WO2023155200A1 - 一种测量放松方法及设备、存储介质、装置 - Google Patents

一种测量放松方法及设备、存储介质、装置 Download PDF

Info

Publication number
WO2023155200A1
WO2023155200A1 PCT/CN2022/077133 CN2022077133W WO2023155200A1 WO 2023155200 A1 WO2023155200 A1 WO 2023155200A1 CN 2022077133 W CN2022077133 W CN 2022077133W WO 2023155200 A1 WO2023155200 A1 WO 2023155200A1
Authority
WO
WIPO (PCT)
Prior art keywords
power level
measurement
measurement relaxation
criterion
configuration corresponding
Prior art date
Application number
PCT/CN2022/077133
Other languages
English (en)
French (fr)
Inventor
胡子泉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000372.7A priority Critical patent/CN116941270A/zh
Priority to PCT/CN2022/077133 priority patent/WO2023155200A1/zh
Publication of WO2023155200A1 publication Critical patent/WO2023155200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communication, and in particular to a measurement relaxation method and equipment, a storage medium, and a device.
  • Redcap UEs Reduced Capability User Equipment, reduced capability user equipment
  • Different types of Redcap UEs are configured with different power classes, and in order to save UE power It also introduces a measurement relaxation mechanism for Redcap UE.
  • different types of UEs have different power saving requirements, so "how to implement different degrees of measurement relaxation for different types (ie different power levels) of Redcap UEs is an urgent problem to be solved.”
  • the measurement relaxation method, equipment, storage medium, and device proposed in the present disclosure aim to propose a measurement relaxation method for different UE capabilities (ie, different types of UEs).
  • the measurement relaxation method proposed by the embodiment is applied to the UE, including:
  • the measurement relaxation method proposed by another embodiment of the present disclosure is applied to the network side device, including:
  • the capability information includes the power level supported by the UE
  • a determining module configured to determine a measurement relaxation configuration corresponding to a power level supported by the UE
  • a measurement relaxation module configured to perform measurement relaxation on the UE based on the measurement relaxation configuration.
  • An acquiring module configured to acquire capability information reported by the UE, where the capability information includes the power level supported by the UE;
  • a determining module configured to determine a measurement relaxation configuration corresponding to a power level supported by the UE
  • a sending module configured to send the measurement relaxation configuration to the UE.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the above embodiment of another aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the UE can determine the measurement relaxation configuration corresponding to the power level supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 1 is a schematic flowchart of a method for measuring relaxation provided by an embodiment of the present disclosure
  • Fig. 2a is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure
  • Fig. 2b is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure
  • Fig. 3 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 8 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 10 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 11 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 12 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 13 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 14 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 15 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 16 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 17 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 18 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 19 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 20 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 21 is a schematic flowchart of a method for measuring relaxation provided by another embodiment of the present disclosure.
  • Fig. 22 is a schematic structural diagram of a measurement relaxation device provided by an embodiment of the present disclosure.
  • Fig. 23 is a schematic structural view of a measuring relaxation device provided by another embodiment of the present disclosure.
  • Fig. 24 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 25 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 is a schematic flowchart of a measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 1 , the measurement relaxation method may include the following steps:
  • Step 101 Determine the measurement relaxation configuration corresponding to the power class (power class) supported by the UE.
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • Terminal equipment can communicate with one or more core networks via RAN (Radio Access Network, wireless access network), and UE can be an IoT terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the networked terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the aforementioned UE may be a Redcap UE.
  • the UE may directly determine the measurement relaxation configuration corresponding to the power class supported by the UE based on the agreement.
  • Table 1 is a table of correspondences between power levels and measurement relaxation configurations provided by an embodiment of the present disclosure.
  • each power level is configured with a corresponding measurement relaxation configuration.
  • the measurement relaxation configuration corresponding to the first power class is : If the UE satisfies the stationary criterion, extend the measurement period of the normal measurement state by the first expansion coefficient K1/stop measuring the first duration H1; if the UE meets the stationary criterion and the non-cell edge criterion, stop measuring the seventh duration H7.
  • the measurement relaxation configuration 2 corresponding to the second power class is: if the UE satisfies the static criterion, Extend the measurement period of the normal measurement state by the second expansion coefficient K2/stop measuring the second duration H2; if the UE meets the stationary criterion and the non-cell edge criterion, stop measuring the eighth duration H8.
  • the measurement relaxation configuration 3 corresponding to the third power class is: if the UE meets the stationary criterion, Extend the measurement period of the normal measurement state/stop measuring the third duration H3 by the third expansion coefficient K3; if the UE meets the stationary criterion and the non-cell edge criterion, stop measuring the ninth duration H9.
  • the measurement relaxation configuration 4 corresponding to the fourth power level is: if the UE meets the static criterion, Extend the measurement cycle of the normal measurement state/stop measuring the fourth time length H4 by the fourth expansion coefficient K4; if the UE meets the stationary criterion and the non-cell edge criterion, stop measuring the tenth time period H10.
  • the measurement relaxation configuration corresponding to the fifth power level is: if the UE satisfies the static criterion, by The fifth expansion coefficient K5 extends the measurement period of the normal measurement state/stops measuring the fifth duration H5; if the UE meets the static criterion and the non-cell edge criterion, the eleventh duration H11 is stopped.
  • the measurement relaxation configuration corresponding to the sixth power class is: if the UE meets the static criterion, pass The sixth expansion coefficient K6 extends the measurement period of the normal measurement state/stops measuring the sixth time length H6; if the UE meets the stationary criterion and the non-cell edge criterion, stops measuring the twelfth time period H12.
  • the magnitude relationship of K1 ⁇ K6 and H1 ⁇ H12 is not fixed, as a possible embodiment, K1 ⁇ K2 ⁇ K3 ⁇ K4 ⁇ K5 ⁇ K6, H1 ⁇ H2 ⁇ H3 ⁇ H4 ⁇ H5 ⁇ H6, H7 ⁇ H8 ⁇ H9 ⁇ H10 ⁇ H11 ⁇ H12, that is, as the supported power level increases, the corresponding measurement relaxation method becomes more relaxed. Based on this, in one embodiment of the present disclosure, when K1 ⁇ K2 ⁇ K3 ⁇ K4 ⁇ K5 ⁇ K6, H1 ⁇ H2 ⁇ H3 ⁇ H4 ⁇ H5 ⁇ H6, H7 ⁇ H8 ⁇ H9 ⁇ H10 ⁇ H11 ⁇ H12 , different power levels correspond to different degrees of measurement relaxation configurations.
  • the UE types corresponding to different UE power levels in the above Table 1 are relatively broad UE types.
  • the corresponding power class may be used by the UE.
  • PC1 can be used for corresponding fixed wireless access terminals, and PC1 can also be applied to any one of vehicle-mounted terminals, handheld terminals, high-power non-handheld terminals, and Redcap UEs.
  • the UE type: FWA UE has two corresponding power levels, namely PC1 and PC5.
  • the category of FWA UE can also include multiple UEs of different subtypes. same.
  • the type of a certain UE is CPE (Customer Premise Equipment) under the category of FWA UE
  • the corresponding power level of the UE may be PC1.
  • the type of a certain UE is NB-IoT (Narrow Band Internet of Things, narrowband Internet of Things) under the category of FWA UE, then the power level corresponding to the UE may be PC5.
  • the above-mentioned power class1-UE power class5 is the current existing power class (that is, the current existing PC5 power class), and the above-mentioned power class6 is the newly added power level.
  • RedCapUE includes industrial wireless sensors (Industrial wireless sensors), video surveillance (Video Surveillance), and wearables (wearables), wherein, when the type of UE is industrial wireless sensors or For video surveillance or wearable devices, the measurement relaxation configuration corresponding to any power level in PC1-PC5 in Table 1 above can be reused.
  • the UE when the type of UE is an industrial wireless sensor, the UE can support PC5 or PC6, and then reuse the measurement relaxation configuration corresponding to PC5 in the above Table 1, or the measurement relaxation configuration corresponding to PC6. Measure relaxed configurations, etc.
  • the UE when the UE type is video monitoring, the UE may support PC5, so that when the measurement relaxation criterion is met, the measurement relaxation method corresponding to PC5 is used.
  • the UE when the type of the UE is a wearable device, the UE can support PC6, and the measurement relaxation configuration corresponding to PC6 in the above Table 1 can be adopted.
  • Step 102 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration.
  • the above-mentioned measurement relaxation criterion may include a static criterion and/or a non-cell-edge criterion, and the measurement relaxation criterion may be determined by the UE based on a protocol agreement, or may be determined by the UE based on a network The configuration of the roadside equipment is determined.
  • the measurement relaxation configuration after the measurement relaxation configuration is determined in the above step 101, it may first be determined whether the UE satisfies the measurement relaxation criteria (ie, stationary criteria and/or non-cell-edge criteria), based on the UE meeting For different measurement relaxation criteria, use the corresponding measurement relaxation configuration to perform measurement relaxation.
  • the measurement relaxation criteria ie, stationary criteria and/or non-cell-edge criteria
  • the power level supported by the UE determined in the above step 101 is the first power level (namely PC1)
  • the relaxation criterion of the measurement method wherein, if the UE meets the static criterion, the measurement period of the normal measurement state is extended by the first expansion coefficient K1 (for example, 2) (that is, the measurement period of the normal measurement state is multiplied by the second - expansion coefficient K1)/stop measuring the first duration H1 (for example, 1 hour); if the UE meets the static criterion and the non-cell edge criterion, stop measuring the seventh duration H7 (for example, 2 hours).
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • Fig. 2a is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in Fig. 2a, the measurement relaxation method may include the following steps:
  • Step 201a determine the measurement relaxation configuration corresponding to the power level supported by the UE based on the agreement.
  • Step 202a judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 2b is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 2b, the measurement relaxation method may include the following steps:
  • Step 201b reporting capability information to the network side device.
  • the capability information may include the power level supported by the UE.
  • the capability information may include UE specific (UE specific) level capability information or frequency band combination (Band Combination) level capability information.
  • the power level supported by the UE may be included in an IE (Information Element, information element) of UE-specific level capability information or frequency band combination level capability information.
  • the method for the UE to report capability information to the network side device may include reporting the capability information to the network side device through an RRC (Radio Resource Control, radio resource control) message (for example, UECapabilityInformation).
  • RRC Radio Resource Control, radio resource control
  • Step 202b receiving the measurement relaxation configuration corresponding to the power class supported by the UE sent by the network side device.
  • step 202 may specifically determine the measurement relaxation configuration corresponding to the power level supported by the UE by receiving the measurement relaxation configuration sent by the network side device.
