WO2023225829A1 - 多prach传输配置方法、装置 - Google Patents

多prach传输配置方法、装置 Download PDF

Info

Publication number
WO2023225829A1
WO2023225829A1 PCT/CN2022/094573 CN2022094573W WO2023225829A1 WO 2023225829 A1 WO2023225829 A1 WO 2023225829A1 CN 2022094573 W CN2022094573 W CN 2022094573W WO 2023225829 A1 WO2023225829 A1 WO 2023225829A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
terminal device
prach
prach transmission
send
Prior art date
Application number
PCT/CN2022/094573
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001734.4A priority Critical patent/CN115191146A/zh
Priority to PCT/CN2022/094573 priority patent/WO2023225829A1/zh
Publication of WO2023225829A1 publication Critical patent/WO2023225829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a multi-physical random access channel (Physical Random Access Channel, PRACH) transmission configuration method, device, equipment and storage medium.
  • PRACH Physical Random Access Channel
  • the terminal device can only send one first message, Msg1, in one random access attempt, and does not involve multiple PRACH transmissions, resulting in poor coverage of the PRACH channel. Therefore, a "multi-PRACH transmission configuration" method is urgently needed to enable the terminal equipment to transmit multiple PRACHs on PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the coverage of the PRACH channel.
  • the present disclosure proposes a multi-PRACH transmission configuration method, device, equipment and storage medium, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the coverage of the PRACH channel. .
  • An embodiment of the present disclosure proposes a method for configuring multiple PRACH transmissions.
  • the method is executed by a network side device.
  • the method includes:
  • sending multiple PRACH transmission configurations to the terminal device includes at least one of the following:
  • the TDM multiplexing configuration of sending multiple PRACH transmissions to the terminal device includes at least one of the following:
  • sending the TDM multiplexed time domain location configuration to the terminal device includes at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain location of an RO.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the terminal device sends the physical random access channel configuration index prach-ConfigurationIndex and/or the random access SSB transmission template index ra-ssb-OccasionMaskIndex to the terminal device, where the prach-ConfigurationIndex carries the time domain location of the TDM multiplexing Configuration, the ra-ssb-OccasionMaskIndex carries the time domain location configuration of the TDM multiplexing.
  • sending the TDM multiplexed frequency domain location configuration to the terminal device includes at least one of the following:
  • sending the TDM multiplexed frequency domain location change configuration to the terminal device includes at least one of the following:
  • the terminal device Send the TDM multiplexed first frequency domain location change configuration to the terminal device, wherein the first frequency domain location change configuration is used to indicate that the frequency domain location change is the highest frequency domain location change from the first frequency domain location set.
  • the high-frequency domain position begins to decrease;
  • the terminal device Send the TDM multiplexed second frequency domain location change configuration to the terminal device, wherein the second frequency domain location change configuration is used to indicate that the frequency domain location change is from the first frequency domain location set.
  • the lowest frequency domain position in the middle starts to increase;
  • the terminal device Send the TDM multiplexed third frequency domain location change configuration to the terminal device, wherein the third frequency domain location change configuration is used to indicate that the frequency domain location change is within the first frequency domain location set.
  • the highest frequency domain position is configured first, then the lowest frequency domain position is configured, the next highest frequency domain position is configured, then the next low frequency domain position is configured, and so on, until the configuration is completed in the first frequency domain position set. All frequency domain positions;
  • the fourth frequency domain location change configuration is used to indicate that the frequency domain location change is within the first frequency domain location set.
  • First configure the lowest frequency domain position then configure the highest frequency domain position, configure the next low frequency domain position, then configure the next highest frequency domain position, and so on until all frequency domains are configured. Location.
  • sending the FDM multiplexing configuration of the multi-PRACH transmission to the terminal device includes at least one of the following:
  • sending the FDM location configuration to the terminal device includes at least one of the following:
  • the time domain location of the RO sent for FDM multiplexing is configured to the terminal device, including at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain location of an RO.
  • the time domain location configuration of the RO sent FDM multiplexing to the terminal device includes:
  • the prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • the ra-ssb-OccasionMaskIndex carries the Describes the time domain location configuration of FDM multiplexed RO.
  • sending the TDM of the multi-PRACH transmission and the FDM multiplexing configuration to the terminal device includes at least one of the following:
  • the time domain location configuration of TDM multiplexing includes at least one of the following:
  • sending the time domain location configuration of FDM multiplexing to the terminal device includes:
  • the prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • the ra-ssb-OccasionMaskIndex carries the Describes the time domain location configuration of FDM multiplexed RO.
  • the frequency domain location configuration of FDM multiplexing includes at least one of the following:
  • sending the TDM of the multi-PRACH transmission and the FDM multiplexing configuration to the terminal device includes:
  • the FDM multiplexed multi-PRACH transmission number configuration is used to indicate that the FDM multiplexed multi-PRACH transmission number is the RO of the FDM in the multi-PRACH configuration. quantity.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the multiple PRACH transmission configurations include a first multiple PRACH transmission configuration based on non-contention random access CFRA and/or a second multiple PRACH transmission configuration based on contention based random access CBRA Transport configuration.
  • the CFRA triggering method includes at least one of the following:
  • PScell adds or changes trigger.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • RACH-ConfigDedicated is sent to the terminal device, wherein the CFRA configuration of the RACH-ConfigDedicated carries the first multi-PRACH transmission configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • a beam failure recovery configuration BeamFailureRecoveryConfig is sent to the terminal device, wherein the BeamFailureRecoveryConfig carries the first multi-PRACH transmission configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the second multi-PRACH transmission configuration is sent to the terminal device through broadcast signaling or through dedicated signaling.
  • the broadcast signaling includes system message block 1SIB1.
  • the dedicated signaling includes at least one of the following:
  • RRC establishes the RRCSetup message.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the RACH configuration includes common RACH resources configured separately on each partial bandwidth BWP.
  • sending the RACH configuration to the terminal device includes:
  • sending the RACH configuration to the terminal device includes:
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • sending the dedicated RACH configuration to the terminal device includes:
  • BeamFailureRecoveryConfig In response to the CBRA triggered by beam failure recovery, send a beam failure recovery configuration BeamFailureRecoveryConfig to the terminal device, wherein the BeamFailureRecoveryConfig carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • RACH-ConfigDedicated is sent to the terminal device, wherein the RACH-ConfigDedicated carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the feature combination includes a Coverage Enhancement feature, wherein the Coverage Enhancement feature is used to indicate a Coverage Enhancement feature that supports multiple PRACH transmission configured for the CBRA .
  • the method further includes:
  • receiving the PRACH capability information sent by the terminal device includes:
  • the PRACH capability information includes at least one of the following:
  • PRACH capability information supporting PRACH transmission of the FDM and the TDM
  • the method after receiving the PRACH capability information sent by the terminal device, the method further includes:
  • the multi-PRACH transmission configuration is configured for the terminal device through dedicated signaling.
  • Another aspect of the present disclosure provides a method for configuring multiple PRACH transmissions.
  • the method is executed by a terminal device.
  • the method includes:
  • sending multiple PRACHs to the network side device through the multiplexing method includes at least one of the following:
  • the method before receiving the multi-PRACH transmission configuration sent by the network side device, the method further includes:
  • sending PRACH capability information to the network side device includes:
  • the PRACH capability information includes at least one of the following:
  • PRACH capability information supporting PRACH transmission of the FDM and the TDM
  • the device includes:
  • a sending module configured to send multiple PRACH transmission configurations to a terminal device, wherein the multiple PRACH transmission configurations are used to instruct the terminal device to send SSB usage corresponding to PRACH resources used for multiple PRACH transmissions according to the multiple PRACH transmission configurations. model;
  • a receiving module configured to receive multiple PRACHs transmitted by the terminal equipment on the PRACH resources through the SSB usage mode.
  • the device includes:
  • a receiving module configured to receive multiple PRACH transmission configurations sent by the network side device, wherein the multiple PRACH transmission configurations are used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs;
  • a sending module configured to send multiple PRACHs to the network side device through the multiplexing method.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device performs the method proposed in the embodiment of the above aspect.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device performs the method proposed in the above embodiment of another aspect.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to perform the method proposed in the embodiment of one aspect.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to perform the method proposed in another embodiment.
  • a computer-readable storage medium provided by an embodiment of another aspect of the present disclosure is used to store instructions. When the instructions are executed, the method proposed by the embodiment of the present disclosure is implemented.
  • a computer-readable storage medium provided by an embodiment of another aspect of the present disclosure is used to store instructions. When the instructions are executed, the method proposed by the embodiment of another aspect is implemented.
  • multiple PRACH transmission configurations are sent to the terminal device, where the multiple PRACH transmission configurations are used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs; the receiving terminal device passes Multiple PRACHs sent in multiplexing mode.
  • the network side device can send a multi-PRACH transmission configuration to the terminal device, so that the terminal device transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, reducing the failure of transmission.
  • the case of multiple PRACHs can improve the probability of random access success.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 1 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a multi-PRACH transmission configuration method provided by another embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 6 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 7 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 8 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 9 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 10 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 11 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 12 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 13 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 14 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 15 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 16 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 17 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 18 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 19 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 20 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 21 is a schematic flowchart of a multi-PRACH transmission configuration method provided by yet another embodiment of the present disclosure.
  • Figure 22 is a schematic structural diagram of a multi-PRACH transmission configuration device provided by an embodiment of the present disclosure.
  • Figure 23 is a schematic structural diagram of a multi-PRACH transmission configuration device provided by another embodiment of the present disclosure.
  • Figure 24 is a block diagram of a terminal device provided by an embodiment of the present disclosure.
  • Figure 25 is a block diagram of a network side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • the network elements or network functions involved in the embodiments of the present disclosure can be implemented by independent hardware devices or by software in the hardware devices. This is not limited in the embodiments of the present disclosure.
  • a multi-PRACH transmission configuration method, device, equipment and storage medium provided by embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • Figure 1 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 1, the method may include the following steps:
  • Step 101 Send multiple PRACH transmission configurations to the terminal device, where the multiple PRACH transmission configurations are used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs;
  • Step 102 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the terminal device may be a device that provides voice and/or data connectivity to the user.
  • Terminal devices can communicate with one or more core networks via RAN (Radio Access Network).
  • Terminal devices can be IoT terminals, such as sensor devices, mobile phones (or "cellular" phones) and devices with The computer of the Internet of Things terminal, for example, can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access terminal access terminal
  • user device user terminal
  • user agent useragent
  • the terminal device may also be a device of an unmanned aerial vehicle.
  • the terminal device may also be a vehicle-mounted device, for example, it may be a driving computer with wireless communication function, or a wireless terminal connected to an external driving computer.
  • the terminal device may also be a roadside device, for example, it may be a street light, a signal light or other roadside device with wireless communication function.
  • the terminal device when the terminal device is sending the preamble, for example, it can perform preamble time domain repetition, that is, continuously sending multiple preambles in the time domain, where one PRACH transmission means that multiple preambles will be sent continuously in the time domain.
  • preamble time domain repetition that is, continuously sending multiple preambles in the time domain
  • one PRACH transmission means that multiple preambles will be sent continuously in the time domain.
  • Each preamble is transmitted as a whole, and multi-PRACH transmission means multiple PRACH transmissions.
  • sending multiple PRACH transmission configurations to the terminal equipment includes at least one of the following:
  • sending the TDM multiplexing configuration of multiple PRACH transmissions to the terminal equipment includes at least one of the following:
  • sending the TDM multiplexed time domain location configuration to the terminal device includes at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain location of an RO.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • prach-ConfigurationIndex carries the time domain location configuration of TDM multiplexing
  • ra-ssb- OccasionMaskIndex carries the time domain position configuration of TDM multiplexing
  • sending TDM multiplexed frequency domain location configuration to the terminal device includes at least one of the following:
  • sending TDM multiplexed frequency domain location change configuration to the terminal device includes at least one of the following:
  • the terminal device Send the TDM multiplexed first frequency domain location change configuration to the terminal device, wherein the first frequency domain location change configuration is used to indicate that the frequency domain location change is to decrease starting from the highest frequency domain location in the first frequency domain location set;
  • the third frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the highest frequency domain location in the first frequency domain location set, and then Configure the lowest frequency domain position, configure the next highest frequency domain position, and then configure the next low frequency domain position, and so on, until all frequency domain positions in the first frequency domain position set are configured;
  • the fourth frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the lowest frequency domain location in the first frequency domain location set, and then configure For the highest frequency domain position, configure the next lowest frequency domain position, then configure the next highest frequency domain position, and so on until all frequency domain positions are configured.
  • sending the FDM multiplexing configuration of multiple PRACH transmissions to the terminal equipment includes at least one of the following:
  • sending the FDM location configuration to the terminal device includes at least one of the following:
  • sending the time domain location configuration of the FDM multiplexed RO to the terminal device includes at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain position of an RO.
  • sending the time domain location configuration of the FDM multiplexed RO to the terminal device includes:
  • prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • ra-ssb-OccasionMaskIndex carries the time domain location of the FDM multiplexed RO. configuration.
  • sending TDM and FDM multiplexing configurations of multiple PRACH transmissions to the terminal equipment includes at least one of the following:
  • the time domain location configuration of TDM multiplexing includes at least one of the following:
  • sending the FDM multiplexed time domain location configuration to the terminal device includes:
  • prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • ra-ssb-OccasionMaskIndex carries the time domain location of the FDM multiplexed RO. configuration.
  • the frequency domain location configuration of FDM multiplexing includes at least one of the following:
  • sending TDM and FDM multiplexing configurations of multiple PRACH transmissions to the terminal equipment includes:
  • the FDM multiplexed multi-PRACH transmission number configuration is used to indicate that the FDM multiplexed multi-PRACH transmission number is the RO number of FDM in the multi-PRACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • Multi-PRACH transmission configurations are sent to the terminal device, where the multi-PRACH transmission configurations include a first multi-PRACH transmission configuration based on non-contention random access CFRA and/or a second multi-PRACH transmission configuration based on contention-based random access CBRA.
  • the triggering method of CFRA includes at least one of the following:
  • PScell adds or changes trigger.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the PDCCH order PDCCH order is sent to the terminal device, and the PDCCH order carries the first multi-PRACH transmission configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • RACH-ConfigDedicated is sent to the terminal device, where the CFRA configuration of RACH-ConfigDedicated carries the first multi-PRACH transmission configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the beam failure recovery configuration BeamFailureRecoveryConfig is sent to the terminal device, where the BeamFailureRecoveryConfig carries the first multi-PRACH transmission configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the second multi-PRACH transmission configuration is sent to the terminal device through broadcast signaling or through dedicated signaling.
  • the broadcast signaling includes system message block 1SIB1.
  • dedicated signaling includes at least one of the following:
  • RRC establishes the RRCSetup message.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the RACH configuration includes common RACH resources configured separately on each partial bandwidth BWP.
  • sending RACH configuration to the terminal device includes:
  • sending RACH configuration to the terminal device includes:
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • sending the dedicated RACH configuration to the terminal device includes:
  • the beam failure recovery configuration BeamFailureRecoveryConfig is sent to the terminal device, wherein the BeamFailureRecoveryConfig carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the dedicated random access configuration RACH-ConfigDedicated is sent to the terminal device, where the RACH-ConfigDedicated carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • RACH-ConfigDedicated is sent to the terminal device, wherein the RACH-ConfigDedicated carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the feature combination includes a Coverage Enhancement feature, where the Coverage Enhancement feature is used to indicate a Coverage Enhancement feature that supports multiple PRACH transmissions configured for CBRA.
  • the method further includes:
  • receiving the PRACH capability information sent by the terminal device includes:
  • the PRACH capability information includes at least one of the following:
  • the method after receiving the PRACH capability information sent by the terminal device, the method further includes:
  • multiple PRACH transmission configurations are configured for the terminal equipment through dedicated signaling.
  • multiple PRACH transmission configurations are sent to the terminal device, where the multiple PRACH transmission configurations are used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs; the receiving terminal device passes Multiple PRACHs sent in multiplexing mode.
  • the network side device can send a multi-PRACH transmission configuration to the terminal device, so that the terminal device transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, reducing the failure of transmission.
  • the case of multiple PRACHs can improve the probability of random access success.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • FIG. 2 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 2, the method may include the following steps:
  • Step 201 Send the TDM time division multiplexing configuration for multi-PRACH transmission to the terminal equipment, where the multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal equipment when transmitting multiple PRACHs;
  • sending multiple PRACH transmission configurations to the terminal equipment includes at least one of the following:
  • sending the TDM multiplexing configuration of multiple PRACH transmissions to the terminal equipment includes at least one of the following:
  • Step 202 Receive multiple PRACHs sent by the terminal device through TDM multiplexing.
  • the TDM time division multiplexing configuration of multi-PRACH transmission is sent to the terminal equipment, where the multi-PRACH transmission configuration is used to indicate the multiplexing method adopted by the terminal equipment when sending multiple PRACHs. , receiving multiple PRACHs sent by the terminal equipment through TDM multiplexing.
  • the network side device can send TDM time division multiplexing configuration to the terminal device, so that the terminal device transmits multiple PRACHs on PRACH resources through TDM multiplexing, reducing the situation that multiple PRACHs cannot be transmitted. , which can improve the probability of random access success.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 3 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure.
  • the method is executed by a network side device.
  • the method may include the following steps, wherein steps 301 and 302 are executed. one of them:
  • Step 301 Send the TDM multiplexed time domain location configuration to the terminal device
  • sending the TDM multiplexed time domain location configuration to the terminal device includes at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain location of an RO.
  • Step 302 Send the TDM multiplexed frequency domain location configuration to the terminal device
  • Step 303 Receive multiple PRACHs sent by the terminal device through TDM multiplexing.
  • the TDM time division multiplexing configuration of multi-PRACH transmission is sent to the terminal equipment, where the multi-PRACH transmission configuration is used to indicate the multiplexing method adopted by the terminal equipment when sending multiple PRACHs. , receiving multiple PRACHs sent by the terminal equipment through TDM multiplexing.
  • the network side device can send TDM time division multiplexing configuration to the terminal device, so that the terminal device transmits multiple PRACHs on PRACH resources through TDM multiplexing, reducing the situation that multiple PRACHs cannot be transmitted. , which can improve the probability of random access success.
  • the specific content of the TDM time division multiplexing configuration of multi-PRACH transmission configuration is specifically disclosed.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 4 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 4, the method may include the following steps:
  • Step 401 Send prach-ConfigurationIndex and/or ra-ssb-OccasionMaskIndex to the terminal device.
