. Based on this, when the PUSCH mapping type is type B, the DMRS-type A Position parameter is invalid. When the PUSCH mapping type is type A, the DMRS-type A Position parameter is valid.
  • the UE may query the above Table 1 according to the configuration type of the DMRS and the number of DMRS ports in the above parameters to determine whether the symbol type of the DMRS is single-symbol DMRS or double-symbol DMRS.
  • the configuration type of the DMRS may be configured by the base station to the UE through an RRC (Radio Resource Control, radio resource control) high layer parameter.
  • the configuration types of the DMRS include type 1 and type 2.
  • the method for the base station to determine the single-symbol DMRS or the double-symbol DMRS is consistent with the method for the UE to determine the single-symbol DMRS or the double-symbol DMRS. I won't go into details.
  • the base station can configure and/or indicate parameters to the UE.
  • the base station can configure and/or indicate parameters to the UE.
  • Step 802 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the method for determining the first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value may include: determining the first The sum of the symbol numbers of available symbols and each first DMRS symbol offset value to obtain at least one first sum value, and the symbol corresponding to the symbol number and the first sum value is determined as the first time domain position of the DMRS.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 9 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 9, the method for configuring a reference signal time-domain position may include the following steps:
  • Step 901 determine the available symbols and parameters in the special slot, the PUSCH time domain type included in the parameters is type B, determine the symbol resources for data transmission in the special slot based on the parameters, and determine at least one according to the mapping rules of type B First DMRS symbol offset value.
  • Step 902 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 10 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 10 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 1001 determine the available symbols and parameters in the special slot, the PUSCH time domain type included in the parameters is type A, determine the symbol resources for data transmission in the special slot based on the parameters, and determine at least one according to the mapping rules of type A First DMRS symbol offset value.
  • Step 1002 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 11 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 11 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 1101 determine the available symbols and parameters in the special slot, the PUSCH time domain type included in the parameters is typeA, determine the symbol resources for data transmission in the special slot based on the parameters, and determine at least one first one according to the mapping rules of typeB DMRS symbol offset value.
  • Step 1102 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 12 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 12 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 1201 determine the available symbols and parameters in the special slot, the PUSCH time domain type included in the parameters is type A, the number of DMRS ports is single, and the number of available symbols in the special slot is less than 4, determine the special slot based on the parameters A symbol resource used for data transmission, and at least one first DMRS symbol offset value is determined according to a typeB mapping rule.
  • Step 1202 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 13 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 13 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 1301 Determine available symbols and parameters in the special slot, and determine symbol resources for data transmission in the special slot and at least one first DMRS symbol offset value based on the parameters.
  • Step 1302 Determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • Step 1303 Receive and demodulate the DMRS based on the first time domain position.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 14 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 14 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 1401 determine available symbols and parameters in the special slot.
  • Step 1402 determine the symbol resource used for data transmission in the special slot and at least one second DMRS symbol offset value based on the parameters, and determine the symbol number of the first symbol in the symbol resource and each second DMRS symbol offset value and to obtain at least one second sum value, and determine the symbol whose symbol number corresponds to the second sum value as the second time domain position of the DMRS.
  • Step 1403 determine whether the second time domain position satisfies a preset condition, and if the preset condition is met, proceed to step 1405 ; if not, proceed to step 1404 .
  • the preset conditions include at least one of the following:
  • Condition 2 None of the second time domain positions is located on the available symbols.
  • the preset condition may be only any one of the above conditions. In another embodiment of the present disclosure, the preset condition may be all two of the above conditions. In an embodiment of the present disclosure, when the preset condition is all two of the above conditions, the second time domain position satisfies any one of the preset conditions, that is, meets the preset condition.
  • Step 1404 Transmit the DMRS based on the time domain position on the available symbols of the special slot in the second time domain position.
  • Step 1405. Determine at least one first DMRS symbol offset value based on the parameters.
  • Step 1406 Determine the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • FIG. 15 is a schematic flowchart of a method for configuring a reference signal time-domain position provided by another embodiment of the present disclosure, which is applied to a base station. As shown in FIG. 15 , the method for configuring a reference signal time-domain position may include the following steps:
  • Step 1501 Determine available symbols and parameters in the special slot, and determine symbol resources for data transmission and at least one first DMRS symbol offset value based on the parameters.
  • Step 1502 Determine the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value.
  • Step 1503 configure and/or indicate parameters to the UE.
  • Step 1504 sending SFI dynamic indication signaling and/or semi-static time slot format configuration signaling to the UE.
  • the base station may send SFI dynamic indication signaling and/or semi-static slot format configuration signaling to the UE, so that the UE may send SFI dynamic indication signaling and/or semi-static slot format configuration signaling based on the base station.
  • Static slot format configuration signaling determines unavailable symbols from special slots.
  • the base station can determine the symbol resource used for data transmission in the special slot, the available symbols and parameters in the special slot, and determine at least A first DMRS symbol offset value, and then, based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, determine the first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • Fig. 16 is a schematic structural diagram of a reference signal time-domain position configuration device provided by an embodiment of the present disclosure. As shown in Fig. 16, the device 1600 may include:
  • the processing module 1601 is configured to determine available symbols in a special time slot, acquire parameters configured and/or indicated by a base station, and determine symbol resources for data transmission in a special time slot and at least one first Demodulation reference signal DMRS symbol offset value;
  • the processing module 1601 is further configured to determine a first time domain position of the DMRS based on the first available symbol in the symbol resource and the at least one first DMRS symbol offset value.
  • the UE can determine the available symbols in the special time slot, obtain the parameters configured and/or indicated by the base station, and perform the configuration based on the base station configuration and/or Or the indicated parameters determine the symbol resource used for data transmission in the special time slot and at least one first DMRS symbol offset value, and then determine based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value The first time domain position of the DMRS.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • processing module 1601 is further configured to:
  • processing module 1601 is also used to:
  • the unavailable symbols include at least one of the following:
  • the parameters include at least one of the following:
  • a physical uplink shared channel PUSCH mapping type wherein the PUSCH mapping type includes type type A and type B;
  • Type A pre-DMRS position DMRS-type A Position.
  • processing module 1601 is also used to:
  • At least one first DMRS symbol offset value is determined according to the mapping rule of type B.
  • processing module 1601 is also used to:
  • At least one first DMRS symbol offset value is determined according to the mapping rule of type A or according to the mapping rule of type B.
  • processing module 1601 is also used to:
  • processing module 1601 is also used to:
  • processing module 1601 is also used to:
  • processing module 1601 is also used to:
  • the location is determined as the first time domain location of the DMRS
  • the above-mentioned device is also used for:
  • the DMRS is transmitted based on the first time domain location.
  • the above-mentioned device is also used for:
  • the preset condition includes at least one of the following: the second time domain positions all conflict with unavailable symbols in the special time slot, and the second time domain positions are not located on available symbols;
  • At least one first DMRS symbol offset value is determined based on the parameter; when the preset condition is not met, the DMRS is transmitted based on the time domain position on the available symbols of the special time slot in the second time domain position.
  • FIG. 17 is a schematic structural diagram of a reference signal time-domain position configuration provided by another embodiment of the present disclosure. As shown in FIG. 17 , the apparatus 1700 may include:
  • a processing module 1701 configured to determine available symbols and parameters in a special time slot, and determine symbol resources for data transmission in the special time slot and at least one first DMRS symbol offset value based on the parameters;
  • the merchant processing module 1701 is further configured to determine the first time domain position of the DMRS based on the first available symbol in the symbol resource and the at least one first DMRS symbol offset value.
  • the base station can determine the symbol resource used for data transmission in a special time slot, the available symbols and parameters in a special time slot, and based on the parameter Determine at least one first DMRS symbol offset value, and then determine a first time-domain position of the DMRS based on the first available symbol in the symbol resource and the at least one first DMRS symbol offset value.
  • the UE since the UE determines the first time domain position of the DMRS based on the first available symbol in the symbol resource and at least one first DMRS symbol offset value, it can ensure that the determined DMRS The first time domain position is always an available symbol instead of an unavailable symbol, thereby ensuring that the first time domain position of the DMRS can normally transmit DMRS, avoiding waste of resources, reducing cost, and improving coding gain.
  • processing module 1701 is also used to:
  • processing module 1701 is also used to control the above-mentioned processing module 1701 .
  • the unavailable symbols include at least one of the following:
  • the parameters include at least one of the following:
  • the PUSCH mapping type includes type A and type B;
  • processing module 1701 is also used for:
  • At least one first DMRS symbol offset value is determined according to the mapping rule of type B.
  • processing module 1701 is also used for:
  • At least one first DMRS symbol offset value is determined according to the mapping rule of type A or according to the mapping rule of type B.
  • processing module 1701 is also used for:
  • processing module 1701 is also used for:
  • processing module 1701 is also used for:
  • processing module 1701 is also used for:
  • the location is determined as the first time domain location of the DMRS
  • the above-mentioned device is also used for:
  • a DMRS is received and demodulated based on the first time domain location.