  • the network side device can determine the power level supported by the UE according to the capability information, and determine the measurement relaxation configuration corresponding to the power level supported by the UE (such as The network side device may determine based on the agreement or autonomously determine the measurement relaxation configuration corresponding to the power level supported by the UE), and then send the determined measurement relaxation configuration to the UE, so that the UE can perform measurement relaxation according to the measurement relaxation configuration.
  • the UE may determine the measurement relaxation configuration corresponding to the power level supported by the UE based on the system message broadcast by the network side device; in another embodiment of the present disclosure, the UE may determine the measurement relaxation configuration based on the network side The dedicated RRC message sent by the device determines the measurement relaxation configuration corresponding to the power class supported by the UE.
  • Step 203b judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 3 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 3 , the measurement relaxation method may include the following steps:
  • Step 301 Determine measurement relaxation configuration 1 corresponding to the first power level supported by the UE.
  • step 301 for a detailed introduction of step 301, reference may be made to relevant introductions in the foregoing embodiments, and details are not described in this embodiment of the present disclosure.
  • Step 302 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, configure a pair of UEs to perform measurement relaxation based on the measurement relaxation.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 4 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 4 , the measurement relaxation method may include the following steps:
  • Step 401 Report capability information to the network side device, where the capability information includes that the power level supported by the UE is the first power level.
  • Step 402. Determine a measurement relaxation configuration one corresponding to the first power level.
  • Step 403 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, configure a pair of UEs to perform measurement relaxation based on the measurement relaxation.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 5 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 5 , the measurement relaxation method may include the following steps:
  • Step 501 Determine the second measurement relaxation configuration corresponding to the second power level supported by the UE.
  • Step 502 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on measurement relaxation configuration 2.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 6 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 6 , the measurement relaxation method may include the following steps:
  • Step 601 Report capability information to the network side device, where the capability information includes that the power level supported by the UE is the second power level.
  • Step 602. Determine the second measurement relaxation configuration corresponding to the second power level.
  • Step 603 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on measurement relaxation configuration 2.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 7 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 7 , the measurement relaxation method may include the following steps:
  • Step 701. Determine the measurement relaxation configuration three corresponding to the third power level supported by the UE.
  • Step 702 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration three.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 8 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 8 , the measurement relaxation method may include the following steps:
  • Step 801 Report capability information to the network side device, where the capability information includes that the power level supported by the UE is the third power level.
  • Step 802. Determine the measurement relaxation configuration three corresponding to the third power level.
  • Step 803 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration three.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 9 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 9, the measurement relaxation method may include the following steps:
  • Step 901 Determine the measurement relaxation configuration 4 corresponding to the fourth power level supported by the UE.
  • Step 902 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, four pairs of UEs perform measurement relaxation based on the measurement relaxation configuration.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 10 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 10 , the measurement relaxation method may include the following steps:
  • Step 1001 Report capability information to the network side device, where the capability information includes that the power level supported by the UE is the fourth power level.
  • Step 1002 determine the measurement relaxation configuration three corresponding to the fourth power level.
  • Step 1003 judging whether the UE satisfies the measurement relaxation criterion, and when the UE meets the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 11 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 11 , the measurement relaxation method may include the following steps:
  • Step 1101. Determine the measurement relaxation configuration five corresponding to the fifth power level supported by the UE.
  • Step 1102 Determine whether the UE satisfies the measurement relaxation criterion, and when the UE meets the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration five.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 12 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 12 , the measurement relaxation method may include the following steps:
  • Step 1201 Report capability information to the network side device, where the capability information includes that the power level supported by the UE is the fifth power level.
  • Step 1202. Determine the measurement relaxation configuration five corresponding to the fifth power level.
  • Step 1203 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration five.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 13 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 13 , the measurement relaxation method may include the following steps:
  • Step 1301. Determine the measurement relaxation configuration six corresponding to the sixth power level supported by the UE.
  • Step 1302 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration six.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 14 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by the UE. As shown in FIG. 14 , the measurement relaxation method may include the following steps:
  • Step 1401 Report capability information to the network side device, where the capability information includes that the power level supported by the UE is the sixth power level.
  • Step 1402 Determine the measurement relaxation configuration six corresponding to the sixth power level.
  • Step 1403 judging whether the UE satisfies the measurement relaxation criterion, and when the UE satisfies the measurement relaxation criterion, perform measurement relaxation on the UE based on the measurement relaxation configuration six.
  • the UE may determine the measurement relaxation configuration corresponding to the power class supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 15 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 15 , the measurement relaxation method may include the following steps:
  • Step 1501 acquire capability information reported by the UE.
  • the capability information may include the power level supported by the UE. And, in an embodiment of the present disclosure, the capability information may include UE-specific capability information or frequency band combination level capability information.
  • the method for obtaining the capability information reported by the UE may include: obtaining the capability information reported by the UE through an RRC (for example, UECapabilityInformation) message.
  • RRC for example, UECapabilityInformation
  • the power levels supported by the UE may include: the first power level, the second power level, the third power level, the fourth power level, the fifth power level, and the sixth power level any of the.
  • Step 1502 Determine the measurement relaxation configuration corresponding to the power class supported by the UE.
  • Step 1503 sending the measurement relaxation configuration to the UE.
  • the method for the UE to send the measurement relaxation configuration may include at least one of the following:
  • the measurement relaxation configuration corresponding to the power level supported by the UE is sent to the UE through a dedicated RRC message.
  • the UE may determine the measurement relaxation configuration corresponding to the power level supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 16 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 16 , the measurement relaxation method may include the following steps:
  • Step 1601. Obtain capability information reported by the UE.
  • the capability information includes that the power level supported by the UE is the first power level.
  • Step 1602. Determine a measurement relaxation configuration one corresponding to the first power level.
  • Step 1603 sending measurement relaxation configuration one to the UE.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 17 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 17 , the measurement relaxation method may include the following steps:
  • Step 1701. Obtain capability information reported by the UE.
  • the capability information includes that the power level supported by the UE is the second power level.
  • Step 1702. Determine the second measurement relaxation configuration corresponding to the second power level.
  • Step 1703 sending measurement relaxation configuration 2 to the UE.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 18 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 18 , the measurement relaxation method may include the following steps:
  • Step 1801. Obtain capability information reported by the UE.
  • the capability information includes that the power level supported by the UE is the third power level.
  • Step 1802. Determine the measurement relaxation configuration three corresponding to the third power level.
  • Step 1803 sending measurement relaxation configuration three to the UE.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 19 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 19 , the measurement relaxation method may include the following steps:
  • Step 1901 Obtain capability information reported by the UE.
  • the capability information includes that the power level supported by the UE is the fourth power level.
  • Step 1902. Determine the measurement relaxation configuration four corresponding to the fourth power level.
  • Step 1903 sending measurement relaxation configuration 4 to the UE.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 20 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 20 , the measurement relaxation method may include the following steps:
  • Step 2001 Obtain capability information reported by the UE.
  • the capability information includes that the power level supported by the UE is the fifth power level.
  • Step 2002 Determine the measurement relaxation configuration five corresponding to the fifth power level.
  • Step 2003 sending measurement relaxation configuration five to the UE.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • FIG. 21 is a schematic flowchart of another measurement relaxation method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in FIG. 21 , the measurement relaxation method may include the following steps:
  • Step 2101. Obtain capability information reported by the UE.
  • the capability information includes that the power level supported by the UE is the sixth power level.
  • Step 2102 Determine the measurement relaxation configuration six corresponding to the sixth power level.
  • Step 2103 Send measurement relaxation configuration six to the UE.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • Fig. 22 is a schematic structural diagram of a device for measuring relaxation provided by an embodiment of the present disclosure. As shown in Fig. 22, the device 2200 may include:
  • a determination module 2201 configured to determine a measurement relaxation configuration corresponding to a power level supported by the UE
  • the measurement relaxation module 2202 is configured to perform measurement relaxation on the UE based on the measurement relaxation configuration.
  • the UE may determine the measurement relaxation configuration corresponding to the power level supported by the UE, and perform measurement relaxation on the UE based on the measurement relaxation configuration. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • the above determination module 2201 is also used to:
  • the above-mentioned device is also used for:
  • the capability information includes the power level supported by the UE.
  • the capability information includes UE specific (UE specific) level capability information or frequency band combination (Band Combination) level capability information.
  • the above-mentioned device is also used for:
  • the capability information is reported to the network side device through the RRC message.
  • the above determination module 2201 is also used for:
  • the measurement relaxation configuration corresponding to the power level supported by the UE is determined based on the dedicated RRC message sent by the network side device.
  • the determination module 2201 is also used for:
  • the measurement relaxation configuration corresponding to the first power level determines the measurement relaxation configuration corresponding to the first power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the first expansion coefficient K1/stop measuring the first duration H1 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the seventh duration H7.
  • the determination module 2201 is also used for:
  • the measurement relaxation configuration corresponding to the second power level determines the measurement relaxation configuration corresponding to the second power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the second expansion coefficient K2/stop measuring the second duration H2 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the eighth duration H8.
  • the determination module 2201 is also used for:
  • the measurement relaxation configuration corresponding to the third power level determines the measurement relaxation configuration corresponding to the third power level: if the UE meets the static criterion, extend the measurement cycle of the normal measurement state by the third expansion coefficient K3/stop measuring the third duration H3 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the ninth duration H9.
  • the determination module 2201 is also used for:
  • the measurement relaxation configuration corresponding to the fourth power level determines the measurement relaxation configuration corresponding to the fourth power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the fourth expansion coefficient K4/stop measuring the fourth duration H4 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the tenth duration H10.
  • the determination module 2201 is also used for:
  • the measurement relaxation configuration corresponding to the fifth power level determines the measurement relaxation configuration corresponding to the fifth power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the fifth expansion coefficient K5/stop measuring the fifth duration H5 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the eleventh duration H11.
  • the determining module 2201 is also used for:
  • the measurement relaxation configuration corresponding to the sixth power level determines the measurement relaxation configuration corresponding to the sixth power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the sixth expansion coefficient K6/stop measuring the sixth duration H6 ; If the UE meets the stationary criterion and the non-cell edge criterion, stop measuring the twelfth duration H12.
  • Fig. 23 is a schematic structural diagram of a device for measuring relaxation provided by an embodiment of the present disclosure. As shown in Fig. 23 , the device 2300 may include:
  • An acquisition module 2301 configured to acquire capability information reported by the UE, where the capability information includes the power level supported by the UE;
  • a determination module 2302 configured to determine a measurement relaxation configuration corresponding to a power level supported by the UE
  • the sending module 2303 is configured to send the measurement relaxation configuration to the UE.
  • the network side device can obtain the capability information reported by the UE, determine the measurement relaxation configuration corresponding to the power level supported by the UE, and then send the measurement relaxation configuration to the UE. It can be seen that in the embodiment of the present disclosure, for different power levels supported by the UE, the corresponding measurement relaxation configuration will be used to perform measurement relaxation for the UE, that is, a method for different UE capabilities (that is, different types of UEs) is provided.
  • the measurement relaxation method of the present invention satisfies different power saving requirements of different types of UEs, and has high flexibility and wide application range.
  • the capability information includes UE-specific capability information or frequency band combination level capability information.
  • the acquisition module 2301 is also used to:
  • the above-mentioned sending module 2303 is also used for:
  • the measurement relaxation configuration corresponding to the power level supported by the UE is sent to the UE through a dedicated RRC message.
  • the above determination module 2302 is also used to:
  • the measurement relaxation configuration corresponding to the first power level determines the measurement relaxation configuration corresponding to the first power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the first expansion coefficient K1/stop measuring the first duration H1 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the seventh duration H7.
  • the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine
  • the measurement relaxation configuration corresponding to the second power level determines the measurement relaxation configuration corresponding to the second power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the second expansion coefficient K2/stop measuring the second duration H2 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the eighth duration H8.
  • the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine
  • the measurement relaxation configuration corresponding to the third power level determines the measurement relaxation configuration corresponding to the third power level: if the UE meets the static criterion, extend the measurement cycle of the normal measurement state by the third expansion coefficient K3/stop measuring the third duration H3 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the ninth duration H9.
  • the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine
  • the measurement relaxation configuration corresponding to the fourth power level determines the measurement relaxation configuration corresponding to the fourth power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the fourth expansion coefficient K4/stop measuring the fourth duration H4 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the tenth duration H10.
  • the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine
  • the measurement relaxation configuration corresponding to the fifth power level determines the measurement relaxation configuration corresponding to the fifth power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the fifth expansion coefficient K5/stop measuring the fifth duration H5 ; If the UE satisfies the stationary criterion and the non-cell edge criterion, stop measuring the eleventh duration H11.
  • the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine whether the determination module 2302 is also used to determine
  • the measurement relaxation configuration corresponding to the sixth power level determines the measurement relaxation configuration corresponding to the sixth power level: if the UE meets the static criterion, extend the measurement period of the normal measurement state by the sixth expansion coefficient K6/stop measuring the sixth duration H6 ; If the UE meets the stationary criterion and the non-cell edge criterion, stop measuring the twelfth duration H12.
  • Fig. 24 is a block diagram of a user equipment UE2400 provided by an embodiment of the present disclosure.
  • UE2400 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE2400 may include at least one of the following components: a processing component 2402, a memory 2404, a power supply component 2406, a multimedia component 2408, an audio component 2410, an input/output (I/O) interface 2412, a sensor component 2413, and a communication component 2416.
  • a processing component 2402 may include at least one of the following components: a processing component 2402, a memory 2404, a power supply component 2406, a multimedia component 2408, an audio component 2410, an input/output (I/O) interface 2412, a sensor component 2413, and a communication component 2416.
  • a processing component 2402 may include at least one of the following components: a processing component 2402, a memory 2404, a power supply component 2406, a multimedia component 2408, an audio component 2410, an input/output (I/O) interface 2412, a sensor component 2413, and a communication component 2416.
  • I/O input/output
  • the processing component 2402 generally controls the overall operations of the UE 2400, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2402 may include at least one processor 2420 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 2402 can include at least one module that facilitates interaction between processing component 2402 and other components.
  • processing component 2402 may include a multimedia module to facilitate interaction between multimedia component 2408 and processing component 2402 .
  • the memory 2404 is configured to store various types of data to support operations at the UE 2400 . Examples of such data include instructions for any application or method operating on the UE2400, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 2404 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 2406 provides power to various components of the UE 2400.
  • Power components 2406 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 2400 .
  • Multimedia component 2408 includes a screen providing an output interface between the UE 2400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 2408 includes a front camera and/or a rear camera. When UE2400 is in operation mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 2410 is configured to output and/or input audio signals.
  • the audio component 2410 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 2400 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 2404 or sent via communication component 2416 .
  • the audio component 2410 also includes a speaker for outputting audio signals.
  • the I/O interface 2412 provides an interface between the processing component 2402 and a peripheral interface module, and the above peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 2413 includes at least one sensor, which is used to provide various aspects of state assessment for the UE 2400 .
  • the sensor component 2413 can detect the open/close state of the device 2400, the relative positioning of components, such as the display and the keypad of the UE2400, the sensor component 2413 can also detect the position change of the UE2400 or a component of the UE2400, and the user and Presence or absence of UE2400 contact, UE2400 orientation or acceleration/deceleration and temperature change of UE2400.
  • the sensor assembly 2413 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 2413 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2413 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 2416 is configured to facilitate wired or wireless communications between UE 2400 and other devices.
  • UE2400 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or their combination.
  • the communication component 2416 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2416 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE2400 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • FIG. 25 is a block diagram of a network-side device 2500 provided by an embodiment of the present application.
  • the network side device 2500 may be provided as a network side device.
  • the network-side device 2500 includes a processing component 2511, which further includes at least one processor, and a memory resource represented by a memory 2532 for storing instructions executable by the processing component 2522, such as application programs.
  • the application programs stored in memory 2532 may include one or more modules each corresponding to a set of instructions.
  • the processing component 2517 is configured to execute instructions, so as to execute any method of the foregoing method applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 2500 may also include a power supply component 2517 configured to perform power management of the network side device 2500, a wired or wireless network interface 2550 configured to connect the network side device 2500 to the network, and an input/output (I/O ) interface 2557.
  • the network side device 2500 can operate based on the operating system stored in the memory 2532, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device, the UE, and the RIS array respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device, the UE, and the RIS array respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the above method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the above method embodiment): the processor is configured to execute any of the methods shown in FIG. 1-FIG. 14 .
  • the communication device is a network device: the transceiver is used to execute any of the methods shown in FIGS. 15-21 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for code/data reading and writing, or, the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (Gas), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • Gas gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the above method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be affected by limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the above embodiment and a communication device as a network device, Alternatively, the system includes a communication device serving as a terminal device in the above embodiment (such as the first terminal device in the above method embodiment) and a communication device serving as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种测量放松方法及设备、存储介质、装置,属于通信技术领域。其中,该方法包括:确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。