  • the multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs.
  • prach-ConfigurationIndex carries the TDM complex.
  • the time domain position configuration used, ra-ssb-OccasionMaskIndex carries the time domain position configuration of TDM multiplexing;
  • Step 402 Receive multiple PRACHs sent by the terminal device through TDM multiplexing.
  • prach-ConfigurationIndex and/or ra-ssb-OccasionMaskIndex is sent to the terminal device, and multiple PRACHs sent by the terminal device through TDM multiplexing are received.
  • the network side device can send the TDM time division multiplexing configuration to the terminal device through prach-ConfigurationIndex and/or ra-ssb-OccasionMaskIndex, so that the terminal device transmits the time division multiplexing configuration on the PRACH resource through TDM multiplexing.
  • Multiple PRACHs reduce the failure to transmit multiple PRACHs and improve the probability of random access success.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 5 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 5, the method may include the following steps, wherein steps 501 and 502 are executed. one of them:
  • Step 501 Send the configuration of the fixed frequency domain position of TDM multiplexing to the terminal device;
  • Step 502 Send the TDM multiplexed frequency domain position change configuration to the terminal device
  • sending TDM multiplexed frequency domain location change configuration to the terminal device includes at least one of the following:
  • the terminal device Send the TDM multiplexed first frequency domain location change configuration to the terminal device, wherein the first frequency domain location change configuration is used to indicate that the frequency domain location change is to decrease starting from the highest frequency domain location in the first frequency domain location set;
  • the second frequency domain location change configuration is used to indicate that the frequency domain location change is to increase from the lowest frequency domain location in the first frequency domain location set;
  • the third frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the highest frequency domain location in the first frequency domain location set, and then Configure the lowest frequency domain position, configure the next highest frequency domain position, and then configure the next low frequency domain position, and so on, until all frequency domain positions in the first frequency domain position set are configured;
  • the fourth frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the lowest frequency domain location in the first frequency domain location set, and then configure For the highest frequency domain position, configure the next lowest frequency domain position, then configure the next highest frequency domain position, and so on until all frequency domain positions are configured.
  • the first, second, third and fourth are only used to indicate differences in the position change configurations of each frequency domain.
  • the first frequency domain position change configuration does not specifically refer to a fixed frequency domain position change configuration.
  • the first frequency domain position change configuration may also change accordingly.
  • the step size corresponding to the first frequency domain position change configuration may be 1, 2, or other values.
  • the child's frequency domain position change configuration does not specifically refer to a fixed frequency domain position change configuration.
  • the second frequency domain position change configuration may also change accordingly.
  • the step size corresponding to the second frequency domain position change configuration may be 1, 2, or other values.
  • Step 503 Receive multiple PRACHs sent by the terminal device through TDM multiplexing.
  • the TDM time division multiplexing configuration of multi-PRACH transmission is sent to the terminal equipment, where the multi-PRACH transmission configuration is used to indicate the multiplexing method adopted by the terminal equipment when sending multiple PRACHs. , receiving multiple PRACHs sent by the terminal equipment through TDM multiplexing.
  • the network side device can send TDM time division multiplexing configuration to the terminal device, so that the terminal device transmits multiple PRACHs on PRACH resources through TDM multiplexing, reducing the situation that multiple PRACHs cannot be transmitted. , which can improve the probability of random access success.
  • the TDM time division multiplexing configuration of multi-PRACH transmission includes a fixed frequency domain position of TDM multiplexing and a changing frequency domain position configuration of TDM multiplexing.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 6 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 6, the method may include the following steps:
  • Step 601 Send the FDM multiplexing configuration for multi-PRACH transmission to the terminal device;
  • sending the FDM multiplexing configuration of multiple PRACH transmissions to the terminal equipment includes at least one of the following:
  • sending the FDM location configuration to the terminal device includes at least one of the following:
  • sending the time domain location configuration of the FDM multiplexed RO to the terminal device includes at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain position of an RO.
  • sending the time domain location configuration of the FDM multiplexed RO to the terminal device includes:
  • prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • ra-ssb-OccasionMaskIndex carries the time domain location of the FDM multiplexed RO. configuration.
  • sending FDM multiplexing rule configuration to the terminal device includes at least one of the following:
  • the seventh frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the highest frequency domain location in the second frequency domain location set, and then Configure the lowest frequency domain position, configure the next highest frequency domain position, then configure the next low frequency domain position, and so on, until all frequency domain positions in the second frequency domain position set are configured;
  • the eighth frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the lowest frequency domain location in the second frequency domain location set, and then configure For the highest frequency domain position, configure the next lowest frequency domain position, and then configure the next highest frequency domain position, and so on, until all frequency domain positions in the second frequency domain position set are configured.
  • Step 602 Receive multiple PRACHs sent by the terminal device through FDM multiplexing.
  • the FDM multiplexing configuration for multi-PRACH transmission is sent to the terminal device, and multiple PRACHs sent by the terminal device through FDM multiplexing are received.
  • the network side device can send the FDM multiplexing configuration of multiple PRACH transmission to the terminal device, so that the terminal device transmits multiple PRACHs on the PRACH resources through FDM multiplexing, reducing the inability to transmit multiple PRACHs.
  • PRACH the probability of successful random access can be improved.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 7 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 7, the method may include the following steps:
  • Step 701 Send the TDM and FDM multiplexing configuration of multi-PRACH transmission to the terminal device;
  • sending TDM and FDM multiplexing configurations for multi-PRACH transmission to the terminal equipment includes at least one of the following:
  • the time domain location configuration of TDM multiplexing includes at least one of the following:
  • sending the FDM multiplexed time domain location configuration to the terminal device includes:
  • prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • ra-ssb-OccasionMaskIndex carries the time domain location of the FDM multiplexed RO. configuration.
  • the frequency domain location configuration of FDM multiplexing includes at least one of the following:
  • sending FDM multiplexing rule configuration to the terminal device includes at least one of the following:
  • the ninth frequency domain position change configuration is used to indicate that the frequency domain position change is to decrease from the highest frequency domain position in the third frequency domain position set;
  • the eleventh frequency domain location change configuration is used to indicate that the frequency domain location change is to configure the highest frequency domain location first in the third frequency domain location set , then configure the lowest frequency domain position, configure the next highest frequency domain position, then configure the next low frequency domain position, and so on, until all frequency domain positions in the third frequency domain position set are configured;
  • the terminal device Send the FDM multiplexed twelfth frequency domain location change configuration to the terminal device, wherein the twelfth frequency domain location change configuration is used to indicate that the frequency domain location change is to configure the lowest frequency domain location first in the third frequency domain location set, Then configure the highest frequency domain position, configure the next low frequency domain position, then configure the next highest frequency domain position, and so on, until all frequency domain positions in the third frequency domain position set are configured.
  • the second frequency domain location set may be the same as the third frequency domain location set, or may be different from the third frequency domain location set.
  • Step 702 Receive multiple PRACHs sent by the terminal device through TDM and FDM multiplexing.
  • TDM and FDM multiplexing configurations for multiple PRACH transmission are sent to the terminal equipment, and multiple PRACHs sent by the terminal equipment through TDM and FDM multiplexing are received.
  • the network side device can send TDM and FDM multiplexing configuration settings for multiple PRACH transmission to the terminal device, so that the terminal device transmits multiple PRACHs on PRACH resources through TDM and FDM multiplexing. Reducing the failure to transmit multiple PRACHs can improve the success probability of random access.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • FIG 8 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 8, the method may include the following steps:
  • Step 801 Send the FDM multiplexed multi-PRACH transmission quantity configuration to the terminal device;
  • the FDM multiplexed multi-PRACH transmission number configuration is used to indicate that the FDM multiplexed multi-PRACH transmission number is the RO number of FDM in the multi-PRACH configuration.
  • the network side device when the network side device sends the FDM multiplexed multi-PRACH transmission quantity configuration to the terminal device, it may send the FDM multiplexed multi-PRACH transmission quantity indicating that the FDM multiplexed multi-PRACH transmission quantity is the RO number of FDM in the multi-PRACH configuration.
  • the configuration is configured to the terminal device, and the FDM multiplexed multi-PRACH transmission number configuration indicating that the number of multi-PRACH transmissions for FDM multiplexing is the maximum RO number of FDM in the multi-PRACH configuration can also be sent to the terminal device.
  • Step 802 Receive multiple PRACHs sent by the terminal device through TDM and FDM multiplexing.
  • TDM and FDM multiplexing configurations for multiple PRACH transmission are sent to the terminal equipment, and multiple PRACHs sent by the terminal equipment through TDM and FDM multiplexing are received.
  • the network side device can send TDM and FDM multiplexing configurations for multiple PRACH transmissions to the terminal device, so that the terminal device transmits multiple PRACHs on PRACH resources through TDM and FDM multiplexing, reducing When multiple PRACHs cannot be transmitted, the random access success probability can be improved.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 9 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 9, the method may include the following steps:
  • Step 901 Send a multi-PRACH transmission configuration to the terminal device, where the multi-PRACH transmission configuration includes a first multi-PRACH transmission configuration based on non-contention random access CFRA and/or a second multi-PRACH transmission configuration based on contention-based random access CBRA.
  • Configuration, multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs;
  • Step 902 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the triggering method of CFRA includes at least one of the following:
  • PScell adds or changes trigger.
  • multiple PRACH transmission configurations are sent to the terminal device, where the multiple PRACH transmission configurations include the first multiple PRACH transmission configurations of CFRA and/or the second multiple PRACH transmission configurations of CBRA.
  • the PRACH transmission configuration is used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs, and to receive multiple PRACHs sent by the terminal device through multiplexing.
  • the network side device can send multiple PRACH transmission configurations to the terminal device to receive multiple PRACHs sent by the terminal device in a multiplexing manner, thereby reducing the failure to transmit multiple PRACHs and improving random access. Probability of success.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 10 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 10, the method may include the following steps:
  • Step 1001. In response to the CFRA triggered by the PDCCH, send the PDCCH order PDCCH order to the terminal device, where the PDCCH order carries the first multiple PRACH transmission configuration, and the first multiple PRACH transmission configuration is used to indicate what the terminal device should do when sending multiple PRACHs.
  • Step 1002 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the PDCCH order PDCCH order in response to the CFRA triggered by the PDCCH, is sent to the terminal device, where the PDCCH order carries the first multi-PRACH transmission configuration, and the first multi-PRACH transmission configuration is used Indicates the multiplexing method used by the terminal equipment when sending multiple PRACHs, and receives multiple PRACHs sent by the terminal equipment through multiplexing.
  • the network side device can send multiple PRACH transmission configurations to the terminal device to receive multiple PRACHs sent by the terminal device in a multiplexing manner, thereby reducing the failure to transmit multiple PRACHs and improving random access. Probability of success.
  • This application specifically discloses that in response to the CFRA triggered by PDCCH, PDCCH order can be sent to the terminal device to send the first multiple PRACH transmission configurations to the terminal device, which can improve the accuracy of sending the first multiple PRACH transmission configurations.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 11 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 11, the method may include the following steps:
  • Step 1101. In response to the CFRA triggered by PScell addition or change, send the dedicated random access configuration RACH-ConfigDedicated to the terminal device, where the CFRA configuration of RACH-ConfigDedicated carries the first multi-PRACH transmission configuration, and the first multi-PRACH transmission configuration is Used to indicate the multiplexing method used by the terminal equipment when sending multiple PRACHs;
  • Step 1102 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the dedicated random access configuration RACH-ConfigDedicated is sent to the terminal device, where the CFRA configuration of RACH-ConfigDedicated carries the first multiple PRACH Transmission configuration, the first multi-PRACH transmission configuration is used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs; to receive multiple PRACHs sent by the terminal device in the multiplexing mode.
  • the network side device can send multiple PRACH transmission configurations to the terminal device to receive multiple PRACHs sent by the terminal device in a multiplexing manner, thereby reducing the failure to transmit multiple PRACHs and improving random access. Probability of success.
  • RACH-ConfigDedicated corresponding to the triggering mode can be sent to the terminal device to send the first multi-PRACH transmission configuration to the terminal device, which can improve the third Accuracy of sending a multi-PRACH transmission configuration.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 12 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 12, the method may include the following steps:
  • Step 1201. In response to the CFRA triggered by beam failure recovery, send the beam failure recovery configuration BeamFailureRecoveryConfig to the terminal device, where the BeamFailureRecoveryConfig carries the first multi-PRACH transmission configuration, and the first multi-PRACH transmission configuration is used to instruct the terminal device to send multiple PRACHs.
  • Step 1202 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the beam failure recovery configuration BeamFailureRecoveryConfig is sent to the terminal device, where the BeamFailureRecoveryConfig carries the first multi-PRACH transmission configuration, and the first multi-PRACH transmission configuration Used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs, and to receive multiple PRACHs sent by the terminal device in the multiplexing mode.
  • the network side device can send multiple PRACH transmission configurations to the terminal device to receive multiple PRACHs sent by the terminal device in a multiplexing manner, thereby reducing the failure to transmit multiple PRACHs and improving random access. Probability of success.
  • the CFRA specifically disclosed in response to the beam failure recovery trigger can send the beam failure recovery configuration corresponding to the trigger mode to the terminal device to send the first multi-PRACH transmission configuration to the terminal device, which can improve the third Accuracy of sending a multi-PRACH transmission configuration.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 13 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 13, the method may include the following steps:
  • Step 1301 Send the second multi-PRACH transmission configuration to the terminal device through broadcast signaling or dedicated signaling, where the second multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs;
  • the broadcast signaling includes system message block 1SIB1.
  • dedicated signaling includes at least one of the following:
  • RRC establishes the RRCSetup message.
  • Step 1302 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the second multi-PRACH transmission configuration is sent to the terminal device through broadcast signaling or through dedicated signaling, where the second multi-PRACH transmission configuration is used to indicate that the terminal device is sending multiple PRACH transmission configurations.
  • the multiplexing method used for one PRACH and receives multiple PRACHs sent by the terminal device through multiplexing.
  • sending the second multiple PRACH transmission configurations to the terminal device through broadcast signaling or dedicated signaling can improve the accuracy of sending the second multiple PRACH transmission configurations.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 14 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 14, the method may include the following steps:
  • Step 1401 Send the public random access channel RACH configuration to the terminal device, where the RACH configuration carries a second multi-PRACH transmission configuration, and the second multi-PRACH transmission configuration is used to indicate the multiplexing used by the terminal device when sending multiple PRACHs. Way;
  • the RACH configuration includes public RACH resources configured separately on each partial bandwidth BWP.
  • sending RACH configuration to the terminal device includes:
  • sending RACH configuration to the terminal device includes:
  • Step 1402 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the public random access channel RACH configuration is sent to the terminal device, where the RACH configuration carries the second multi-PRACH transmission configuration, and the second multi-PRACH transmission configuration is used to indicate the terminal device.
  • the multiplexing method used when sending multiple PRACHs, and receiving multiple PRACHs sent by the terminal device through multiplexing it is specifically disclosed that the RACH configuration is sent to the terminal device to send the second multiple PRACH transmission configurations to the terminal device, which can improve the accuracy of sending the second multiple PRACH transmission configurations.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 15 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 15, the method may include the following steps:
  • Step 1501 Send a dedicated RACH configuration to the terminal device, where the dedicated RACH configuration carries a second multi-PRACH transmission configuration, and the second multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs;
  • sending the dedicated RACH configuration to the terminal device includes:
  • the beam failure recovery configuration BeamFailureRecoveryConfig in response to the CBRA triggered by beam failure recovery, the beam failure recovery configuration BeamFailureRecoveryConfig is sent to the terminal device, and the BeamFailureRecoveryConfig carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • the dedicated random access configuration RACH-ConfigDedicated is sent to the terminal device, and the RACH-ConfigDedicated carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • sending multiple PRACH transmission configurations to the terminal device includes:
  • a RACH-ConfigDedicated is sent to the terminal device, the RACH-ConfigDedicated carrying the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • Step 1502 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • a dedicated RACH configuration is sent to the terminal device, where the dedicated RACH configuration carries a second multi-PRACH transmission configuration, and the second multi-PRACH transmission configuration is used to indicate that the terminal device is sending multiple
  • the multiplexing method used in PRACH is to receive multiple PRACHs sent by the terminal device through multiplexing.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 16 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 16, the method may include the following steps:
  • Step 1601. Send the RACH configuration of the feature combination to the terminal device.
  • the RACH configuration of the feature combination carries the second multiple PRACH transmission configuration.
  • the second multiple PRACH transmission configuration is used to indicate the terminal device to use when sending multiple PRACHs. reuse method;
  • the feature combination includes a Coverage Enhancement feature, where the Coverage Enhancement feature is used to indicate a Coverage Enhancement feature that supports multiple PRACH transmissions configured for CBRA.
  • Step 1602 Receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the RACH configuration of the feature combination is sent to the terminal device, where the RACH configuration of the feature combination carries the second multi-PRACH transmission configuration, and the second multi-PRACH transmission configuration is used to indicate the terminal device.
  • the multiplexing method used when sending multiple PRACHs is used to receive multiple PRACHs sent by the terminal device through multiplexing.
  • the RACH configuration of the feature combination is specifically disclosed to be sent to the terminal device to send the second multiple PRACH transmission configurations to the terminal device, which can improve the accuracy of sending the second multiple PRACH transmission configurations.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 17 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 17, the method may include the following steps:
  • Step 1701 Receive PRACH capability information sent by the terminal device, where the PRACH capability information is used to indicate that the terminal device supports multiplexing mode capability information.
  • receiving the PRACH capability information sent by the terminal device includes:
  • the PRACH capability information includes at least one of the following:
  • the PRACH capability information sent by the terminal device is received, where the PRACH capability information is used to indicate that the terminal device supports multiplexing mode capability information.
  • the network side device can determine the multiplexing mode based on the PRACH capability information corresponding to the terminal device, which can improve the accuracy of determining the multiplexing mode and improve the accuracy of multiple PRACH transmissions.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 18 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 18, the method may include the following steps:
  • Step 1801 Receive PRACH capability information sent by the terminal device, where the PRACH capability information is used to indicate that the terminal device supports multiplexing mode capability information;
  • Step 1802 Based on the PRACH capability information, configure multiple PRACH transmission configurations for the terminal device through dedicated signaling.
  • the PRACH capability information sent by the terminal device is received, where the PRACH capability information is used to indicate that the terminal device supports multiplexing mode capability information.
  • dedicated signaling is used.
  • the terminal equipment configures multiple PRACH transmission configurations.
  • the network side device can configure multiple PRACH transmission configurations for the terminal device through dedicated signaling based on the PRACH capability information corresponding to the terminal device, which can improve the configuration accuracy of the multiple PRACH transmission configurations and improve the accuracy of multiple PRACH transmission configurations. Accuracy of transmission.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 19 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 19, the method may include the following steps:
  • Step 1901 Receive the multi-PRACH transmission configuration sent by the network side device, where the multi-PRACH transmission configuration is used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs;
  • Step 1902 Send multiple PRACHs to the network side device in a multiplexing manner.