  • the above-mentioned device is also used for:
  • the preset condition includes at least one of the following: the second time domain positions all conflict with unavailable symbols in the special time slot, and the second time domain positions are not located on available symbols;
  • At least one first DMRS symbol offset value is determined based on the parameter; when the preset condition is not met, the DMRS is transmitted based on the time domain position on the available symbols of the special time slot in the second time domain position.
  • the above-mentioned device is also used for:
  • the above-mentioned device is also used for:
  • the computer storage medium provided by the embodiments of the present disclosure stores an executable program; after the executable program is executed by a processor, the method shown in any one of FIGS. 1 to 7 or 8 to 15 can be implemented.
  • the present disclosure further proposes a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program is executed by a processor, the method shown in any one of FIGS. 1 to 7 or 8 to 15 is implemented.
  • the present disclosure further proposes a computer program, when the program is executed by a processor, the method as shown in any one of FIG. 1 to FIG. 7 or FIG. 8 to FIG. 15 is implemented.
  • Fig. 18 is a block diagram of a user equipment UE1800 provided by an embodiment of the present disclosure.
  • the UE 1800 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1800 may include at least one of the following components: a processing component 1802, a memory 1804, a power supply component 1806, a multimedia component 1808, an audio component 1810, an input/output (I/O) interface 1812, a sensor component 1813, and a communication component 1816.
  • a processing component 1802 a memory 1804, a power supply component 1806, a multimedia component 1808, an audio component 1810, an input/output (I/O) interface 1812, a sensor component 1813, and a communication component 1816.
  • a processing component 1802 may include at least one of the following components: a processing component 1802, a memory 1804, a power supply component 1806, a multimedia component 1808, an audio component 1810, an input/output (I/O) interface 1812, a sensor component 1813, and a communication component 1816.
  • I/O input/output
  • Processing component 1802 generally controls the overall operations of UE 1800, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1802 may include at least one processor 1820 to execute instructions, so as to complete all or part of the steps of the above method.
  • processing component 1802 can include at least one module that facilitates interaction between processing component 1802 and other components.
  • processing component 1802 may include a multimedia module to facilitate interaction between multimedia component 1808 and processing component 1802 .
  • the memory 1804 is configured to store various types of data to support operations at the UE 1800 . Examples of such data include instructions for any application or method operating on UE1800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1804 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1806 provides power to various components of the UE 1800.
  • Power component 1806 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1800 .
  • the multimedia component 1808 includes a screen providing an output interface between the UE 1800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1808 includes a front camera and/or a rear camera. When UE1800 is in operation mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1810 is configured to output and/or input audio signals.
  • the audio component 1810 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1804 or sent via communication component 1816 .
  • the audio component 1810 also includes a speaker for outputting audio signals.
  • the I/O interface 1812 provides an interface between the processing component 1802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1813 includes at least one sensor, and is used to provide various aspects of state assessment for the UE 1800 .
  • the sensor component 1813 can detect the open/closed state of the device 1800, the relative positioning of components, such as the display and the keypad of the UE1800, the sensor component 1813 can also detect the position change of the UE1800 or a component of the UE1800, and the user and Presence or absence of UE1800 contact, UE1800 orientation or acceleration/deceleration and temperature change of UE1800.
  • Sensor assembly 1813 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1813 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1813 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1816 is configured to facilitate wired or wireless communications between UE 1800 and other devices.
  • UE1800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or their combination.
  • the communication component 1816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 1800 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 19 is a block diagram of a base station 1900 provided by an embodiment of the present application.
  • base station 1900 may be provided as a base station.
  • the base station 1900 includes a processing component 1911, which further includes at least one processor, and a memory resource represented by a memory 1932 for storing instructions executable by the processing component 1922, such as application programs.
  • the application programs stored in memory 1932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1915 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIG. 1 .
  • Base station 1900 may also include a power component 1926 configured to perform power management of base station 1900, a wired or wireless network interface 1950 configured to connect base station 1900 to a network, and an input output (I/O) interface 1958.
  • the base station 1900 can operate based on an operating system stored in the memory 1932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the base station and the UE respectively.