Description

一种测量放松方法及设备、存储介质、装置 技术领域
本公开涉及通信技术领域,尤其涉及一种测量放松方法及设备、存储介质、装置。
背景技术
在Release-17中,引入了多种类型的Redcap UE(Reduced Capability User Equipment,降低能力用户设备),其中,不同类型的Redcap UE配置了不同的功率等级(power class),以及,为了节省UE功耗,还为Redcap UE引入了测量放松机制。但是,不同类型的UE有不同的省电需求,因此“针对不同类型(即不同功率等级)的Redcap UE如何执行不同程度的测量放松是亟需解决的问题”。
发明内容
本公开提出的测量放松方法及设备、存储介质、装置,以提出一种针对不同UE能力(即不同类型UE)的测量放松方法。
本公开一方面实施例提出的测量放松方法,应用于UE,包括:
确定所述UE支持的功率等级对应的测量放松配置;
基于所述测量放松配置对所述UE进行测量放松。
本公开另一方面实施例提出的测量放松方法,应用于网络侧设备,包括:
获取UE上报的能力信息,所述能力信息包括所述UE支持的功率等级;
确定所述UE支持的功率等级对应的测量放松配置;
向所述UE发送所述测量放松配置。
本公开一方面实施例提出的测量放松装置,包括:
确定模块,用于确定所述UE支持的功率等级对应的测量放松配置;
测量放松模块,用于基于所述测量放松配置对所述UE进行测量放松。
本公开又一方面实施例提出的测量放松装置,包括:
获取模块,用于获取UE上报的能力信息,所述能力信息包括所述UE支持的功率等级;
确定模块,用于确定所述UE支持的功率等级对应的测量放松配置;
发送模块,用于向所述UE发送所述测量放松配置。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的测量放松方法及设备、存储介质、装置之中,UE可以确定UE 支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例所提供的一种测量放松方法的流程示意图;
图2a为本公开另一个实施例所提供的一种测量放松方法的流程示意图;
图2b为本公开另一个实施例所提供的一种测量放松方法的流程示意图;
图3为本公开再一个实施例所提供的一种测量放松方法的流程示意图;
图4为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图5为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图6为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图7为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图8为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图9为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图10为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图11为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图12为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图13为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图14为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图15为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图16为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图17为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图18为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图19为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图20为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图21为本公开又一个实施例所提供的一种测量放松方法的流程示意图;
图22为本公开一个实施例所提供的测量放松装置的结构示意图;
图23为本公开另一个实施例所提供的测量放松装置的结构示意图;
图24为本公开一个实施例所提供的一种用户设备的框图;
图25为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列 出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图对本公开提供的测量放松方法及设备、存储介质、装置进行详细描述。
图1为本公开实施例所提供的一种测量放松方法的流程示意图,该方法由UE执行,如图1所示,该测量放松方法可以包括以下步骤:
步骤101、确定UE支持的功率等级(power class)对应的测量放松配置。
需要说明的是,在本公开的一个实施例之中,UE可以是指向用户提供语音和/或数据连通性的设备。终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,上述UE可以是Redcap UE。
以及,在本公开的一个实施例之中,UE可以直接基于协议约定确定该UE支持的功率等级对应的测量放松配置。
需要说明的是,在本公开的一个实施例之中,不同类型的UE支持的功率等级不同,以及,针对各个功率等级均对应配置有测量放松配置。其中,表1为本公开一个实施例提供的一种功率等级与测量放松配置的对应关系表。
表1
Figure PCTCN2022077133-appb-000001
Figure PCTCN2022077133-appb-000002
如表1所示,包括有六种功率等级,各个功率等级均配置有对应的测量放松配置。
具体的,在本公开的一个实施例之中,当UE支持的功率等级为第一功率等级(例如power class1(即PC1)),此时,可以确定第一功率等级对应的测量放松配置一为:若UE满足静止准则,通过第一扩展系数K1扩展正常测量状态的测量周期/停止测量第一时长H1;若UE满足静止准则和非小区边缘准则,停止测量第七时长H7。
在本公开的另一个实施例之中,当UE支持的功率等级为第二功率等级(例如PC2),此时,可以确定第二功率等级对应的测量放松配置二为:若UE满足静止准则,通过第二扩展系数K2扩展正常测量状态的测量周期/停止测量第二时长H2;若UE满足静止准则和非小区边缘准则,停止测量第八时长H8。
在本公开的又一个实施例之中,当UE支持的功率等级为第三功率等级(例如PC3),此时,可以确定第三功率等级对应的测量放松配置三为:若UE满足静止准则,通过第三扩展系数K3扩展正常测量状态的测量周期/停止测量第三时长H3;若UE满足静止准则和非小区边缘准则,停止测量第九时长H9。
在本公开的又一个实施例之中,当UE支持的功率等级为第四功率等级(例如PC4),此时,可以确定第四功率等级对应的测量放松配置四为:若UE满足静止准则,通过第四扩展系数K4扩展正常测量状态的测量周期/停止测量第四时长H4;若所述UE满足静止准则和非小区边缘准则,停止测量第十时长H10。
在本公开的又一个实施例之中,当UE支持的功率等级为第五功率等级(例如PC5),此时,可以确定第五功率等级对应的测量放松配置为:若UE满足静止准则,通过第五扩展系数K5扩展正常测量状态的测量周期/停止测量第五时长H5;若UE满足静止准则和非小区边缘准则,停止测量第十一时长H11。
在本公开的又一个实施例之中,当UE支持的功率等级为第六功率等级(例如PC6),此时,可以确定第六功率等级对应的测量放松配置为:若UE满足静止准则,通过第六扩展系数K6扩展正常测量状态的测量周期/停止测量第六时长H6;若UE满足静止准则和非小区边缘准则,停止测量第十二时长H12。
其中,在本公开的一个实施例之中,K1~K6,以及H1~H12的大小关系并不固定,作为一种可能的实施例,K1≥K2≥K3≥K4≥K5≥K6,H1≥H2≥H3≥H4≥H5≥H6,H7≥H8≥H9≥H10≥H11≥H12,即随着支持的功率等级变大,对应的测量放松方法更放松。基于此,在本公开的一个实施例之中,当K1≠K2≠K3≠K4≠K5≠K6,H1≠H2≠H3≠H4≠H5≠H6,H7≠H8≠H9≠H10≠H11≠H12时,不同的功率等级对应不同程度的测量放松配置。在本公开的另一个实施例之中,当K1=K2=K3=K4=K5=K6,H1=H2=H3=H4=H5=H6,H7=H8=H9=H10=H11=H12时,不同的功率等级对应相同程度的测量放松配置。
以及,需要说明的是,在本公开的一个实施例之中,上述表1中不同UE功率等级对应的UE类型是较宽泛的UE类型,在实际使用中,并不是只能由表中固定类型UE可以使用对应的功率等级。示例 的,PC1可以用于对应的固定无线接入终端,同时PC1还可以应用于车载终端、手持终端、大功率非手持终端、RedcapUE中的任意一种。
此外,示例的,在本公开的一个实施例之中,参考上述表1可知,UE类型:FWA UE对应有两个功率等级,分别为PC1和PC5。但是,需要说明的是,FWA UE这一大类下还可以包括多种不同子类型的UE,当所属于FWA UE这一大类的UE对应的子类型不同时,该UE对应的功率等级也不相同。示例的,在本公开的一个实施例之中,假设某UE的类型为FWA UE这一大类下的CPE(Customer Premise Equipment,客户前置设备),则该UE对应的功率等级可以为PC1。在本公开的另一个实施例之中,某UE的类型为FWA UE这一大类下的NB-IoT(Narrow Band Internet of Things,窄带物联网),则该UE对应的功率等级可以为PC5。
以及,需要说明的是,在本公开的一个实施例之中,上述的power class1-UE power class5为当前现有的功率等级(即当前现有的PC5power class),上述的power class6为新增加的功率等级。
进一步地,在本公开的一个实施例之中,RedCapUE包括工业无线传感器(Industrial wireless sensors)、视频监控(Video Surveillance)、以及可穿戴设备(wearables),其中,当UE的类型为工业无线传感器或视频监控或可穿戴设备时,可以复用上述表1中的PC1-PC5中的任意功率等级对应的测量放松配置。示例的,在本公开的一个实施例之中,当UE的类型为工业无线传感器时,该UE可以支持PC5或PC6,进而复用上述表1中的PC5对应的测量放松配置、或者PC6对应的测量放松配置等。在本公开的另一个实施例之中,当UE类型为视频监控时,该UE可以支持PC5,从而在满足测量放松准则时,使用PC5对应的测量放松方法。在本公开的另一个实施例之中,当UE的类型为可穿戴设备时,该UE可以支持PC6,则可以采用上述表1中的PC6对应的测量放松配置。
步骤102、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置对UE进行测量放松。
其中,在本公开的一个实施例之中,上述的测量放松准则可以包括静止准则和/或非小区边缘准则,该测量放松准则可以是UE基于协议约定确定的,或者,也可以是UE基于网路侧设备的配置确定的。
以及,在本公开的一个实施例之中,当上述步骤101中确定出测量放松配置后,可以先判定该UE是否满足测量放松准则(即静止准则和/或非小区边缘准则),基于UE满足不同的测量放松准则时,采用对应的测量放松配置进行测量放松。
示例的,在本公开的一个实施例之中,假设上述步骤101中确定的UE支持的功率等级为第一功率等级(即PC1),则说明此时需要采用测量放松配置一来对UE进行测量放松,基于此,判定UE是否满足测量法放松准则,其中,若UE满足静止准则,通过第一扩展系数K1(例如2)扩展正常测量状态的测量周期(即对正常测量状态的测量周期乘第一扩展系数K1)/停止测量第一时长H1(例如1小时);若UE满足静止准则和非小区边缘准则,则停止测量第七时长H7(例如2个小时)。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图2a为本公开实施例所提供的另一种测量放松方法的流程示意图,该方法由UE执行,如图2a所示,该测量放松方法可以包括以下步骤:
步骤201a、基于协议约定确定UE支持的功率等级对应的测量放松配置。
步骤202a、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤201a~202a的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的 不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图2b为本公开实施例所提供的另一种测量放松方法的流程示意图,该方法由UE执行,如图2b所示,该测量放松方法可以包括以下步骤:
步骤201b、向网络侧设备上报能力信息。
其中,在本公开的一个实施例之中,能力信息可以包括UE支持的功率等级。以及,在本公开的一个实施例之中,能力信息可以包括UE特定(UE specific)级别的能力信息或者频段组合(Band Combination)级别的能力信息。以及,该UE支持的功率等级可以是包含于UE特定级别的能力信息或者频段组合级别的能力信息的IE(Information Element,信息元素)中。
以及,在本公开的一个实施例之中,UE向网络侧设备上报能力信息的方法可以包括通过RRC(Radio Resource Control,无线资源控制)消息(例如,UECapabilityInformation)向网络侧设备上报能力信息。
步骤202b、接收网络侧设备发送的UE支持的功率等级对应的测量放松配置。