  • multiple PRACHs are sent to the network side device in a multiplexing manner, including at least one of the following:
  • the method before receiving the multi-PRACH transmission configuration sent by the network side device, the method further includes:
  • sending PRACH capability information to the network side device includes:
  • UECapabilityInformation carries PRACH capability information.
  • PRACH capability information includes at least one of the following:
  • the multi-PRACH transmission configuration sent by the network side device is received, where the multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs; by multiplexing Send multiple PRACHs to the network side device using the method.
  • the network side device can send multiple PRACH transmission configurations to the terminal device, and the terminal device can transmit multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multiple PRACH transmission configurations, reducing the inability to transmit multiple PRACHs. In the case of a PRACH, the probability of random access success can be improved.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 20 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 20, the method may include the following steps:
  • Step 2001 Receive the multi-PRACH transmission configuration sent by the network side device, where the multi-PRACH transmission configuration is used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs;
  • Step 2002 Send multiple PRACHs to the network side device through TDM multiplexing
  • Step 2003 Send multiple PRACHs to the network side device through FDM multiplexing
  • Step 2004 Send multiple PRACHs to the network side device through TDM and FDM multiplexing.
  • multiple PRACH transmissions of the terminal device may use different time domain RO resources, for example.
  • the terminal equipment selects an RO at a frequency domain position at the first time domain position of the RO that can be used for multi-PRACH transmission to transmit the PRACH.
  • the frequency domain position selection method includes the following methods: the terminal device selects one freely or the terminal device selects one according to the frequency domain position change configuration.
  • the terminal equipment selects an RO at a frequency domain location to transmit PRACH at the second time domain location of the RO that can be used for multi-PRACH transmission.
  • the frequency domain location selection includes the terminal equipment freely selecting one, or selecting the same one as the first transmission. Frequency domain position, or select a second frequency domain position according to the frequency domain position change configuration, and so on until the subsequent PRACH transmission is completed.
  • multiple PRACH transmissions of the terminal device may use different frequency domain RO resources.
  • the terminal equipment determines the time domain resource location of the RO that can perform multiple PRACH transmissions.
  • the terminal equipment can select X different frequency domain locations at the time domain location to send X PRACHs, where the value of X is equal to the number of multi-PRACH transmissions, is a positive integer.
  • the selection of X frequency domain positions can be freely selected by the terminal device, or selected according to the frequency domain position change configuration.
  • multiple PRACH transmissions of the terminal device may use different time domain and different frequency domain RO resources, for example.
  • the terminal device selects ROs at X frequency domain positions to transmit PRACH at the first time domain position of the RO that can be used for multi-PRACH transmission.
  • the selection of X frequency domain positions can be freely selected by the terminal device, or can be changed according to the frequency domain positions. Configuration selection.
  • the terminal equipment selects ROs at Y frequency domain positions to transmit PRACH at the second time domain position of the RO that can be used for multi-PRACH transmission.
  • the Y frequency domain positions can be freely selected, or the frequency domain used in the first time domain position is used. Domain position, or select Y frequency domain positions after the previously selected X frequency domain positions according to the frequency domain position change configuration.
  • the multi-PRACH transmission configuration sent by the network side device is received, where the multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs.
  • the multi-PRACH transmission configuration is used to indicate the multiplexing method used by the terminal device when sending multiple PRACHs.
  • a specific method of multiplexing is specifically disclosed, so that the terminal device can transmit multiple PRACHs on PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, reducing the inability to transmit multiple PRACHs.
  • PRACH the transmission accuracy of multiple PRACHs can be achieved.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 21 is a schematic flowchart of a multi-PRACH transmission configuration method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 21, the method may include the following steps:
  • Step 2101 Send PRACH capability information to the network side device, where the PRACH capability information is used to indicate that the terminal device supports multiplexing mode capability information;
  • Step 2102 Receive the multi-PRACH transmission configuration sent by the network side device, where the multi-PRACH transmission configuration is used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs;
  • Step 2103 Send multiple PRACHs to the network side device in a multiplexing manner.
  • PRACH capability information includes at least one of the following:
  • PRACH capability information is sent to the network side device, where the PRACH capability information is used to indicate that the terminal device supports multiplexing mode capability information; and multiple PRACH transmission configurations sent by the network side device are received.
  • the multi-PRACH transmission configuration is used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs; multiple PRACHs are sent to the network side device in the multiplexing mode.
  • the configuration accuracy of multiple PRACH transmission configurations can be improved, and the accuracy of multiple PRACH transmissions can be improved.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • Figure 22 is a schematic structural diagram of a multi-PRACH transmission configuration device provided by an embodiment of the present disclosure. As shown in Figure 22, the device 2200 may include:
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal equipment, where the multiple PRACH transmission configurations are used to indicate the multiplexing method used by the terminal equipment when sending multiple PRACHs;
  • the receiving module 2202 is configured to receive multiple PRACHs sent by the terminal device in a multiplexing manner.
  • the multi-PRACH transmission configuration can be sent to the terminal device through the sending module, where the multi-PRACH transmission configuration is used to indicate what the terminal device should do when sending multiple PRACHs.
  • the multiplexing method adopted; the receiving module can receive multiple PRACHs sent by the terminal device through multiplexing.
  • the multi-PRACH transmission configuration device can send the multi-PRACH transmission configuration to the terminal equipment, so that the terminal equipment can transmit multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, Reducing the failure to transmit multiple PRACHs can improve the success probability of random access.
  • the present disclosure provides a processing method for a "multiple PRACH transmission configuration" situation, so that the terminal equipment transmits multiple PRACHs on the PRACH resources through the multiplexing method indicated by the multi-PRACH transmission configuration, thereby improving the PRACH channel. of coverage.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal equipment, including at least one of the following:
  • the sending module 2201 is configured to send the TDM multiplexing configuration of multiple PRACH transmissions to the terminal device, including at least one of the following:
  • the sending module 2201 is used to send the TDM multiplexed time domain location configuration to the terminal device, including at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain location of an RO.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • prach-ConfigurationIndex carries the time domain location configuration of TDM multiplexing
  • ra-ssb- OccasionMaskIndex carries the time domain position configuration of TDM multiplexing
  • the sending module 2201 when used to send the TDM multiplexed frequency domain location configuration to the terminal device, includes at least one of the following:
  • the sending module 2201 is configured to send the TDM multiplexed frequency domain location change configuration to the terminal device, including at least one of the following:
  • the terminal device Send the TDM multiplexed first frequency domain location change configuration to the terminal device, wherein the first frequency domain location change configuration is used to indicate that the frequency domain location change is to decrease starting from the highest frequency domain location in the first frequency domain location set;
  • the second frequency domain location change configuration is used to indicate that the frequency domain location change is to increase from the lowest frequency domain location in the first frequency domain location set;
  • the third frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the highest frequency domain location in the first frequency domain location set, and then Configure the lowest frequency domain position, configure the next highest frequency domain position, and then configure the next low frequency domain position, and so on, until all frequency domain positions in the first frequency domain position set are configured;
  • the fourth frequency domain location change configuration is used to indicate that the frequency domain location change is to first configure the lowest frequency domain location in the first frequency domain location set, and then configure For the highest frequency domain position, configure the next lowest frequency domain position, then configure the next highest frequency domain position, and so on until all frequency domain positions are configured.
  • the sending module 2201 is used to send the FDM multiplexing configuration of multi-PRACH transmission to the terminal device, including at least one of the following:
  • the sending module 2201 is used to send the FDM location configuration to the terminal device, including at least one of the following:
  • the sending module 2201 when used to send the time domain location configuration of the FDM multiplexed RO to the terminal device, includes at least one of the following:
  • each bit BIT of the BITMAP corresponds to the time domain position of an RO.
  • the sending module 2201 is used to send the time domain location configuration of the FDM multiplexed RO to the terminal device, specifically for:
  • prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • ra-ssb-OccasionMaskIndex carries the time domain location of the FDM multiplexed RO. configuration.
  • the sending module 2201 is configured to send the TDM and FDM multiplexing configurations of multiple PRACH transmissions to the terminal equipment, including at least one of the following:
  • the time domain location configuration of TDM multiplexing includes at least one of the following:
  • the sending module 2201 is used to send the FDM multiplexed time domain location configuration to the terminal device, specifically for:
  • prach-ConfigurationIndex carries the time domain location configuration of the FDM multiplexed RO
  • ra-ssb-OccasionMaskIndex carries the time domain location of the FDM multiplexed RO. configuration.
  • the frequency domain location configuration of FDM multiplexing includes at least one of the following:
  • the sending module 2201 is used to send TDM and FDM multiplexing configurations of multiple PRACH transmissions to the terminal equipment, specifically for:
  • the FDM multiplexed multi-PRACH transmission number configuration is used to indicate that the FDM multiplexed multi-PRACH transmission number is the RO number of FDM in the multi-PRACH configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • Multi-PRACH transmission configurations are sent to the terminal device, where the multi-PRACH transmission configurations include a first multi-PRACH transmission configuration based on non-contention random access CFRA and/or a second multi-PRACH transmission configuration based on contention-based random access CBRA.
  • the triggering method of CFRA includes at least one of the following:
  • PScell adds or changes trigger.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the PDCCH order PDCCH order is sent to the terminal device, and the PDCCH order carries the first multi-PRACH transmission configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the dedicated random access configuration RACH-ConfigDedicated is sent to the terminal device, and the CFRA configuration of RACH-ConfigDedicated carries the first multi-PRACH transmission configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • RACH-ConfigDedicated is sent to the terminal device, and the CFRA configuration of RACH-ConfigDedicated carries the first multi-PRACH transmission configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the beam failure recovery configuration BeamFailureRecoveryConfig is sent to the terminal device, and the BeamFailureRecoveryConfig carries the first multi-PRACH transmission configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the second multi-PRACH transmission configuration is sent to the terminal device through broadcast signaling or through dedicated signaling.
  • the broadcast signaling includes system message block 1SIB1.
  • dedicated signaling includes at least one of the following:
  • RRC establishes the RRCSetup message.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the RACH configuration includes common RACH resources configured separately on each partial bandwidth BWP.
  • the sending module 2201 is used to send the RACH configuration to the terminal device, specifically for:
  • the sending module 2201 is used to send the RACH configuration to the terminal device, including:
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the sending module 2201 is used to send the dedicated RACH configuration to the terminal device, specifically for:
  • the BeamFailureRecoveryConfig In response to the CBRA triggered by beam failure recovery, send the beam failure recovery configuration BeamFailureRecoveryConfig to the terminal device, the BeamFailureRecoveryConfig carrying the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the dedicated random access configuration RACH-ConfigDedicated is sent to the terminal device, and the RACH-ConfigDedicated carries the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • a RACH-ConfigDedicated is sent to the terminal device, the RACH-ConfigDedicated carrying the second multi-PRACH transmission configuration configured in the dedicated RACH configuration.
  • the sending module 2201 is used to send multiple PRACH transmission configurations to the terminal device, specifically for:
  • the feature combination includes a Coverage Enhancement feature, where the Coverage Enhancement feature is used to indicate a Coverage Enhancement feature that supports multiple PRACH transmissions configured for CBRA.
  • the receiving module 2202 is also configured to receive PRACH capability information sent by the terminal device, where the PRACH capability information is used to indicate that the terminal device supports multiplexing mode capability information.
  • the receiving module 2202 is used to receive the PRACH capability information sent by the terminal device, specifically for:
  • the PRACH capability information includes at least one of the following:
  • the receiving module 2202 is also configured to configure multiple PRACH transmission configurations for the terminal device through dedicated signaling based on the PRACH capability information after receiving the PRACH capability information sent by the terminal device.
  • Figure 23 is a schematic structural diagram of a multi-PRACH transmission configuration device provided by an embodiment of the present disclosure. As shown in Figure 23, the device 2300 may include:
  • the receiving module 2301 is configured to receive multiple PRACH transmission configurations sent by the network side device, where the multiple PRACH transmission configurations are used to indicate the multiplexing mode used by the terminal device when sending multiple PRACHs;
  • the sending module 2302 is configured to send multiple PRACHs to the network side device in a multiplexing manner.
  • the MCGFailureInformation reported by the terminal device can be received through the receiving module, where the MCGFailureInformation carries failure-related information.
  • the failure-related information sent by the terminal device can be directly received. There is no need to wait for the terminal device to access the network again before receiving the failure-related information stored in the terminal device, which can reduce The length of time for reporting failure related information.
  • the present disclosure provides a processing device for a situation of "multiple PRACH transmission configurations" to reduce the duration of multi-PRACH transmission configurations, improve the efficiency of multi-PRACH transmission configurations, and thereby improve the convenience of parameter adjustment for network-side equipment.
  • the sending module 2302 is configured to send multiple PRACHs to the network side device in a multiplexing manner, including at least one of the following:
  • the sending module 2302 is further configured to send PRACH capability information to the network side device before receiving the multi-PRACH transmission configuration sent by the network side device, wherein the PRACH capability information Capability information used to indicate that the terminal device supports multiplexing methods.
  • the sending module 2302 is used to send PRACH capability information to the network side device, specifically for:
  • UECapabilityInformation carries PRACH capability information.
  • PRACH capability information includes at least one of the following:
  • Figure 24 is a block diagram of a terminal device UE2400 provided by an embodiment of the present disclosure.
  • the UE2400 can be a mobile phone, a computer, a digital broadcast terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the UE 2400 may include at least one of the following components: a processing component 2402 , a memory 2404 , a power supply component 2406 , a multimedia component 2408 , an audio component 2410 , an input/output (I/O) interface 2412 , a sensor component 2414 , and a communication component. 2424.
  • Processing component 2402 generally controls the overall operations of UE 2400, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2402 may include at least one processor 2420 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 2402 may include at least one module that facilitates interaction between processing component 2402 and other components. For example, processing component 2402 may include a multimedia module to facilitate interaction between multimedia component 2408 and processing component 2402.
  • Memory 2404 is configured to store various types of data to support operations at UE 2400. Examples of this data include instructions for any application or method operating on the UE2400, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 2404 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 2406 provides power to various components of UE 2400.
  • Power component 2406 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power to UE 2400.
  • Multimedia component 2408 includes a screen that provides an output interface between the UE 2400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes at least one touch sensor to sense touches, slides, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding operation, but also detect the wake-up time and pressure related to the touch or sliding operation.
  • multimedia component 2408 includes a front-facing camera and/or a rear-facing camera. When the UE2400 is in an operating mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 2410 is configured to output and/or input audio signals.
  • audio component 2410 includes a microphone (MIC) configured to receive external audio signals when UE 2400 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signals may be further stored in memory 2404 or sent via communications component 2424.
  • audio component 2410 also includes a speaker for outputting audio signals.
  • the I/O interface 2412 provides an interface between the processing component 2402 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 2414 includes at least one sensor for providing various aspects of status assessment for UE 2400 .
  • the sensor component 2414 can detect the open/closed state of the device 2400, the relative positioning of components, such as the display and keypad of the UE 2400, the sensor component 2414 can also detect the position change of the UE 2400 or a component of the UE 2400, the user The presence or absence of contact with the UE2400, the UE2400 orientation or acceleration/deceleration and the temperature change of the UE2400.
  • Sensor assembly 2414 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2414 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2424 is configured to facilitate wired or wireless communication between UE 2400 and other devices.
  • UE2400 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 2424 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 2424 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the UE 2400 may be configured by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic component implementation for executing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic component implementation for executing the above method.
  • FIG. 25 is a block diagram of a network side device 2500 provided by an embodiment of the present disclosure.
  • the network side device 2500 may be provided as a network side device.
  • the network side device 2500 includes a processing component 2522, which further includes at least one processor, and a memory resource represented by a memory 2532 for storing instructions, such as application programs, that can be executed by the processing component 2522.
  • the application program stored in memory 2532 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 2522 is configured to execute instructions to perform any of the foregoing methods applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 2500 may also include a power supply component 2526 configured to perform power management of the network side device 2500, a wired or wireless network interface 2550 configured to connect the network side device 2500 to the network, and an input/output (I/O). O)Interface 2558.
  • the network side device 2500 can operate based on an operating system stored in the memory 2532, such as Windows Server TM, Mac OS X TM, Unix TM, Linux TM, Free BSD TM or similar.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of network side equipment and UE respectively.
  • the network side device and the UE may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of network side equipment and UE respectively.
  • the network side device and the UE may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module may implement the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiment), a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device may be a network device, or may be a terminal device (such as the terminal device in the foregoing method embodiment), or may be a chip, chip system, or processor that supports the network device to implement the above method, or may be a terminal device that supports A chip, chip system, or processor that implements the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • a communications device may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor, etc.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control and execute communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program processes data for a computer program.
  • the communication device may also include one or more memories, on which a computer program may be stored, and the processor executes the computer program, so that the communication device performs the method described in the above method embodiment.
  • data may also be stored in the memory.
  • the communication device and the memory can be provided separately or integrated together.
  • the communication device may also include a transceiver and an antenna.
  • the transceiver can be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver can include a receiver and a transmitter.
  • the receiver can be called a receiver or a receiving circuit, etc., and is used to implement the receiving function;
  • the transmitter can be called a transmitter or a transmitting circuit, etc., and is used to implement the transmitting function.
  • one or more interface circuits may also be included in the communication device.
  • Interface circuitry is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to cause the communication device to perform the method described in the above method embodiment.
  • the communication device is a network-side device: the processor is used to execute the method shown in any one of Figures 1-18.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiment): the processor is configured to execute the method shown in any one of Figures 19-21.
  • a transceiver for implementing receiving and transmitting functions may be included in the processor.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor, which can cause the communication device to perform the method described in the above method embodiment.
  • the computer program may be embedded in the processor, in which case the processor may be implemented in hardware.
  • the communication device may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiment), but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited to limits.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a system on a chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be multiple.
  • the chip also includes a memory for storing necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种多PRACH传输配置方法、装置、设备及存储介质,属于通信技术领域。该方法包括发送多PRACH传输配置至终端设备,其中,所述多PRACH传输配置用于指示所述终端设备在发送多个PRACH时所采用的复用方式;接收所述终端设备通过所述复用方式发送的多个PRACH。本公开针对一种"多PRACH传输配置"这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输多个PRACH,提升PRACH信道的覆盖。