  • the base station and the UE may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the aforementioned method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiments): the processor is configured to execute any of the methods shown in FIGS. 1-4 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 5-Fig. 8 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the foregoing embodiments and a communication device as a network device, Alternatively, the system includes the communication device as the terminal device in the foregoing embodiments (such as the first terminal device in the foregoing method embodiment) and the communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “First”, “Second”, “Third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质,属于通信技术领域。其中,该方法包括:确定special slot特殊时隙中的可用符号,获取基站配置和/或指示的参数,并基于所述参数确定special slot中用于数据传输的符号资源以及至少一个第一解调参考信号DMRS符号偏移值;基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。本公开提出的参考信号时域位置配置方法可以保证在special slot中确定出的DMRS的时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。

Description

一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质。
背景技术
在通信系统中,当上行时隙资源较少时,为了降低传输时延和提高编码效率,通常会利用基站分配的special slot(特殊时隙)中的上行符号资源来进行上行TBoMS(Transmission Block processing over multi-slots transmission,多时隙传输上的传输块处理)传输。其中,利用special solt进行上行TBoMS传输时,通常需要在special slot中确定DRMS时域位置以传输DRMS。
相关技术中,会使得special slot中DRMS时域位置与上行时隙中DRMS时域位置相同。但是,利用相关技术中的方法所确定出的DMRS时域位置可能包括不可用符号(例如下行符号或者上下行转换所用的保护间隔符号等),导致不能使用该DMRS时域位置进行传输,从而造成资源的浪费,降低了编码增益。
发明内容
本公开提出的参考信号时域位置配置方法、装置、用户设备、基站及存储介质,以解决相关技术上中参考信号时域位置配置方法易导致资源的浪费以及编码增益较低的技术问题。
本公开一方面实施例提出的参考信号时域位置配置方法,由UE执行,包括:
确定special slot特殊时隙中的可用符号,获取基站配置和/或指示的参数;
基于所述参数确定special slot中用于数据传输的符号资源以及至少一个第一解调参考信号DMRS符号偏移值;
基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
本公开另一方面实施例提出的参考信号时域位置配置方法,由基站执行,包括:
确定special slot中的可用符号以及参数;
基于所述参数确定所述special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值;
基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
本公开又一方面实施例提出的参考信号时域位置装置,包括:
处理模块,用于确定special slot特殊时隙中的可用符号,获取基站配置和/或指示的参数,并基于所述参数确定special slot中用于数据传输的符号资源以及至少一个第一解调参考信号DMRS符号偏移值;
所述处理模块,还用于基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
本公开又一方面实施例提出的参考信号时域位置装置,包括:
处理模块,用于确定special slot中的可用符号以及参数,基于所述参数确定所述special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值;
所述处理模块,还用于基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程,以使所述装置执行如上再一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如上一方面实施例所述的方法。
本公开又一方面实施例提出的一种通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如上再一方面实施例所述的方法。
本公开又一方面实施例提出的计算机存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例所述的方法被实现。
本公开又一方面实施例提出的计算机存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例所述的方法被实现。
综上所述,在本公开实施例提供的参考信号时域位置配置方法、装置、用户设备、基站及存储介质之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并基于参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图2为本公开另一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图3为本公开再一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图4为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图5为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图6为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图7为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图8为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图9为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图10为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图11为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图12为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图13为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图14为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图15为本公开又一个实施例所提供的参考信号时域位置配置方法的流程示意图;
图16为本公开一个实施例所提供的参考信号时域位置配置装置的结构示意图;
图17为本公开另一个实施例所提供的参考信号时域位置配置装置的结构示意图;
图18是本公开一个实施例所提供的一种用户设备的框图;
图19为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
其中,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用于上行传输的符号,获取基站配置和/或指示的参数,并基于基站配置/指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
下面参考附图对本公开提供的参考信号时域位置配置方法、装置、用户设备、基站及存储介质进行详细描述。
图1为本公开实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于UE,如图1所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤101、确定special slot中的可用符号,并基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值。
需要说明的是,本公开实施例的指示方法可以应用在任意的UE中。UE可以是指向用户提供语音和/或数据连通性的设备。UE可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,本公开实施例的参考信号时域位置配置方法是应用在未开启时隙内跳频的场景下的。
以及,在本公开的一个实施例之中,确定special slot中的可用符号的方法可以包括:基于基站发送的SFI(Slot Format Indication,时隙格式指示符)动态指示信令和/或半静态时隙格式配置信令和/或其他动态指示信令和/或其他高层配置信令从special slot中确定出不可用符号,确定可用符号为特殊时隙 中除不可用符号之外的符号。
其中,在本公开的一个实施例之中,不可用符号包括以下的至少一种:
下行到上行转换所用的保护间隔符号;
用于下行传输的下行符号;
用于传输SSB(Synchronization Signal Block,同步信号块)的符号;
为CSS(Common Search Space,公共搜索空间)(例如为CSS#0)分配的符号;
CI(Cancel Indication,传输取消)指示占用的符号;
用于比当前数据传输更高优先级的业务传输的符号。
以及,在本公开的一个实施例中,当special slot某一符号满足上述任一种情况,则确定该符号为不可用符号。
进一步地,在本公开的一个实施例之中,上述参数可以包括以下至少一种:
PUSCH(Physical Uplink Shared Channel,物理上行共享信道)映射类型(mapping type),其中,在本公开的一个实施例之中,PUSCH映射类型包括type A和type B;
special slot中用于数据传输的符号长度;
special slot中用于数据传输的起始符号位置;
DMRS-Additional Position(附加DMRS位置);
DMRS端口个数;
是否开启时隙内跳频;
DMRS-type A Position(类型A的前置DMRS位置)。
以及,需要说明的是,在本公开的一个实施例之中,DMRS-type A Position参数是针对于PUSCHmapping type A的参数,基于此,当PUSCH映射类型为type B时,DMRS-type A Position参数是无效的,当PUSCH映射类型为type A时,DMRS-type A Position参数是有效的。
进一步地,在本公开的一个实施例之中,UE可以根据DMRS的配置类型和上述参数中的DMRS端口个数通过查询下示表1,以确定DMRS的符号类型是单符号DMRS还是双符号DMRS。其中,在本公开的一个实施例之中,DMRS的配置类型可以是基站通过RRC(Radio Resource Control,无线资源控制)高层参数配置至UE的。以及,在本公开的一个实施例之中,DMRS的配置类型包括type 1和type 2。
表1
Figure PCTCN2021105343-appb-000001
如表1所示,当DMRS的配置类型为type 1时,若端口个数小于等于4,则确定为单符号DMRS,若端口个数大于4,则确定为双符号DMRS。以及,当DMRS的配置类型为type 2时,若端口个数小于等于8,则确定为单符号DMRS,若端口个数大于8,则确定为双符号DMRS。
以下对UE获取基站配置和/或指示的参数的具体方法进行详细描述。
具体的,在本公开的一个实施例之中,对于参数中的“DMRS-Additional Position”的获取方法可以包括:通过基站发送的RRC(Radio Resource Control,无线资源控制)高层信令获取。
在本公开的另一个实施例之中,对于参数中的“DMRS-typeA Position”的获取方法可以包括:通过基站发送的系统广播消息主信息块(Master Information Block,MIB)获取。
在本公开的另一个实施例之中,对于参数中的“PUSCH映射类型、或special slot中用于数据传输的符号长度、或special slot中用于数据传输的起始符号位置”的获取可以方法包括:通过基站发送的高层信令和基站的动态指示获取。
具体的,在本公开的一个实施例之中,通过基站发送的高层信令和基站的动态指示获取PUSCH映 射类型、或special slot中用于数据传输的符号长度、或special slot中用于数据传输的起始符号位置的方法具体可以包括:UE获取基站通过高层信令发送的时域资源分配表,其中,该上行时域资源分配表中包括至少一组时域资源,以及,每组时域资源均对应一个index(索引),并且每组时域资源至少包括以下至少一种参数:PUSCH映射类型、special slot中用于数据传输的符号长度、special slot中用于数据传输的起始符号位置;之后,再获取基站动态指示的index,以根据该动态指示的index从时域资源分配表中确定出与该index匹配的时域资源。
示例的,表2为本公开一个实施例提供的一种上行时域资源分配表。
表2
索引值(index) PUSCH映射类型 K 2 S L
1 Type A j 0 14
2 Type A j 0 12
3 Type A j 0 10
4 Type B j 2 10
5 Type B j 4 10