其中,在本公开的一个实施例之中,步骤202中具体可以是通过接收网络侧设备发送的测量放松配置来确定UE支持的功率等级对应的测量放松配置。具体的,在本公开的一个实施例之中,网络侧设备接收UE上报的能力信息之后,可以根据能力信息确定UE支持的功率等级,并确定出UE支持的功率等级对应的测量放松配置(如网络侧设备可以基于协议约定确定或者自主确定UE支持的功率等级对应的测量放松配置),然后向UE发送确定的测量放松配置,以便UE可以根据该测量放松配置进行测量放松。
其中,在本公开的一个实施例之中,UE可以基于网络侧设备广播的系统消息确定UE支持的功率等级对应的测量放松配置;在本公开的另一个实施例之中,UE可以基于网络侧设备发送的专用RRC消息确定UE支持的功率等级对应的测量放松配置。
以及,关于确定UE支持的功率等级对应的测量放松配置的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤203b、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置对UE进行测量放松。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图3为本公开实施例所提供的再一种测量放松方法的流程示意图,该方法由UE执行,如图3所示,该测量放松方法可以包括以下步骤:
步骤301、确定UE支持的第一功率等级对应的测量放松配置一。
以及,关于步骤301的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤302、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置一对UE进行测量放松。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图4为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图4所示,该测量放松方法可以包括以下步骤:
步骤401、向网络侧设备上报能力信息,能力信息包括UE支持的功率等级为第一功率等级。
步骤402、确定第一功率等级对应的测量放松配置一。
步骤403、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置一对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤401~403的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图5为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图5所示,该测量放松方法可以包括以下步骤:
步骤501、确定UE支持的第二功率等级对应的测量放松配置二。
步骤502、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置二对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤501~502的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图6为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图6所示,该测量放松方法可以包括以下步骤:
步骤601、向网络侧设备上报能力信息,能力信息包括UE支持的功率等级为第二功率等级。
步骤602、确定第二功率等级对应的测量放松配置二。
步骤603、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置二对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤601~603的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图7为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图7所示,该测量放松方法可以包括以下步骤:
步骤701、确定UE支持的第三功率等级对应的测量放松配置三。
步骤702、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置三对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤701~702的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE 能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图8为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图8所示,该测量放松方法可以包括以下步骤:
步骤801、向网络侧设备上报能力信息,能力信息包括UE支持的功率等级为第三功率等级。
步骤802、确定第三功率等级对应的测量放松配置三。
步骤803、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置三对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤801~803的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图9为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图9所示,该测量放松方法可以包括以下步骤:
步骤901、确定UE支持的第四功率等级对应的测量放松配置四。
步骤902、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置四对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤901~902的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图10为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图10所示,该测量放松方法可以包括以下步骤:
步骤1001、向网络侧设备上报能力信息,能力信息包括UE支持的功率等级为第四功率等级。
步骤1002、确定第四功率等级对应的测量放松配置三。
步骤1003、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置四对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤1001~1003的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图11为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图11所示,该测量放松方法可以包括以下步骤:
步骤1101、确定UE支持的第五功率等级对应的测量放松配置五。
步骤1102、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置五对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤1101~1102的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图12为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图12所示,该测量放松方法可以包括以下步骤:
步骤1201、向网络侧设备上报能力信息,能力信息包括UE支持的功率等级为第五功率等级。
步骤1202、确定第五功率等级对应的测量放松配置五。
步骤1203、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置五对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤1201~1203的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图13为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图13所示,该测量放松方法可以包括以下步骤:
步骤1301、确定UE支持的第六功率等级对应的测量放松配置六。
步骤1302、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置六对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤1301~1302的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图14为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由UE执行,如图14所示,该测量放松方法可以包括以下步骤:
步骤1401、向网络侧设备上报能力信息,能力信息包括UE支持的功率等级为第六功率等级。
步骤1402、确定第六功率等级对应的测量放松配置六。
步骤1403、判断UE是否满足测量放松准则,当UE满足测量放松准则时,基于测量放松配置六对UE进行测量放松。
其中,在本公开的一个实施例之中,关于步骤1401~1403的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图15为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由网络侧设备执行,如图15所示,该测量放松方法可以包括以下步骤:
步骤1501、获取UE上报的能力信息。
其中,在本公开的一个实施例之中,能力信息可以包括UE支持的功率等级。以及,在本公开的一个实施例之中,能力信息可以包括UE特定级别的能力信息或者频段组合级别的能力信息。
以及,在本公开的一个实施例,获取UE上报的能力信息的方法可以包括:获取UE通过RRC(例如,UECapabilityInformation)消息上报的能力信息。
进一步地,在本公开的一个实施例之中,UE支持的功率等级可以包括:第一功率等级、第二功率等级、第三功率等级、第四功率等级、第五功率等级、第六功率等级中的任意一种。
步骤1502、确定UE支持的功率等级对应的测量放松配置。
其中,在本公开的一个实施例之中,关于功率等级对应的测量放松配置可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
步骤1503、向UE发送测量放松配置。
其中,在本公开的一个实施例之中,UE发送测量放松配置的方法可以包括以下至少一种:
通过系统消息向UE广播UE支持的功率等级对应的测量放松配置;
通过专用RRC消息向UE发送UE支持的功率等级对应的测量放松配置。
以及,在本公开的一个实施例之中,UE接收到网络侧设备发送的测量放松配置之后,可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。
综上所述,在本公开实施例提供的测量放松方法之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图16为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由网络侧设备执行,如图16所示,该测量放松方法可以包括以下步骤:
步骤1601、获取UE上报的能力信息,能力信息包括UE支持的功率等级为第一功率等级。
步骤1602、确定第一功率等级对应的测量放松配置一。
步骤1603、向UE发送测量放松配置一。
其中,在本公开的一个实施例之中,关于步骤1601~1603的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图17为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由网络侧设备执行,如图17所示,该测量放松方法可以包括以下步骤:
步骤1701、获取UE上报的能力信息,能力信息包括UE支持的功率等级为第二功率等级。
步骤1702、确定第二功率等级对应的测量放松配置二。
步骤1703、向UE发送测量放松配置二。
其中,在本公开的一个实施例之中,关于步骤1701~1703的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提 供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图18为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由网络侧设备执行,如图18所示,该测量放松方法可以包括以下步骤:
步骤1801、获取UE上报的能力信息,能力信息包括UE支持的功率等级为第三功率等级。
步骤1802、确定第三功率等级对应的测量放松配置三。
步骤1803、向UE发送测量放松配置三。
其中,在本公开的一个实施例之中,关于步骤1801~1803的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图19为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由网络侧设备执行,如图19所示,该测量放松方法可以包括以下步骤:
步骤1901、获取UE上报的能力信息,能力信息包括UE支持的功率等级为第四功率等级。
步骤1902、确定第四功率等级对应的测量放松配置四。
步骤1903、向UE发送测量放松配置四。