Description

多PRACH传输配置方法、装置 技术领域
本公开涉及通信技术领域,尤其涉及一种多物理随机接入信道(Physical Random Access Channel,PRACH)传输配置方法、装置、设备及存储介质。
背景技术
在通信系统中,上行覆盖差会影响终端设备和网络侧设备之间的通信质量。上行覆盖的影响因素之一为PRACH信道。终端设备在随机接入的一次尝试中仅能发送一个第一条消息Msg1传输,并未涉及多PRACH传输,使得PRACH信道的覆盖较差。因此,亟需一种“多PRACH传输配置”的方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
发明内容
本公开提出的一种多PRACH传输配置方法、装置、设备及存储介质,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
本公开一方面实施例提出的一种多PRACH传输的配置方法,所述方法由网络侧设备执行,所述方法包括:
发送多PRACH传输配置至终端设备,其中,所述多PRACH传输配置用于指示所述终端设备在发送多个PRACH时所采用的复用方式;
接收所述终端设备通过所述复用方式发送的多个PRACH。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至终端设备,包括以下至少一种:
发送多PRACH传输的TDM时分复用配置至所述终端设备;
发送所述多PRACH传输的FDM频分复用配置至所述终端设备;
发送所述多PRACH传输的TDM和所述FDM复用配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输的TDM复用配置至所述终端设备,包括以下至少一种:
发送所述TDM复用的时域位置配置至所述终端设备;
发送所述TDM复用的频域位置配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述发送所述TDM复用的时域位置配置至所述终端设备,包括以下至少一种:
发送所述TDM复用的随机接入机会(Random access Opportunity,RO)的等间隔时域位置配置至所述终端设备;
发送位置位图BITMAP配置至所述终端设备,其中,所述BITMAP的每一个位BIT对应一个RO的时域位置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至终端设备,包括:
发送物理随机接入信道配置索引prach-ConfigurationIndex和/或随机接入SSB传输模板索引ra-ssb-OccasionMaskIndex至所述终端设备,其中,所述prach-ConfigurationIndex携带有所述TDM复用的时域位置配置,所述ra-ssb-OccasionMaskIndex携带有所述TDM复用的时域位置配置。
可选地,在本公开的一个实施例之中,所述发送所述TDM复用的频域位置配置至终端设备,包括以下至少一种:
发送所述TDM复用的固定频域位置的配置至所述终端设备;
发送所述TDM复用的频域位置变化配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述发送所述TDM复用的频域位置变化配置至所述终端设备,包括以下至少一种:
发送所述TDM复用的第一频域位置变化配置至所述终端设备,其中,所述第一频域位置变化配置用于指示所述频域位置变化为从第一频域位置集合中最高频域位置开始递减;
发送所述TDM复用的第二频域位置变化配置至所述终端设备,其中,所述第二频域位置变化配置用于指示所述频域位置变化为从所述第一频域位置集合中最低频域位置开始递增;
发送所述TDM复用的第三频域位置变化配置至所述终端设备,其中,所述第三频域位置变化配置用于指示所述频域位置变化为在所述第一频域位置集合中先配置所述最高频域位置,再配置所述最低频域位置,配置次高频域位置,再配置次低频域位置,以此类推,直至配置完成所述第一频域位置集合中的所有频域位置;
发送所述TDM复用的第四频域位置变化配置至所述终端设备,其中,所述第四频域位置变化配置用于指示所述频域位置变化为在所述第一频域位置集合中先配置所述最低频域位置,再配置所述最高频域位置,配置所述次低频域位置,再配置所述次高频域位置,以此类推,直至配置完成所述所有频域位置。
可选地,在本公开的一个实施例之中,所述发送所述多PRACH传输的FDM复用配置至所述终端设备,包括以下至少一种:
发送第一多PRACH传输配置至所述终端设备,其中,所述第一多PRACH传输配置用于指示所述复用方式为所述FDM复用模式;
发送FDM复用规则配置至所述终端设备;
发送FDM位置配置至所述终端设备;
发送FDM复用的RO的时域位置配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述发送FDM位置配置至所述终端设备,包括以下至少一种:
发送可用的FDM位置的BITMAP配置至所述终端设备;
发送所述可用的FDM位置的起始位置偏移的配置至所述终端设备;
发送FDM位置间的间隔的配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述发送FDM复用的RO的时域位置配置至所述终端设备,包括以下至少一种:
发送所述FDM复用的RO的等间隔时域位置配置至所述终端设备;
发送位置BITMAP配置至所述终端设备,其中,所述BITMAP的每一个位BIT对应一个RO的时域位置。
可选地,在本公开的一个实施例之中,所述发送FDM复用的RO的时域位置配置至所述终端设备,包括:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至所述终端设备,其中,所述prach-ConfigurationIndex携带有所述FDM复用的RO的时域位置配置,所述ra-ssb-OccasionMaskIndex携带有所述FDM复用的RO的时域位置配置。
可选地,在本公开的一个实施例之中,所述发送所述多PRACH传输的TDM和所述FDM复用配置至所述终端设备,包括以下至少一种:
发送第二多PRACH传输配置至所述终端设备,其中,所述第二多PRACH传输配置用于指示所述复用方式为所述TDM和所述FDM复用模式;
发送TDM复用的时域位置配置至所述终端设备;
发送FDM复用的频域位置配置至所述终端设备;
发送所述FDM复用规则配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述TDM复用的时域位置配置,包括以下至少一种:
所述FDM复用的RO的等间隔时域位置配置;
位置BITMAP配置,其中,所述BITMAP的每一个位BIT对应一个RO的时域位置。
可选地,在本公开的一个实施例之中,所述发送FDM复用的时域位置配置至所述终端设备,包括:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至所述终端设备,其中,所述prach-ConfigurationIndex携带有所述FDM复用的RO的时域位置配置,所述ra-ssb-OccasionMaskIndex携带有所述FDM复用的RO的时域位置配置。
可选地,在本公开的一个实施例之中,所述FDM复用的频域位置配置,包括以下至少一种:
可用的FDM位置的BITMAP配置;
所述可用的FDM位置的起始位置偏移的配置;
FDM位置间的间隔配置。
可选地,在本公开的一个实施例之中,所述发送所述多PRACH传输的TDM和所述FDM复用配置至所述终端设备,包括:
发送所述FDM复用的多PRACH传输数量配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述FDM复用的多PRACH传输数量配置用于指示所述FDM复用的多PRACH传输数量为所述多PRACH配置中所述FDM的RO数量。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至终端设备,包括:
发送多PRACH传输配置至所述终端设备,其中,所述多PRACH传输配置包括基于非竞争的随机接入CFRA的第一多PRACH传输配置和/或基于竞争的随机接入CBRA的第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述CFRA的触发方式包括以下至少一种:
物理下行控制信道PDCCH触发;
切换触发;
波束失败恢复触发;
PScell添加或改变触发。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
响应于所述PDCCH触发的CFRA,发送PDCCH顺序PDCCH order至所述终端设备,所述PDCCH order携带有所述第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
响应于所述PScell添加或改变触发的CFRA,发送专用随机接入配置RACH-ConfigDedicated至所述终端设备,其中,所述RACH-ConfigDedicated的CFRA配置携带有所述第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
响应于所述切换触发的CFRA,发送RACH-ConfigDedicated至所述终端设备,其中,所述RACH-ConfigDedicated的CFRA配置携带有所述第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
响应于所述波束失败恢复触发的CFRA,发送波束失败恢复配置BeamFailureRecoveryConfig至所述终端设备,其中,所述BeamFailureRecoveryConfig携带有所述第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
通过广播信令发送或者通过专用信令发送所述第二多PRACH传输配置至所述终端设备。
可选地,在本公开的一个实施例之中,所述广播信令包括系统消息块1SIB1。
可选地,在本公开的一个实施例之中,所述专用信令包括以下至少一种:
无线资源控制RRC重配置RRCReconfiguration消息;
RRC恢复RRCResume消息;
RRC释放RRCRelease消息;
RRC建立RRCSetup消息。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
发送公共随机接入信道RACH配置至所述终端设备,其中,所述RACH配置携带有所述第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述RACH配置包括在各个部分带宽BWP上单独配置的公共RACH资源。
可选地,在本公开的一个实施例之中,所述发送RACH配置至所述终端设备,包括:
发送SIB1的初始BWP配置中的第一随机接入公共配置RACH-ConfigCommon至所述终端设备,其中,所述第一RACH-ConfigCommon携带有RACH配置。
可选地,在本公开的一个实施例之中,所述发送RACH配置至所述终端设备,包括:
发送RRCReconfiguration消息的BWP配置的第二RACH-ConfigCommon至所述终端设备,其中,所述第二RACH-ConfigCommon携带有RACH配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
发送专用RACH配置至所述终端设备,其中,所述专用RACH配置携带有所述第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送专用RACH配置至所述终端设备,包括:
响应于波束失败恢复触发的CBRA,发送波束失败恢复配置BeamFailureRecoveryConfig至所述终端设备,其中,所述BeamFailureRecoveryConfig携带有所述专用RACH配置中所配置的所述第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
响应于PScell添加或改变触发的CBRA,发送专用随机接入配置RACH-ConfigDedicated至所述终端设备,其中,所述RACH-ConfigDedicated携带有所述专用RACH配置中所配置的所述第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
响应于切换触发的CBRA,发送RACH-ConfigDedicated至所述终端设备,其中,所述RACH-ConfigDedicated携带有所述专用RACH配置中所配置的所述第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述发送多PRACH传输配置至所述终端设备,包括:
发送特征组合feature combination的RACH配置至所述终端设备,其中,所述feature combination的RACH配 置携带有所述第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,所述feature combination包括覆盖增强特征Coverage Enhancement feature,其中,所述Coverage Enhancement feature用于指示支持对所述CBRA配置的多PRACH传输的Coverage Enhancement feature。
可选地,在本公开的一个实施例之中,所述方法还包括:
接收所述终端设备发送的PRACH能力信息,其中,所述PRACH能力信息用于指示所述终端设备支持复用方式的能力信息。
可选地,在本公开的一个实施例之中,所述接收所述终端设备发送的PRACH能力信息,包括:
接收所述终端设备发送的终端能力信息UECapabilityInformation,其中,所述UECapabilityInformation携带有所述PRACH能力信息。
可选地,在本公开的一个实施例之中,所述PRACH能力信息包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持所述FDM和所述TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
可选地,在本公开的一个实施例之中,在所述接收所述终端设备发送的PRACH能力信息之后,还包括:
基于所述PRACH能力信息,通过专用信令为所述终端设备配置所述多PRACH传输配置。
本公开另一方面实施例提出的一种多PRACH传输的配置方法,,所述方法由终端设备执行,所述方法包括:
接收网络侧设备发送的多PRACH传输配置,其中,所述多PRACH传输配置用于指示所述终端设备在发送多个PRACH时所采用的复用方式;
通过所述复用方式发送多个PRACH至所述网络侧设备。
可选地,在本公开的一个实施例之中,所述通过所述复用方式发送多个PRACH至所述网络侧设备,包括以下至少一种:
通过TDM复用方式发送所述多个PRACH至所述网络侧设备;
通过FDM复用方式发送所述多个PRACH至所述网络侧设备;
通过所述TDM和所述FDM复用方式发送所述多个PRACH至所述网络侧设备。
可选地,在本公开的一个实施例之中,在所述接收网络侧设备发送的多PRACH传输配置之前,还包括:
发送PRACH能力信息至所述网络侧设备,其中,所述PRACH能力信息用于指示所述终端设备支持复用方式的能力信息。
可选地,在本公开的一个实施例之中,所述发送PRACH能力信息至所述网络侧设备,包括:
发送UECapabilityInformation至所述网络侧设备,其中,所述UECapabilityInformation携带有所述PRACH能力信息。
可选地,在本公开的一个实施例之中,所述PRACH能力信息包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持所述FDM和所述TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
本公开又一方面实施例提出的一种多PRACH传输配置装置,所述装置包括:
发送模块,用于发送多PRACH传输配置至终端设备,其中,所述多PRACH传输配置用于指示所述终端设备根据所述多PRACH传输配置发送多个PRACH传输所使用的PRACH资源对应的SSB使用模式;
接收模块,用于接收所述终端设备通过所述SSB使用模式在所述PRACH资源之上传输的多个PRACH。
本公开又一方面实施例提出的一种多PRACH传输配置装置,所述装置包括:
接收模块,用于接收网络侧设备发送的多PRACH传输配置,其中,所述多PRACH传输配置用于指示所述终端设备在发送多个PRACH时所采用的复用方式;
发送模块,用于通过所述复用方式发送多个PRACH至所述网络侧设备。
本公开又一方面实施例提出的一种终端设备,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种网络侧设备,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开实施例之中,发送多PRACH传输配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输配置至终端设备,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图2为本公开另一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图3为本公开再一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图4为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图5为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图6为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图7为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图8为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图9为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图10为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图11为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图12为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图13为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图14为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图15为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图16为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图17为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图18为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图19为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图20为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图21为本公开又一个实施例所提供的一种多PRACH传输配置方法的流程示意图;
图22为本公开一个实施例所提供的一种多PRACH传输配置装置的结构示意图;
图23为本公开另一个实施例所提供的一种多PRACH传输配置装置的结构示意图;
图24是本公开一个实施例所提供的一种终端设备的框图;
图25为本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法 的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本公开实施例中涉及的网元或是网络功能,其既可以是独立的硬件设备实现,也可以通过硬件设备中的软件实现,本公开实施例中并不对此做出限定。
下面参考附图对本公开实施例所提供的一种多PRACH传输配置方法、装置、设备及存储介质进行详细描述。
图1为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图1所示,该方法可以包括以下步骤:
步骤101、发送多PRACH传输配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
步骤102、接收终端设备通过复用方式发送的多个PRACH。
需要说明的是,在本公开的一个实施例之中,终端设备可以是指向用户提供语音和/或数据连通性的设备。终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,终端设备可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,终端设备也可以是无人飞行器的设备。或者,终端设备也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,终端设备也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,当终端设备在发送前导码preamble时,例如可以进行preamble时域repetition,也即时域连续发送多个preamble,其中,一次PRACH传输是指将连续发送多个preamble作为一次整体进行传输,多PRACH传输即为进行多次PRACH传输。
其中,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括以下至少一种:
发送多PRACH传输的TDM时分复用配置至终端设备;
发送多PRACH传输的FDM频分复用配置至终端设备;
发送多PRACH传输的TDM和FDM复用配置至终端设备。
以及,在本公开的一个实施例之中,发送多PRACH传输的TDM复用配置至终端设备,包括以下至少一种:
发送TDM复用的时域位置配置至终端设备;
发送TDM复用的频域位置配置至终端设备。
以及,在本公开的一个实施例之中,发送TDM复用的时域位置配置至终端设备,包括以下至少一种:
发送TDM复用的随机接入机会RO的等间隔时域位置配置至终端设备;
发送位置位图BITMAP配置至终端设备,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
发送物理随机接入信道配置索引prach-ConfigurationIndex和/或随机接入SSB传输模板索引ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有TDM复用的时域位置配置,ra-ssb-OccasionMaskIndex携带有TDM复用的时域位置配置。
以及,在本公开的一个实施例之中,发送TDM复用的频域位置配置至终端设备,包括以下至少一种:
发送TDM复用的固定频域位置的配置至终端设备;
发送TDM复用的频域位置变化配置至终端设备。
以及,在本公开的一个实施例之中,发送TDM复用的频域位置变化配置至终端设备,包括以下至少一种:
发送TDM复用的第一频域位置变化配置至终端设备,其中,第一频域位置变化配置用于指示频域位置变化为从第一频域位置集合中最高频域位置开始递减;
发送TDM复用的第二频域位置变化配置至终端设备,其中,第二频域位置变化配置用于指示频域位置变化为 从第一频域位置集合中最低频域位置开始递增;
发送TDM复用的第三频域位置变化配置至终端设备,其中,第三频域位置变化配置用于指示频域位置变化为在第一频域位置集合中先配置最高频域位置,再配置最低频域位置,配置次高频域位置,再配置次低频域位置,以此类推,直至配置完成第一频域位置集合中的所有频域位置;
发送TDM复用的第四频域位置变化配置至终端设备,其中,第四频域位置变化配置用于指示频域位置变化为在第一频域位置集合中先配置最低频域位置,再配置最高频域位置,配置次低频域位置,再配置次高频域位置,以此类推,直至配置完成所有频域位置。
以及,在本公开的一个实施例之中,发送多PRACH传输的FDM复用配置至终端设备,包括以下至少一种:
发送第一多PRACH传输配置至终端设备,其中,第一多PRACH传输配置用于指示复用方式为FDM复用模式;
发送FDM复用规则配置至终端设备;
发送FDM位置配置至终端设备;
发送FDM复用的RO的时域位置配置至终端设备。
以及,在本公开的一个实施例之中,发送FDM位置配置至终端设备,包括以下至少一种:
发送可用的FDM位置的BITMAP配置至终端设备;
发送可用的FDM位置的起始位置偏移的配置至终端设备;
发送FDM位置间的间隔的配置至终端设备。
以及,在本公开的一个实施例之中,发送FDM复用的RO的时域位置配置至终端设备,包括以下至少一种:
发送FDM复用的RO的等间隔时域位置配置至终端设备;
发送位置BITMAP配置至终端设备,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
以及,在本公开的一个实施例之中,发送FDM复用的RO的时域位置配置至终端设备,包括:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有FDM复用的RO的时域位置配置,ra-ssb-OccasionMaskIndex携带有FDM复用的RO的时域位置配置。
以及,在本公开的一个实施例之中,,发送多PRACH传输的TDM和FDM复用配置至终端设备,包括以下至少一种:
发送第二多PRACH传输配置至终端设备,其中,第二多PRACH传输配置用于指示复用方式为TDM和FDM复用模式;
发送FDM复用的时域位置配置至终端设备;
发送FDM复用的频域位置配置至终端设备;
发送FDM复用规则配置至终端设备。
以及,在本公开的一个实施例之中,TDM复用的时域位置配置,包括以下至少一种:
FDM复用的RO的等间隔时域位置配置;
位置BITMAP配置,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
以及,在本公开的一个实施例之中,发送FDM复用的时域位置配置至终端设备,包括:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有FDM复用的RO的时域位置配置,ra-ssb-OccasionMaskIndex携带有FDM复用的RO的时域位置配置。
以及,在本公开的一个实施例之中,FDM复用的频域位置配置,包括以下至少一种:
可用的FDM位置的BITMAP配置;
可用的FDM位置的起始位置偏移的配置;
FDM位置间的间隔配置。
以及,在本公开的一个实施例之中,发送多PRACH传输的TDM和FDM复用配置至终端设备,包括:
发送FDM复用的多PRACH传输数量配置至终端设备。
以及,在本公开的一个实施例之中,FDM复用的多PRACH传输数量配置用于指示FDM复用的多PRACH传输数量为多PRACH配置中FDM的RO数量。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
发送多PRACH传输配置至终端设备,其中,多PRACH传输配置包括基于非竞争的随机接入CFRA的第一多PRACH传输配置和/或基于竞争的随机接入CBRA的第二多PRACH传输配置。
以及,在本公开的一个实施例之中,CFRA的触发方式包括以下至少一种:
物理下行控制信道PDCCH触发;
切换触发;
波束失败恢复触发;
PScell添加或改变触发。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于PDCCH触发的CFRA,发送PDCCH顺序PDCCH order至终端设备,PDCCH order携带有第一多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于PScell添加或改变触发的CFRA,发送专用随机接入配置RACH-ConfigDedicated至终端设备,其中,RACH-ConfigDedicated的CFRA配置携带有第一多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于切换触发的CFRA,发送RACH-ConfigDedicated至终端设备,其中,RACH-ConfigDedicated的CFRA配置携带有第一多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于波束失败恢复触发的CFRA,发送波束失败恢复配置BeamFailureRecoveryConfig至终端设备,其中,BeamFailureRecoveryConfig携带有第一多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
通过广播信令发送或者通过专用信令发送第二多PRACH传输配置至终端设备。
以及,在本公开的一个实施例之中,广播信令包括系统消息块1SIB1。
以及,在本公开的一个实施例之中,专用信令包括以下至少一种:
无线资源控制RRC重配置RRCReconfiguration消息;
RRC恢复RRCResume消息;
RRC释放RRCRelease消息;
RRC建立RRCSetup消息。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
发送公共随机接入信道RACH配置至终端设备,其中,RACH配置携带有第二多PRACH传输配置。
以及,在本公开的一个实施例之中,RACH配置包括在各个部分带宽BWP上单独配置的公共RACH资源。
以及,在本公开的一个实施例之中,发送RACH配置至终端设备,包括:
发送SIB1的初始BWP配置中的第一随机接入公共配置RACH-ConfigCommon至终端设备,其中,第一RACH-ConfigCommon携带有RACH配置。
以及,在本公开的一个实施例之中,发送RACH配置至终端设备,包括:
发送RRCReconfiguration消息的BWP配置的第二RACH-ConfigCommon至终端设备,其中,第二RACH-ConfigCommon携带有RACH配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
发送专用RACH配置至终端设备,其中,专用RACH配置携带有第二多PRACH传输配置。
以及,在本公开的一个实施例之中,发送专用RACH配置至终端设备,包括:
响应于波束失败恢复触发的CBRA,发送波束失败恢复配置BeamFailureRecoveryConfig至终端设备,其中,BeamFailureRecoveryConfig携带有专用RACH配置中所配置的第二多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于PScell添加或改变触发的CBRA,发送专用随机接入配置RACH-ConfigDedicated至终端设备,其中,RACH-ConfigDedicated携带有专用RACH配置中所配置的第二多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于切换触发的CBRA,发送RACH-ConfigDedicated至终端设备,其中,RACH-ConfigDedicated携带有专用RACH配置中所配置的第二多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
发送特征组合feature combination的RACH配置至终端设备,其中,feature combination的RACH配置携带有第二多PRACH传输配置。
以及,在本公开的一个实施例之中,feature combination包括覆盖增强特征Coverage Enhancement feature,其中,Coverage Enhancement feature用于指示支持对CBRA配置的多PRACH传输的Coverage Enhancement feature。
以及,在本公开的一个实施例之中,该方法还包括:
接收终端设备发送的PRACH能力信息,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息。
以及,在本公开的一个实施例之中,接收终端设备发送的PRACH能力信息,包括:
接收终端设备发送的终端能力信息UECapabilityInformation,其中,UECapabilityInformation携带有PRACH能力信息。
以及,在本公开的一个实施例之中,PRACH能力信息包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持FDM和TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
以及,在本公开的一个实施例之中,在接收终端设备发送的PRACH能力信息之后,还包括:
基于PRACH能力信息,通过专用信令为终端设备配置多PRACH传输配置。
综上所述,在本公开实施例之中,发送多PRACH传输配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输配置至终端设备,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图2为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图2所示,该方法可以包括以下步骤:
步骤201、发送多PRACH传输的TDM时分复用配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
其中,发送多PRACH传输配置至终端设备,包括以下至少一种:
发送多PRACH传输的TDM时分复用配置至终端设备;
发送多PRACH传输的FDM频分复用配置至终端设备;
发送多PRACH传输的TDM和FDM复用配置至终端设备。
以及,在本公开的一个实施例之中,发送多PRACH传输的TDM复用配置至终端设备,包括以下至少一种:
发送TDM复用的时域位置配置至终端设备;
发送TDM复用的频域位置配置至终端设备。
步骤202、接收终端设备通过TDM复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送多PRACH传输的TDM时分复用配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过TDM复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送TDM时分复用配置至终端设备,以使终端设备通过TDM复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图3为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图3所示,该方法可以包括以下步骤,其中,步骤301和步骤302执行其中一种:
步骤301,发送TDM复用的时域位置配置至终端设备;
其中,在本公开的一个实施例之中,发送TDM复用的时域位置配置至终端设备,包括以下至少一种:
发送TDM复用的随机接入机会RO的等间隔时域位置配置至终端设备;
发送位置位图BITMAP配置至终端设备,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
步骤302,发送TDM复用的频域位置配置至终端设备;
步骤303、接收终端设备通过TDM复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送多PRACH传输的TDM时分复用配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过TDM复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送TDM时分复用配置至终端设备,以使终端设备通过TDM复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。在本公开实施例之中,具体公开了多PRACH传输配置多PRACH传输的TDM时分复用配置的具体内容。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图4为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图4所示,该方法可以包括以下步骤:
步骤401,发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,prach-ConfigurationIndex携带有TDM复用的时域位置配置,ra-ssb-OccasionMaskIndex携带有TDM复用的时域位置配置;
步骤402、接收终端设备通过TDM复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,接收终端设备通过TDM复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以通过prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex发送TDM时分复用配置至终端设备,以使终端设备通过TDM复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图5为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图5所示,该方法可以包括以下步骤,其中,步骤501和步骤502执行其中一种:
步骤501、发送TDM复用的固定频域位置的配置至终端设备;
步骤502、发送TDM复用的频域位置变化配置至终端设备;
其中,在本公开的一个实施例中,发送TDM复用的频域位置变化配置至终端设备,包括以下至少一种:
发送TDM复用的第一频域位置变化配置至终端设备,其中,第一频域位置变化配置用于指示频域位置变化为从第一频域位置集合中最高频域位置开始递减;
发送TDM复用的第二频域位置变化配置至终端设备,其中,第二频域位置变化配置用于指示频域位置变化为从第一频域位置集合中最低频域位置开始递增;
发送TDM复用的第三频域位置变化配置至终端设备,其中,第三频域位置变化配置用于指示频域位置变化为在第一频域位置集合中先配置最高频域位置,再配置最低频域位置,配置次高频域位置,再配置次低频域位置,以此类推,直至配置完成第一频域位置集合中的所有频域位置;
发送TDM复用的第四频域位置变化配置至终端设备,其中,第四频域位置变化配置用于指示频域位置变化为在第一频域位置集合中先配置最低频域位置,再配置最高频域位置,配置次低频域位置,再配置次高频域位置,以此类推,直至配置完成所有频域位置。
示例地,在本公开的一个实施例之中,第一、第二、第三和第四仅仅用于指示各频域位置变化配置的不同。该第一频域位置变化配置并不特指某一固定频域位置变化配置。例如,当第一频域位置集合中的最高频域位置发生变化时,该第一频域位置变化配置也可以相应变化。其中,第一频域位置变化配置对应的步长可以是1,还可以是2,还可以是其他值。
示例地,在本公开的一个实施例之中,该第儿童频域位置变化配置并不特指某一固定频域位置变化配置。例如,当第二频域位置集合中的最低频域位置发生变化时,该第二频域位置变化配置也可以相应变化。其中,第二频域位置变化配置对应的步长可以是1,还可以是2,还可以是其他值。
步骤503、接收终端设备通过TDM复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送多PRACH传输的TDM时分复用配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过TDM复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送TDM时分复用配置至终端设备,以使终端设备通过TDM复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。在本公开实施例之中,具体公开了多PRACH传输的TDM时分复用配置包括TDM复用的固定频域位置和TDM复用的频域位置变化配置。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图6为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图6所示,该方法可以包括以下步骤:
步骤601、发送多PRACH传输的FDM复用配置至终端设备;
其中,在本公开的一个实施例之中,发送多PRACH传输的FDM复用配置至终端设备,包括以下至少一种:
发送第一多PRACH传输配置至终端设备,其中,第一多PRACH传输配置用于指示复用方式为FDM复用模式;
发送FDM复用规则配置至终端设备;
发送FDM位置配置至终端设备;
发送FDM复用的RO的时域位置配置至终端设备。
以及,在本公开的一个实施例之中,发送FDM位置配置至终端设备,包括以下至少一种:
发送可用的FDM位置的BITMAP配置至终端设备;
发送可用的FDM位置的起始位置偏移的配置至终端设备;
发送FDM位置间的间隔的配置至终端设备。
以及,在本公开的一个实施例之中,发送FDM复用的RO的时域位置配置至终端设备,包括以下至少一种:
发送FDM复用的RO的等间隔时域位置配置至终端设备;
发送位置BITMAP配置至终端设备,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
以及,在本公开的一个实施例之中,发送FDM复用的RO的时域位置配置至终端设备,包括:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有FDM复用的RO的时域位置配置,ra-ssb-OccasionMaskIndex携带有FDM复用的RO的时域位置配置。
其中,在本公开的一个实施例中,发送FDM复用规则配置至终端设备,包括以下至少一种:
发送FDM复用的第五频域位置变化配置至终端设备,其中,第五频域位置变化配置用于指示频域位置变化为从第二频域位置集合中最高频域位置开始递减;
发送FDM复用的第六频域位置变化配置至终端设备,其中,第六频域位置变化配置用于指示频域位置变化为从第二频域位置集合中最低频域位置开始递增;
发送FDM复用的第七频域位置变化配置至终端设备,其中,第七频域位置变化配置用于指示频域位置变化为在第二频域位置集合中先配置最高频域位置,再配置最低频域位置,配置次高频域位置,再配置次低频域位置,以此类推,直至配置完成第二频域位置集合中的所有频域位置;
发送FDM复用的第八频域位置变化配置至终端设备,其中,第八频域位置变化配置用于指示频域位置变化为在第二频域位置集合中先配置最低频域位置,再配置最高频域位置,配置次低频域位置,再配置次高频域位置,以此类推,直至配置完成第二频域位置集合中的所有频域位置。
步骤602、接收终端设备通过FDM复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送多PRACH传输的FDM复用配置至终端设备,接收终端设备通过FDM复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输的FDM复用配置至终端设备,以使终端设备通过FDM复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图7为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图7所示,该方法可以包括以下步骤:
步骤701、发送多PRACH传输的TDM和FDM复用配置至终端设备;
其中,在本公开的一个实施例之中,发送多PRACH传输的TDM和FDM复用配置至终端设备,包括以下至少一种:
发送第二多PRACH传输配置至终端设备,其中,第二多PRACH传输配置用于指示复用方式为TDM和FDM复用模式;
发送TDM复用的时域位置配置至终端设备;
发送FDM复用的频域位置配置至终端设备;
发送FDM复用规则配置至终端设备。
以及,在本公开的一个实施例之中,TDM复用的时域位置配置,包括以下至少一种:
FDM复用的RO的等间隔时域位置配置;
位置BITMAP配置,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
以及,在本公开的一个实施例之中,发送FDM复用的时域位置配置至终端设备,包括:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有FDM复用的RO的时域位置配置,ra-ssb-OccasionMaskIndex携带有FDM复用的RO的时域位置配置。
以及,在本公开的一个实施例之中,FDM复用的频域位置配置,包括以下至少一种:
可用的FDM位置的BITMAP配置;
可用的FDM位置的起始位置偏移的配置;
FDM位置间的间隔配置。
其中,在本公开的一个实施例中,发送FDM复用规则配置至终端设备,包括以下至少一种:
发送FDM复用的第九频域位置变化配置至终端设备,其中,第九频域位置变化配置用于指示频域位置变化为从第三频域位置集合中最高频域位置开始递减;
发送FDM复用的第十频域位置变化配置至终端设备,其中,第十频域位置变化配置用于指示频域位置变化为从第三频域位置集合中最低频域位置开始递增;
发送FDM复用的第十一频域位置变化配置至终端设备,其中,第十一频域位置变化配置用于指示频域位置变化为在第三频域位置集合中先配置最高频域位置,再配置最低频域位置,配置次高频域位置,再配置次低频域位置,以此类推,直至配置完成第三频域位置集合中的所有频域位置;
发送FDM复用的第十二频域位置变化配置至终端设备,其中,第十二频域位置变化配置用于指示频域位置变化为在第三频域位置集合中先配置最低频域位置,再配置最高频域位置,配置次低频域位置,再配置次高频域位置,以此类推,直至配置完成第三频域位置集合中的所有频域位置。
其中,在本公开的一个实施例中,第二频域位置集合可以与第三频域位置集合相同,也可以与第三频域位置集合不同。
步骤702、接收终端设备通过TDM和FDM复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送多PRACH传输的TDM和FDM复用配置至终端设备,接收终端设备通过TDM和FDM复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输的TDM和FDM复用配置置至终端设备,以使终端设备通过TDM和FDM复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图8为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图8所示,该方法可以包括以下步骤:
步骤801、发送FDM复用的多PRACH传输数量配置至终端设备;
以及,在本公开的一个实施例之中,FDM复用的多PRACH传输数量配置用于指示FDM复用的多PRACH传输数量为多PRACH配置中FDM的RO数量。
示例地,网络侧设备发送FDM复用的多PRACH传输数量配置至终端设备时,可以发送指示FDM复用的多PRACH传输数量为多PRACH配置中FDM的RO数量的FDM复用的多PRACH传输数量配置至终端设备,还可以发送指示FDM复用的多PRACH传输数量为多PRACH配置中FDM的最大RO数量的FDM复用的多PRACH传输数量配置至终端设备。
步骤802、接收终端设备通过TDM和FDM复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送多PRACH传输的TDM和FDM复用配置至终端设备,接收终端设备通过TDM和FDM复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输的TDM和FDM复用配置至终端设备,以使终端设备通过TDM和FDM复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图9为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图9所示,该方法可以包括以下步骤:
步骤901、发送多PRACH传输配置至终端设备,其中,多PRACH传输配置包括基于非竞争的随机接入CFRA的第一多PRACH传输配置和/或基于竞争的随机接入CBRA的第二多PRACH传输配置,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
步骤902、接收终端设备通过复用方式发送的多个PRACH。
以及,在本公开的一个实施例之中,CFRA的触发方式包括以下至少一种:
物理下行控制信道PDCCH触发;
切换触发;
波束失败恢复触发;
PScell添加或改变触发。
综上所述,在本公开实施例之中,发送多PRACH传输配置至终端设备,其中,多PRACH传输配置包括CFRA的第一多PRACH传输配置和/或CBRA的第二多PRACH传输配置,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,网络 侧设备可以发送多PRACH传输配置至终端设备,以接收到终端设备通过复用方式发送的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图10为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图10所示,该方法可以包括以下步骤:
步骤1001、响应于PDCCH触发的CFRA,发送PDCCH顺序PDCCH order至终端设备,其中,PDCCH order携带有第一多PRACH传输配置,第一多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
步骤1002、接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,响应于PDCCH触发的CFRA,发送PDCCH顺序PDCCH order至终端设备,其中,PDCCH order携带有第一多PRACH传输配置,第一多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输配置至终端设备,以接收到终端设备通过复用方式发送的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本申请具体公开了响应于PDCCH触发的CFRA,可以发送PDCCH order至终端设备,以发送第一多PRACH传输配置至终端设备,可以提高第一多PRACH传输配置发送的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图11为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图11所示,该方法可以包括以下步骤:
步骤1101、响应于PScell添加或改变触发的CFRA,发送专用随机接入配置RACH-ConfigDedicated至终端设备,其中,RACH-ConfigDedicated的CFRA配置携带有第一多PRACH传输配置,第一多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
步骤1102、接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,响应于PScell添加或改变触发的CFRA,发送专用随机接入配置RACH-ConfigDedicated至终端设备,其中,RACH-ConfigDedicated的CFRA配置携带有第一多PRACH传输配置,第一多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输配置至终端设备,以接收到终端设备通过复用方式发送的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。在本公开实施例之中,具体公开响应于PScell添加或改变触发的CFRA,可以发送与该触发方式对应的RACH-ConfigDedicated至终端设备,以发送第一多PRACH传输配置至终端设备,可以提高第一多PRACH传输配置发送的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图12为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图12所示,该方法可以包括以下步骤:
步骤1201、响应于波束失败恢复触发的CFRA,发送波束失败恢复配置BeamFailureRecoveryConfig至终端设备,其中,BeamFailureRecoveryConfig携带有第一多PRACH传输配置,第一多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
步骤1202、接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,响应于波束失败恢复触发的CFRA,发送波束失败恢复配置BeamFailureRecoveryConfig至终端设备,其中,BeamFailureRecoveryConfig携带有第一多PRACH传输配置,第一多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,网络侧设备可以发送多PRACH传输配置至终端设备,以接收到终端设备通过复用方式发送的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。在本公开实施例之中,具体公开响应于波束失败恢复触发的CFRA,可以发送与该触发方式对应的波束失败恢复配置至终端设备,以发送第一多PRACH传输配置至终端设备,可以提高第一多PRACH传输配置发送的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图13为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图 13所示,该方法可以包括以下步骤:
步骤1301、通过广播信令发送或者通过专用信令发送第二多PRACH传输配置至终端设备,其中,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
其中,在本公开的一个实施例之中,广播信令包括系统消息块1SIB1。
以及,在本公开的一个实施例之中,专用信令包括以下至少一种:
无线资源控制RRC重配置RRCReconfiguration消息;
RRC恢复RRCResume消息;
RRC释放RRCRelease消息;
RRC建立RRCSetup消息。
步骤1302、接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,通过广播信令发送或者通过专用信令发送第二多PRACH传输配置至终端设备,其中,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,具体公开通过广播信令或者通过专用信令发送第二多PRACH传输配置至终端设备,可以提高第二多PRACH传输配置发送的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图14为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图14所示,该方法可以包括以下步骤:
步骤1401、发送公共随机接入信道RACH配置至终端设备,其中,RACH配置携带有第二多PRACH传输配置,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
其中,在本公开的一个实施例之中,RACH配置包括在各个部分带宽BWP上单独配置的公共RACH资源。
以及,在本公开的一个实施例之中,发送RACH配置至终端设备,包括:
发送SIB1的初始BWP配置中的第一随机接入公共配置RACH-ConfigCommon至终端设备,其中,第一RACH-ConfigCommon携带有RACH配置。
示例地,在本公开的一个实施例之中,发送RACH配置至终端设备,包括:
发送RRCReconfiguration消息的BWP配置的第二RACH-ConfigCommon至终端设备,其中,第二RACH-ConfigCommon携带有RACH配置。
步骤1402、接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送公共随机接入信道RACH配置至终端设备,其中,RACH配置携带有第二多PRACH传输配置,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,具体公开发送RACH配置至终端设备,以发送第二多PRACH传输配置至终端设备,可以提高第二多PRACH传输配置发送的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图15为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图15所示,该方法可以包括以下步骤:
步骤1501、发送专用RACH配置至终端设备,其中,专用RACH配置携带有第二多PRACH传输配置,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
其中,在本公开的一个实施例之中,发送专用RACH配置至终端设备,包括:
以及,在本公开的一个实施例之中,响应于波束失败恢复触发的CBRA,发送波束失败恢复配置BeamFailureRecoveryConfig至终端设备,BeamFailureRecoveryConfig携带有专用RACH配置中所配置的第二多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于PScell添加或改变触发的CBRA,发送专用随机接入配置RACH-ConfigDedicated至终端设备,RACH-ConfigDedicated携带有专用RACH配置中所配置的第二多PRACH传输配置。
以及,在本公开的一个实施例之中,发送多PRACH传输配置至终端设备,包括:
响应于切换触发的CBRA,发送RACH-ConfigDedicated至终端设备,RACH-ConfigDedicated携带有专用RACH配置中所配置的第二多PRACH传输配置。
步骤1502、接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送专用RACH配置至终端设备,其中,专用RACH配置携带有第二多PRACH传输配置,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,具体公开发送专用RACH配置至终端设备,以发送第二多PRACH传输配置至终端设备,可以提高第二多PRACH传输配置发送的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图16为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图16所示,该方法可以包括以下步骤:
步骤1601、发送特征组合feature combination的RACH配置至终端设备,其中,feature combination的RACH配置携带有第二多PRACH传输配置,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
其中,在本公开的一个实施例中,feature combination包括覆盖增强特征Coverage Enhancement feature,其中,Coverage Enhancement feature用于指示支持对CBRA配置的多PRACH传输的Coverage Enhancement feature。
步骤1602、接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例之中,发送feature combination的RACH配置至终端设备,其中,feature combination的RACH配置携带有第二多PRACH传输配置,第二多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,具体公开发送feature combination的RACH配置至终端设备,以发送第二多PRACH传输配置至终端设备,可以提高第二多PRACH传输配置发送的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图17为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图17所示,该方法可以包括以下步骤:
步骤1701、接收终端设备发送的PRACH能力信息,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息。
其中,在本公开的一个实施例之中,接收终端设备发送的PRACH能力信息,包括:
接收终端设备发送的终端能力信息UECapabilityInformation,其中,UECapabilityInformation携带有PRACH能力信息。