6 Type B j 4 8
7 Type B j 4 6
8 Type A j+1 0 14
9 Type A j+1 0 12
10 Type A j+1 0 10
11 Type A j+2 0 14
12 Type A j+2 0 12
13 Type A j+2 0 10
14 Type B j 8 6
15 Type A j+3 0 14
16 Type A j+3 0 10
其中,表2中的参数j的值可以通过查询表3得到。
表3
μ J
0 1
1 1
2 2
3 3
如表3所示,μ的值与当前传输所在BWP的子载波间隔存在对应关系,基于该对应关系与当前传输所在BWP的子载波间隔可以确定出μ的值。其中,该对应关系可以为:当子载波间隔为15KHZ时,μ=0;当子载波间隔为30KHZ时,μ=1;当子载波间隔为60KHZ时,μ=2;当子载波间隔为120KHZ时,μ=3。以及,在本公开的一个实施例之中,μ的值与当前传输所在BWP的子载波间隔的对应关系可以是基站通过RRC高层信令发送至UE的。
结合表2和表3所示,包括有多个index,不同的index对应不同的时域资源。具体的,index=4对应的时域资源,包括:PUSCH映射类型为Type B,K 2=j,special slot中用于数据传输的起始符号位置S=2,special slot中用于数据传输的符号长度L=10。
基于此,在本公开的一个实施例中,假设基站动态指示的index值为4,则UE可以直接基于的参数确定出PUSCH映射类型、或special slot中用于数据传输的符号长度、或special slot中用于数据传输的起始符号位置。
在本公开的又一个实施例之中,对于参数中的DMRS端口个数或是否开启时隙内跳频的获取方法包括:获取基站动态指示的DMRS端口个数或是否开启时隙内跳频。
需要说明的是,在本公开的一个实施例之中,基站总是动态指示不开启时隙内跳频。
需要说明的是,在本公开的一个实施例中,基站不进行跳频配置。
则结合上述内容,UE可以成功获取到基站配置和/或指示的参数。
进一步地,在本公开的一个实施例之中,当UE获取到基站配置和/或指示的参数之后,可以基于该参数确定出special slot中用于上行TBoMS传输的符号资源。具体的,在本公开的一个实施例之中,确定special slot中用于上行TBoMS传输的符号资源的方法具体可以包括:将special slot中编号为[S,S+L-1]的符号确定为用于上行TBoMS传输的符号资源。
以及,需要说明的是,在本公开的一个实施例之中,当PUSCH映射类型不同时,该起始符号的位置和符号长度也不相同。
具体的,在本公开的一个实施例之中,当PUSCH mapping type为type A时,基站分配的起始符号位置S应当为第0个符号的位置,即S=symbol#0,符号长度可以介于[4,14]之间,即L∈[4,14]。示例的,假设PUSCH mapping type为type A,则起始符号位置S为symbol#0,符号长度可以为5,从而可以确定基站分配的用于上行TBoMS传输的符号资源为:special slot中的symbol#0~symbol#4。
在本公开的另一个实施例之中,当PUSCH mapping type为type B时,基站分配的起始符号位置S∈[symbol#0,symbol#13],符号长度L可以介于[1,14]之间,即L∈[1,14],且S+L≤14。示例的,假设PUSCH mapping type为type B,则起始符号位置S可以为symbol#2,符号长度可以为5,从而可以确定基站分配的用于上行TBoMS传输的符号资源为:special slot中symbol#2~symbol#6。
进一步地,在本公开的一个实施例之中,UE还会基于参数确定出至少一个第一DMRS符号偏移值,其中,该第一DMRS符号偏移值具体用于确定special slot中的DMRS符号的位置。
其中,在本公开的一个实施例之中,当参数中包括的参数对应的值不同时,UE基于参数确定至少一个第一DMRS符号偏移值的方法也不相同。
具体的,在本公开的一个实施例之中,当参数中包括的PUSCH时域类型为type B时,UE可以按照type B的映射规则确定至少一个第一DMRS符号偏移值。
在本公开的另一个实施例之中,当参数中包括的PUSCH时域类型为type A时,UE可以按照type A的映射规则或按照type B的映射规则确定至少一个第一DMRS符号偏移值。
在本公开的另一个实施例之中,当参数中包括的PUSCH时域类型为type A、DMRS端口个数为单个,且special slot中可用符号的数量小于4时,UE可以按照type B的映射规则确定至少一个第一DMRS符号偏移值。
步骤102、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,在本公开的一个实施例之中,基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的方法可以包括:确定第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一个第一和值,确定DMRS的第一时域位置为符号编号与第一和值对应的符号。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图2为本公开另一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于UE,如图2所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤201、确定special slot中的可用符号,获取基站配置和/或指示的参数,该参数中包括的PUSCH时域类型为type B,基于参数确定special slot中用于数据传输的符号资源,以及按照type B的映射规则确定至少一个第一DMRS符号偏移值。
其中,关于可用符号、参数以及符号资源的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,按照type B的映射规则确定至少一个第一DMRS符号偏移值的方法可以包括以下几种方法:
方法一、基于符号资源中可用符号的数量和参数中除special slot中用于数据传输的符号长度外的其他参数确定至少一个第一DMRS符号偏移值。
方法二、基于special slot中用于数据传输的符号长度以及参数中除special slot中用于数据传输的符号长度外的其他参数确定至少一个第一DMRS符号偏移值。
进一步地,对上述方法一和方法二进行详细介绍。
首先,在本公开的一个实施例之中,在利用方法一和方法二确定至少一个第一DMRS符号偏移值时,均需要利用到PUSCH DMRS位置表,其中,表4为本公开实施例提供的一种PUSCH DMRS位置表。UE可以基于参数通过查询表4得到至少一个第一DMRS符号偏移值。
表4
Figure PCTCN2021105343-appb-000002
其中,在本公开的一个实施例之中,l d可以为符号资源中可用符号的数量。在本公开的另一个实施例之中,l d可以为special slot中用于数据传输的符号长度。基于此,UE可以基于l d、PUSCH映射类型、以及DMRS-Additional Position来确定至少一个第一DMRS符号偏移值。示例的,当l d=10,PUSCH映射类型为Type B,DMRS-Additional Position=pos2时,通过查询表4可以确定出至少一个DMRS符号偏移值为l 0、4、8。
以及,需要说明的是,在本公开的一个实施例之中,l 0是基于PUSCH映射类型确定。具体的,当PUSCH映射类型为Type A时,l 0=DMRS-type A Position。当PUSCH映射类型为Type B时,l 0=0。基于此,在本实施例(即图2对应的实施例)中,由于是基于Type B映射规则映射的,则l 0=0。
在此基础上,在本公开的一个实施例之中,当利用方法一确定至少一个第一DMRS符号偏移值时,上述表4中的l d为符号资源中可用符号的数量。以及,UE利用方法一确定至少一个第一DMRS符号偏移值的步骤可以包括:基于符号资源中可用符号的数量、以及DMRS-Additional Position、PUSCH mapping Type B查询上述表4以进行DMRS符号映射,确定出至少一个第一DMRS符号偏移值。
在本公开的另一个实施例之中,当利用方法二确定至少一个第一DMRS符号偏移值时,上述表4 中的l d为special slot中用于数据传输的符号长度。以及,UE利用方法二确定至少一个第一DMRS符号偏移值的步骤可以包括:基于special slot中用于数据传输的符号长度、以及DMRS-Additional Position、PUSCH mapping Type B查询上述表4以进行DMRS符号映射,确定出至少一个第一DMRS符号偏移值。
步骤202、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,在本公开的一个实施例之中,当步骤201中的确定至少一个第一DMRS符号偏移值的方法不同时,确定DMRS的第一时域位置的方法也会有所不同。
具体的,当利用方法一确定至少一个第一DMRS符号偏移值时,确定DMRS的第一时域位置的方法可以包括:确定第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一个第一和值,将符号编号与第一和值对应的符号确定为DMRS的第一时域位置。
示例的,在本公开的一个实施例之中,假设步骤201中利用方法一得到的至少一个第一DMRS符号偏移值为l0,4,8,且假设符号资源中第一个可用符号的符号编号为symbol#1,则确定的DMRS的第一时域位置可以为symbol#(1+l 0)=symbol#(1+0)=symbol#1、symbol#(1+4)=symbol#5,symbol#(1+8)=symbol#9。
以及,在本公开的另一个实施例之中,当上述步骤201中利用方法二确定至少一个第一DMRS符号偏移值时,由于special slot中用于数据传输的符号长度大于符号资源中可用符号的数量,则会使得所确定第一DMRS符号偏移值较大,进而当基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置时,所确定出的DMRS的第一时域位置中可能存在超出符号资源的时域位置,则会影响数据传输。
因此,在本公开的一个实施例之中,当上述步骤201中利用方法二确定至少一个第一DMRS符号偏移值时,在基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定出至少一个时域位置之后,还需要判断确定出的至少一个时域位置中是否存在超出符号资源的时域位置的情况。其中,在本公开的一个实施例之中,当存在超出符号资源的时域位置时,则丢弃至少一个时域位置中的超出符号资源的时域位置得到剩余时域位置,将剩余时域位置确定为DMRS的第一时域位置。以及,在本公开的另一个实施例之中,当不存在超出符号资源的时域位置时,则将确定出的至少一个时域位置确定为DMRS的第一时域位置。
示例的,假设基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定出的至少一个时域位置可以为symbol#1、symbol#5,symbol#9,以及,符号资源为symbol#1~symbol#8。此时,由于symbol#9超出了符号资源的时域位置,则将symbol#9丢弃,而仅将symbol#1、symbol#5确定为DMRS的第一时域位置。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图3为本公开再一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于UE,如图3所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤301、确定special slot中的可用符号,获取基站配置和/或指示的参数,该参数中包括的PUSCH时域类型为typeA,基于参数确定special slot中用于传输的资源符号,以及按照type A的映射规则确定至少一个第一DMRS符号偏移值。
其中,关于可用符号、参数以及符号资源的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,按照type A的映射规则确定至少一个第一DMRS符号偏移值 的方法可以包括以下几种方法:
方法一、基于符号资源中可用符号的数量和参数中除special slot中用于数据传输的符号长度外的其他参数确定至少一个第一DMRS符号偏移值。
方法二、基于special slot中用于数据传输的符号长度以及参数中除special slot中用于数据传输的符号长度外的其他参数确定至少一个第一DMRS符号偏移值。
进一步地,对上述方法一和方法二进行详细介绍。
首先,在本公开的一个实施例之中,在利用方法一和方法二确定至少一个第一DMRS符号偏移值时,均需要利用到上述表4所示的PUSCH DMRS位置定位表,其中,UE可以基于上述参数通过查询表4得到至少一个第一DMRS符号偏移值。
其中,在本公开的一个实施例之中,l d可以为符号资源中可用符号的数量。在本公开的另一个实施例之中,l d可以为special slot中用于数据传输的符号长度。基于此,UE可以基于l d、PUSCH映射类型、以及DMRS-Additional Position来确定至少一个第一DMRS符号偏移值。示例的,当l d=10,PUSCH映射类型为Type A,DMRS-Additional Position=pos2时,通过查询表4可以确定出至少一个DMRS符号偏移值为l 0、6、9。
以及,需要说明的是,在本公开的一个实施例之中,l 0是基于PUSCH映射类型确定。具体的,当PUSCH映射类型为Type A时,l 0=DMRS-type A Position。当PUSCH映射类型为Type B时,l 0=0。基于此,在本实施例(即图3对应的实施例)中,由于是基于Type A映射规则映射的,则l 0=DMRS-type A Position。
在此基础上,在本公开的一个实施例之中,当利用方法一确定至少一个第一DMRS符号偏移值时,上述表4中的l d为符号资源中可用符号的数量。以及,UE利用方法一确定至少一个第一DMRS符号偏移值的步骤可以包括:基于符号资源中可用符号的数量、以及DMRS-Additional Position、PUSCH mapping Type A查询上述表4以进行DMRS符号映射,确定出至少一个第一DMRS符号偏移值。