其中,在本公开的一个实施例之中,关于步骤1901~1903的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图20为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由网络侧设备执行,如图20所示,该测量放松方法可以包括以下步骤:
步骤2001、获取UE上报的能力信息,能力信息包括UE支持的功率等级为第五功率等级。
步骤2002、确定第五功率等级对应的测量放松配置五。
步骤2003、向UE发送测量放松配置五。
其中,在本公开的一个实施例之中,关于步骤2001~2003的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图21为本公开实施例所提供的又一种测量放松方法的流程示意图,该方法由网络侧设备执行,如图21所示,该测量放松方法可以包括以下步骤:
步骤2101、获取UE上报的能力信息,能力信息包括UE支持的功率等级为第六功率等级。
步骤2102、确定第六功率等级对应的测量放松配置六。
步骤2103、向UE发送测量放松配置六。
其中,在本公开的一个实施例之中,关于步骤2101~2103的详细介绍可以参考上述实施例中的相关介绍,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的测量放松方法之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
图22本公开一个实施例所提供的一种测量放松装置的结构示意图,如图22所示,装置2200可以包括:
确定模块2201,用于确定UE支持的功率等级对应的测量放松配置;
测量放松模块2202,用于基于测量放松配置对UE进行测量放松。
综上所述,在本公开实施例提供的测量放松装置之中,UE可以确定UE支持的功率等级对应的测量放松配置,并基于测量放松配置对UE进行测量放松。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
在本公开一个实施例之中,上述确定模块2201还用于:
基于协议约定确定UE支持的功率等级对应的测量放松配置。
进一步地,在本公开另一个实施例之中,上述装置还用于:
向网络侧设备上报能力信息,能力信息包括UE支持的功率等级。
进一步地,在本公开另一个实施例之中,能力信息包括UE特定(UE specific)级别的能力信息或者频段组合(Band Combination)级别的能力信息。
进一步地,在本公开另一个实施例之中,上述装置还用于:
通过RRC消息向网络侧设备上报能力信息。
进一步地,在本公开另一个实施例之中,上述确定模块2201还用于:
基于网络侧设备广播的系统消息确定UE支持的功率等级对应的测量放松配置;
基于网络侧设备发送的专用RRC消息确定UE支持的功率等级对应的测量放松配置。
进一步地,在本公开另一个实施例之中,确定模块2201还用于:
当UE支持的功率等级为第一功率等级,确定第一功率等级对应的测量放松配置为:若UE满足静止准则,通过第一扩展系数K1扩展正常测量状态的测量周期/停止测量第一时长H1;若UE满足静止准则和非小区边缘准则,停止测量第七时长H7。
进一步地,在本公开另一个实施例之中,确定模块2201还用于:
当UE支持的功率等级为第二功率等级,确定第二功率等级对应的测量放松配置为:若UE满足静止准则,通过第二扩展系数K2扩展正常测量状态的测量周期/停止测量第二时长H2;若UE满足静止准则和非小区边缘准则,停止测量第八时长H8。
进一步地,在本公开另一个实施例之中,确定模块2201还用于:
当UE支持的功率等级为第三功率等级,确定第三功率等级对应的测量放松配置为:若UE满足静止准则,通过第三扩展系数K3扩展正常测量状态的测量周期/停止测量第三时长H3;若UE满足静止准则和非小区边缘准则,停止测量第九时长H9。
进一步地,在本公开另一个实施例之中,确定模块2201还用于:
当UE支持的功率等级为第四功率等级,确定第四功率等级对应的测量放松配置为:若UE满足静止准则,通过第四扩展系数K4扩展正常测量状态的测量周期/停止测量第四时长H4;若UE满足静止准则和非小区边缘准则,停止测量第十时长H10。
进一步地,在本公开另一个实施例之中,确定模块2201还用于:
当UE支持的功率等级为第五功率等级,确定第五功率等级对应的测量放松配置为:若UE满足静止准则,通过第五扩展系数K5扩展正常测量状态的测量周期/停止测量第五时长H5;若UE满足静止准则和非小区边缘准则,停止测量第十一时长H11。
进一步地,在本公开另一个实施例之中,确定模块2201还用于:
当UE支持的功率等级为第六功率等级,确定第六功率等级对应的测量放松配置为:若UE满足静止准则,通过第六扩展系数K6扩展正常测量状态的测量周期/停止测量第六时长H6;若UE满足静止准则和非小区边缘准则,停止测量第十二时长H12。
图23本公开一个实施例所提供的一种测量放松装置的结构示意图,如图23所示,装置2300可以包括:
获取模块2301,用于获取UE上报的能力信息,能力信息包括UE支持的功率等级;
确定模块2302,用于确定UE支持的功率等级对应的测量放松配置;
发送模块2303,用于向UE发送所述测量放松配置。
综上所述,在本公开实施例提供的测量放松装置之中,网络侧设备可以获取UE上报的能力信息,并确定UE支持的功率等级对应的测量放松配置,再向UE发送测量放松配置。由此可知,本公开实施例中,针对UE支持的不同的功率等级,会采用对应的测量放松配置对UE进行测量放松,也即是,提供了一种针对不同UE能力(即不同类型UE)的测量放松方法,满足了不同类型的UE的不同省电需求,且灵活性较高,适用范围较广。
在本公开一个实施例之中,能力信息包括UE特定级别的能力信息或者频段组合级别的能力信息。
进一步地,在本公开另一个实施例之中,上述获取模块2301还用于:
获取UE通过RRC消息上报的能力信息。
进一步地,在本公开另一个实施例之中,上述发送模块2303还用于:
通过系统消息向UE广播UE支持的功率等级对应的测量放松配置;
通过专用RRC消息向UE发送UE支持的功率等级对应的测量放松配置。
进一步地,在本公开另一个实施例之中,上述确定模块2302还用于:
当UE支持的功率等级为第一功率等级,确定第一功率等级对应的测量放松配置为:若UE满足静止准则,通过第一扩展系数K1扩展正常测量状态的测量周期/停止测量第一时长H1;若UE满足静止准则和非小区边缘准则,停止测量第七时长H7。
进一步地,在本公开另一个实施例之中,上述确定模块2302还用于
当UE支持的功率等级为第二功率等级,确定第二功率等级对应的测量放松配置为:若UE满足静止准则,通过第二扩展系数K2扩展正常测量状态的测量周期/停止测量第二时长H2;若UE满足静止准则和非小区边缘准则,停止测量第八时长H8。
进一步地,在本公开另一个实施例之中,上述确定模块2302还用于
当UE支持的功率等级为第三功率等级,确定第三功率等级对应的测量放松配置为:若UE满足静止准则,通过第三扩展系数K3扩展正常测量状态的测量周期/停止测量第三时长H3;若UE满足静止准则和非小区边缘准则,停止测量第九时长H9。
进一步地,在本公开另一个实施例之中,上述确定模块2302还用于
当UE支持的功率等级为第四功率等级,确定第四功率等级对应的测量放松配置为:若UE满足静止准则,通过第四扩展系数K4扩展正常测量状态的测量周期/停止测量第四时长H4;若UE满足静止准则和非小区边缘准则,停止测量第十时长H10。
进一步地,在本公开另一个实施例之中,上述确定模块2302还用于
当UE支持的功率等级为第五功率等级,确定第五功率等级对应的测量放松配置为:若UE满足静止准则,通过第五扩展系数K5扩展正常测量状态的测量周期/停止测量第五时长H5;若UE满足静止准则和非小区边缘准则,停止测量第十一时长H11。
进一步地,在本公开另一个实施例之中,上述确定模块2302还用于
当UE支持的功率等级为第六功率等级,确定第六功率等级对应的测量放松配置为:若UE满足静止准则,通过第六扩展系数K6扩展正常测量状态的测量周期/停止测量第六时长H6;若UE满足静止准则和非小区边缘准则,停止测量第十二时长H12。
图24是本公开一个实施例所提供的一种用户设备UE2400的框图。例如,UE2400可以是移动电话, 计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图24,UE2400可以包括以下至少一个组件:处理组件2402,存储器2404,电源组件2406,多媒体组件2408,音频组件2410,输入/输出(I/O)的接口2412,传感器组件2413,以及通信组件2416。
处理组件2402通常控制UE2400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2402可以包括至少一个处理器2420来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2402可以包括至少一个模块,便于处理组件2402和其他组件之间的交互。例如,处理组件2402可以包括多媒体模块,以方便多媒体组件2408和处理组件2402之间的交互。
存储器2404被配置为存储各种类型的数据以支持在UE2400的操作。这些数据的示例包括用于在UE2400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2406为UE2400的各种组件提供电力。电源组件2406可以包括电源管理系统,至少一个电源,及其他与为UE2400生成、管理和分配电力相关联的组件。
多媒体组件2408包括在所述UE2400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件2408包括一个前置摄像头和/或后置摄像头。当UE2400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2410被配置为输出和/或输入音频信号。例如,音频组件2410包括一个麦克风(MIC),当UE2400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2404或经由通信组件2416发送。在一些实施例中,音频组件2410还包括一个扬声器,用于输出音频信号。
I/O接口2412为处理组件2402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2413包括至少一个传感器,用于为UE2400提供各个方面的状态评估。例如,传感器组件2413可以检测到设备2400的打开/关闭状态,组件的相对定位,例如所述组件为UE2400的显示器和小键盘,传感器组件2413还可以检测UE2400或UE2400一个组件的位置改变,用户与UE2400接触的存在或不存在,UE2400方位或加速/减速和UE2400的温度变化。传感器组件2413可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2413还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2413还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2416被配置为便于UE2400和其他设备之间有线或无线方式的通信。UE2400可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2416经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2416还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE2400可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图25是本申请实施例所提供的一种网络侧设备2500的框图。例如,网络侧设备2500可以被提供 为一网络侧设备。参照图25,网络侧设备2500包括处理组件2511,其进一步包括至少一个处理器,以及由存储器2532所代表的存储器资源,用于存储可由处理组件2522的执行的指令,例如应用程序。存储器2532中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件2517被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备2500还可以包括一个电源组件2517被配置为执行网络侧设备2500的电源管理,一个有线或无线网络接口2550被配置为将网络侧设备2500连接到网络,和一个输入输出(I/O)接口2557。网络侧设备2500可以操作基于存储在存储器2532的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如上述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如上述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如上述方法实施例中的终端设备):处理器用于执行图1-图14任一所示的方法。
通信装置为网络设备:收发器用于执行图15-图21任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述 收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现上述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(Gas)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如上述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的系统,该系统包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用 介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (30)

