WO2023173254A1 - 一种定时调整方法/装置/设备及存储介质 - Google Patents

一种定时调整方法/装置/设备及存储介质 Download PDF

Info

Publication number
WO2023173254A1
WO2023173254A1 PCT/CN2022/080698 CN2022080698W WO2023173254A1 WO 2023173254 A1 WO2023173254 A1 WO 2023173254A1 CN 2022080698 W CN2022080698 W CN 2022080698W WO 2023173254 A1 WO2023173254 A1 WO 2023173254A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing adjustment
adjustment scheme
timing
type
scheme
Prior art date
Application number
PCT/CN2022/080698
Other languages
English (en)
French (fr)
Inventor
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000749.9A priority Critical patent/CN117204065A/zh
Priority to PCT/CN2022/080698 priority patent/WO2023173254A1/zh
Publication of WO2023173254A1 publication Critical patent/WO2023173254A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a timing adjustment method/device/equipment and a storage medium.
  • Timing adjustment rules In communication systems, it is usually necessary to use timing adjustment rules to adjust the actual uplink transmission timing determined by the UE (User Equipment), so that the error between the actual uplink transmission timing and the theoretical uplink transmission timing is within the plus or minus predetermined time period Within Te.
  • the current timing adjustment rules support a maximum UE moving speed of 120Km/h. When the UE moving speed exceeds 120Km/h, the current timing adjustment rules may not be able to adjust the UE's uplink transmission timing error to plus or minus in a timely manner. Te, it will cause communication delay or failure.
  • the timing adjustment method/device/equipment and storage medium proposed in this disclosure are to provide a timing adjustment method suitable for high-speed mobile UE.
  • the method proposed in one aspect of the present disclosure is applied to UE and includes:
  • the method proposed by another aspect of the present disclosure is applied to network equipment, including:
  • Another aspect of the present disclosure provides a device, including:
  • Acquisition module used to obtain information sent by network devices
  • a determining module configured to determine a timing adjustment plan based on the information
  • An adjustment module configured to adjust the uplink transmission timing of the UE based on the timing adjustment scheme.
  • Another aspect of the present disclosure provides a device, including:
  • a sending module configured to send information to the UE, where the information is used for the UE to determine the timing adjustment scheme.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device performs the method proposed in the embodiment of the above aspect.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device performs the method proposed in the above embodiment.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to perform the method proposed in the embodiment of one aspect.
  • a communication device provided by another embodiment of the present disclosure includes: a processor and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to perform the method proposed in another embodiment.
  • a computer-readable storage medium provided by an embodiment of another aspect of the present disclosure is used to store instructions. When the instructions are executed, the method proposed by the embodiment of the present disclosure is implemented.
  • a computer-readable storage medium provided by an embodiment of another aspect of the present disclosure is used to store instructions. When the instructions are executed, the method proposed by the embodiment of another aspect is implemented.
  • the UE can obtain the information sent by the network device, and then determine the timing adjustment plan based on the information, and adjust the UE based on the timing adjustment plan. Uplink transmission timing. Specifically, in the embodiment of the present disclosure, the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • Figure 1 is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure
  • Figure 2a is a schematic flowchart of a timing adjustment method provided by another embodiment of the present disclosure.
  • Figure 2b is a schematic flowchart of a timing adjustment method provided by yet another embodiment of the present disclosure.
  • Figure 3 is a schematic flowchart of a timing adjustment method provided by yet another embodiment of the present disclosure.
  • Figure 4 is a schematic flowchart of a timing adjustment method provided by yet another embodiment of the present disclosure.
  • Figure 5a is a schematic flowchart of a timing adjustment method provided by yet another embodiment of the present disclosure.
  • Figure 5b is a schematic flowchart of a timing adjustment method provided by yet another embodiment of the present disclosure.
  • Figure 6 is a schematic flowchart of a timing adjustment method provided by yet another embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a timing adjustment device provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a timing adjustment device provided by another embodiment of the present disclosure.
  • Figure 9 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Figure 10 is a block diagram of a network side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • Figure 1 is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in Figure 1, the method may include the following steps:
  • Step 101 Obtain information sent by the network device.
  • a UE may be a device that provides voice and/or data connectivity to users.
  • Terminal devices can communicate with one or more core networks via RAN (Radio Access Network).
  • UEs can be IoT terminals, such as sensor devices, mobile phones (or "cellular" phones) and devices with
  • the computer of the network terminal may, for example, be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access point remote terminal
  • remoteterminal access terminal
  • access terminal access terminal
  • user device user terminal
  • user agent useragent
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a driving computer with a wireless communication function, or a wireless terminal connected to an external driving computer.
  • the UE may also be a roadside device, for example, it may be a streetlight, a signal light, or other roadside device with wireless communication functions.
  • the above method can be applied to an NTN (Non-Terrestrial Networks, non-terrestrial network) scenario.
  • NTN Non-Terrestrial Networks, non-terrestrial network
  • the information may include indication information, and the indication information may be used to instruct the UE which timing adjustment scheme is subsequently adopted to adjust the uplink transmission timing of the UE.
  • the information may be a speed threshold, and the UE may subsequently determine a corresponding timing adjustment scheme based on the speed threshold.
  • Step 102 Determine a timing adjustment plan based on the information.
  • the timing adjustment scheme may specifically include the maximum adjustment step size of each adjustment (such as the maximum timing change value of each adjustment) and/or the adjustment rate (such as the minimum adjustment rate and/or the maximum adjustment rate). rate).
  • Step 103 Adjust the uplink transmission timing of the UE based on the timing adjustment scheme.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • Figure 2a is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in Figure 2a, the method may include the following steps:
  • Step 201a Report the UE type to the network device as the first UE type.
  • the UE type may mainly include a first UE type and a second UE type, wherein the moving speed of the UE of the first UE type is smaller than the moving speed of the UE of the second UE type, then the moving speed of the UE of the first UE type is smaller than the moving speed of the UE of the second UE type.
  • the UE of one UE type is a low moving speed UE (such as a UE with a moving speed of less than 120Km/h)
  • the UE of the second UE type is a high moving speed UE (such as a UE with a moving speed of 1200Km/h).
  • the above-mentioned first UE type may include at least the following types:
  • VSAT Very-Small-Aperture Terminal, very small aperture terminal
  • the above-mentioned second UE type may include at least ATG (Air-to-ground, air-to-ground) UE.
  • the UE may report the UE type to the network device through RRC (Ratio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • Step 202a Obtain the first instruction information sent by the network device.
  • the above-mentioned first indication information may be used by the UE to subsequently determine a specific timing adjustment scheme. Specifically, in an embodiment of the present disclosure, the above-mentioned first indication information may be used to instruct the UE to adjust the uplink transmission timing of the UE based on the first timing adjustment scheme. Among them, the relevant content about the first timing adjustment plan will be introduced in detail later.
  • Step 203a Determine a first timing adjustment plan based on the first indication information.
  • the first timing adjustment scheme may be a timing adjustment scheme suitable for low moving speed UEs.
  • the adjustment step size of the first timing adjustment scheme may be smaller and/or the adjustment rate may be smaller.
  • the moving speed of the UE when the moving speed of the UE is low, it means that the speed of the position change of the UE is low, because the actual uplink transmission timing determined by the UE is based on the downlink transmission timing of the UE.
  • the downlink timing information is determined by the UE by measuring the downlink reference signal (such as SSB (Synchronization Signal Block, synchronization signal block)) (that is, the actual uplink transmission timing is gradually determined), and when the position of the UE changes , the UE's measurement results of the downlink reference signal will also change.
  • the first timing adjustment scheme with a smaller adjustment step size and/or a smaller adjustment rate can fully ensure that the error of the UE's uplink transmission timing meets the requirements (that is, the error is within plus or minus Te within).
  • the above-mentioned first timing adjustment scheme may be an adjustment scheme specified by the current protocol (for example, it may be a normal timing adjustment scheme specified by the current protocol).
  • the first timing adjustment scheme may include at least one of the following:
  • the minimum adjustment rate is to adjust Tp per second
  • the maximum adjustment rate is to adjust Tq every 200ms (milliseconds).
  • Table 1 shows a value situation of Tq and Tp provided by the embodiment of the present disclosure.
  • Step 204a Adjust the uplink transmission timing of the UE based on the first timing adjustment plan.
  • the first timing adjustment scheme suitable for low-moving-speed UE can be used to adjust the UE. uplink transmission timing.
  • the first timing adjustment scheme determined in the above step 203a is:
  • the UE can directly adjust the UE's uplink transmission timing according to the minimum adjustment rate (that is, adjust 352Tc every second), or it can adjust the UE's uplink transmission timing according to the maximum adjustment rate (that is, adjust 352Tc every 200ms), or it can adjust the UE's uplink transmission timing according to the intermediate Adjust the UE's uplink transmission timing at an adjustment rate between the minimum adjustment rate and the maximum adjustment rate (such as 352Tc every 400ms).
  • the minimum adjustment rate that is, adjust 352Tc every second
  • the maximum adjustment rate that is, adjust 352Tc every 200ms
  • the intermediate Adjust the UE's uplink transmission timing at an adjustment rate between the minimum adjustment rate and the maximum adjustment rate (such as 352Tc every 400ms).