在本公开的另一个实施例之中,当利用方法二确定至少一个第一DMRS符号偏移值时,上述表4中的l d为special slot中用于数据传输的符号长度。以及,UE利用方法二确定至少一个第一DMRS符号偏移值的步骤可以包括:基于special slot中用于数据传输的符号长度、以及DMRS-Additional Position、PUSCH mapping Type A查询上述表4以进行DMRS符号映射,确定出至少一个第一DMRS符号偏移值。
步骤302、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,在本公开的一个实施例之中,当步骤301中的确定至少一个第一DMRS符号偏移值的方法不同时,确定DMRS的第一时域位置的方法也会有所不同。
具体的,当利用方法一确定至少一个第一DMRS符号偏移值时,确定DMRS的第一时域位置的方法可以包括:确定第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一个第一和值,将符号编号与第一和值对应的符号确定为DMRS的第一时域位置。
示例的,在本公开的一个实施例之中,假设步骤301中利用方法一得到的至少一个第一DMRS符号偏移值为l0,6,9,且假设符号资源中第一个可用符号的符号编号为symbol#1,DMRS-typeA Position=2,则确定的DMRS的第一时域位置可以为symbol#(1+l 0)=symbol#(1+2)=symbol#3、symbol#(1+6)=symbol#7,symbol#(1+9)=symbol#10。
以及,在本公开的另一个实施例之中,当上述步骤301中利用方法二确定至少一个第一DMRS符号偏移值时,由于special slot中用于数据传输的符号长度大于符号资源中可用符号的数量,则会使得所确定第一DMRS符号偏移值较大,进而当基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的至少第一时域位置时,所确定出的DMRS的至少第一时域位置中可能存在超出符号资源的时域位置,则会影响数据传输。
因此,在本公开的一个实施例之中,当上述步骤301中利用方法二确定至少一个第一DMRS符号偏移值时,在基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定出DMRS的至少一个时域位置之后,还需要判断确定出的至少一个时域位置中是否存在超出符号资源的时域位置的情况。 其中,在本公开的一个实施例之中,当存在超出符号资源的时域位置时,则丢弃至少一个时域位置中的超出符号资源的时域位置得到剩余时域位置,将剩余时域位置确定为DMRS的第一时域位置。以及,在本公开的另一个实施例之中,当不存在超出符号资源的时域位置时,则将确定出的至少一个时域位置确定为DMRS的第一时域位置。
示例的,假设基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定出的至少一个时域位置可以为symbol#3、symbol#7,symbol#10,以及,符号资源为symbol#0~symbol#8。此时,由于symbol#10超出了符号资源的时域位置,则将symbol#10丢弃,而仅将symbol#3、symbol#7确定为DMRS的第一时域位置。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图4为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于UE,如图4所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤401、确定special slot中的可用符号,获取基站配置和/或指示的参数,该参数中包括的PUSCH时域类型为typeA,基于参数确定special slot中用于数据传输的符号资源,以及按照type B的映射规则确定至少一个第一DMRS符号偏移值。
其中,关于可用符号、参数以及符号资源的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
以及,关于按照type B的映射规则确定所述至少一个第一DMRS符号偏移值的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
步骤402、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤402的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图5为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于UE,如图5所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤501、确定special slot中的可用符号,获取基站配置和/或指示的参数,该参数中包括的PUSCH时域类型为type A、DMRS端口个数为单个,且special slot中可用符号的数量小于4,基于参数确定special slot中用于数据传输的符号资源,以及按照type B的映射规则确定至少一个第一DMRS符号偏移值。
其中,关于可用符号、参数以及符号资源的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,当PUSCH时域类型为type A、DMRS端口个数为单个,且special slot中可用符号的数量小于4时,之所以要按照type B的映射规则确定至少一个第一DMRS符号偏移值的原因主要包括:表4主要是对于单DMRS符号的定位表,参考表4,针对于type A而言,当l d小于4时,不存在对应的DMRS符号偏移值(也即是无法确定出DMRS符号偏移值),由此需要利用type  B的映射规则才可成功确定出至少一个DMRS符号偏移值。
以及,关于按照type B的映射规则确定所述至少一个第一DMRS符号偏移值的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
步骤502、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤502的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图6为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于UE,如图6所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤601、确定special slot中的可用符号,获取基站配置和/或指示的参数,并基于参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值。
步骤602、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
在本公开的一个实施例之中,关于步骤601~602的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤603、基于第一时域位置传输DMRS。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图7为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于UE,如图7所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤701、确定special slot中的可用符号。
步骤702、获取基站配置和/或指示的参数。
其中,在本公开的一个实施例之中,关于步骤701~702的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤703、基于参数确定special slot中至少一个第二DMRS符号偏移值,并确定符号资源中第一个符号的符号编号与每个第二DMRS符号偏移值的和以得到至少一个第二和值,将符号编号与第二和值对应的符号确定为DMRS的第二时域位置。
其中,在本公开的一个实施例之中,UE可以基于参数通过查询上述表4得到至少一个第二DMRS符号偏移值,并且,确定第二DMRS符号偏移值时,表4中的l d为special slot中用于数据传输的符号长度。以及,确定第二DMRS符号偏移值的方法与确定第一DMRS符号偏移值的方法原理雷同,具体可参见上述实施例描述,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,当确定出至少一个第二DMRS符号偏移值后,可以先采用常规方法在special slot确定出DMRS的时域位置,具体的,可以执行上述步骤703中的“确定符号资源中第一个符号的符号编号与每个第二DMRS符号偏移值的和以得到至少一个第二和值,将符号编号与 第二和值对应的符号确定为DMRS的第二时域位置”,其中,该第二时域位置即是利用常规方法在special slot所确定出DMRS的时域位置。
步骤704、确定第二时域位置是否满足预设条件,当满足预设条件时,执行步骤706;当不满足预设条件时,执行步骤705。
预设条件包括以下至少一种:
条件一、第二时域位置均与special slot中不可用符号冲突;
条件二、第二时域位置均未位于可用符号上。
其中,在本公开的一个实施例之中,预设条件可以仅为上述条件中的任意一个。在本公开的另一个实施例之中,预设条件可以为上述条件中的全部两个。在本公开的一个实施例之中,当预设条件为上述条件中的全部两个时,第二时域位置满足预设条件中的任意一个,即满足预设条件。
以及,在本公开的一个实施例之中,当第二时域位置满足预设条件时,则说明利用常规方法所确定出的第二时域位置均不能用于上行TBoMS传输,则需要执行步骤706以重新确定DMRS时域位置;当第二时域位置不满足预设条件时,则说明第二时域位置存在有能够用于上行TBoMS传输的时域位置,由此可以执行步骤705。
步骤705、基于第二时域位置中位于special slot的可用符号上的时域位置传输DMRS。
假设,special slot的不可用符号为symbol#0~symbol#2,以及,所确定出的第二时域位置为symbol#1,symbol#5,symbol#9。则可以基于symbol#5,symbol#9传输DMRS。
步骤706、基于参数确定至少一个第一DMRS符号偏移值。
步骤707、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤706~707的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,UE可以确定special slot中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图8为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图8所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤801、确定special slot中的可用符号以及参数,基于参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值。
在本公开的一个实施例之中,本公开实施例的参考信号时域位置配置方法是应用在未开启时隙内跳频的场景下的。
以及,在本公开的一个实施例之中,确定special slot中的可用符号的方法可以包括:基于基站发送的SFI动态指示信令和/或半静态时隙格式配置信令从special slot中确定出不可用符号,确定可用符号为特殊时隙中除不可用符号之外的符号。
其中,在本公开的一个实施例之中,不可用符号包括以下的至少一种:
下行到上行转换所用的保护间隔符号;
用于下行传输的下行符号;
用于传输SSB的符号;
为CSS(例如CSS#0)分配的符号;
CI指示占用的符号;
用于比当前数据传输更高优先级的业务传输的符号。
以及,在本公开的一个实施例中,当special slot某一符号满足上述任一种情况,则确定该符号为不可用符号。
进一步地,在本公开的一个实施例之中,上述参数可以包括以下至少一种:
PUSCH映射类型;其中,在本公开的一个实施例之中,PUSCH映射类型包括type A和type B;
special slot中用于数据传输的符号长度;
special slot中用于数据传输的起始符号位置;
DMRS-Additional Position;
DMRS端口个数;
是否开启时隙内跳频;
DMRS-type A Position。
以及,需要说明的是,在本公开的一个实施例之中,DMRS-type A Position参数是针对于PUSCHmapping type A的参数,基于此,当PUSCH映射类型为type B时,DMRS-type A Position参数是无效的,当PUSCH映射类型为type A时,DMRS-type A Position参数是有效的。
进一步地,在本公开的一个实施例之中,UE可以根据DMRS的配置类型和上述参数中的DMRS端口个数通过查询上述表1,以确定DMRS的符号类型是单符号DMRS还是双符号DMRS。其中,在本公开的一个实施例之中,DMRS的配置类型可以是基站通过RRC(Radio Resource Control,无线资源控制)高层参数配置至UE的。以及,在本公开的一个实施例之中,DMRS的配置类型包括type 1和type2。
以及,在本公开的一个实施例之中,基站确定单符号DMRS或双符号DMRS的方法与UE确定单符号DMRS或双符号DMRS的方法一致,详见上述实施例描述,本公开实施例在此不做赘述。
以及,在本公开的一个实施例之中,基站可以向UE配置和/或指示参数。其中,关于基站向UE配置和/或指示参数的方法的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
以及,关于基于参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值的详细方法可以参考上述描述,本公开实施例在此不做赘述。