  1. 一种测量放松方法,其特征在于,应用于用户设备UE,包括:
    确定所述UE支持的功率等级对应的测量放松配置;
    基于所述测量放松配置对所述UE进行测量放松。
  2. 如权利要求1所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    基于协议约定确定所述UE支持的功率等级对应的测量放松配置。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    向网络侧设备上报能力信息,所述能力信息包括所述UE支持的功率等级。
  4. 如权利要求3所述的方法,其特征在于,所述能力信息包括UE特定(UE specific)级别的能力信息或者频段组合(Band Combination)级别的能力信息。
  5. 如权利要求3所述的方法,其特征在于,所述向网络侧设备上报能力信息,包括:
    通过无线资源控制RRC消息向网络侧设备上报能力信息。
  6. 如权利要求3所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置的方法包括以下至少一种:
    基于所述网络侧设备广播的系统消息确定所述UE支持的功率等级对应的测量放松配置;
    基于所述网络侧设备发送的专用RRC消息确定所述UE支持的功率等级对应的测量放松配置。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第一功率等级,确定所述第一功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第一扩展系数K1扩展正常测量状态的测量周期/停止测量第一时长H1;若所述UE满足静止准则和非小区边缘准则,停止测量第七时长H7。
  8. 如权利要求1-6任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第二功率等级,确定所述第二功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第二扩展系数K2扩展正常测量状态的测量周期/停止测量第二时长H2;若所述UE满足静止准则和非小区边缘准则,停止测量第八时长H8。
  9. 如权利要求1-6任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第三功率等级,确定所述第三功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第三扩展系数K3扩展正常测量状态的测量周期/停止测量第三时长H3;若所述UE满足静止准则和非小区边缘准则,停止测量第九时长H9。
  10. 如权利要求1-6任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第四功率等级,确定所述第四功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第四扩展系数K4扩展正常测量状态的测量周期/停止测量第四时长H4;若所述UE满足静止准则和非小区边缘准则,停止测量第十时长H10。
  11. 如权利要求1-6任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第五功率等级,确定所述第五功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第五扩展系数K5扩展正常测量状态的测量周期/停止测量第五时长H5;若所述UE满足静止准则和非小区边缘准则,停止测量第十一时长H11。
  12. 如权利要求1-6任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第六功率等级,确定所述第六功率等级对应的测量放松配置为:若所 述UE满足静止准则,通过第六扩展系数K6扩展正常测量状态的测量周期/停止测量第六时长H6;若所述UE满足静止准则和非小区边缘准则,停止测量第十二时长H12。
  13. 一种测量放松方法,其特征在于,应用于网络侧设备,包括:
    获取UE上报的能力信息,所述能力信息包括所述UE支持的功率等级;
    确定所述UE支持的功率等级对应的测量放松配置;
    向所述UE发送所述测量放松配置。
  14. 如权利要求13所述的方法,其特征在于,所述能力信息包括UE特定级别的能力信息或者频段组合级别的能力信息。
  15. 如权利要求13所述的方法,其特征在于,所述获取UE上报的能力信息,包括:
    获取UE通过RRC消息上报的能力信息。
  16. 如权利要求13所述的方法,其特征在于,所述向所述UE发送所述测量放松配置的方法包括以下至少一种:
    通过系统消息向所述UE广播所述UE支持的功率等级对应的测量放松配置;
    通过专用RRC消息向所述UE发送所述UE支持的功率等级对应的测量放松配置。
  17. 如权利要求13-16任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第一功率等级,确定所述第一功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第一扩展系数K1扩展正常测量状态的测量周期/停止测量第一时长H1;若所述UE满足静止准则和非小区边缘准则,停止测量第七时长H7。
  18. 如权利要求13-16任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第二功率等级,确定所述第二功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第二扩展系数K2扩展正常测量状态的测量周期/停止测量第二时长H2;若所述UE满足静止准则和非小区边缘准则,停止测量第八时长H8。
  19. 如权利要求13-16任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第三功率等级,确定所述第三功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第三扩展系数K3扩展正常测量状态的测量周期/停止测量第三时长H3;若所述UE满足静止准则和非小区边缘准则,停止测量第九时长H9。
  20. 如权利要求13-16任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第四功率等级,确定所述第四功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第四扩展系数K4扩展正常测量状态的测量周期/停止测量第四时长H4;若所述UE满足静止准则和非小区边缘准则,停止测量第十时长H10。
  21. 如权利要求13-16任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第五功率等级,确定所述第五功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第五扩展系数K5扩展正常测量状态的测量周期/停止测量第五时长H5;若所述UE满足静止准则和非小区边缘准则,停止测量第十一时长H11。
  22. 如权利要求13-16任一所述的方法,其特征在于,所述确定所述UE支持的功率等级对应的测量放松配置,包括:
    当所述UE支持的功率等级为第六功率等级,确定所述第六功率等级对应的测量放松配置为:若所述UE满足静止准则,通过第六扩展系数K6扩展正常测量状态的测量周期/停止测量第六时长H6;若所述UE满足静止准则和非小区边缘准则,停止测量第十二时长H12。
  23. 一种测量放松装置,其特征在于,包括:
    确定模块,用于确定所述UE支持的功率等级对应的测量放松配置;
    测量放松模块,用于基于所述测量放松配置对所述UE进行测量放松。
  24. 一种测量放松装置,其特征在于,包括:
    获取模块,用于获取UE上报的能力信息,所述能力信息包括所述UE支持的功率等级;
    确定模块,用于确定所述UE支持的功率等级对应的测量放松配置;
    发送模块,用于向所述UE发送所述测量放松配置。
  25. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  26. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至22中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至22任一所述的方法。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至22中任一项所述的方法被实现。
PCT/CN2022/077133 2022-02-21 2022-02-21 一种测量放松方法及设备、存储介质、装置 WO2023155200A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000372.7A CN116941270A (zh) 2022-02-21 2022-02-21 一种测量放松方法及设备、存储介质、装置
PCT/CN2022/077133 WO2023155200A1 (zh) 2022-02-21 2022-02-21 一种测量放松方法及设备、存储介质、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077133 WO2023155200A1 (zh) 2022-02-21 2022-02-21 一种测量放松方法及设备、存储介质、装置