以及,在本公开的一个实施例之中,PRACH能力信息包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持FDM和TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
综上所述,在本公开实施例之中,接收终端设备发送的PRACH能力信息,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息。在本公开实施例之中,网络侧设备可以基于终端设备对应的PRACH能力信息,确定复用方式,可以提高复用方式确定的准确性,可以提高多个PRACH传输的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图18为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由网络侧设备执行,如图18所示,该方法可以包括以下步骤:
步骤1801、接收终端设备发送的PRACH能力信息,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息;
步骤1802、基于PRACH能力信息,通过专用信令为终端设备配置多PRACH传输配置。
综上所述,在本公开实施例之中,接收终端设备发送的PRACH能力信息,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息,基于PRACH能力信息,通过专用信令为终端设备配置多PRACH传输配置。在本公开实施例之中,网络侧设备可以基于终端设备对应的PRACH能力信息,通过专用信令为终端设备配置多PRACH传输配置,可以提高多PRACH传输配置的配置准确性,可以提高多个PRACH传输的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图19为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由终端设备执行,如图19 所示,该方法可以包括以下步骤:
步骤1901、接收网络侧设备发送的多PRACH传输配置,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
步骤1902、通过复用方式发送多个PRACH至网络侧设备。
其中,在本公开的一个实施例中,通过复用方式发送多个PRACH至网络侧设备,包括以下至少一种:
通过TDM复用方式发送多个PRACH至网络侧设备;
通过FDM复用方式发送多个PRACH至网络侧设备;
通过TDM和FDM复用方式发送多个PRACH至网络侧设备。
以及,在本公开的一个实施例中,在接收网络侧设备发送的多PRACH传输配置之前,还包括:
发送PRACH能力信息至网络侧设备,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息。
示例地,在本公开的一个实施例中,发送PRACH能力信息至网络侧设备,包括:
发送UECapabilityInformation至网络侧设备,其中,UECapabilityInformation携带有PRACH能力信息。
示例地,在本公开的一个实施例中,PRACH能力信息包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持FDM和TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
综上所述,在本公开实施例之中,接收网络侧设备发送的多PRACH传输配置,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;通过复用方式发送多个PRACH至网络侧设备。在本公开实施例之中,网络侧设备可以发送多PRACH传输配置至终端设备,终端设备可以通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图20为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由终端设备执行,如图20所示,该方法可以包括以下步骤:
步骤2001、接收网络侧设备发送的多PRACH传输配置,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
以下步骤择一执行:
步骤2002、通过TDM复用方式发送多个PRACH至网络侧设备;
步骤2003、通过FDM复用方式发送多个PRACH至网络侧设备;
步骤2004、通过TDM和FDM复用方式发送多个PRACH至网络侧设备。
示例地,在本公开的一个实施例之中,终端设备的多个PRACH传输例如可以采用不同的时域RO资源。例如,终端设备在可以用于多PRACH传输的RO的第一个时域位置上选择一个频域位置的RO发送PRACH。其中,频域位置的选择方式包括以下方式:终端设备自由选择一个或终端设备按照频域位置变化配置选择一个。其中,TDM复用的频域位置变化配置的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。终端设备在可以用于多PRACH传输的RO的第二个时域位置上选择一个频域位置的RO发送PRACH,该频域位置选择包括终端设备自由选择一个,或选择与第一次发送相同的频域位置,或按照频域位置变化配置选择一个第二个频域位置,以此类推,直至完成后续的PRACH发送。
示例地,在本公开的一个实施例之中,终端设备的多个PRACH传输例如可以采用不同的频域RO资源。终端设备确定可以进行多PRACH传输的RO的时域资源位置,终端设备可以在该时域位置上选择X个不同频域位置发送X个PRACH,其中,X的值等于多PRACH传输的次数,X为正整数。X个频域位置的选择可以终端设备自由选择,或者按照频域位置变化配置进行选择。
示例地,在本公开的一个实施例之中,终端设备的多个PRACH传输例如可以采用不同的时域和不同的频域RO资源。终端设备例如在可以用于多PRACH传输的RO的第一个时域位置上选择X个频域位置的RO发送PRACH,X个频域位置的选择可以终端设备自由选择,或者按照频域位置变化配置进行选择。其中,X值的确定包括以下至少一种方式:第一,终端设备基于网络侧设备发送的多PRACH传输配置确定X;第二,终端设备根据FDM的RO的总个数确定,例如可以是X=min(FDM RO总数,剩余的多PRACH传输次数)。终端设备在可以用于多PRACH传输的RO的第二个时域位置上选择Y个频域位置的RO发送PRACH,Y个频域位置可以自由选择,或者采用第一个时域位置使用的频域位置,或按照频域位置变化配置选择除前面选择的X个频域位置后的Y个频域位置。其 中,Y值的确定包括以下至少一种方式:第一,终端设备基于网络侧设备发送的多PRACH传输配置确定Y;第二,终端设备根据FDM的RO的总个数确定,例如可以是Y=min(FDM RO总数,剩余的多PRACH传输次数)。以此类推,直至完成后续的PRACH发送。
其中,关于步骤2001-步骤2004的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例之中,接收网络侧设备发送的多PRACH传输配置,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式,通过复用方式发送多个PRACH至网络侧设备。在本公开实施例之中,具体公开了复用方式的具体方式,以使终端设备可以通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以多个PRACH的传输准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图21为本公开实施例所提供的一种多PRACH传输配置方法的流程示意图,该方法由终端设备执行,如图21所示,该方法可以包括以下步骤:
步骤2101、发送PRACH能力信息至网络侧设备,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息;
步骤2102、接收网络侧设备发送的多PRACH传输配置,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
步骤2103、通过复用方式发送多个PRACH至网络侧设备。
其中,在本公开的一个实施例中,PRACH能力信息,包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持FDM和TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
其中,关于步骤2101-步骤2103的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例之中,发送PRACH能力信息至网络侧设备,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息;接收网络侧设备发送的多PRACH传输配置,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;通过复用方式发送多个PRACH至网络侧设备。在本公开实施例之中,通过上传PRACH能力信息至网络侧设备,可以提高多PRACH传输配置的配置准确性,可以提高多个PRACH传输的准确性。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
图22为本公开实施例所提供的一种多PRACH传输配置装置的结构示意图,如图22所示,该装置2200可以包括:
发送模块2201,用于发送多PRACH传输配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
接收模块2202,用于接收终端设备通过复用方式发送的多个PRACH。
综上所述,在本公开实施例的多PRACH传输配置装置之中,通过发送模块可以发送多PRACH传输配置至终端设备,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;接收模块可以接收终端设备通过复用方式发送的多个PRACH。在本公开实施例之中,多PRACH传输配置装置可以发送多PRACH传输配置至终端设备,以使终端设备可以通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,减少无法传输多个PRACH的情况,可以提高随机接入成功概率。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理方法,以使终端设备通过多PRACH传输配置所指示的复用方式在PRACH资源之上传输的多个PRACH,提升PRACH信道的覆盖。
其次,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备,包括以下至少一种:
发送多PRACH传输的TDM时分复用配置至终端设备;
发送多PRACH传输的FDM频分复用配置至终端设备;
发送多PRACH传输的TDM和FDM复用配置至终端设备。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输的TDM复用配置至终端设备时,包括以下至少一种:
发送TDM复用的时域位置配置至终端设备;
发送TDM复用的频域位置配置至终端设备。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送TDM复用的时域位置配置至终端设备时,包括以下至少一种:
发送TDM复用的随机接入机会RO的等间隔时域位置配置至终端设备;
发送位置位图BITMAP配置至终端设备,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
发送物理随机接入信道配置索引prach-ConfigurationIndex和/或随机接入SSB传输模板索引ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有TDM复用的时域位置配置,ra-ssb-OccasionMaskIndex携带有TDM复用的时域位置配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送TDM复用的频域位置配置至终端设备时,包括以下至少一种:
发送TDM复用的固定频域位置的配置至终端设备;
发送TDM复用的频域位置变化配置至终端设备。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送TDM复用的频域位置变化配置至终端设备时,包括以下至少一种:
发送TDM复用的第一频域位置变化配置至终端设备,其中,第一频域位置变化配置用于指示频域位置变化为从第一频域位置集合中最高频域位置开始递减;
发送TDM复用的第二频域位置变化配置至终端设备,其中,第二频域位置变化配置用于指示频域位置变化为从第一频域位置集合中最低频域位置开始递增;
发送TDM复用的第三频域位置变化配置至终端设备,其中,第三频域位置变化配置用于指示频域位置变化为在第一频域位置集合中先配置最高频域位置,再配置最低频域位置,配置次高频域位置,再配置次低频域位置,以此类推,直至配置完成第一频域位置集合中的所有频域位置;
发送TDM复用的第四频域位置变化配置至终端设备,其中,第四频域位置变化配置用于指示频域位置变化为在第一频域位置集合中先配置最低频域位置,再配置最高频域位置,配置次低频域位置,再配置次高频域位置,以此类推,直至配置完成所有频域位置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输的FDM复用配置至终端设备时,包括以下至少一种:
发送第一多PRACH传输配置至终端设备,其中,第一多PRACH传输配置用于指示复用方式为FDM复用模式;
发送FDM复用规则配置至终端设备;
发送FDM位置配置至终端设备;
发送FDM复用的RO的时域位置配置至终端设备。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送FDM位置配置至终端设备时,包括以下至少一种:
发送可用的FDM位置的BITMAP配置至终端设备;
发送可用的FDM位置的起始位置偏移的配置至终端设备;
发送FDM位置间的间隔的配置至终端设备。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送FDM复用的RO的时域位置配置至终端设备时,包括以下至少一种:
发送FDM复用的RO的等间隔时域位置配置至终端设备;
发送位置BITMAP配置至终端设备,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送FDM复用的RO的时域位置配置至终端设备时,具体用于:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有FDM复用的RO的时域位置配置,ra-ssb-OccasionMaskIndex携带有FDM复用的RO的时域位置配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输的TDM和FDM复用配置至终端设备时,包括以下至少一种:
发送第二多PRACH传输配置至终端设备,其中,第二多PRACH传输配置用于指示复用方式为TDM和FDM复用模式;
发送FDM复用的时域位置配置至终端设备;
发送FDM复用的频域位置配置至终端设备;
发送FDM复用规则配置至终端设备。
可选地,在本公开的一个实施例之中,TDM复用的时域位置配置,包括以下至少一种:
FDM复用的RO的等间隔时域位置配置;
位置BITMAP配置,其中,BITMAP的每一个位BIT对应一个RO的时域位置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送FDM复用的时域位置配置至终端设备时,具体用于:
发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至终端设备,其中,prach-ConfigurationIndex携带有FDM复用的RO的时域位置配置,ra-ssb-OccasionMaskIndex携带有FDM复用的RO的时域位置配置。
可选地,在本公开的一个实施例之中,FDM复用的频域位置配置,包括以下至少一种:
可用的FDM位置的BITMAP配置;
可用的FDM位置的起始位置偏移的配置;
FDM位置间的间隔配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输的TDM和FDM复用配置至终端设备时,具体用于:
发送FDM复用的多PRACH传输数量配置至终端设备。
可选地,在本公开的一个实施例之中,FDM复用的多PRACH传输数量配置用于指示FDM复用的多PRACH传输数量为多PRACH配置中FDM的RO数量。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
发送多PRACH传输配置至终端设备,其中,多PRACH传输配置包括基于非竞争的随机接入CFRA的第一多PRACH传输配置和/或基于竞争的随机接入CBRA的第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,CFRA的触发方式包括以下至少一种:
物理下行控制信道PDCCH触发;
切换触发;
波束失败恢复触发;
PScell添加或改变触发。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
响应于PDCCH触发的CFRA,发送PDCCH顺序PDCCH order至终端设备,PDCCH order携带有第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
响应于PScell添加或改变触发的CFRA,发送专用随机接入配置RACH-ConfigDedicated至终端设备,RACH-ConfigDedicated的CFRA配置携带有第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
响应于切换触发的CFRA,发送RACH-ConfigDedicated至终端设备,RACH-ConfigDedicated的CFRA配置携带有第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
响应于波束失败恢复触发的CFRA,发送波束失败恢复配置BeamFailureRecoveryConfig至终端设备,BeamFailureRecoveryConfig携带有第一多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
通过广播信令发送或者通过专用信令发送第二多PRACH传输配置至终端设备。
可选地,在本公开的一个实施例之中,广播信令包括系统消息块1SIB1。
可选地,在本公开的一个实施例之中,专用信令包括以下至少一种:
无线资源控制RRC重配置RRCReconfiguration消息;
RRC恢复RRCResume消息;
RRC释放RRCRelease消息;
RRC建立RRCSetup消息。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
发送公共随机接入信道RACH配置至终端设备,其中,RACH配置携带有第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,RACH配置包括在各个部分带宽BWP上单独配置的公共RACH资源。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送RACH配置至终端设备时,具体用于:
发送SIB1的初始BWP配置中的第一随机接入公共配置RACH-ConfigCommon至终端设备,其中,第一RACH-ConfigCommon携带有RACH配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送RACH配置至终端设备,包括:
发送RRCReconfiguration消息的BWP配置的第二RACH-ConfigCommon至终端设备,其中,第二RACH-ConfigCommon携带有RACH配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
发送专用RACH配置至终端设备,其中,专用RACH配置携带有第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送专用RACH配置至终端设备时,具体用于:
响应于波束失败恢复触发的CBRA,发送波束失败恢复配置BeamFailureRecoveryConfig至终端设备,BeamFailureRecoveryConfig携带有专用RACH配置中所配置的第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
响应于PScell添加或改变触发的CBRA,发送专用随机接入配置RACH-ConfigDedicated至终端设备,RACH-ConfigDedicated携带有专用RACH配置中所配置的第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
响应于切换触发的CBRA,发送RACH-ConfigDedicated至终端设备,RACH-ConfigDedicated携带有专用RACH配置中所配置的第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,发送模块2201,用于发送多PRACH传输配置至终端设备时,具体用于:
发送特征组合feature combination的RACH配置至终端设备,其中,feature combination的RACH配置携带有第二多PRACH传输配置。
可选地,在本公开的一个实施例之中,feature combination包括覆盖增强特征Coverage Enhancement feature,其中,Coverage Enhancement feature用于指示支持对CBRA配置的多PRACH传输的Coverage Enhancement feature。
可选地,在本公开的一个实施例之中,接收模块2202,还用于接收终端设备发送的PRACH能力信息,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息。
可选地,在本公开的一个实施例之中,接收模块2202,用于接收终端设备发送的PRACH能力信息时,具体用于:
接收终端设备发送的终端能力信息UECapabilityInformation,其中,UECapabilityInformation携带有PRACH能力信息。
可选地,在本公开的一个实施例之中,PRACH能力信息包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持FDM和TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
可选地,在本公开的一个实施例之中,接收模块2202,还用于在接收终端设备发送的PRACH能力信息之后,基于PRACH能力信息,通过专用信令为终端设备配置多PRACH传输配置。
图23为本公开实施例所提供的一种多PRACH传输配置装置的结构示意图,如图23所示,该装置2300可以包括:
接收模块2301,用于接收网络侧设备发送的多PRACH传输配置,其中,多PRACH传输配置用于指示终端设备在发送多个PRACH时所采用的复用方式;
发送模块2302,用于通过复用方式发送多个PRACH至网络侧设备。
综上所述,在本公开实施例的多PRACH传输配置装置之中,通过接收模块可以接收终端设备上报的MCGFailureInformation,其中,MCGFailureInformation携带有失败相关信息。在本公开实施例之中,在终端设备触发MCGFailureInformation上报时,可以直接接收终端设备发送的失败相关信息,无需等待终端设备再次接入网络,才会接收终端设备中存储的失败相关信息,可以减少失败相关信息的上报时长。本公开针对一种“多PRACH传输配置”这一情形提供了一种处理装置,以减少多PRACH传输配置的时长,提高多PRACH传输配置的效率,进而提高网络侧设备进行参数调整的便利性。
可选地,在本公开的一个实施例之中,发送模块2302,用于通过复用方式发送多个PRACH至网络侧设备,包括以下至少一种:
通过TDM复用方式发送多个PRACH至网络侧设备;
通过FDM复用方式发送多个PRACH至网络侧设备;
通过TDM和FDM复用方式发送多个PRACH至网络侧设备。
可选地,在本公开的一个实施例之中,发送模块2302,用于在接收网络侧设备发送的多PRACH传输配置之前,还用于发送PRACH能力信息至网络侧设备,其中,PRACH能力信息用于指示终端设备支持复用方式的能力信息。
可选地,在本公开的一个实施例之中,发送模块2302,用于发送PRACH能力信息至网络侧设备时,具体用于:
发送UECapabilityInformation至网络侧设备,其中,UECapabilityInformation携带有PRACH能力信息。
示例地,在本公开的一个实施例中,PRACH能力信息包括以下至少一种:
支持FDM的多PRACH传输的PRACH能力信息;
支持TDM的多PRACH传输的PRACH能力信息;
支持FDM和TDM的PRACH传输的PRACH能力信息;
支持FDM跳频的PRACH能力信息。
图24是本公开一个实施例所提供的一种终端设备UE2400的框图。例如,UE2400可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图24,UE2400可以包括以下至少一个组件:处理组件2402,存储器2404,电源组件2406,多媒体组件2408,音频组件2410,输入/输出(I/O)的接口2412,传感器组件2414,以及通信组件2424。
处理组件2402通常控制UE2400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2402可以包括至少一个处理器2420来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2402可以包括至少一个模块,便于处理组件2402和其他组件之间的交互。例如,处理组件2402可以包括多媒体模块,以方便多媒体组件2408和处理组件2402之间的交互。
存储器2404被配置为存储各种类型的数据以支持在UE2400的操作。这些数据的示例包括用于在UE2400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2406为UE2400的各种组件提供电力。电源组件2406可以包括电源管理系统,至少一个电源,及其他与为UE2400生成、管理和分配电力相关联的组件。
多媒体组件2408包括在所述UE2400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件2408包括一个前置摄像头和/或后置摄像头。当UE2400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2410被配置为输出和/或输入音频信号。例如,音频组件2410包括一个麦克风(MIC),当UE2400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2404或经由通信组件2424发送。在一些实施例中,音频组件2410还包括一个扬声器,用于输出音频信号。
I/O接口2412为处理组件2402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2414包括至少一个传感器,用于为UE2400提供各个方面的状态评估。例如,传感器组件2414可以检测到设备2400的打开/关闭状态,组件的相对定位,例如所述组件为UE2400的显示器和小键盘,传感器组件2414还可以检测UE2400或UE2400的一个组件的位置改变,用户与UE2400接触的存在或不存在,UE2400方位或加速/减速和UE2400的温度变化。传感器组件2414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2424被配置为便于UE2400和其他设备之间有线或无线方式的通信。UE2400可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2424经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2424还包括近场通信(NFC) 模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE2400可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图25是本公开实施例所提供的一种网络侧设备2500的框图。例如,网络侧设备2500可以被提供为一网络侧设备。参照图25,网络侧设备2500包括处理组件2522,其进一步包括至少一个处理器,以及由存储器2532所代表的存储器资源,用于存储可由处理组件2522的执行的指令,例如应用程序。存储器2532中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件2522被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备2500还可以包括一个电源组件2526被配置为执行网络侧设备2500的电源管理,一个有线或无线网络接口2550被配置为将网络侧设备2500连接到网络,和一个输入/输出(I/O)接口2558。网络侧设备2500可以操作基于存储在存储器2532的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选地,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选地,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选地,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为网络侧设备:处理器用于执行图1-图18任一所示的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图19-图21任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选地,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选地,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (53)

  1. 一种多物理随机接入信道PRACH传输的配置方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    发送多PRACH传输配置至终端设备,其中,所述多PRACH传输配置用于指示所述终端设备在发送多个PRACH时所采用的复用方式;
    接收所述终端设备通过所述复用方式发送的多个PRACH。
  2. 根据权利要求1所述的方法,其特征在于,所述发送多PRACH传输配置至终端设备,包括以下至少一种:
    发送多PRACH传输的TDM时分复用配置至所述终端设备;
    发送所述多PRACH传输的FDM频分复用配置至所述终端设备;
    发送所述多PRACH传输的TDM和所述FDM复用配置至所述终端设备。
  3. 根据权利要求1所述的方法,其特征在于,所述发送多PRACH传输的TDM复用配置至所述终端设备,包括以下至少一种:
    发送所述TDM复用的时域位置配置至所述终端设备;
    发送所述TDM复用的频域位置配置至所述终端设备。
  4. 根据权利要求3所述的方法,其特征在于,所述发送所述TDM复用的时域位置配置至所述终端设备,包括以下至少一种:
    发送所述TDM复用的随机接入机会RO的等间隔时域位置配置至所述终端设备;
    发送位置位图BITMAP配置至所述终端设备,其中,所述BITMAP的每一个位BIT对应一个RO的时域位置。
  5. 根据权利要求3所述的方法,其特征在于,所述发送多PRACH传输配置至终端设备,包括:
    发送物理随机接入信道配置索引prach-ConfigurationIndex和/或随机接入SSB传输模板索引ra-ssb-OccasionMaskIndex至所述终端设备,其中,所述prach-ConfigurationIndex携带有所述TDM复用的时域位置配置,所述ra-ssb-OccasionMaskIndex携带有所述TDM复用的时域位置配置。
  6. 根据权利要求3所述的方法,其特征在于,所述发送所述TDM复用的频域位置配置至终端设备,包括以下至少一种:
    发送所述TDM复用的固定频域位置的配置至所述终端设备;
    发送所述TDM复用的频域位置变化配置至所述终端设备。
  7. 根据权利要求6所述的方法,其特征在于,所述发送所述TDM复用的频域位置变化配置至所述终端设备,包括以下至少一种:
    发送所述TDM复用的第一频域位置变化配置至所述终端设备,其中,所述第一频域位置变化配置用于指示所述频域位置变化为从第一频域位置集合中最高频域位置开始递减;
    发送所述TDM复用的第二频域位置变化配置至所述终端设备,其中,所述第二频域位置变化配置用于指示所述频域位置变化为从所述第一频域位置集合中最低频域位置开始递增;
    发送所述TDM复用的第三频域位置变化配置至所述终端设备,其中,所述第三频域位置变化配置用于指示所述频域位置变化为在所述第一频域位置集合中先配置所述最高频域位置,再配置所述最低频域位置,配置次高频域位置,再配置次低频域位置,以此类推,直至配置完成所述第一频域位置集合中的所有频域位置;
    发送所述TDM复用的第四频域位置变化配置至所述终端设备,其中,所述第四频域位置变化配置用于指示所述频域位置变化为在所述第一频域位置集合中先配置所述最低频域位置,再配置所述最高频域位置,配置所述次低频域位置,再配置所述次高频域位置,以此类推,直至配置完成所述所有频域位置。
  8. 根据权利要求2所述的方法,其特征在于,所述发送所述多PRACH传输的FDM复用配置至所述终端设备,包括以下至少一种:
    发送第一多PRACH传输配置至所述终端设备,其中,所述第一多PRACH传输配置用于指示所述复用方式为所述FDM复用模式;
    发送FDM复用规则配置至所述终端设备;
    发送FDM位置配置至所述终端设备;
    发送FDM复用的RO的时域位置配置至所述终端设备。
  9. 根据权利要求8所述的方法,其特征在于,所述发送FDM位置配置至所述终端设备,包括以下至少一种:
    发送可用的FDM位置的BITMAP配置至所述终端设备;
    发送所述可用的FDM位置的起始位置偏移的配置至所述终端设备;
    发送FDM位置间的间隔的配置至所述终端设备。
  10. 根据权利要求8所述的方法,其特征在于,所述发送FDM复用的RO的时域位置配置至所述终端设备,包括以下至少一种:
    发送所述FDM复用的RO的等间隔时域位置配置至所述终端设备;
    发送位置BITMAP配置至所述终端设备,其中,所述BITMAP的每一个位BIT对应一个RO的时域位置。
  11. 根据权利要求10所述的方法,其特征在于,所述发送FDM复用的RO的时域位置配置至所述终端设备,包括:
    发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至所述终端设备,其中,所述prach-ConfigurationIndex携带有所述FDM复用的RO的时域位置配置,所述ra-ssb-OccasionMaskIndex携带有所述FDM复用的RO的时域位置配置。
  12. 根据权利要求2所述的方法,其特征在于,所述发送所述多PRACH传输的TDM和所述FDM复用配置至所述终端设备,包括以下至少一种:
    发送第二多PRACH传输配置至所述终端设备,其中,所述第二多PRACH传输配置用于指示所述复用方式为所述TDM和所述FDM复用模式;
    发送TDM复用的时域位置配置至所述终端设备;
    发送FDM复用的频域位置配置至所述终端设备;
    发送所述FDM复用规则配置至所述终端设备。
  13. 根据权利要求12所述的方法,其特征在于,所述TDM复用的时域位置配置,包括以下至少一种:
    所述FDM复用的RO的等间隔时域位置配置;
    位置BITMAP配置,其中,所述BITMAP的每一个位BIT对应一个RO的时域位置。
  14. 根据权利要求13所述的方法,其特征在于,所述发送FDM复用的时域位置配置至所述终端设备,包括:
    发送prach-ConfigurationIndex和/或ra-ssb-OccasionMaskIndex至所述终端设备,其中,所述prach-ConfigurationIndex携带有所述FDM复用的RO的时域位置配置,所述ra-ssb-OccasionMaskIndex携带有所述FDM复用的RO的时域位置配置。
  15. 根据权利要求12所述的方法,其特征在于,所述FDM复用的频域位置配置,包括以下至少一种:
    可用的FDM位置的BITMAP配置;
    所述可用的FDM位置的起始位置偏移的配置;
    FDM位置间的间隔配置。
  16. 根据权利要求2所述的方法,其特征在于,所述发送所述多PRACH传输的TDM和所述FDM复用配置至所述终端设备,包括:
    发送所述FDM复用的多PRACH传输数量配置至所述终端设备。
  17. 根据权利要求16所述的方法,其特征在于,所述FDM复用的多PRACH传输数量配置用于指示所述FDM复用的多PRACH传输数量为所述多PRACH配置中所述FDM的RO数量。
  18. 根据权利要求1所述的方法,其特征在于,所述发送多PRACH传输配置至终端设备,包括:
    发送多PRACH传输配置至所述终端设备,其中,所述多PRACH传输配置包括基于非竞争的随机接入CFRA的第一多PRACH传输配置和/或基于竞争的随机接入CBRA的第二多PRACH传输配置。
  19. 根据权利要求18所述的方法,其特征在于,所述CFRA的触发方式包括以下至少一种:
    物理下行控制信道PDCCH触发;
    切换触发;
    波束失败恢复触发;
    PScell添加或改变触发。
  20. 根据权利要求19所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    响应于所述PDCCH触发的CFRA,发送PDCCH顺序PDCCH order至所述终端设备,所述PDCCH order携带有所述第一多PRACH传输配置。
  21. 根据权利要求19所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    响应于所述PScell添加或改变触发的CFRA,发送专用随机接入配置RACH-ConfigDedicated至所述终端设备,所述RACH-ConfigDedicated的CFRA配置携带有所述第一多PRACH传输配置。
  22. 根据权利要求19所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    响应于所述切换触发的CFRA,发送RACH-ConfigDedicated至所述终端设备,所述RACH-ConfigDedicated的 CFRA配置携带有所述第一多PRACH传输配置。
  23. 根据权利要求19所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    响应于所述波束失败恢复触发的CFRA,发送波束失败恢复配置BeamFailureRecoveryConfig至所述终端设备,所述BeamFailureRecoveryConfig携带有所述第一多PRACH传输配置。
  24. 根据权利要求18所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    通过广播信令发送或者通过专用信令发送所述第二多PRACH传输配置至所述终端设备。
  25. 根据权利要求24所述的方法,其特征在于,所述广播信令包括系统消息块1SIB1。
  26. 根据权利要求24所述的方法,其特征在于,所述专用信令包括以下至少一种:
    无线资源控制RRC重配置RRCReconfiguration消息;
    RRC恢复RRCResume消息;
    RRC释放RRCRelease消息;
    RRC建立RRCSetup消息。
  27. 根据权利要求18所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    发送公共随机接入信道RACH配置至所述终端设备,其中,所述RACH配置携带有所述第二多PRACH传输配置。
  28. 根据权利要求27所述的方法,其特征在于,所述RACH配置包括在各个部分带宽BWP上单独配置的公共RACH资源。
  29. 根据权利要求28所述的方法,其特征在于,所述发送RACH配置至所述终端设备,包括:
    发送SIB1的初始BWP配置中的第一随机接入公共配置RACH-ConfigCommon至所述终端设备,其中,所述第一RACH-ConfigCommon携带有RACH配置。
  30. 根据权利要求27所述的方法,其特征在于,所述发送RACH配置至所述终端设备,包括:
    发送RRCReconfiguration消息的BWP配置的第二RACH-ConfigCommon至所述终端设备,其中,所述第二RACH-ConfigCommon携带有RACH配置。
  31. 根据权利要求18所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    发送专用RACH配置至所述终端设备,其中,所述专用RACH配置携带有所述第二多PRACH传输配置。
  32. 根据权利要求31所述的方法,其特征在于,所述发送专用RACH配置至所述终端设备,包括:
    响应于波束失败恢复触发的CBRA,发送波束失败恢复配置BeamFailureRecoveryConfig至所述终端设备,所述BeamFailureRecoveryConfig携带有所述专用RACH配置中所配置的所述第二多PRACH传输配置。
  33. 根据权利要求31所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    响应于PScell添加或改变触发的CBRA,发送专用随机接入配置RACH-ConfigDedicated至所述终端设备,所述RACH-ConfigDedicated携带有所述专用RACH配置中所配置的所述第二多PRACH传输配置。
  34. 根据权利要求31所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    响应于切换触发的CBRA,发送RACH-ConfigDedicated至所述终端设备,所述RACH-ConfigDedicated携带有所述专用RACH配置中所配置的所述第二多PRACH传输配置。
  35. 根据权利要求18所述的方法,其特征在于,所述发送多PRACH传输配置至所述终端设备,包括:
    发送特征组合feature combination的RACH配置至所述终端设备,其中,所述feature combination的RACH配置携带有所述第二多PRACH传输配置。
  36. 根据权利要求35所述的方法,其特征在于,所述feature combination包括覆盖增强特征Coverage Enhancement feature,其中,所述Coverage Enhancement feature用于指示支持对所述CBRA配置的多PRACH传输的Coverage Enhancement feature。
  37. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的PRACH能力信息,其中,所述PRACH能力信息用于指示所述终端设备支持复用方式的能力信息。
  38. 根据权利要求37所述的方法,其特征在于,所述接收所述终端设备发送的PRACH能力信息,包括:
    接收所述终端设备发送的终端能力信息UECapabilityInformation,其中,所述UECapabilityInformation携带有所述PRACH能力信息。
  39. 根据权利要求37所述的方法,其特征在于,所述PRACH能力信息包括以下至少一种:
    支持FDM的多PRACH传输的PRACH能力信息;
    支持TDM的多PRACH传输的PRACH能力信息;
    支持所述FDM和所述TDM的PRACH传输的PRACH能力信息;
    支持FDM跳频的PRACH能力信息。
  40. 根据权利要求37所述的方法,其特征在于,在所述接收所述终端设备发送的PRACH能力信息之后,还包括:
    基于所述PRACH能力信息,通过专用信令为所述终端设备配置所述多PRACH传输配置。
  41. 一种多PRACH传输的配置方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络侧设备发送的多PRACH传输配置,其中,所述多PRACH传输配置用于指示所述终端设备在发送多个PRACH时所采用的复用方式;
    通过所述复用方式发送多个PRACH至所述网络侧设备。
  42. 根据权利要求37所述的方法,其特征在于,所述通过所述复用方式发送多个PRACH至所述网络侧设备,包括以下至少一种:
    通过TDM复用方式发送所述多个PRACH至所述网络侧设备;
    通过FDM复用方式发送所述多个PRACH至所述网络侧设备;
    通过所述TDM和所述FDM复用方式发送所述多个PRACH至所述网络侧设备。
  43. 根据权利要求37所述的方法,其特征在于,在所述接收网络侧设备发送的多PRACH传输配置之前,还包括:
    发送PRACH能力信息至所述网络侧设备,其中,所述PRACH能力信息用于指示所述终端设备支持复用方式的能力信息。
  44. 根据权利要求43所述的方法,其特征在于,所述发送PRACH能力信息至所述网络侧设备,包括:
    发送UECapabilityInformation至所述网络侧设备,其中,所述UECapabilityInformation携带有所述PRACH能力信息。
  45. 根据权利要求37所述的方法,其特征在于,所述PRACH能力信息包括以下至少一种:
    支持FDM的多PRACH传输的PRACH能力信息;
    支持TDM的多PRACH传输的PRACH能力信息;
    支持所述FDM和所述TDM的PRACH传输的PRACH能力信息;
    支持FDM跳频的PRACH能力信息。
  46. 一种多PRACH传输配置装置,其特征在于,所述装置包括:
    发送模块,用于发送多PRACH传输配置至终端设备,其中,所述多PRACH传输配置用于指示所述终端设备根据所述多PRACH传输配置发送多个PRACH传输所使用的PRACH资源对应的SSB使用模式;
    接收模块,用于接收所述终端设备通过所述SSB使用模式在所述PRACH资源之上传输的多个PRACH。
  47. 一种多PRACH传输配置装置,其特征在于,所述装置包括:
    接收模块,用于接收网络侧设备发送的多PRACH传输配置,其中,所述多PRACH传输配置用于指示所述终端设备在发送多个PRACH时所采用的复用方式;
    发送模块,用于通过所述复用方式发送多个PRACH至所述网络侧设备。
  48. 一种网络侧设备,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至40中任一项所述的方法。
  49. 一种终端设备,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求41至45中任一项所述的方法。
  50. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至40中任一项所述的方法。
  51. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求41至45中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,用于存储有指令,当所述指令被执行时,使如权利要求1至40中任一项所述的方法被实现。
  53. 一种计算机可读存储介质,其特征在于,用于存储有指令,当所述指令被执行时,使如权利要求41至45中任一项所述的方法被实现。
PCT/CN2022/094573 2022-05-23 2022-05-23 多prach传输配置方法、装置 WO2023225829A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001734.4A CN115191146A (zh) 2022-05-23 2022-05-23 多prach传输配置方法、装置
PCT/CN2022/094573 WO2023225829A1 (zh) 2022-05-23 2022-05-23 多prach传输配置方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094573 WO2023225829A1 (zh) 2022-05-23 2022-05-23 多prach传输配置方法、装置

Publications (1)

Publication Number Publication Date
WO2023225829A1 true WO2023225829A1 (zh) 2023-11-30

Family

ID=83524240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094573 WO2023225829A1 (zh) 2022-05-23 2022-05-23 多prach传输配置方法、装置

Country Status (2)

Country Link
CN (1) CN115191146A (zh)
WO (1) WO2023225829A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402610A (zh) * 2017-03-14 2019-11-01 Lg 电子株式会社 无线通信系统中在终端和基站之间执行随机接入过程的方法和支持该方法的设备
US20200221506A1 (en) * 2019-01-09 2020-07-09 Hyoungsuk Jeon Random Access Backoff Indicator
US20220078852A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Beam indications during random access procedures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402610A (zh) * 2017-03-14 2019-11-01 Lg 电子株式会社 无线通信系统中在终端和基站之间执行随机接入过程的方法和支持该方法的设备
US20200221506A1 (en) * 2019-01-09 2020-07-09 Hyoungsuk Jeon Random Access Backoff Indicator
US20220078852A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Beam indications during random access procedures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancements to initial access procedure", 3GPP TSG-RAN WG1 MEETING #99 R1-1912710, 9 November 2019 (2019-11-09), XP051823554 *

Also Published As

Publication number Publication date
CN115191146A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2023206183A1 (zh) 成功PScell添加或更换报告的相关信息记录方法、装置
WO2023206182A1 (zh) 成功PScell添加或更换报告的位置信息记录方法、装置
WO2023201760A1 (zh) PScell添加或改变的成功报告的记录方法、装置
WO2023201759A1 (zh) 成功PScell添加或更换报告的上报方法、装置
WO2023173381A1 (zh) 侧行链路通信方法及装置
WO2023225829A1 (zh) 多prach传输配置方法、装置
CN115088297A (zh) 上报方法、装置
WO2023225828A1 (zh) 支持跨ssb的多prach传输配置方法、装置
WO2023225827A1 (zh) 多prach传输配置方法、装置
CN117915458A (zh) 一种寻呼分组的方法、装置、终端设备、基站及存储介质
WO2023173254A1 (zh) 一种定时调整方法/装置/设备及存储介质
WO2023197331A1 (zh) 数据传输方法/装置/设备及存储介质
WO2023206297A1 (zh) 一种小区激活方法/装置/设备及存储介质
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2024016240A1 (zh) Pdsch传输方法、装置
WO2023201586A1 (zh) 一种物理信道重复传输的指示方法及设备/存储介质/装置
WO2023206570A1 (zh) 一种配置管理方法、装置、设备及存储介质
WO2023102944A1 (zh) 一种非竞争随机接入cfra中阈值确定方法及设备/存储介质/装置
WO2023184260A1 (zh) 一种信号传输方法/装置/设备及存储介质
WO2023184261A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023122986A1 (zh) 一种重复传输的终止方法及设备/存储介质/装置
WO2023206181A1 (zh) 一种小区管理方法/装置/设备及存储介质
WO2023220900A1 (zh) Mcg失败相关信息上报方法、装置
WO2023178568A1 (zh) 一种测量方法及设备/存储介质/装置
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943035

Country of ref document: EP

Kind code of ref document: A1