步骤802、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,在本公开的一个实施例之中,基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的方法可以包括:确定符号资源中第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一个第一和值,将符号编号与第一和值对应的符号确定为DMRS的第一时域位置。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图9为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图9所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤901、确定special slot中的可用符号以及参数,该参数中包括的PUSCH时域类型为type B,基于参数确定special slot中用于数据传输的符号资源,并按照type B的映射规则确定至少一个第一DMRS符号偏移值。
步骤902、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤901~902的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘 述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图10为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图10所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤1001、确定special slot中的可用符号以及参数,该参数中包括的PUSCH时域类型为type A,基于参数确定special slot中用于数据传输的符号资源,并按照type A的映射规则确定至少一个第一DMRS符号偏移值。
步骤1002、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤1001~1002的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图11为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图11所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤1101、确定special slot中的可用符号以及参数,该参数中包括的PUSCH时域类型为typeA,基于参数确定special slot中用于数据传输的符号资源,并按照typeB的映射规则确定至少一个第一DMRS符号偏移值。
步骤1102、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤1101~1102的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图12为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图12所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤1201、确定special slot中的可用符号以及参数,该参数中包括的PUSCH时域类型为type A、DMRS端口个数为单个、且special slot中可用符号的数量小于4,基于参数确定special slot中用于数据传输的符号资源,并按照typeB的映射规则确定至少一个第一DMRS符号偏移值。
步骤1202、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤1201~1202的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图13为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图13所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤1301、确定special slot中的可用符号以及参数,基于参数确定special slot中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值。
步骤1302、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤1301~1302的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤1303、基于第一时域位置接收并解调DMRS。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图14为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图14所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤1401、确定special slot中的可用符号以及参数。
步骤1402、基于参数确定special slot中用于数据传输的符号资源以及至少一个第二DMRS符号偏移值,并确定符号资源中第一个符号的符号编号与每个第二DMRS符号偏移值的和以得到至少一个第二和值,将符号编号与第二和值对应的符号确定为DMRS的第二时域位置。
步骤1403、确定第二时域位置是否满足预设条件,当满足预设条件时,继续执行步骤1405;当不满足时,继续执行步骤1404。
预设条件包括以下至少一种:
条件一、第二时域位置均与special slot中不可用符号冲突;
条件二、第二时域位置均未位于所述可用符号上。
其中,在本公开的一个实施例之中,预设条件可以仅为上述条件中的任意一个。在本公开的另一个实施例之中,预设条件可以为上述条件中的全部两个。在本公开的一个实施例之中,当预设条件为上述条件中的全部两个时,第二时域位置满足预设条件中的任意一个,即满足预设条件。
步骤1404、基于第二时域位置中位于special slot的可用符号上的时域位置传输DMRS。
步骤1405、基于参数确定至少一个第一DMRS符号偏移值。
步骤1406、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
其中,关于步骤1401~1406的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图15为本公开又一个实施例所提供的一种参考信号时域位置配置方法的流程示意图,应用于基站,如图15所示,该参考信号时域位置配置方法可以包括以下步骤:
步骤1501、确定special slot中的可用符号以及参数,基于参数确定用于数据传输的符号资源以及至少一个第一DMRS符号偏移值。
步骤1502、基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。
步骤1503、向UE配置和/或指示参数。
其中,关于步骤1501~1503的详细介绍可以参考上述实施例之中的相关介绍,本公开实施例在此不做赘述。
步骤1504、向UE发送SFI动态指示信令和/或半静态时隙格式配置信令。
其中,在本公开的一个实施例之中,基站可以向UE发送SFI动态指示信令和/或半静态时隙格式配置信令,以便UE可以基于基站发送的SFI动态指示信令和/或半静态时隙格式配置信令从special slot中确定出不可用符号。
综上所述,在本公开实施例提供的参考信号时域位置配置方法之中,基站可以确定special slot中用于数据传输的符号资源、special slot中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
图16为本公开一个实施例所提供的一种参考信号时域位置配置装置的结构示意图,如图16所示,装置1600可以包括:
处理模块1601,用于确定特殊时隙特殊时隙中的可用符号,获取基站配置和/或指示的参数,并基于所述参数确定特殊时隙中用于数据传输的符号资源以及至少一个第一解调参考信号DMRS符号偏移值;
该处理模块1601,还用于基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
综上所述,在本公开实施例提供的参考信号时域位置配置装置之中,UE可以确定特殊时隙中的可用符号,获取基站配置和/或指示的参数,并会基于基站配置和/或指示的参数确定特殊时隙中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
在本公开一个实施例之中,上述处理模块1601,还用于:
确定所述符号资源中第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一 个第一和值;
确定所述DMRS的第一时域位置为符号编号与所述第一和值对应的符号。
进一步地,在本公开另一个实施例之中,上述处理模块1601,还用于:
基于时隙格式指示符SFI动态指示信令和/或半静态时隙格式配置信令从所述特殊时隙中确定出不可用符号;
确定所述可用符号为所述特殊时隙中除不可用符号之外的符号;
其中,所述不可用符号包括以下的至少一种:
下行到上行转换所用的保护间隔符号;
用于下行传输的下行符号;
用于传输同步信号块SSB的符号;
为公共搜索空间CSS分配的符号;
传输取消CI指示占用的符号;
用于比当前数据传输更高优先级的业务传输的符号。
进一步地,在本公开另一个实施例之中,参数包括以下至少一种:
物理上行共享信道PUSCH映射类型,其中,所述PUSCH映射类型包括类型type A和type B;
特殊时隙中用于数据传输的符号长度;
特殊时隙中用于数据传输的起始符号位置;
附加DMRS位置DMRS-Additional Position;
DMRS端口个数;
是否开启时隙内跳频;
类型A的前置DMRS位置DMRS-type A Position。
进一步地,在本公开另一个实施例之中,上述处理模块1601,还用于:
当参数中包括的PUSCH时域类型为type B,按照type B的映射规则确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1601,还用于:
当参数中包括的PUSCH时域类型为type A,按照type A的映射规则或按照type B的映射规则确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1601,还用于:
按照所述type B的映射规则确定所述至少一个第一DMRS符号偏移值,其中,所述PUSCH时域类型为type A、DMRS端口个数为单个,且所述特殊时隙中可用符号的数量小于4。
进一步地,在本公开另一个实施例之中,上述处理模块1601,还用于:
基于符号资源中可用符号的数量和参数中除特殊时隙中用于数据传输的符号长度外的其他参数,确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1601,还用于:
基于特殊时隙中用于数据传输的符号长度以及参数中除特殊时隙中用于数据传输的符号长度外的其他参数确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1601,还用于:
基于符号资源中第一个可用符号的位置和至少一个第一DMRS符号偏移值确定至少一个时域位置;
确定所述至少一个时域位置中是否存在超出符号资源的时域位置;
当所述至少一个时域位置中存在超出符号资源的时域位置时,丢弃所述至少一个时域位置中的所述超出符号资源的时域位置得到剩余时域位置,将所述剩余时域位置确定为所述DMRS的第一时域位置;
当所述至少一个时域位置中是否不存在超出符号资源的时域位置时,将所述至少一个时域位置确定为所述DMRS的第一时域位置。
进一步地,在本公开一个实施例之中,上述装置,还用于:
基于第一时域位置传输DMRS。
进一步地,在本公开另一个实施例之中,上述装置还用于:
获取基站配置和/或指示的参数;
基于参数确定特殊时隙中至少一个第二DMRS符号偏移值,并确定符号资源中第一个符号的符号编号与每个第二DMRS符号偏移值的和以得到至少一个第二和值,将符号编号与第二和值对应的符号确定为DMRS的第二时域位置;
确定第二时域位置是否满足预设条件,预设条件包括以下至少一种:第二时域位置均与特殊时隙中不可用符号冲突,第二时域位置均未位于可用符号上;
当满足预设条件时,基于参数确定至少一个第一DMRS符号偏移值;当不满足预设条件时,基于第二时域位置中位于特殊时隙的可用符号上的时域位置传输DMRS。
图17为本公开另一个实施例所提供的一种参考信号时域位置配置的结构示意图,如图17所示,装置1700可以包括:
处理模块1701,用于确定特殊时隙中的可用符号以及参数,基于所述参数确定所述特殊时隙中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值;
商户处理模块1701,还用于基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
综上所述,在本公开实施例提供的参考信号时域位置配置装置之中,基站可以确定特殊时隙中用于数据传输的符号资源、特殊时隙中的可用符号以及参数,并基于参数确定至少一个第一DMRS符号偏移值,之后,再基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置。其中,在本公开实施例中,由于UE是基于符号资源中第一个可用符号和至少一个第一DMRS符号偏移值确定DMRS的第一时域位置的,则可以确保所确定出的DMRS的第一时域位置总是可用符号,而不会为不可用符号,从而保证了DMRS的第一时域位置均能够正常传输DMRS,避免了资源的浪费,降低了成本,且提高了编码增益。
在本公开一个实施例之中,上述处理模块1701还用于:
确定符号资源中第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一个第一和值;
确定所述DMRS的第一时域位置为符号编号与所述第一和值对应的符号。