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • FIG. 2b is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in Figure 2b, the method may include the following steps:
  • Step 201b Report the UE type to the network device as the second UE type.
  • the second UE type may be a high mobility UE, and the second UE type may be an ATG UE.
  • the second UE type may be a high mobility UE, and the second UE type may be an ATG UE.
  • Step 202b Obtain the second instruction information sent by the network device.
  • the above-mentioned second indication information may be used by the UE to subsequently determine a specific timing adjustment scheme. Specifically, in an embodiment of the present disclosure, the above-mentioned second indication information may be used to instruct the UE to adjust the uplink transmission timing of the UE based on the second timing adjustment scheme. Among them, the relevant content of the second timing adjustment plan will be introduced in detail later.
  • Step 203b Determine a second timing adjustment plan based on the second indication information.
  • the second timing adjustment scheme may be a timing adjustment scheme suitable for high-speed UEs.
  • the second timing adjustment scheme may be an enhanced timing adjustment scheme with a larger adjustment step size and/or a larger adjustment rate.
  • the moving speed of the UE when the moving speed of the UE is high, it means that the speed of the position change of the UE is high, because the actual uplink transmission timing determined by the UE is based on the downlink transmission timing of the UE.
  • the downlink timing information is determined by the UE by measuring the downlink reference signal (such as SSB), and when the UE's location changes, the UE's measurement results of the downlink reference signal will also change.
  • the downlink reference signal such as SSB
  • the degree of change in the actual uplink transmission timing determined by the UE will be high, so that The degree of variation in the error between the actual uplink transmission timing and the theoretical uplink transmission timing is relatively high.
  • the differences between the above-mentioned first timing adjustment scheme and the second timing adjustment scheme may include at least one of the following:
  • the adjustment step size of the second timing adjustment plan is greater than the adjustment step size of the first timing adjustment plan
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the minimum adjustment rate of the first timing adjustment scheme
  • the maximum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme.
  • the specific content of the second timing adjustment scheme may be predefined through a protocol.
  • the second timing adjustment scheme may include at least one of the following:
  • the maximum value of the timing change for each adjustment is x1 (x1>Tq);
  • the minimum adjustment rate is to adjust y1 every T1 seconds (the T1 ⁇ 1, y1>Tp, or T1 ⁇ 0.2, y1>Tq);
  • the maximum adjustment rate is to adjust z1 every T2 seconds (the T2 ⁇ 0.2, z1>Tq).
  • Step 204b Adjust the uplink transmission timing of the UE based on the timing adjustment scheme.
  • the second timing adjustment scheme suitable for high-speed UE can be used to adjust the UE.
  • the second timing adjustment scheme determined in the above step 203b is:
  • the minimum adjustment rate is 500Tc every 100ms
  • the maximum adjustment rate is 500Tc every 50ms.
  • the UE can directly adjust the UE's uplink transmission timing according to the minimum adjustment rate (i.e., 500Tc every 100ms), or it can adjust the UE's uplink transmission timing according to the maximum adjustment rate (i.e., 500Tc every 50ms), or it can adjust it according to The adjustment rate between the minimum adjustment rate and the maximum adjustment rate (such as 352Tc every 75ms) is used to adjust the UE's uplink transmission timing.
  • the minimum adjustment rate i.e., 500Tc every 100ms
  • the maximum adjustment rate i.e., 500Tc every 50ms
  • the adjustment rate between the minimum adjustment rate and the maximum adjustment rate (such as 352Tc every 75ms) is used to adjust the UE's uplink transmission timing.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • FIG 3 is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in Figure 3, the method may include the following steps:
  • Step 301 Obtain the speed threshold sent by the network device.
  • the method for the UE to obtain the speed threshold value sent by the network device may include:
  • Step 302 Determine the timing adjustment plan based on the speed threshold value.
  • the above-mentioned method of determining the timing adjustment scheme based on the speed threshold value may include:
  • the timing adjustment scheme can be determined to be suitable for low moving speed UEs
  • the first timing adjustment scheme when the moving speed of the UE is greater than or equal to the speed threshold value, it means that the current moving speed of the UE is relatively large, so the timing adjustment scheme can be determined to be the second timing adjustment scheme suitable for high moving speed UEs;
  • the differences between the first timing adjustment plan and the second timing adjustment plan include at least one of the following:
  • the adjustment step size of the second timing adjustment plan is greater than the adjustment step size of the first timing adjustment plan
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the minimum adjustment rate of the first timing adjustment scheme
  • the maximum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme.
  • Step 303 Adjust the uplink transmission timing of the UE based on the timing adjustment scheme.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • FIG 4 is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 4, the method may include the following steps:
  • Step 401 Send information to the UE, where the information is used for the UE to determine the timing adjustment plan.
  • step 401 please refer to the description of the above embodiments, and the embodiments of the disclosure will not be described again here.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • Figure 5a is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 5a, the method may include the following steps:
  • Step 501a Obtain the first UE type reported by the UE.
  • the UE type includes a first UE type and a second UE type.
  • the moving speed of the UE of the first UE type is smaller than the moving speed of the UE of the second UE type.
  • Step 502a Send first indication information to the UE, where the first indication information is used to instruct the UE to adjust the uplink transmission timing of the UE based on the first timing adjustment scheme.
  • first indication information is sent to the UE, so that the UE determines the first timing adjustment scheme based on the first indication information.
  • steps 501a-502a please refer to the description of the above embodiments, and the embodiments of this disclosure will not be described again here.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • Figure 5b is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 5b, the method may include the following steps:
  • Step 501b Obtain the second UE type reported by the UE.
  • Step 502b Send second indication information to the UE, where the second indication information is used to instruct the UE to adjust the uplink transmission timing of the UE based on the second timing adjustment scheme.
  • second indication information is sent to the UE, so that the UE determines the second timing adjustment scheme based on the second indication information.
  • the differences between the first timing adjustment plan and the second timing adjustment plan include at least one of the following:
  • the adjustment step size of the second timing adjustment plan is greater than the adjustment step size of the first timing adjustment plan
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the minimum adjustment rate of the first timing adjustment scheme
  • the maximum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme.
  • the specific content of the second timing adjustment scheme may be predefined through a protocol.
  • steps 501b-502b please refer to the description of the above embodiments, and the embodiments of this disclosure will not be described again here.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • FIG. 6 is a schematic flowchart of a timing adjustment method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 6, the method may include the following steps:
  • Step 601 Send a speed threshold value to the UE.
  • the speed threshold value is used by the UE to determine the timing adjustment plan.
  • the method for the network device to send the speed threshold value to the UE may include:
  • step 601 For other details about step 601, please refer to the description of the above embodiments, and the embodiments of this disclosure will not be described again here.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • FIG. 7 is a schematic structural diagram of a signal multiplexing device provided by an embodiment of the present disclosure. As shown in Figure 7, the device may include:
  • Acquisition module used to obtain information sent by network devices
  • a determining module configured to determine a timing adjustment plan based on the information
  • An adjustment module configured to adjust the uplink transmission timing of the UE based on the timing adjustment scheme.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • the device is also used for:
  • the UE type of the UE includes a first UE type and a second UE type, and the moving speed of the UE of the first UE type is smaller than that of the UE of the second UE type. moving speed.
  • the device is also used for:
  • Radio resource control RRC signaling Report the UE type of the UE to the network device through radio resource control RRC signaling.
  • the acquisition module is also used to:
  • the UE type is the first UE type, obtain the first indication information sent by the network device.
  • the determining module is also used to:
  • the timing adjustment scheme is determined to be a first timing adjustment scheme based on the first indication information.
  • the acquisition module is also used to:
  • the UE type is the second UE type, obtain the second indication information sent by the network device.
  • the determining module is also used to:
  • the timing adjustment scheme is determined to be a second timing adjustment scheme based on the second indication information.
  • the difference between the first timing adjustment scheme and the second timing adjustment scheme includes at least one of the following:
  • the adjustment step size of the second timing adjustment scheme is greater than the adjustment step size of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the minimum adjustment rate of the first timing adjustment scheme
  • the maximum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme.
  • the acquisition module is also used to:
  • the determining module is also used to:
  • the differences between the first timing adjustment plan and the second timing adjustment plan include at least one of the following:
  • the adjustment step size of the second timing adjustment scheme is greater than the adjustment step size of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the minimum adjustment rate of the first timing adjustment scheme
  • the maximum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme.
  • the acquisition module is also used to:
  • the acquisition module is also used to:
  • FIG. 8 is a schematic structural diagram of a signal multiplexing device provided by an embodiment of the present disclosure. As shown in Figure 8, the device may include:
  • a sending module configured to send information to the UE, where the information is used for the UE to determine the timing adjustment scheme.
  • the UE can obtain the information sent by the network device, then determine the timing adjustment plan based on the information, and adjust the UE's uplink transmission timing based on the timing adjustment plan.
  • the timing adjustment scheme corresponding to the UE is determined based on the UE type or the moving speed of the UE.
  • the determined timing adjustment scheme is a second timing adjustment scheme with a longer adjustment step size and/or a larger adjustment frequency; if the UE type is When the moving speed of the UE is low or the moving speed of the UE is low, the determined timing adjustment scheme is the first timing adjustment scheme with a shorter adjustment step size and/or a smaller adjustment frequency.
  • a timing adjustment scheme matching the UE movement speed can be selected according to the UE movement speed, thereby avoiding the problem of "the timing adjustment scheme is not suitable for high movement speed UEs" and ensuring that The accuracy of timing adjustment for UEs with different moving speeds ensures communication quality.
  • the device is also used for:
  • the UE type includes a first UE type and a second UE type, and the moving speed of the UE of the first UE type is smaller than the moving speed of the UE of the second UE type.
  • the device is also used for:
  • the sending module is also used to:
  • first indication information is sent to the UE, and the first indication information is used to instruct the UE to adjust the uplink transmission timing of the UE based on a first timing adjustment scheme, so The first timing adjustment scheme matches the moving speed of the first UE type.
  • the sending module is also used to:
  • second indication information is sent to the UE, and the second indication information is used to instruct the UE to adjust the uplink transmission timing of the UE based on the second timing adjustment scheme, so The second timing adjustment scheme matches the moving speed of the second UE type.
  • the difference between the first timing adjustment scheme and the second timing adjustment scheme includes at least one of the following:
  • the adjustment step size of the second timing adjustment scheme is greater than the adjustment step size of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the minimum adjustment rate of the first timing adjustment scheme
  • the maximum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme
  • the minimum adjustment rate of the second timing adjustment scheme is greater than the maximum adjustment rate of the first timing adjustment scheme.
  • the sending module is also used to:
  • the sending module is also used to:
  • the speed threshold value is sent to the UE through a SIB message.
  • the sending module is also used to:
  • the speed threshold is sent to the UE through RRC signaling.
  • FIG. 9 is a block diagram of a user equipment UE900 provided by an embodiment of the present disclosure.
  • UE900 can be a mobile phone, computer, digital broadcast terminal device, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • UE 900 may include at least one of the following components: a processing component 902 , a memory 904 , a power supply component 906 , a multimedia component 908 , an audio component 910 , an input/output (I/O) interface 912 , a sensor component 913 , and a communication component. 916.
  • Processing component 902 generally controls the overall operations of UE 900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include at least one processor 920 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 902 may include at least one module that facilitates interaction between processing component 902 and other components. For example, processing component 902 may include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • Memory 904 is configured to store various types of data to support operations at UE 900. Examples of this data include instructions for any application or method operating on the UE900, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 904 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 906 provides power to various components of UE 900.
  • Power component 906 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power to UE 900.
  • Multimedia component 908 includes a screen that provides an output interface between the UE 900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes at least one touch sensor to sense touches, slides, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding operation, but also detect the wake-up time and pressure related to the touch or sliding operation.
  • multimedia component 908 includes a front-facing camera and/or a rear-facing camera. When UE900 is in operating mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 910 is configured to output and/or input audio signals.
  • audio component 910 includes a microphone (MIC) configured to receive external audio signals when UE 900 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signals may be further stored in memory 904 or sent via communications component 916 .
  • audio component 910 also includes a speaker for outputting audio signals.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • the sensor component 913 includes at least one sensor for providing various aspects of status assessment for the UE 900 .
  • the sensor component 913 can detect the open/closed state of the device 900, the relative positioning of components, such as the display and keypad of the UE900, the sensor component 913 can also detect the position change of the UE900 or a component of the UE900, the user and the Presence or absence of UE900 contact, UE900 orientation or acceleration/deceleration and temperature changes of UE900.
  • Sensor assembly 913 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 913 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 913 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communication between UE 900 and other devices.
  • UE900 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 916 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • UE 900 may be configured by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic component implementation for executing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic component implementation for executing the above method.
  • FIG. 10 is a block diagram of a network side device 1000 provided by an embodiment of the present disclosure.
  • the network side device 1000 may be provided as a network side device.
  • the network side device 1000 includes a processing component 1011, which further includes at least one processor, and a memory resource represented by a memory 1032 for storing instructions, such as application programs, that can be executed by the processing component 1022.
  • the application program stored in memory 1032 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 1010 is configured to execute instructions to perform any of the foregoing methods applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 1000 may also include a power supply component 1026 configured to perform power management of the network side device 1000, a wired or wireless network interface 1050 configured to connect the network side device 1000 to the network, and an input/output (I/O ) interface 1058.
  • the network side device 1000 can operate based on an operating system stored in the memory 1032, such as Windows Server TM, Mac OS X TM, Unix TM, Linux TM, Free BSD TM or similar.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of network side equipment and UE respectively.
  • the network side device and the UE may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of network side equipment and UE respectively.
  • the network side device and the UE may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module may implement the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiment), a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device may be a network device, a device in a network device, or a device that can be used in conjunction with the network device.
  • the communication device may be a network device, or may be a terminal device (such as the terminal device in the foregoing method embodiment), or may be a chip, chip system, or processor that supports the network device to implement the above method, or may be a terminal device that supports A chip, chip system, or processor that implements the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • a communications device may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor, etc.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control and execute communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program processes data for a computer program.
  • the communication device may also include one or more memories, on which a computer program may be stored, and the processor executes the computer program, so that the communication device executes the method described in the above method embodiment.
  • data may also be stored in the memory.
  • the communication device and the memory can be provided separately or integrated together.
  • the communication device may also include a transceiver and an antenna.
  • the transceiver can be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver can include a receiver and a transmitter.
  • the receiver can be called a receiver or a receiving circuit, etc., and is used to implement the receiving function;
  • the transmitter can be called a transmitter or a transmitting circuit, etc., and is used to implement the transmitting function.
  • the communication device may also include one or more interface circuits.
  • Interface circuitry is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to cause the communication device to perform the method described in the above method embodiment.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiment): the processor is configured to execute the method shown in any one of Figures 1-4.
  • the communication device is a network device: a transceiver is used to perform the method shown in any one of Figures 5-7.
  • a transceiver for implementing receiving and transmitting functions may be included in the processor.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor, which can cause the communication device to perform the method described in the above method embodiment.
  • the computer program may be embedded in the processor, in which case the processor may be implemented in hardware.
  • the communication device may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiment), but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited to limits.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a system on a chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be multiple.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • Embodiments of the present disclosure also provide a system for determining side link duration.
  • the system includes a communication device as a terminal device in the foregoing embodiment (such as the first terminal device in the foregoing method embodiment) and a communication device as a network device.
  • the system includes a communication device as a terminal device in the foregoing embodiment (such as the first terminal device in the foregoing method embodiment) and a communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种方法/装置/设备/存储介质,属于通信技术领域。UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。由此可知,本公开提供的方法可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了"定时调整方案不适于高移速UE"的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。