Publications (1)

Publication Number Publication Date
WO2023155200A1 true WO2023155200A1 (zh) 2023-08-24

Family

ID=87577304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077133 WO2023155200A1 (zh) 2022-02-21 2022-02-21 一种测量放松方法及设备、存储介质、装置

Country Status (2)

Country Link
CN (1) CN116941270A (zh)
WO (1) WO2023155200A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076275A1 (en) * 2019-10-02 2021-03-11 Candy Yiu Apparatus, system and method to configure conditions for radio resource management measurement relaxation in a new radio network
CN113473556A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种放松测量方法和通信装置
WO2021208085A1 (en) * 2020-04-17 2021-10-21 Nec Corporation Methods, devices, and medium for communication
CN113543193A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 一种放松测量方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076275A1 (en) * 2019-10-02 2021-03-11 Candy Yiu Apparatus, system and method to configure conditions for radio resource management measurement relaxation in a new radio network
CN113473556A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种放松测量方法和通信装置
WO2021208085A1 (en) * 2020-04-17 2021-10-21 Nec Corporation Methods, devices, and medium for communication
CN113543193A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 一种放松测量方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (VIVO): "Email discussion summary for [100-e][235] NR_redcap_RRM_2", 3GPP DRAFT; R4-2115410, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210816 - 20210827, 26 August 2021 (2021-08-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052047097 *

Also Published As

Publication number Publication date
CN116941270A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2022257127A1 (zh) 时域窗口确定方法、装置、用户设备、基站及存储介质
CN115004775B (zh) 成功PScell添加或更换报告的相关信息记录方法、装置
WO2023133686A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
WO2023060603A1 (zh) 一种寻呼分组的方法、装置、终端设备、基站及存储介质
WO2023155200A1 (zh) 一种测量放松方法及设备、存储介质、装置
CN113728723A (zh) 辅助配置方法及其装置
WO2023050153A1 (zh) 一种上报方法、装置、用户设备、网路侧设备及存储介质
WO2023133694A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023065075A1 (zh) 一种上报方法、装置、用户设备、网络侧设备及存储介质
WO2023130398A1 (zh) 一种测量放松方法及设备/存储介质/装置
WO2023108574A1 (zh) 一种定位方法及设备/存储介质/装置
WO2023060442A1 (zh) 一种有效信息指示方法、装置、用户设备、网络侧设备及存储介质
WO2022246847A1 (zh) 干扰测量方法、干扰处理方法及其装置
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023130283A1 (zh) 一种映射方式确定方法/装置/设备及存储介质
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023155054A1 (zh) 一种上报方法及设备/存储介质/装置
WO2023102944A1 (zh) 一种非竞争随机接入cfra中阈值确定方法及设备/存储介质/装置
WO2023122986A1 (zh) 一种重复传输的终止方法及设备/存储介质/装置
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023070407A1 (zh) 一种预编码方法、装置、用户设备、可重构智能表面ris阵列及存储介质
WO2023082279A1 (zh) 一种波束测量方法、装置、用户设备、网络侧设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000372.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926527

Country of ref document: EP

Kind code of ref document: A1