进一步地,在本公开另一个实施例之中,上述处理模块1701还用于
从所述特殊时隙中确定出不可用符号;
确定所述可用符号为所述特殊时隙中除不可用符号之外的符号;
其中,所述不可用符号包括以下的至少一种:
下行到上行转换所用的保护间隔符号;
用于下行传输的下行符号;
用于传输同步信号块SSB的符号;
为CSS分配的符号;
传输取消CI指示占用的符号;
用于比当前数据传输更高优先级的业务传输的符号。
进一步地,在本公开另一个实施例之中,参数包括以下至少一种:
PUSCH映射类型,其中,所述PUSCH映射类型包括type A和type B;
特殊时隙中用于数据传输的符号长度;
特殊时隙中用于数据传输的起始符号位置;
DMRS-Additional Position;
DMRS端口个数;
是否开启时隙内跳频;
DMRS-type A Position。
进一步地,在本公开另一个实施例之中,上述处理模块1701还用于:
当参数中包括的PUSCH时域类型为type B,按照type B的映射规则确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1701还用于:
当参数中包括的PUSCH时域类型为type A,按照type A的映射规则或按照type B的映射规则确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1701还用于:
按照所述type B的映射规则确定所述至少一个第一DMRS符号偏移值,其中,所述PUSCH时域类型为type A、DMRS端口个数为单个,且所述特殊时隙中可用符号的数量小于4。
进一步地,在本公开另一个实施例之中,上述处理模块1701还用于:
基于符号资源中可用符号的数量和参数中除特殊时隙中用于数据传输的符号长度外的其他参数,确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1701还用于:
基于特殊时隙中用于数据传输的符号长度以及参数中除特殊时隙中用于数据传输的符号长度外的其他参数确定至少一个第一DMRS符号偏移值。
进一步地,在本公开另一个实施例之中,上述处理模块1701还用于:
基于符号资源中第一个可用符号的位置和至少一个第一DMRS符号偏移值确定至少一个时域位置;
确定所述至少一个时域位置中是否存在超出符号资源的时域位置;
当所述至少一个时域位置中存在超出符号资源的时域位置时,丢弃所述至少一个时域位置中的所述超出符号资源的时域位置得到剩余时域位置,将所述剩余时域位置确定为所述DMRS的第一时域位置;
当所述至少一个时域位置中是否不存在超出符号资源的时域位置时,将所述至少一个时域位置确定为所述DMRS的第一时域位置。
进一步地,在本公开另一个实施例之中,上述装置还用于:
基于第一时域位置接收并解调DMRS。
进一步地,在本公开另一个实施例之中,上述装置还用于:
基于参数确定特殊时隙中至少一个第二DMRS符号偏移值,并确定符号资源中第一个符号的符号编号与每个第二DMRS符号偏移值的和以得到至少一个第二和值,将符号编号与第二和值对应的符号确定为DMRS的第二时域位置;
确定第二时域位置是否满足预设条件,预设条件包括以下至少一种:第二时域位置均与特殊时隙中不可用符号冲突,第二时域位置均未位于可用符号上;
当满足预设条件时,基于参数确定至少一个第一DMRS符号偏移值;当不满足预设条件时,基于第二时域位置中位于特殊时隙的可用符号上的时域位置传输DMRS。
进一步地,在本公开另一个实施例之中,上述装置还用于:
向UE配置和/或指示参数。
进一步地,在本公开另一个实施例之中,上述装置还用于:
向UE发送SFI动态指示信令和/或半静态时隙格式配置信令。
本公开实施例提供的计算机存储介质,存储有可执行程序;所述可执行程序被处理器执行后,能够实现如图1至图7或图8至图15任一所示的方法。
为了实现上述实施例,本公开还提出一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如图1至图7或图8至图15任一所示的方法。
此外,为了实现上述实施例,本公开还提出一种计算机程序,该程序被处理器执行时,以实现如图1至图7或图8至图15任一所示的方法。
图18是本公开一个实施例所提供的一种用户设备UE1800的框图。例如,UE1800可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图18,UE1800可以包括以下至少一个组件:处理组件1802,存储器1804,电源组件1806, 多媒体组件1808,音频组件1810,输入/输出(I/O)的接口1812,传感器组件1813,以及通信组件1816。
处理组件1802通常控制UE1800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1802可以包括至少一个处理器1820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1802可以包括至少一个模块,便于处理组件1802和其他组件之间的交互。例如,处理组件1802可以包括多媒体模块,以方便多媒体组件1808和处理组件1802之间的交互。
存储器1804被配置为存储各种类型的数据以支持在UE1800的操作。这些数据的示例包括用于在UE1800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1806为UE1800的各种组件提供电力。电源组件1806可以包括电源管理系统,至少一个电源,及其他与为UE1800生成、管理和分配电力相关联的组件。
多媒体组件1808包括在所述UE1800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1808包括一个前置摄像头和/或后置摄像头。当UE1800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1810被配置为输出和/或输入音频信号。例如,音频组件1810包括一个麦克风(MIC),当UE1800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1804或经由通信组件1816发送。在一些实施例中,音频组件1810还包括一个扬声器,用于输出音频信号。
I/O接口1812为处理组件1802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1813包括至少一个传感器,用于为UE1800提供各个方面的状态评估。例如,传感器组件1813可以检测到设备1800的打开/关闭状态,组件的相对定位,例如所述组件为UE1800的显示器和小键盘,传感器组件1813还可以检测UE1800或UE1800一个组件的位置改变,用户与UE1800接触的存在或不存在,UE1800方位或加速/减速和UE1800的温度变化。传感器组件1813可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1813还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1813还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1816被配置为便于UE1800和其他设备之间有线或无线方式的通信。UE1800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1800可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图19是本申请实施例所提供的一种基站1900的框图。例如,基站1900可以被提供为一基站。参照图19,基站1900包括处理组件1911,其进一步包括至少一个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1915被配置为执行指令, 以执行上述方法前述应用在所述基站的任意方法,例如,如图1所示方法。
基站1900还可以包括一个电源组件1926被配置为执行基站1900的电源管理,一个有线或无线网络接口1950被配置为将基站1900连接到网络,和一个输入输出(I/O)接口1958。基站1900可以操作基于存储在存储器1932的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从基站、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,基站和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图1-图4任一所示的方法。
通信装置为网络设备:收发器用于执行图5-图8任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来 制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的系统,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、 “C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种参考信号时域位置配置方法,其特征在于,所述方法由用户设备UE执行,包括:
    确定特殊时隙中的可用符号,获取基站配置和/或指示的参数;
    基于所述参数确定特殊时隙中用于数据传输的符号资源以及至少一个第一解调参考信号DMRS符号偏移值;
    基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
  2. 如权利要求1所述的方法,其特征在于,所述基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置,包括:
    确定所述符号资源中第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一个第一和值;
    确定所述DMRS的第一时域位置为符号编号与所述第一和值对应的符号。
  3. 如权利要求1所述的方法,其特征在于,所述确定特殊时隙中的可用符号,包括:
    基于时隙格式指示符SFI动态指示信令和/或半静态时隙格式配置信令从所述特殊时隙中确定出不可用符号;
    确定所述可用符号为所述特殊时隙中除不可用符号之外的符号;
    其中,所述不可用符号包括以下的至少一种:
    下行到上行转换所用的保护间隔符号;
    用于下行传输的下行符号;
    用于传输同步信号块SSB的符号;
    为公共搜索空间CSS分配的符号;
    传输取消CI指示占用的符号;
    用于比当前数据传输更高优先级的业务传输的符号。
  4. 如权利要求1所述的方法,其特征在于,所述参数包括以下至少一种:
    物理上行共享信道PUSCH映射类型,其中,所述PUSCH映射类型包括类型type A和type B;
    特殊时隙中用于数据传输的符号长度;
    特殊时隙中用于数据传输的起始符号位置;
    附加DMRS位置DMRS-Additional Position;
    DMRS端口个数;
    是否开启时隙内跳频;
    类型A的前置DMRS位置DMRS-type A Position。
  5. 如权利要求4所述的方法,其特征在于,所述基于基站配置和/或指示的参数确定至少一个第一DMRS符号偏移值,包括:
    当所述参数中包括的PUSCH时域类型为type B,按照type B的映射规则确定所述至少一个第一DMRS符号偏移值。
  6. 如权利要求4所述的方法,其特征在于,所述基于基站配置和/或指示的参数确定至少一个第一DMRS符号偏移值,包括:
    当所述参数中包括的PUSCH时域类型为type A,按照type A的映射规则或按照type B的映射规则确定所述至少一个第一DMRS符号偏移值。
  7. 如权利要求4所述的方法,其特征在于,所述基于基站配置和/或指示的参数确定至少一个第一DMRS符号偏移值,包括:
    按照所述type B的映射规则确定所述至少一个第一DMRS符号偏移值,其中,所述PUSCH时域类型为type A、DMRS端口个数为单个,且所述特殊时隙中可用符号的数量小于4。
  8. 如权利要求5至7任一所述的方法,其特征在于,所述确定所述至少一个第一DMRS符号偏移值,包括:
    基于所述符号资源中可用符号的数量和所述参数中除所述特殊时隙中用于数据传输的符号长度外的其他参数,确定所述至少一个第一DMRS符号偏移值。
  9. 如权利要求5至7任一所述的方法,其特征在于,所述确定至少一个第一DMRS符号偏移值,包括:
    基于所述特殊时隙中用于数据传输的符号长度以及所述参数中除所述特殊时隙中用于数据传输的符号长度外的其他参数确定所述至少一个第一DMRS符号偏移值。
  10. 如权利要求9所述的方法,其特征在于,所述基于所述符号资源中第一个可用符号的位置和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置,包括:
    基于所述符号资源中第一个可用符号的位置和所述至少一个第一DMRS符号偏移值确定至少一个时域位置;
    确定所述至少一个时域位置中是否存在超出符号资源的时域位置;
    当所述至少一个时域位置中存在超出符号资源的时域位置时,丢弃所述至少一个时域位置中的所述超出符号资源的时域位置得到剩余时域位置,将所述剩余时域位置确定为所述DMRS的第一时域位置;
    当所述至少一个时域位置中是否不存在超出符号资源的时域位置时,将所述至少一个时域位置确定为所述DMRS的第一时域位置。
  11. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述第一时域位置传输所述DMRS。
  12. 如权利要求4所述的方法,其特征在于,在所述基于基站配置和/或指示的参数确定至少一个第一DMRS符号偏移值之前,所述方法还包括:
    基于所述参数确定所述特殊时隙中至少一个第二DMRS符号偏移值,并确定所述符号资源中第一个符号的符号编号与每个第二DMRS符号偏移值的和以得到至少一个第二和值,确定所述DMRS的第二时域位置为符号编号与所述第二和值对应的符号;
    确定所述第二时域位置是否满足预设条件,所述预设条件包括以下至少一种:所述第二时域位置均与所述特殊时隙中不可用符号冲突,所述第二时域位置均未位于所述可用符号上;