Description

一种定时调整方法/装置/设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种定时调整方法/装置/设备及存储介质。
背景技术
通信系统中,通常需要利用定时调整规则对UE(User Equipment,用户设备)所确定出的实际上行发射定时进行调整,以使得实际上行发射定时与理论上行发射定时之间的误差在正负预定时长Te以内。
但是,当前的定时调整规则最高支持120Km/h的UE移动速度,而当UE移动速度超过120Km/h时,基于当前的定时调整规则可能无法及时地把UE的上行发射定时的误差调整到正负Te内,则会导致通信延迟或失败。
因此,亟需一种适用于高速移动UE的定时调整方法。
发明内容
本公开提出的定时调整方法/装置/设备及存储介质,以提出一种适用于高速移动UE的定时调整方法。
本公开一方面实施例提出的方法,应用于UE,包括:
获取网络设备发送的信息;
基于所述信息确定定时调整方案;
基于所述定时调整方案调整所述UE的上行发射定时。
本公开另一方面实施例提出的方法,应用于网络设备,包括:
向UE发送信息,所述信息用于供所述UE确定定时调整方案。
本公开又一方面实施例提出的一种装置,包括:
获取模块,用于获取网络设备发送的信息;
确定模块,用于基于所述信息确定定时调整方案;
调整模块,用于基于所述定时调整方案调整所述UE的上行发射定时。
本公开又一方面实施例提出的一种装置,包括:
发送模块,用于向UE发送信息,所述信息用于供所述UE确定定时调整方案。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的定时调整方法/装置/设备及存储介质之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的定时调整方法的流程示意图;
图2a为本公开另一个实施例所提供的定时调整方法的流程示意图;
图2b为本公开再一个实施例所提供的定时调整方法的流程示意图;
图3为本公开又一个实施例所提供的定时调整方法的流程示意图;
图4为本公开又一个实施例所提供的定时调整方法的流程示意图;
图5a为本公开又一个实施例所提供的定时调整方法的流程示意图;
图5b为本公开又一个实施例所提供的定时调整方法的流程示意图;
图6为本公开又一个实施例所提供的定时调整方法的流程示意图;
图7为本公开一个实施例所提供的定时调整装置的结构示意图;
图8为本公开另一个实施例所提供的定时调整装置的结构示意图;
图9是本公开一个实施例所提供的一种用户设备的框图;
图10为本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面参考附图对本公开实施例所提供的定时调整方法、装置、用户设备、网络侧设备及存储介质进行详细描述。
图1为本公开实施例所提供的一种定时调整方法的流程示意图,该方法由UE执行,如图1所示,该方法可以包括以下步骤:
步骤101、获取网络设备发送的信息。
需要说明的是,在本公开的一个实施例之中,UE可以是指向用户提供语音和/或数据连通性的设备。终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,上述方法可以应用于NTN(Non-Terrestrial Networks,非地面网络)场景。
以及,在本公开的一个实施例之中,该信息可以包括指示信息,该指示信息可以用于指示UE后续具体采用哪个定时调整方案来调整UE的上行发射定时。
在本公开的另一个实施例之中,该信息可以为一速度门限值,以及,UE后续可以基于该速度门限值来确定对应的定时调整方案。
步骤102、基于信息确定定时调整方案。
在本公开的一个实施例之中,定时调整方案具体可以包括每次调整的最大调整步长(如每次调整的定时变化最大值)和/或调整速率(如最小调整速率和/或最大调整速率)。
步骤103、基于定时调整方案调整UE的上行发射定时。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图2a为本公开实施例所提供的一种定时调整方法的流程示意图,该方法由UE执行,如图2a所示,该方法可以包括以下步骤:
步骤201a、向网络设备上报UE类型为第一UE类型。
其中,在本公开的一个实施例中,UE类型主要可以包括第一UE类型和第二UE类型,其中,第一UE类型的UE移动速度小于第二UE类型的UE的移动速度,则该第一UE类型的UE为低移速UE(如移动速度小于120Km/h的UE),第二UE类型的UE为高移速UE(如移速为1200Km/h的UE)。
以及,在本公开的一个实施例之中,上述第一UE类型可以至少包括以下类型:
Handheld(手持)UE;
VSAT(Very-Small-Aperture Terminal,甚小孔径终端)UE。
以及,上述第二UE类型可以至少包括ATG(Air-to-ground,空对地)UE。
此外,在本公开的一个实施例之中,UE具体可以通过RRC(Ratio Resource Control,无线资源控制)信令向网络设备上报UE类型。
步骤202a、获取网络设备发送的第一指示信息。
其中,在本公开的一个实施例之中,上述的第一指示信息可以用于UE后续确定具体的定时调整方案。具体的,在本公开的一个实施例之中,上述的第一指示信息可以用于指示UE基于第一定时调整方案来调整UE的上行发射定时。其中,关于第一定时调整方案的相关内容会在后续进行详细介绍。
步骤203a、基于第一指示信息确定第一定时调整方案。
在本公开的一个实施例之中,该第一定时调整方案可以为适用于低移速UE的定时调整方案。其中, 该第一定时调整方案的调整步长较小和/或调整速率可以较小。
具体而言,在本公开的一个实施例之中,当UE的移速较低时,则说明UE的位置变化的速度较低,其中,由于UE所确定出的实际上行发射定时是UE基于下行定时信息确定的,而该下行定时信息是UE通过测量下行参考信号(如SSB(Synchronization Signal Block,同步信号块))确定的(即逐步确定实际上行发射定时),以及,当UE的位置发生变化时,UE对下行参考信号的测量结果也会发生变化,因此,当UE的位置变化时,UE所确定出的实际上行发射定时会发生变化,并且,当UE的位置变化的速度较低时,UE所确定出的实际上行发射定时的变化程度会较低,从而使得实际上行发射定时与理论上行发射定时之间的误差的变化程度较低。基于此,针对于低移速的UE,选择调整步长较小和/或调整速率较小的第一定时调整方案就可以充分确保UE的上行发射定时的误差符合要求(即误差在正负Te之内)。
示例的,上述第一定时调整方案可以为当前协议规定的调整方案(如可以为当前协议规定的正常的定时调整方案)。以及,在本公开的一个实施例之中,该第一定时调整方案例如可以包括如下至少一项:
1、每次调整的定时变化最大值是Tq;
2、最小调整速率是每秒调Tp;
3、最大调整速率是每200ms(毫秒)调Tq。
其中,表1为本公开实施例提供的一种Tq和Tp的取值情况。
表1
Figure PCTCN2022080698-appb-000001
如上述表1所示,当频率范围为1、上行信号的SCS(Sub-Carrier Space,子载波间隔)为15kHz时,Tq=5.5×64×Tc,Tp=5.5×64×Tc。
步骤204a、基于第一定时调整方案调整UE的上行发射定时。
具体的,在本公开的一个实施例之中,当UE的类型为第一UE类型(即低移速UE)时,则可以利用适用于低移速UE的第一定时调整方案来调整该UE的上行发射定时。
示例的,在本公开的一个实施例之中,假设上述步骤203a中所确定的第一定时调整方案为:
1、每次调整的定时变化最大值是5.5×64×Tc=352Tc;
2、最小调整速率是每秒调5.5×64×Tc=352Tc;
3、最大调整速率是每200ms调5.5×64×Tc=352Tc。
则UE可以直接按照最小调整速率(即每秒调352Tc)来调整UE的上行发射定时,或者,可以按照最大调整速率(即每200ms调352Tc)来调整UE的上行发射定时,或者,可以按照介于最小调整速率和最大调整速率之间的调整速率(如每400ms调352Tc)来调整UE的上行发射定时。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根 据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图2b为本公开实施例所提供的一种定时调整方法的流程示意图,该方法由UE执行,如图2b所示,该方法可以包括以下步骤:
步骤201b、向网络设备上报UE类型为第二UE类型。
其中,在本公开的一个实施例之中,第二UE类型可以为高移速UE,该第二UE类型可以为ATG UE。其中,关于该第二UE类型的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤202b、获取网络设备发送的第二指示信息。
其中,在本公开的一个实施例之中,上述的第二指示信息可以用于UE后续确定具体的定时调整方案。具体的,在本公开的一个实施例之中,上述的第二指示信息可以用于指示UE基于第二定时调整方案来调整UE的上行发射定时。其中,关于第二定时调整方案的相关内容会在后续进行详细介绍。
步骤203b、基于第二指示信息确定第二定时调整方案。
其中,在本公开的一个实施例之中,该第二定时调整方案可以为适用于高移速UE的定时调整方案。其中,该第二定时调整方案可以为调整步长较大和/或调整速率较大的增强的定时调整方案。
具体而言,在本公开的一个实施例之中,当UE的移速较高时,则说明UE的位置变化的速度较高,其中,由于UE所确定出的实际上行发射定时是UE基于下行定时信息确定的,而该下行定时信息是UE通过测量下行参考信号(如SSB)确定的,以及,当UE的位置发生变化时,UE对下行参考信号的测量结果也会发生变化,因此,当UE的位置变化时,UE所确定出的实际上行发射定时会发生变化,并且,当UE的位置变化的速度较高时,UE所确定出的实际上行发射定时的变化程度会较高,从而使得实际上行发射定时与理论上行发射定时之间的误差的变化程度较高。基于此,针对于高移速的UE,需要选择调整步长较大和/或调整速率较大的第二定时调整方案才能够确保UE的上行发射定时的误差符合要求(即误差在正负Te之内)。
以及,在本公开的一个实施例之中,上述的第一定时调整方案与第二定时调整方案的区别点可以包括以下至少一种:
第二定时调整方案的调整步长大于第一定时调整方案的调整步长;
第二定时调整方案的最小调整速率大于第一定时调整方案的最小调整速率;
第二定时调整方案的最大调整速率大于第一定时调整方案的最大调整速率;
第二定时调整方案的最小调整速率大于第一定时调整方案的最大调整速率。
进一步地,在本公开的一个实施例之中,该第二定时调整方案的具体内容可以是通过协议预先定义的。
示例的,在本公开的一个实施例之中,该第二定时调整方案例如可以包括如下至少一项:
a、每次调整的定时变化最大值是x1(x1>Tq);
b、最小调整速率是每T1秒调y1(该T1<1、y1>Tp,或者T1<0.2、y1>Tq);
c、最大调整速率是每T2秒调z1(该T2<0.2,z1>Tq)。
步骤204b、基于定时调整方案调整UE的上行发射定时。
具体的,在本公开的一个实施例之中,当UE的类型为第二UE类型(即高移速UE)时,则可以利用适用于高移速UE的第二定时调整方案来调整该UE的上行发射定时。
示例的,在本公开的一个实施例之中,假设上述步骤203b中所确定的第二定时调整方案为:
a、每次调整的定时变化最大值是500Tc;
b、最小调整速率是每100ms秒调500Tc;
c、最大调整速率是每50ms调500Tc。
则UE可以直接按照最小调整速率(即每100ms秒调500Tc)来调整UE的上行发射定时,或者,可以按照最大调整速率(即每50ms调500Tc)来调整UE的上行发射定时,或者,可以按照介于最小调整速率和最大调整速率之间的调整速率(如每75ms调352Tc)来调整UE的上行发射定时。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基 于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图3为本公开实施例所提供的一种定时调整方法的流程示意图,该方法由UE执行,如图3所示,该方法可以包括以下步骤:
步骤301、获取网络设备发送的速度门限值。
其中,在本公开的一个实施例之中,UE获取网络设备发送的速度门限值的方法可以包括:
当UE处于非连接态,获取网络设备SIB(System Information Blocks,系统信息块)消息发送的速度门限值。
当UE处于连接态,获取网络设备通过RRC信令发送的速度门限值。
步骤302、基于速度门限值确定定时调整方案。
其中,在本公开的一个实施例之中,上述的基于速度门限值确定定时调整方案的方法可以包括:
确定UE的移动速度与速度门限值的大小关系;其中,当UE的移动速度小于速度门限值,则说明UE当前的移速较小,从而可以确定定时调整方案为适用于低移速UE的第一定时调整方案;当UE的移动速度大于或等于速度门限值,则说明UE当前的移速较大,从而可以确定定时调整方案为适用于高移速UE的第二定时调整方案;
其中,该第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
第二定时调整方案的调整步长大于第一定时调整方案的调整步长;
第二定时调整方案的最小调整速率大于第一定时调整方案的最小调整速率;
第二定时调整方案的最大调整速率大于第一定时调整方案的最大调整速率;
第二定时调整方案的最小调整速率大于第一定时调整方案的最大调整速率。
此外,关于第一定时调整方案和第二定时调整方案的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤303、基于定时调整方案调整UE的上行发射定时。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图4本公开实施例所提供的一种定时调整方法的流程示意图,该方法由网络设备执行,如图4所示,该方法可以包括以下步骤:
步骤401、向UE发送信息,该信息用于供UE确定定时调整方案。
其中,关于步骤401的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调 整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图5a本公开实施例所提供的一种定时调整方法的流程示意图,该方法由网络设备执行,如图5a所示,该方法可以包括以下步骤:
步骤501a、获取UE上报的第一UE类型。
其中,在本公开的一个实施例之中,UE类型包括第一UE类型和UE第二类型。以及,在本公开的一个实施例之中,第一UE类型的UE的移动速度小于第二UE类型的UE的移动速度。
步骤502a、向UE发送第一指示信息,该第一指示信息用于指示UE基于第一定时调整方案来调整UE的上行发射定时。
在本公开的一个实施例之中,当UE类型为第一UE类型,向UE发送第一指示信息,以使得UE基于第一指示信息确定第一定时调整方案。
其中,关于步骤501a-502a的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图5b本公开实施例所提供的一种定时调整方法的流程示意图,该方法由网络设备执行,如图5b所示,该方法可以包括以下步骤:
步骤501b、获取UE上报的第二UE类型。
步骤502b、向UE发送第二指示信息,该第二指示信息用于指示UE基于第二定时调整方案来调整UE的上行发射定时。
其中,在本公开的一个实施例之中,当UE类型为第二UE类型,向UE发送第二指示信息,以使得UE基于第二指示信息确定第二定时调整方案。
其中,该第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
第二定时调整方案的调整步长大于第一定时调整方案的调整步长;
第二定时调整方案的最小调整速率大于第一定时调整方案的最小调整速率;
第二定时调整方案的最大调整速率大于第一定时调整方案的最大调整速率;
第二定时调整方案的最小调整速率大于第一定时调整方案的最大调整速率。
以及,在本公开的一个实施例之中,该第二定时调整方案的具体内容可以是通过协议预先定义的。
其中,关于步骤501b-502b的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图6本公开实施例所提供的一种定时调整方法的流程示意图,该方法由网络设备执行,如图6所示,该方法可以包括以下步骤:
步骤601、向UE发送速度门限值,该速度门限值用于UE确定定时调整方案。
其中,在本公开的一个实施例之中,网络设备向UE发送速度门限值的方法可以包括:
通过SIB消息向UE发送速度门限值。
通过RRC信令向UE发送速度门限值。
其中,关于步骤601的其他详细介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的定时调整方法之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
图7为本公开实施例所提供的一种信号复用装置的结构示意图。如图7所示,装置可以包括:
获取模块,用于获取网络设备发送的信息;
确定模块,用于基于所述信息确定定时调整方案;
调整模块,用于基于所述定时调整方案调整所述UE的上行发射定时。
综上所述,在本公开实施例提供的定时调整装置之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
可选的,在本公开的一个实施例之中,所述装置,还用于:
向所述网络设备上报所述UE的UE类型;其中,所述UE类型包括第一UE类型和第二UE类型,所述第一UE类型的UE的移动速度小于所述第二UE类型的UE的移动速度。
可选的,在本公开的一个实施例之中,所述装置,还用于:
通过无线资源控制RRC信令向所述网络设备上报所述UE的UE类型。
可选的,在本公开的一个实施例之中,所述获取模块,还用于:
当所述UE类型为第一UE类型,获取所述网络设备发送的第一指示信息。
可选的,在本公开的一个实施例之中,所述确定模块,还用于:
基于所述第一指示信息确定所述定时调整方案为第一定时调整方案。
可选的,在本公开的一个实施例之中,所述获取模块,还用于:
当所述UE类型为第二UE类型,获取所述网络设备发送的第二指示信息。
可选的,在本公开的一个实施例之中,所述确定模块,还用于:
基于所述第二指示信息确定所述定时调整方案为第二定时调整方案。
可选的,在本公开的一个实施例之中,第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
所述第二定时调整方案的调整步长大于所述第一定时调整方案的调整步长;
所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最小调整速率;
所述第二定时调整方案的最大调整速率大于所述第一定时调整方案的最大调整速率;
所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最大调整速率。
可选的,在本公开的一个实施例之中,所述获取模块,还用于:
获取所述网络设备发送的速度门限值。
可选的,在本公开的一个实施例之中,所述确定模块,还用于:
确定所述UE的移动速度与所述速度门限值的大小关系;
当所述UE的移动速度小于所述速度门限值,确定所述定时调整方案为第一定时调整方案;
当所述UE的移动速度大于或等于所述速度门限值,确定所述定时调整方案为第二定时调整方案;
其中,第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
所述第二定时调整方案的调整步长大于所述第一定时调整方案的调整步长;
所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最小调整速率;
所述第二定时调整方案的最大调整速率大于所述第一定时调整方案的最大调整速率;
所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最大调整速率。
可选的,在本公开的一个实施例之中,所述获取模块,还用于:
当所述UE处于非连接态,获取所述网络设备通过SIB消息发送的所述速度门限值。
可选的,在本公开的一个实施例之中,所述获取模块,还用于:
当所述UE处于连接态,获取所述网络设备通过RRC信令发送的所述速度门限值。
图8为本公开实施例所提供的一种信号复用装置的结构示意图。如图8所示,装置可以包括:
发送模块,用于向UE发送信息,所述信息用于供所述UE确定定时调整方案。
综上所述,在本公开实施例提供的定时调整装置之中,UE可以获取网络设备发送的信息,之后基于信息确定定时调整方案,以及基于定时调整方案调整UE的上行发射定时。具体的,在本公开实施例中,是基于UE类型或者UE的移动速度来确定与该UE对应的定时调整方案。其中,若UE类型为高移速UE或者UE的移动速度较高时,则所确定的定时调整方案为调整步长较长和/或调整频率较大的第二定时调整方案;若UE类型为低移速UE或者UE的移动速度较低时,则所确定的定时调整方案为调整步长较短和/或调整频率较小的第一定时调整方案。由此,本公开实施例的定时调整方法中,可以根据UE移速来选择与UE移速匹配的定时调整方案,则避免出现了“定时调整方案不适于高移速UE”的问题,确保了针对不同移速UE时的定时调整的准确性,进而保证了通信质量。
可选的,在本公开的一个实施例之中,所述装置,还用于:
获取所述UE上报的UE类型;其中,所述UE类型包括第一UE类型和第二UE类型,所述第一UE类型的UE的移动速度小于所述第二UE类型的UE的移动速度。
可选的,在本公开的一个实施例之中,所述装置,还用于:
获取所述UE通过RRC信令上报的所述UE类型。
可选的,在本公开的一个实施例之中,所述发送模块,还用于:
当所述UE类型为第一UE类型,向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE基于第一定时调整方案来调整所述UE的上行发射定时,所述第一定时调整方案匹配于所述第一UE类型的移动速度。
可选的,在本公开的一个实施例之中,所述发送模块,还用于:
当所述UE类型为第二UE类型,向所述UE发送第二指示信息,所述第二指示信息用于指示所述UE基于第二定时调整方案来调整所述UE的上行发射定时,所述第二定时调整方案匹配于所述第二UE类型的移动速度。
可选的,在本公开的一个实施例之中,第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
所述第二定时调整方案的调整步长大于所述第一定时调整方案的调整步长;
所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最小调整速率;
所述第二定时调整方案的最大调整速率大于所述第一定时调整方案的最大调整速率;
所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最大调整速率。
可选的,在本公开的一个实施例之中,所述发送模块,还用于:
向所述UE发送速度门限值。
可选的,在本公开的一个实施例之中,所述发送模块,还用于:
通过SIB消息向所述UE发送所述速度门限值。
可选的,在本公开的一个实施例之中,所述发送模块,还用于:
通过RRC信令向所述UE发送所述速度门限值。
图9是本公开一个实施例所提供的一种用户设备UE900的框图。例如,UE900可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,UE900可以包括以下至少一个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件913,以及通信组件916。
处理组件902通常控制UE900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括至少一个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括至少一个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在UE900的操作。这些数据的示例包括用于在UE900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为UE900的各种组件提供电力。电源组件906可以包括电源管理系统,至少一个电源,及其他与为UE900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述UE900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当UE900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当UE900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件913包括至少一个传感器,用于为UE900提供各个方面的状态评估。例如,传感器组件913可以检测到设备900的打开/关闭状态,组件的相对定位,例如所述组件为UE900的显示器和小键盘,传感器组件913还可以检测UE900或UE900一个组件的位置改变,用户与UE900接触的存在或不存在,UE900方位或加速/减速和UE900的温度变化。传感器组件913可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件913还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件913还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于UE900和其他设备之间有线或无线方式的通信。UE900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE900可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图10是本公开实施例所提供的一种网络侧设备1000的框图。例如,网络侧设备1000可以被提供为一网络侧设备。参照图10,网络侧设备1000包括处理组件1011,其进一步包括至少一个处理器,以及由存储器1032所代表的存储器资源,用于存储可由处理组件1022的执行的指令,例如应用程序。存储器1032中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1010被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备1000还可以包括一个电源组件1026被配置为执行网络侧设备1000的电源管理,一个有线或无线网络接口1050被配置为将网络侧设备1000连接到网络,和一个输入输出(I/O)接口1058。网络侧设备1000可以操作基于存储在存储器1032的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图1-图4任一所示的方法。
通信装置为网络设备:收发器用于执行图5-图7任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的系统,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以 存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (29)

  1. 一种定时调整方法,其特征在于,被用户设备UE执行,包括:
    获取网络设备发送的信息;
    基于所述信息确定定时调整方案;
    基于所述定时调整方案调整所述UE的上行发射定时。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述网络设备上报所述UE的UE类型;其中,所述UE类型包括第一UE类型和第二UE类型,所述第一UE类型的UE的移动速度小于所述第二UE类型的UE的移动速度。
  3. 如权利要求2所述的方法,其特征在于,所述向所述网络设备上报所述UE的UE类型,包括:
    通过无线资源控制RRC信令向所述网络设备上报所述UE的UE类型。
  4. 如权利要求2所述的方法,其特征在于,所述获取网络设备发送的信息,包括:
    当所述UE类型为第一UE类型,获取所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述UE基于第一定时调整方案来调整所述UE的上行发射定时,所述第一定时调整方案匹配于所述第一UE类型的移动速度。
  5. 如权利要求4所述的方法,其特征在于,所述基于所述信息确定定时调整方案,包括:
    基于所述第一指示信息确定所述定时调整方案为第一定时调整方案。
  6. 如权利要求2所述的方法,其特征在于,所述获取网络设备发送的信息,包括:
    当所述UE类型为第二UE类型,获取所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述UE基于第二定时调整方案来调整所述UE的上行发射定时,所述第二定时调整方案匹配于所述第二UE类型的移动速度。
  7. 如权利要求6所述的方法,其特征在于,所述基于所述信息确定定时调整方案,包括:
    基于所述第二指示信息确定所述定时调整方案为第二定时调整方案。
  8. 如权利要求4-7任一所述的方法,其特征在于,第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
    所述第二定时调整方案的调整步长大于所述第一定时调整方案的调整步长;
    所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最小调整速率;
    所述第二定时调整方案的最大调整速率大于所述第一定时调整方案的最大调整速率;
    所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最大调整速率。
  9. 如权利要求1所述的方法,其特征在于,所述获取网络设备发送的信息,包括:
    获取所述网络设备发送的速度门限值。
  10. 如权利要求9所述的方法,其特征在于,所述基于所述信息确定定时调整方案,包括:
    确定所述UE的移动速度与所述速度门限值的大小关系;
    当所述UE的移动速度小于所述速度门限值,确定所述定时调整方案为第一定时调整方案;
    当所述UE的移动速度大于或等于所述速度门限值,确定所述定时调整方案为第二定时调整方案;
    其中,第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
    所述第二定时调整方案的调整步长大于所述第一定时调整方案的调整步长;
    所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最小调整速率;
    所述第二定时调整方案的最大调整速率大于所述第一定时调整方案的最大调整速率;
    所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最大调整速率。
  11. 如权利要求9所述的方法,其特征在于,所述获取所述网络设备发送的速度门限值,包括:
    当所述UE处于非连接态,获取所述网络设备通过系统信息块SIB消息发送的所述速度门限值。
  12. 如权利要求9所述的方法,其特征在于,所述获取所述网络设备发送的速度门限值,包括:
    当所述UE处于连接态,获取所述网络设备通过无线资源控制RRC信令发送的所述速度门限值。
  13. 一种定时调整方法,其特征在于,被网络设备执行,包括:
    向UE发送信息,所述信息用于供所述UE确定定时调整方案。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    获取所述UE上报的UE类型;其中,所述UE类型包括第一UE类型和第二UE类型,所述第一UE类型的UE的移动速度小于所述第二UE类型的UE的移动速度。
  15. 如权利要求14所述的方法,其特征在于,所述获取所述UE上报的UE类型,包括:
    获取所述UE通过RRC信令上报的所述UE类型。
  16. 如权利要求14所述的方法,其特征在于,所述向UE发送信息,包括:
    当所述UE类型为第一UE类型,向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE基于第一定时调整方案来调整所述UE的上行发射定时,所述第一定时调整方案匹配于所述第一UE类型的移动速度。
  17. 如权利要求14所述的方法,其特征在于,所述向UE发送信息,包括:
    当所述UE类型为第二UE类型,向所述UE发送第二指示信息,所述第二指示信息用于指示所述UE基于第二定时调整方案来调整所述UE的上行发射定时,所述第二定时调整方案匹配于所述第二UE类型的移动速度。
  18. 如权利要求16或17所述的方法,其特征在于,第一定时调整方案与第二定时调整方案的区别点包括以下至少一种:
    所述第二定时调整方案的调整步长大于所述第一定时调整方案的调整步长;
    所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最小调整速率;
    所述第二定时调整方案的最大调整速率大于所述第一定时调整方案的最大调整速率;
    所述第二定时调整方案的最小调整速率大于所述第一定时调整方案的最大调整速率。
  19. 如权利要求13所述的方法,其特征在于,所述向UE发送信息,包括:
    向所述UE发送速度门限值。
  20. 如权利要求19所述的方法,其特征在于,所述向所述UE发送速度门限值,包括:
    通过SIB消息向所述UE发送所述速度门限值。
  21. 如权利要求19所述的方法,其特征在于,所述向所述UE发送速度门限值,包括:
    通过RRC信令向所述UE发送所述速度门限值。
  22. 一种定时调整装置,其特征在于,被UE执行,包括:
    获取模块,用于获取网络设备发送的信息;
    确定模块,用于基于所述信息确定定时调整方案;
    调整模块,用于基于所述定时调整方案调整所述UE的上行发射定时。
  23. 一种定时调整方法,其特征在于,被网络设备执行,包括:
    发送模块,用于向UE发送信息,所述信息用于供所述UE确定定时调整方案。
  24. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  25. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至21中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至21中任一项所述的方法。
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至21中任一项所述的方法被实现。
PCT/CN2022/080698 2022-03-14 2022-03-14 一种定时调整方法/装置/设备及存储介质 WO2023173254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000749.9A CN117204065A (zh) 2022-03-14 2022-03-14 一种定时调整方法/装置/设备及存储介质
PCT/CN2022/080698 WO2023173254A1 (zh) 2022-03-14 2022-03-14 一种定时调整方法/装置/设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080698 WO2023173254A1 (zh) 2022-03-14 2022-03-14 一种定时调整方法/装置/设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023173254A1 true WO2023173254A1 (zh) 2023-09-21

Family

ID=88022024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080698 WO2023173254A1 (zh) 2022-03-14 2022-03-14 一种定时调整方法/装置/设备及存储介质

Country Status (2)

Country Link
CN (1) CN117204065A (zh)
WO (1) WO2023173254A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789910A (zh) * 2020-11-30 2021-05-11 北京小米移动软件有限公司 定时调整方法及装置、通信设备和存储介质
CN113545139A (zh) * 2019-03-07 2021-10-22 苹果公司 增强的自主上行链路定时调整

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113545139A (zh) * 2019-03-07 2021-10-22 苹果公司 增强的自主上行链路定时调整
CN112789910A (zh) * 2020-11-30 2021-05-11 北京小米移动软件有限公司 定时调整方法及装置、通信设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE: "Discussion on timing requirements for NR NTN", 3GPP TSG-RAN4 MEETING #101-E, R4-2117455, 22 October 2021 (2021-10-22), XP052069068 *
ERICSSON: "RRM Timing requirements", 3GPP TSG-RAN WG4 MEETING #98-E, R4-2101865, 15 January 2021 (2021-01-15), XP052180304 *

Also Published As

Publication number Publication date
CN117204065A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
EP4354972A1 (en) Method and apparatus for determining time-domain window, and user equipment, base station and storage medium
WO2023206183A1 (zh) 成功PScell添加或更换报告的相关信息记录方法、装置
WO2023206182A1 (zh) 成功PScell添加或更换报告的位置信息记录方法、装置
WO2023201760A1 (zh) PScell添加或改变的成功报告的记录方法、装置
WO2023220901A1 (zh) 上报方法、装置
WO2023201759A1 (zh) 成功PScell添加或更换报告的上报方法、装置
WO2023173254A1 (zh) 一种定时调整方法/装置/设备及存储介质
CN116076101A (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
WO2023225829A1 (zh) 多prach传输配置方法、装置
WO2023220900A1 (zh) Mcg失败相关信息上报方法、装置
WO2023173434A1 (zh) 一种信道估计方法、装置、设备及存储介质
WO2023201586A1 (zh) 一种物理信道重复传输的指示方法及设备/存储介质/装置
WO2023178568A1 (zh) 一种测量方法及设备/存储介质/装置
WO2024016240A1 (zh) Pdsch传输方法、装置
WO2023206570A1 (zh) 一种配置管理方法、装置、设备及存储介质
EP4373152A1 (en) Communication method and apparatus thereof
WO2023216079A1 (zh) 资源配置方法/装置/用户设备/网络侧设备及存储介质
WO2023173433A1 (zh) 一种信道估计方法/装置/设备及存储介质
WO2023225827A1 (zh) 多prach传输配置方法、装置
CN114586401B (zh) 一种测量放松方法、设备、存储介质及装置
WO2023184260A1 (zh) 一种信号传输方法/装置/设备及存储介质
WO2023193278A1 (zh) 一种阈值确定方法/装置/设备及存储介质
WO2023206176A1 (zh) 测量报告发送方法、测量报告接收方法、装置
WO2023178567A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023206181A1 (zh) 一种小区管理方法/装置/设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000749.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931294

Country of ref document: EP

Kind code of ref document: A1