    当满足所述预设条件时,基于所述参数确定所述至少一个第一DMRS符号偏移值;当不满足所述预设条件时,基于所述第二时域位置中位于所述特殊时隙的可用符号上的时域位置传输所述DMRS。
  13. 一种参考信号时域位置配置方法,其特征在于,所述方法由基站执行,包括:
    确定特殊时隙中的可用符号以及参数;
    基于所述参数确定所述特殊时隙中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值;
    基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
  14. 如权利要求13所述的方法,其特征在于,所述基于所述符号资源中第一个可用符号和所述至 少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置,包括:
    确定所述符号资源中第一个可用符号的符号编号与每个第一DMRS符号偏移值的和以得到至少一个第一和值;
    确定所述DMRS的第一时域位置为符号编号与所述第一和值对应的符号。
  15. 如权利要求13所述的方法,其特征在于,所述确定特殊时隙中的可用符号,包括:
    从所述特殊时隙中确定出不可用符号;
    确定所述可用符号为所述特殊时隙中除不可用符号之外的符号;
    其中,所述不可用符号包括以下的至少一种:
    下行到上行转换所用的保护间隔符号;
    用于下行传输的下行符号;
    用于传输同步信号块SSB的符号;
    为CSS分配的符号;
    传输取消CI指示占用的符号;
    用于比当前数据传输更高优先级的业务传输的符号。
  16. 如权利要求13所述的方法,其特征在于,所述参数包括以下至少一种:
    PUSCH映射类型,其中,所述PUSCH映射类型包括type A和type B;
    特殊时隙中用于数据传输的符号长度;
    特殊时隙中用于数据传输的起始符号位置;
    DMRS-Additional Position;
    DMRS端口个数;
    是否开启时隙内跳频;
    DMRS-type A Position。
  17. 如权利要求16所述的方法,其特征在于,所述基于所述参数确定至少一个第一DMRS符号偏移值,包括:
    当所述参数中包括的PUSCH时域类型为type B,按照type B的映射规则确定所述至少一个第一DMRS符号偏移值。
  18. 如权利要求16所述的方法,其特征在于,所述基于所述参数确定至少一个第一DMRS符号偏移值,包括:
    当所述参数中包括的PUSCH时域类型为type A,按照type A的映射规则或按照type B的映射规则确定所述至少一个第一DMRS符号偏移值。
  19. 如权利要求16所述的方法,其特征在于,所述参数确定至少一个第一DMRS符号偏移值,包括:
    按照所述type B的映射规则确定所述至少一个第一DMRS符号偏移值,其中,所述PUSCH时域类型为type A、DMRS端口个数为单个,且所述特殊时隙中可用符号的数量小于4。
  20. 如权利要求17至19任一所述的方法,其特征在于,所述确定至少一个第一DMRS符号偏移值,包括:
    基于所述符号资源中可用符号的数量和所述参数中除所述特殊时隙中用于数据传输的符号长度外的其他参数,确定所述至少一个第一DMRS符号偏移值。
  21. 如权利要求17至19任一所述的方法,其特征在于,所述确定至少一个第一DMRS符号偏移值,包括:
    基于所述特殊时隙中用于数据传输的符号长度以及所述参数中除所述特殊时隙中用于数据传输的符号长度外的其他参数确定所述至少一个第一DMRS符号偏移值。
  22. 如权利要求21所述的方法,其特征在于,所述基于所述符号资源中第一个可用符号的位置和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置,包括:
    基于所述符号资源中第一个可用符号的位置和所述至少一个第一DMRS符号偏移值确定至少一个时域位置;
    确定所述至少一个时域位置中是否存在超出符号资源的时域位置;
    当所述至少一个时域位置中存在超出符号资源的时域位置时,丢弃所述至少一个时域位置中的所述超出符号资源的时域位置得到剩余时域位置,将所述剩余时域位置确定为所述DMRS的第一时域位置;
    当所述至少一个时域位置中是否不存在超出符号资源的时域位置时,将所述至少一个时域位置确定为所述DMRS的第一时域位置。
  23. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    基于所述第一时域位置接收并解调所述DMRS。
  24. 如权利要求16所述的方法,其特征在于,在所述基于所述参数确定至少一个第一DMRS符号偏移值之前,所述方法还包括:
    基于所述参数确定所述特殊时隙中至少一个第二DMRS符号偏移值,并确定所述符号资源中第一个符号的符号编号与每个第二DMRS符号偏移值的和以得到至少一个第二和值,将符号编号与所述第二和值对应的符号确定为所述DMRS的第二时域位置;
    确定所述第二时域位置是否满足预设条件,所述预设条件包括以下至少一种:所述第二时域位置均与所述特殊时隙中不可用符号冲突,所述第二时域位置均未位于所述可用符号上;
    当满足所述预设条件时,基于所述参数确定所述至少一个第一DMRS符号偏移值;当不满足所述预设条件时,基于所述第二时域位置中位于所述特殊时隙的可用符号上的时域位置传输所述DMRS。
  25. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    向UE配置和/或指示所述参数。
  26. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    向所述UE发送SFI动态指示信令和/或半静态时隙格式配置信令。
  27. 一种参考信号时域位置配置装置,其特征在于,包括:
    处理模块,用于确定特殊时隙特殊时隙中的可用符号,获取基站配置和/或指示的参数,以及,基于所述参数确定特殊时隙中用于数据传输的符号资源以及至少一个第一解调参考信号DMRS符号偏移值;
    所述处理模块,还用于基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移值确定所述DMRS的第一时域位置。
  28. 一种参考信号时域位置配置装置,其特征在于,包括:
    处理模块,用于确定特殊时隙中的可用符号以及参数,基于所述参数确定所述特殊时隙中用于数据传输的符号资源以及至少一个第一DMRS符号偏移值;
    所述处理模块,还用于基于所述符号资源中第一个可用符号和所述至少一个第一DMRS符号偏移 值确定所述DMRS的第一时域位置。
  29. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至26中任一项所述的方法。
  31. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至26任一所述的方法。
  33. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现。
  34. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至26中任一项所述的方法被实现。
PCT/CN2021/105343 2021-07-08 2021-07-08 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质 WO2023279349A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002118.6A CN113661679A (zh) 2021-07-08 2021-07-08 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质
PCT/CN2021/105343 WO2023279349A1 (zh) 2021-07-08 2021-07-08 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105343 WO2023279349A1 (zh) 2021-07-08 2021-07-08 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2023279349A1 true WO2023279349A1 (zh) 2023-01-12

Family

ID=78494777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105343 WO2023279349A1 (zh) 2021-07-08 2021-07-08 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质

Country Status (2)

Country Link
CN (1) CN113661679A (zh)
WO (1) WO2023279349A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685615A (zh) * 2015-11-06 2017-05-17 中国移动通信集团公司 探测参考信号传输子帧配置方法及装置
WO2021046832A1 (en) * 2019-09-13 2021-03-18 Qualcomm Incorporated Semi-static slot configuration for time division multiplexed uplink carriers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685615A (zh) * 2015-11-06 2017-05-17 中国移动通信集团公司 探测参考信号传输子帧配置方法及装置
WO2021046832A1 (en) * 2019-09-13 2021-03-18 Qualcomm Incorporated Semi-static slot configuration for time division multiplexed uplink carriers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MODERATOR CHINA TELECOM: ""R1-2102161 [104-e-NR-CovEnh-03] Summary of email discussion on joint channel estimation for PUSCH"", 3GPP TSG RAN WG1 MEETING #104-E, 5 February 2021 (2021-02-05), XP051977732 *
VIVO: ""R1-2102536 Discussion on Joint channel estimation for PUSCH"", 3GPP TSG RAN WG1 #104B-E, 20 April 2021 (2021-04-20), XP052177214 *
VIVO: ""R1-2104378 Discussion on Joint channel estimation for PUSCH"", 3GPP TSG RAN WG1 #105-E, 27 May 2021 (2021-05-27), XP052006129 *

Also Published As

Publication number Publication date
CN113661679A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2022257127A1 (zh) 时域窗口确定方法、装置、用户设备、基站及存储介质
WO2023060603A1 (zh) 一种寻呼分组的方法、装置、终端设备、基站及存储介质
WO2023279349A1 (zh) 一种参考信号时域位置配置方法、装置、用户设备、基站及存储介质
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
WO2023279348A1 (zh) 一种跳频方法、装置、用户设备、基站及存储介质
CN113632572B (zh) 一种跳频方法、装置、用户设备、基站及存储介质
WO2023077525A1 (zh) 一种信号发送方法、装置、用户设备、ris阵列及存储介质
WO2023130283A1 (zh) 一种映射方式确定方法/装置/设备及存储介质
WO2023220898A1 (zh) 信息指示方法、装置、设备及存储介质
WO2023050153A1 (zh) 一种上报方法、装置、用户设备、网路侧设备及存储介质
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023184260A1 (zh) 一种信号传输方法/装置/设备及存储介质
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023206184A1 (zh) 一种映射方法/装置/设备及存储介质
WO2023155054A1 (zh) 一种上报方法及设备/存储介质/装置
WO2023039910A1 (zh) 一种临时参考信号传输方法、装置及存储介质
WO2022246847A1 (zh) 干扰测量方法、干扰处理方法及其装置
WO2023102946A1 (zh) 一种信息传输方法及设备/存储介质/装置
WO2023155200A1 (zh) 一种测量放松方法及设备、存储介质、装置
WO2023123481A1 (zh) 一种传输方式的切换方法及设备/存储介质/装置
WO2023065075A1 (zh) 一种上报方法、装置、用户设备、网络侧设备及存储介质
WO2024016240A1 (zh) Pdsch传输方法、装置
WO2024011642A1 (zh) Sl prs配置协商方法、装置
WO2023108574A1 (zh) 一种定位方法及设备/存储介质/装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE