WO2023240468A1 - 一种角度传感器的校准方法和传感系统 - Google Patents

一种角度传感器的校准方法和传感系统 Download PDF

Info

Publication number
WO2023240468A1
WO2023240468A1 PCT/CN2022/098755 CN2022098755W WO2023240468A1 WO 2023240468 A1 WO2023240468 A1 WO 2023240468A1 CN 2022098755 W CN2022098755 W CN 2022098755W WO 2023240468 A1 WO2023240468 A1 WO 2023240468A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
period
signal
mechanical
electrical
Prior art date
Application number
PCT/CN2022/098755
Other languages
English (en)
French (fr)
Inventor
张鑫
卢宇灏
张永生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/098755 priority Critical patent/WO2023240468A1/zh
Publication of WO2023240468A1 publication Critical patent/WO2023240468A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Definitions

  • the present application relates to the field of sensor technology, and in particular to a calibration method and sensing system for an angle sensor.
  • angle sensors are widely used in industry, automobiles, home appliances, robots and other fields, and can be used to detect the angle information of the rotation of various mechanical structures (such as the steering wheel of a car, the rotor in a motor, etc.).
  • the rotation angle sensor is more typical.
  • the angle error of the rotation angle sensor usually has obvious regularity and periodicity.
  • the industry often performs reverse compensation by identifying the law of single periodic angle error to realize the rotation angle sensor. Calibration of sensors.
  • a multi-pole angle sensor that is, a rotation-type angle sensor containing a multi-pole target component.
  • the target component is a sensor component that can be sensed by the sensing element.
  • the multi-pole represents the target.
  • the calibration method of the multi-pole angle sensor usually calibrates the angle error of a single electrical angle cycle.
  • the angle error is the error between the sensor output angle and the reference angle.
  • the above method used in the multi-pole angle sensor can only calibrate the error of a single electrical angle cycle, but cannot further reduce the angle error across the mechanical angle cycle. .
  • Embodiments of the present application provide a calibration method and a sensing system for an angle sensor, which help to achieve angle error calibration across a mechanical angle cycle and further improve the accuracy and resolution of the angle sensor.
  • embodiments of the present application provide a method for calibrating an angle sensor.
  • the method can be executed by a detection device.
  • the detection device is an electronic device that can communicate with the angle sensor. It can be an independent device or an independent device. components, the embodiment of the present application does not limit the product form of the detection device.
  • the method may include: acquiring a first reference angle signal of a first angle sensor, wherein the first angle sensor includes a rotation axis and an n-pole target arranged around the rotation axis, where n is an integer greater than or equal to 1; Obtain m electrical angle period signals of the first angle sensor, where the electrical angle period represents the rotation period corresponding to the single pole of the target piece, m ⁇ n; according to the first reference angle signal and the m The electrical angle period signal determines the electrical angle period compensation parameter and the mechanical angle period compensation parameter, wherein the electrical angle period compensation parameter is used to calibrate the angle error of the electrical angle period of the n-pole target, and the mechanical angle period compensation Parameters used to calibrate the angular error of the mechanical angular period of the rotation axis.
  • the first reference angle signal can be used to assist in identifying different rotation period (including electrical angle period and mechanical angle period) signals of the first angle sensor, so as to realize the differentiation of signals across mechanical angle periods, so as to selectively Calibrating the angle error of the electrical angle cycle or the angle error of the mechanical angle cycle further improves the accuracy and resolution of the multipolar angle sensor.
  • the rotating shaft is drivingly connected to the plunger of the sensing system, and when the rotating shaft rotates, the plunger reciprocates in the blind hole accommodating the plunger.
  • obtaining the first reference angle signal of the first angle sensor includes: obtaining the first reference angle signal when driving the rotating shaft to slide the plunger to a preset mechanical zero position.
  • the sensing system can preset the mechanical zero position, and use the angle signal collected at the mechanical zero position as the first reference angle signal to distinguish different rotation cycles of the first angle sensor (including electrical angle cycles and mechanical Angle period) signal to realize the differentiation of signals across mechanical angle period.
  • the preset mechanical zero position includes the bottom of the blind hole.
  • the preset mechanical zero position can be set at the bottom of the blind hole, so that the angle signal corresponding to the mechanical zero position can be collected more accurately.
  • the mechanical zero position is the reference mechanical position for collecting the reference angle signal in the embodiment of the present application, and the position and the name of the position are not limited in specific applications.
  • the bottom of the blind hole is only an example and not a limitation of the mechanical zero position in the embodiment of the present application.
  • the mechanical zero position can be set as needed according to the mechanical structure of the actually used sensing system or according to the application scenario. The embodiment does not limit this.
  • obtaining the first reference angle signal of the first angle sensor includes: obtaining the first angle signal of the first angle sensor, and obtaining the first angle signal of the second angle sensor.
  • second angle signal, the second angle sensor is fixed on the rotation axis; the first reference angle signal is determined based on the first angle signal and the second angle signal.
  • a second angle sensor can be installed in the sensing system.
  • the second angle sensor can replace the mechanical zero position and be used to obtain the reference angle signal, that is, the first reference angle signal. It should be understood that in the embodiment of the present application, the second angle sensor is only used to obtain a reference angle signal relative to the first angle sensor, and the accuracy and resolution of the second angle sensor are not required.
  • the second angle sensor includes a k-polar object, k is an integer greater than or equal to 1, and k and n are prime numbers to each other.
  • the second angle sensor installed in the sensing system can be a k-pole angle sensor that is different from the first angle sensor in order to obtain the reference angle signal.
  • determining the first reference angle signal according to the first angle signal and the second angle signal includes: determining the first reference angle signal through the following expression Reference angle signal: (A1/n-A2/k)% (360/n), where A1 represents the first angle signal, A2 represents the second angle signal, and % represents the remainder.
  • the detection device can determine the first reference angle signal based on the first angle signal, the second angle signal, and the preset expression. It can be understood that this expression is only an example and not a limitation. In other embodiments, the expression may have other variations, which will not be described again here.
  • determining the electrical angle period compensation parameter and the mechanical angle period compensation parameter according to the first reference angle signal and the m electrical angle period signals includes: according to the The first reference angle signal and the m electrical angle period signals determine a mechanical angle period signal, and the mechanical angle period represents the rotation period of the rotating shaft; according to the m electrical angle period signals, the electrical angle period signal is determined. Angle period compensation parameter; determine the mechanical angle period compensation parameter according to the mechanical angle period signal.
  • the detection device can expand the collected m electrical angle periodic signals to obtain a mechanical angle periodic signal, so as to obtain the mechanical angle periodic compensation parameter by using the mechanical angle periodic signal.
  • determining the mechanical angle periodic signal based on the first reference angle signal and the m electrical angle periodic signals includes: determining the mechanical angle periodic signal through the following expression: Angle periodic signal: ((M1 ⁇ 360*m)/n)%360, where M1 represents the first reference angle signal, and % represents the remainder.
  • the detection device uses any of the following compensation methods to determine the electrical angle period compensation parameters and the mechanical angle period compensation parameters: harmonic compensation method or table lookup-interpolation Compensation Act.
  • the detection device can use any suitable compensation method to determine the electrical angle period compensation parameters and the mechanical angle period compensation parameters, which are not limited in the embodiments of the present application.
  • the method further includes: saving the first reference angle signal, the electrical angle period compensation parameter and the mechanical angle period compensation parameter.
  • the detection device can save the above information, so that during the application of the sensing system, the saved information can be used to selectively adjust the collected angle signals (such as compensation calibration) to improve the performance of the sensing system. accuracy and resolution.
  • the method further includes: acquiring a second reference angle signal of the first angle sensor; acquiring l electrical angle periodic signals, l ⁇ n; according to the second The reference angle signal and the l electrical angle period signals determine the period signal to be calibrated; the period signal to be calibrated is adjusted according to the saved electrical angle period compensation parameters and mechanical angle period compensation parameters.
  • the method further includes: determining that the difference between the first reference angle signal and the second reference angle signal is within an allowable angle error range.
  • embodiments of the present application provide a method for calibrating an angle sensor.
  • the method can be executed by a detection device.
  • the detection device is an electronic device that can communicate with the angle sensor. It can be an independent device or a component of an independent device. , the embodiment of the present application does not limit the product form of the detection device.
  • the method may include: acquiring a second reference angle signal of a first angle sensor, the first angle sensor including a rotation axis and an n-pole target disposed on the rotation axis, n being an integer greater than or equal to 1; acquiring l electrical angle periodic signals of the first angle sensor, wherein the electrical angle period represents the rotation period corresponding to the single pole of the target piece, l ⁇ n; according to the second reference angle signal and the l electrical angle periodicity
  • the angle periodic signal determines the periodic signal to be calibrated; and the periodic signal to be calibrated is adjusted according to the saved electrical angle periodic compensation parameters and mechanical angle periodic compensation parameters.
  • inventions of the present application provide a sensing system, including a detection device and a first angle sensor.
  • the first angle sensor includes a rotation axis, a sensing element, and an n-pole target disposed around the rotation axis, n is an integer greater than or equal to 1, and the sensing element is used to sense the rotation angle of the rotation axis and the n-pole target, wherein the sensing element is used to provide the first angle to the detection device
  • the first reference angle signal of the sensor and m electrical angle period signals the electrical angle period represents the rotation period corresponding to the single pole of the target piece, m ⁇ n; the detection device is used to measure the first reference angle signal and the
  • the m electrical angle period signals determine an electrical angle period compensation parameter and a mechanical angle period compensation parameter.
  • the electrical angle period compensation parameter is used to calibrate the angle error of the electrical angle period of the n-pole target part.
  • the mechanical angle period The compensation parameter is used to calibrate the angular error of the mechanical angular period of the rotation
  • the sensing system further includes a cylinder and a plunger
  • the cylinder is provided with a blind hole
  • the plunger is slidably disposed in the blind hole
  • the plunger The plug is drivingly connected to the rotating shaft.
  • the rotating shaft is also used to: drive the detecting device to control the The plunger slides to a preset mechanical zero position; the sensing element is used to provide the first reference angle signal to the detection device when the plunger slides to a preset mechanical zero position.
  • the preset mechanical zero position includes the bottom of the blind hole.
  • the plunger is threadedly connected to the rotating shaft.
  • a possible implementation further includes a second angle sensor, the second angle sensor is disposed on the rotating shaft or the transmission mechanism of the rotating shaft, and the sensing element sends a signal to the detection element.
  • the device providing the first reference angle signal of the first angle sensor includes: providing the first angle signal of the first angle sensor and the second angle signal of the second angle sensor to the detection device, the first angle signal and the first angle signal The second angle signal is used to determine the first reference angle signal.
  • the second angle sensor includes a k-polar object, k is an integer greater than or equal to 1, and k and n are prime numbers to each other.
  • the first reference angle signal satisfies the following expression: (A1/n-A2/k)% (360/n), where A1 represents the first angle signal, A2 represents the second angle signal, and % represents the remainder.
  • embodiments of the present application provide a detection device, including: an acquisition unit configured to acquire a first reference angle signal of a first angle sensor, wherein the first angle sensor includes a rotation axis and a rotation axis around the rotation axis.
  • n-pole target part is set on the axis, n is an integer greater than or equal to 1; m electrical angle periodic signals of the first angle sensor are obtained, where the electrical angle period represents the rotation period corresponding to a single pole of the target part, m ⁇ n; determination unit, configured to determine the electrical angle period compensation parameter and the mechanical angle period compensation parameter according to the first reference angle signal and the m electrical angle period signals, wherein the electrical angle period compensation parameter is In order to calibrate the angle error of the electrical angle period of the n-pole target, the mechanical angle period compensation parameter is used to calibrate the angle error of the mechanical angle period of the rotation axis.
  • the rotating shaft is drivingly connected to the plunger of the sensing system, and when the rotating shaft rotates, the plunger reciprocates in the blind hole accommodating the plunger.
  • the acquisition unit is configured to: acquire the first reference angle signal when driving the rotation shaft to slide the plunger to a preset mechanical zero position.
  • the preset mechanical zero position includes the bottom of the blind hole.
  • the acquisition unit is configured to: acquire a first angle signal of the first angle sensor and a second angle signal of a second angle sensor, and the second angle sensor Fixed on the rotation axis; the determination unit is used to determine the first reference angle signal according to the first angle signal and the second angle signal.
  • the second angle sensor includes a k-polar target object, k is an integer greater than or equal to 1, and k and n are prime numbers to each other.
  • the determining unit is configured to determine the first reference angle signal through the following expression:
  • A1 represents the first angle signal
  • A2 represents the second angle signal
  • % represents the remainder.
  • the determination unit is configured to: determine a mechanical angle periodic signal based on the first reference angle signal and the m electrical angle periodic signals, where the mechanical angle periodicity represents The rotation period of the rotating shaft; the electrical angle period compensation parameter is determined based on the m electrical angle period signals; the mechanical angle period compensation parameter is determined based on the mechanical angle period signal.
  • the determination unit is configured to determine the mechanical angle periodic signal through the following expression:
  • M1 represents the first reference angle signal
  • % represents the remainder
  • any one of the following compensation methods is used to determine the electrical angle period compensation parameters and the mechanical angle period compensation parameters: harmonic compensation method or table lookup-interpolation compensation method.
  • the device further includes a storage unit configured to save the electrical angle period compensation parameter and the mechanical angle period compensation parameter.
  • the acquisition unit is further configured to: acquire a second reference angle signal of the first angle sensor; acquire l electrical angle periodic signals of the first angle sensor, l ⁇ n; the determination unit is also used to: determine the periodic signal to be calibrated according to the second reference angle signal and the l electrical angle periodic signals; and compensate according to the saved electrical angle periodicity compensation parameters and mechanical angle periodicity. parameters to adjust the periodic signal to be calibrated.
  • the determining unit is further configured to determine that the difference between the first reference angle signal and the second reference angle signal is within an allowable angle error range.
  • embodiments of the present application provide a detection device, including: an acquisition unit configured to acquire a second reference angle signal of a first angle sensor, where the first angle sensor includes a rotation axis and a rotation axis disposed on the rotation axis.
  • n is an integer greater than or equal to 1
  • obtain l electrical angle period signals of the first angle sensor where the electrical angle period represents the rotation period corresponding to the single pole of the target, l ⁇ n
  • determination unit used to determine the periodic signal to be calibrated based on the second reference angle signal and the l electrical angle period signals
  • calibration unit used to compensate parameters according to the saved electrical angle period and mechanical angle period Compensation parameters are used to adjust the periodic signal to be calibrated.
  • embodiments of the present application provide a communication device, including one or more memories and one or more processors; wherein the memory stores computer program code, and the computer program code includes computer instructions; when the When the computer instructions are executed by the processor, the method described in the above first aspect and any possible implementation of the first aspect is executed, or the method described in the above second aspect and any possible implementation of the second aspect is executed. The method is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run, the first aspect and any one of the above aspects may be realized.
  • the method described in the above manner is executed, or the method described in the above second aspect and any possible implementation manner of the second aspect is executed.
  • embodiments of the present application provide a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the above first aspect and the first aspect are achieved.
  • the method described in any possible implementation manner is executed, or the method described in the above second aspect and any possible implementation manner of the second aspect is executed.
  • Figure 1a shows a schematic diagram of the output angle of a multi-pole angle sensor
  • Figure 1b shows a schematic diagram of the angle error
  • Figure 2 shows a schematic diagram of a multi-pole angle sensor according to an embodiment of the present application
  • Figure 3 shows a schematic cross-sectional view of the sensing system according to the embodiment of the present application
  • Figure 4a shows a schematic cross-sectional view of an example sensing system according to the embodiment of the present application
  • Figure 4b shows a schematic cross-sectional view of another example of a sensing system according to the embodiment of the present application.
  • Figure 5 shows a schematic flow chart of the calibration method according to the embodiment of the present application.
  • Figure 6 shows a schematic flow chart of the calibration method according to the embodiment of the present application.
  • Figure 7 shows a schematic diagram of the angle error according to the embodiment of the present application.
  • Figure 8 shows a schematic diagram of a communication device according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram of a communication device according to an embodiment of the present application.
  • Angle transducer A sensor device used to detect angles. It is widely used in industry, automobiles, home appliances, robots and other fields. It can be used to detect various mechanical structures (such as the steering wheel of a car, the rotor in a motor, etc.) Rotation angle information.
  • Multi-pole angle sensor An angle sensor containing multi-pole target parts.
  • the multi-pole angle sensor also includes a rotating shaft, which can be connected to the detected mechanical structure, and the multi-pole target can be set on the rotating shaft.
  • the target device is a sensing device that can be sensed by the sensing element.
  • Multipole represents the number of pole pairs n of the target device, and n is an integer greater than or equal to 1.
  • Mechanical angle period the rotation period corresponding to the rotating axis.
  • Angular error the difference between the output angle of the angle sensor and the reference angle.
  • the angle error of a rotation-type angle sensor has obvious regularity and periodicity.
  • the angle error can include two categories: angle error of an electrical angle period (which may be referred to as electrical angle error in the following embodiments). and the angle error of the mechanical angle period (which may be referred to as the mechanical angle error in the following embodiments). These two types of angle errors also have obvious regularity and periodicity.
  • Compensating parameter A parameter used to compensate for angle errors to adjust the angle signal output by the angle sensor to achieve signal calibration.
  • the value of the compensation parameter is usually opposite to the value of the angle error.
  • the compensation parameters used to calibrate the angular error corresponding to the electrical angle period are called electrical angle period compensation parameters, and the compensation parameters used to calibrate the angular error corresponding to the mechanical angle period are called mechanical angles.
  • Period compensation parameters are called electrical angle period compensation parameters.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the ordinal numbers such as “first”, “second” and “third” mentioned in the embodiments of this application are used to distinguish multiple objects and are not used to limit the priority or priority of multiple objects. Importance.
  • the first reference angle information and the second reference angle signal are only used to distinguish different reference angle signals, but do not indicate differences in priority or importance of the two reference angle signals.
  • Figure 1b shows a schematic diagram of the angle error curve of a multipole angle sensor.
  • curve (1) represents the angle error curve corresponding to the electrical angle cycle.
  • the angle error corresponding to the electrical angle cycle is the difference between the peak and the trough of a single electrical angle cycle.
  • the electrical angle cycle compensation parameter is The inverse of the angular error of the angular period.
  • the main causes of angular errors across cycles include: sensor asymmetry caused by process accuracy in sensor component processing and system assembly.
  • angle errors can be reduced by improving the process level, but this solution has relatively high time and cost requirements and is not the best solution.
  • embodiments of the present application propose a calibration method and sensing system for an angle sensor, which helps to achieve the calibration of the angle error across the mechanical angle cycle, further improves the accuracy and resolution of the multi-pole angle sensor, and at the same time , which has lower requirements on time and cost.
  • the method and the device are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated points will not be repeated.
  • Figure 2 shows a schematic diagram of an angle sensor according to an embodiment of the present application.
  • the angle sensor 200 includes a rotation axis 210 , an n-pole target 220 and a sensing element 230 .
  • n represents a polar pair, and n is an integer greater than or equal to 1.
  • the angle sensor 200 is called a unipolar angle sensor; when n>1, the angle sensor 200 is called a multipolar angle sensor.
  • the rotating shaft 210 can be connected to a detected mechanical structure (such as a steering wheel of a car, a rotor in a motor, etc., not shown in FIG. 2 ), and can rotate under the driving of the motor of the mechanical structure.
  • the n-pole target 220 can be sleeved (fixedly arranged) on the rotating shaft 210 and can rotate along with the rotating shaft 210 .
  • the sensing element 230 is disposed near the n-pole target 220 and is used to sense the rotation angle of the rotating shaft 210 and the n-pole target 220 during the rotation of the rotating shaft 210 .
  • the n-pole target device 220 includes n groups of target devices. Each group of target devices is an alternately arranged (equally divided) sensing device.
  • the n-pole target device 220 forms n equally divided sector-shaped areas on the circumference, and the sector-shaped area angle is 2 ⁇ . /n, the angle corresponding to a single sensing device arranged alternately is ⁇ /n.
  • each pair of magnet rings includes an N pole and an S pole.
  • the N pole and S pole have opposite polarities.
  • the N pole of the five pairs of pole magnet rings is The poles and S poles are alternately arranged on the rotation axis 210, forming five equally divided sector areas on the circumference.
  • the angle of each sector area is 72°, and the corresponding angle of each N pole or each S pole is 36°.
  • FIG. 2 is only an illustration of the n-pole target without any limitation.
  • the n-pole target 220 can be made of any inductive material, including but not limited to magnetic materials, inductive metal materials, etc.
  • the sensing element 230 can be a magnetic element such as Hall/GMR/AMR, or other types of sensing elements, such as inductance-type sensing elements.
  • the embodiment of the present application is concerned with the composition of the n-pole target 220 or the sensing element 230 No restrictions.
  • the alternately arranged sensing devices in each group of the n-pole target device 220 may be: N poles and S poles, for example, the alternately arranged sensing devices in FIG. 2
  • the black block represents the N pole
  • the white block represents the S pole.
  • the alternately arranged sensing devices in each group of target devices in the n-pole target device 220 can be: inductance-based metal materials, non-inductance Metal-like materials.
  • the black blocks can be replaced with inductive metal-like materials, and the remaining white blocks (or black blocks) can be replaced with non-inductive metal-like materials, such as blanks.
  • the application examples do not limit this.
  • the angle sensor shown in Figure 2 can be used to detect the angle information of the rotation of various mechanical structures (such as the steering wheel of a car, the rotor in a motor, etc.).
  • the sensing system of the embodiment of the present application may include the angle sensor and the detected machinery. structure.
  • the following takes the multi-pole target component of the angle sensor shown in Figure 2 using magnetic materials as an example to introduce the sensing system using this angle sensor.
  • Figure 3 shows a schematic cross-sectional view of a sensing system according to an embodiment of the present application.
  • the sensing system may include the angle sensor shown in Figure 2 and a detected mechanical structure, which may include a base body, a bearing, a plunger and a cylinder.
  • the rotation axis of the angle sensor can be connected to the base body of the mechanical structure through bearings.
  • a blind hole is provided in the cylinder body to accommodate the plunger, and the plunger can slide in the blind hole.
  • the rotation axis of the angle sensor can be transmission connected with the plunger, and when the rotation axis rotates, the plunger can slide back and forth in the blind hole.
  • the system shown in Figure 3 may also include other components or devices not shown, such as motors or detection devices.
  • the motor can be connected to the rotating shaft and used to drive the rotating shaft to rotate.
  • the detection device can be connected to the sensing element and used to obtain the angle signal from the sensing element, calculate and process the obtained angle signal, and implement angle signal detection or error calibration, etc. The following will be introduced in conjunction with the method flow chart and will not be described in detail here.
  • the transmission connection between the rotating shaft and the plunger may be a threaded connection or other connection methods, and the embodiment of the present application does not limit this transmission connection method.
  • the detection device can obtain the reference angle signal of the angle sensor, so as to identify the cross-cycle signal and calibrate the cross-cycle angle error based on the reference angle signal.
  • the sensing system shown in Figure 3 can include the following two structural examples:
  • the sensing system may include a mechanical zero position, and the detection device may obtain a reference angle signal based on the mechanical zero position.
  • the mechanical zero position is the reference mechanical position that limits the plunger stroke.
  • the mechanical structure of the sensing system is sufficiently stable, a consistent angle signal can be obtained when the plunger slides to this mechanical zero position.
  • the angle signal collected through the sensing element at the mechanical zero position is used as the reference angle signal.
  • the detection device can distinguish each electrical angle periodic signal collected, thereby performing measurement on the rotating shaft. Absolute rotation angle monitoring.
  • the mechanical zero position can be set at the bottom of the blind hole.
  • the detection device can send a control signal to the motor, so that the motor drives the rotating shaft to rotate.
  • the plunger can be slid to a preset mechanical zero position, such as the bottom of a blind hole.
  • the detection device can use the angle signal collected by the sensing element when the plunger slides to the bottom of the blind hole as the reference angle signal, expressed as M0.
  • the detection device can send a control signal to the motor, so that the motor drives the rotating shaft to rotate for at least one revolution.
  • the detection device can obtain m electrical angle periodic signals of the angle sensor through the sensing element during the rotation of the rotating shaft, m ⁇ n.
  • the detection device can obtain the compensation parameters for the angle error of the electrical angle period and the angle error for the mechanical angle period. compensation parameters and save them.
  • the detection device can use the saved compensation parameters to calibrate the angle signal collected by the angle sensor, for example, to calibrate the angle error of the electrical angle cycle and/or the angle error of the mechanical angle cycle.
  • the detection device can use the saved compensation parameters to calibrate the angle signal collected by the angle sensor, for example, to calibrate the angle error of the electrical angle cycle and/or the angle error of the mechanical angle cycle.
  • the collected reference angle signal can be expressed as M0.
  • the reference angle signal collected during the calibration process can be represented as M1, which is called the first reference angle signal
  • the reference angle signal collected during the application process can be represented as M2, which is called the second reference angle. signal
  • the embodiment of the present application does not limit the expression method of the reference angle signal.
  • Example 2 Obtain the reference angle signal of the angle sensor 1 to be calibrated through an additional angle sensor 2.
  • angle sensor 1 The angle sensor connected to the plunger transmission in the sensing system is denoted as angle sensor 1.
  • an additional angle sensor can be added to the sensing system.
  • this additional angle sensor can be represented as angle sensor 2.
  • the angle sensor 2 can be disposed on the rotation axis of the angle sensor 1 and is also used to sense the rotation angle of the rotation axis.
  • the detection device can use the angle signal output by the angle sensor 2 to assist in distinguishing adjacent electrical angle periods of the angle sensor 1 so as to calibrate the angle signal of the angle sensor 1 across the mechanical angle period.
  • the angle sensor 2 may be a unipolar angle sensor or a multi-pole angle sensor.
  • K represents the number of pole pairs of the angle sensor 2
  • k is an integer greater than or equal to 1
  • the embodiments of this application do not limit the specific values of n and k.
  • the detection device can obtain the angle signal of the angle sensor 1 and the angle signal of the angle sensor 2, and based on the angle signal of the angle sensor 1 and the angle of the angle sensor 2 The signal determines the reference angle signal.
  • A1 represents the first angle signal of angle sensor 1 at the first moment
  • A2 represents the second angle signal of angle sensor 2 at the first moment.
  • the reference angle signal can satisfy the following expression (1) :
  • M1 (A1/n-A2/k)%(360/n) (1)
  • M1 represents the reference angle signal in the calibration process (for example, it is called the first reference angle signal)
  • A1 represents the first angle signal
  • n represents the pole pair number of the angle sensor 1
  • n is an integer greater than or equal to 1
  • A2 represents In the second angle signal
  • k represents the number of pole pairs of the angle sensor 2
  • k is an integer greater than or equal to 1
  • n and k are prime numbers to each other
  • % represents the remainder.
  • the same expression (1) can be used to determine the reference angle signal in the application process, where M1 in the above expression (1) can be replaced by M2, which represents the reference angle signal in the application process (for example, it is called the third (two reference angle signals), A1 in the above expression (1) can be replaced by A3, which represents the third angle signal of the angle sensor 1 at the second moment, and A2 in the above expression (1) can be replaced by A4, which represents the angle.
  • M1 in the above expression (1) can be replaced by M2, which represents the reference angle signal in the application process (for example, it is called the third (two reference angle signals)
  • A1 in the above expression (1) can be replaced by A3, which represents the third angle signal of the angle sensor 1 at the second moment
  • A2 in the above expression (1) can be replaced by A4, which represents the angle.
  • the detailed calculation process of the fourth angle signal of the sensor 2 at the second moment can be found in the above expression (1), which will not be described again here.
  • the detection device can send a control signal to the motor, so that the motor drives the rotating shaft to rotate at least once using the position at the first moment as the starting position.
  • the detection device can obtain m or l electrical angle periodic signals of the angle sensor 1 through the sensing element during the rotation of the rotating shaft, where m ⁇ n or l ⁇ n.
  • the detection device can obtain the compensation parameters for the angle error of the electrical angle period and the angle error for the mechanical angle. Compensation parameters of periodic angle error and saved.
  • the detection device can use the saved compensation parameters to calibrate the l electrical angle period signals collected by the angle sensor 1, such as calibrating the angle error of the electrical angle period and/or the mechanical angle period. Angle error.
  • the detection device can use the saved compensation parameters to calibrate the l electrical angle period signals collected by the angle sensor 1, such as calibrating the angle error of the electrical angle period and/or the mechanical angle period. Angle error.
  • the angle sensor 2 may also be a common angle sensor (for example, a non-multipolar angle sensor).
  • the above-mentioned Figures 3, 4a and 4b are only examples of the sensing system in the embodiment of the present application and are not limiting in any way.
  • the sensing system can also adopt other structures, such as gear transmission. system.
  • the installation position of the angle sensor 2 is not limited to the rotation axis of the angle sensor 1.
  • the angle sensor 2 can be disposed on the transmission mechanism of the rotation axis of the angle sensor 1, which will not be described again.
  • FIG 5 shows a schematic diagram of the calibration process according to the embodiment of the present application.
  • the calibration process is a process of obtaining compensation parameters, which can be implemented by the sensing system shown in Figure 4a or Figure 4b.
  • the angle sensor 1 can be called the first angle sensor
  • the angle sensor 2 can be called the second angle sensor
  • the reference angle signal obtained in the calibration process is called the first reference angle signal, which will be used in the application.
  • the reference angle signal obtained in the process (for example, the process of calibrating the angle signal output by the angle sensor 1 using the obtained compensation parameters) is called the second reference angle signal, which will not be described in detail in the following embodiments.
  • the calibration process can include the following steps:
  • the detection device obtains the first reference angle signal of the first angle sensor.
  • the first angle sensor is a multi-pole angle sensor as shown in Figure 2.
  • the first angle sensor may include a rotating shaft and an n-pole target sleeved on the rotating shaft. components and inductive elements arranged near n-pole target components, n is the number of pole pairs, and n is an integer greater than or equal to 1.
  • the first reference angle signal obtained in S510 may be expressed as M1, for example.
  • the M1 can be the M0 obtained during the calibration process.
  • the detection device can send a control signal to the motor so that the motor drives the rotating shaft to rotate.
  • the plunger can slide to a preset mechanical zero position (such as the bottom of a blind hole).
  • the detection device may use the angle signal collected by the sensing element when the plunger slides to the mechanical zero position as the first reference angle signal.
  • the M1 can be the M1 obtained during the calibration process.
  • the detection device can obtain the first angle signal of the first angle sensor and the second angle signal of the second angle sensor at any time, and determine the first reference angle signal based on the first angle signal and the second angle signal. , refer to the above expression (1), which will not be repeated here.
  • the detection device acquires m electrical angle periodic signals of the first angle sensor.
  • the electrical angle period represents the rotation period corresponding to the single pole of the target component, m ⁇ n.
  • the detection device may use the position of the rotation axis when the first reference angle signal is collected as a starting point, and control the rotation axis to rotate for at least one revolution to obtain the m electrical angle periodic signals.
  • the starting point of the rotation axis corresponds to the mechanical zero position.
  • the sensing system adopts the architecture shown in Figure 4b the starting point of the rotation axis corresponds to the position of the rotation axis when the sensing element simultaneously collects the first angle signal and the second angle signal.
  • the detection device determines the electrical angle period compensation parameters and the mechanical angle period compensation parameters based on the first reference angle signal and the m electrical angle period signals.
  • the electrical angle period compensation parameter is used to calibrate the angle error of the electrical angle period of the n-pole target object
  • the mechanical angle period compensation parameter is used to calibrate the angle error of the mechanical angle period of the rotation axis
  • the detection device can perform the following steps:
  • the detection device calculates the angle error based on the first reference angle signal and the m electrical angle periodic signals.
  • the detection device determines the electrical angle period compensation parameters and the mechanical angle period compensation parameters based on the angle error.
  • the detection device when performing S531, may determine a mechanical angle period signal based on the first reference angle signal and the m electrical angle period signals, where the mechanical angle period represents the rotation period of the rotation shaft. Further, the detection device can determine the first error based on m electrical angle periodic signals, and determine the second error based on the mechanical angle periodic signals.
  • the detection device may determine the electrical angle period compensation parameter based on the first error, and determine the mechanical angle period compensation parameter based on the second error.
  • the electrical angle period compensation parameter is the opposite number of the first error
  • the mechanical angle period compensation parameter is the opposite number of the second error.
  • the detection device can determine the mechanical angle periodic signal through the following expression (2):
  • M1 represents the first reference angle signal
  • n represents the number of pole pairs of the first angle sensor
  • m represents the number of collected electrical angle periodic signals
  • % represents the remainder.
  • expression (2) is only an example and not a limitation of using the first reference angle signal and m electrical angle periodic signals to expand to obtain a mechanical angle periodic signal in the embodiment of the present application.
  • the detection device can be configured with other algorithms, and use the configured algorithm to expand the collected first reference angle signal and m electrical angle periodic signals into mechanical angle periodic signals, which will not be described again here.
  • the detection device may use any of the following compensation methods to determine the compensation parameters: harmonic compensation method or table lookup-interpolation compensation method.
  • harmonic compensation method or table lookup-interpolation compensation method.
  • table lookup-interpolation compensation method The embodiments of this application do not limit the specific compensation method used.
  • the detection device when implementing S531, can determine the angle error of the electrical angle cycle and the angle error of the mechanical angle cycle through the following expressions (3) and (4) respectively:
  • i and j represent orders
  • a i and A j correspond to the harmonic amplitudes of orders i and j respectively
  • a corresponds to the electrical angle periodic signal
  • b corresponds to the mechanical angle periodic signal.
  • the detection device may create an electrical angle period compensation parameter and a mechanical angle period compensation parameter based on the above expression (3) and expression (4) respectively.
  • the electrical angle period compensation parameters or mechanical angle period compensation parameters may include median value, amplitude, phase, etc.
  • the reference angle signal is used to distinguish adjacent electrical angle periods and mechanical angle periods, and different error compensation parameters can be obtained for adjacent electrical angle periods and adjacent mechanical angle periods, so that Compensate across cycles.
  • optional embodiments of the present application may also include S540 (optional step):
  • the detection device can save the electrical angle period compensation parameters and mechanical angle period compensation parameters obtained in the calibration process.
  • the electrical angle period compensation parameters and mechanical angle period compensation parameters can be used in the application process to The angle signal collected by the first angle sensor is adjusted to obtain a calibrated angle signal, thereby ensuring the accuracy and resolution of the first angle sensor.
  • the application process may include the following steps:
  • the detection device obtains the second reference angle signal of the first angle sensor.
  • the second reference angle signal obtained in S610 may be expressed as M2, for example.
  • the implementation of this step is the same as the above-mentioned S510.
  • S620 The detection device acquires l electrical angle periodic signals of the first angle sensor, l ⁇ n. Among them, l and m can be the same. The implementation of this step is the same as the above-mentioned S520. For detailed implementation details, please refer to the relevant description above in conjunction with S520, and will not be described again here.
  • S630 The detection device determines the periodic signal to be calibrated based on the second reference angle signal and the l electrical angle periodic signals.
  • the implementation of this step is the same as the above-mentioned S530.
  • S530 For detailed implementation details, please refer to the relevant description above in connection with S530, and will not be described again here.
  • S640 The detection device adjusts the periodic signal to be calibrated according to the saved electrical angle period compensation parameters and/or mechanical angle period compensation parameters.
  • the detection device when implementing S640, can selectively use the saved electrical angle period compensation parameters and/or mechanical angle period compensation parameters according to the actual scenario to analyze the periodic signal to be calibrated. Make adjustments.
  • the detection device may determine whether the difference between the first reference angle signal and the second reference angle signal is within an allowable angle error range.
  • the allowable angle error can be half an electrical angle period, expressed as 1/2Tel
  • the difference between the second reference angle signal M2 and the first reference angle signal M1 is expressed as Abs(M2-M1)
  • the second reference is determined Whether the difference between the angle signal M2 and the first reference angle signal M1 meets the allowable error range only needs to be judged whether the following expression (5) is true:
  • the detection device can adjust the periodic signal to be calibrated based on the saved electrical angle period compensation parameters and mechanical angle period compensation parameters, that is, the error of the electrical angle period can be performed at the same time. compensation and error compensation across the mechanical angle cycle. Therefore, the angle signal output by the first angle sensor can be calibrated across the mechanical angle period, thereby improving the accuracy and resolution of the first angle sensor.
  • the detection device can adjust the periodic signal to be calibrated according to the saved electrical angle period compensation parameters, that is, only perform error compensation for the electrical angle period and abandon the mechanical angle period. error compensation.
  • the angle signal shown by the first angle sensor is calibrated to ensure the accuracy and resolution of the first angle sensor.
  • the reference angle signal is obtained through the physical characteristics of the sensing system or other angle signals to assist in identifying the first angle signal.
  • the different electrical angle period signals of the angle sensor realize the differentiation of signals across the mechanical angle period in order to calibrate the angle error across the mechanical angle period and further improve the accuracy and resolution of the multi-pole angle sensor.
  • embodiments of the present application also provide a communication device, which can be used to perform the method performed by the detection device in the above method embodiments.
  • the communication device 800 may include: an acquisition unit 801, configured to acquire a first reference angle signal of a first angle sensor, wherein the first angle sensor includes a rotation axis and a rotation axis disposed around the rotation axis.
  • n-pole target, n is an integer greater than or equal to 1; obtain m electrical angle period signals of the first angle sensor, where the electrical angle period represents the rotation period corresponding to a single pole of the target, m ⁇ n; determine Unit 802, configured to determine an electrical angle period compensation parameter and a mechanical angle period compensation parameter according to the first reference angle signal and the m electrical angle period signals, wherein the electrical angle period compensation parameter is used to calibrate the The angle error of the electrical angle period of the n-polar target object, and the mechanical angle period compensation parameter is used to calibrate the angle error of the mechanical angle period of the rotation axis.
  • an acquisition unit 801 configured to acquire a first reference angle signal of a first angle sensor, wherein the first angle sensor includes a rotation axis and a rotation axis
  • the acquisition unit 801 is used to acquire the second reference angle signal of a first angle sensor.
  • the first angle sensor includes a rotation axis and an n-pole target object disposed on the rotation axis, n is an integer greater than or equal to 1; obtain l electrical angle period signals of the first angle sensor, where the electrical angle period represents the rotation period corresponding to the single pole of the target piece, l ⁇ n; the determination unit 802 uses To determine the periodic signal to be calibrated based on the second reference angle signal and the l electrical angle period signals; the device 800 may also include: a calibration unit 803 for compensating parameters and/or mechanical parameters according to the saved electrical angle period.
  • the angle period compensation parameter is used to adjust the periodic signal to be calibrated.
  • each functional unit in the embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the communication device 900 shown in Figure 9 includes at least one processor 910, a memory 920, and optionally a communication interface 930.
  • the memory 920 can be a volatile memory, such as a random access memory; the memory can also be a non-volatile memory, such as a read-only memory, a flash memory, a hard disk drive (HDD) or a solid-state drive (solid-state drive, SSD), or the memory 920 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 920 may be a combination of the above memories.
  • connection medium between the above-mentioned processor 910 and the memory 920 is not limited in the embodiment of the present application.
  • a communication interface 930 is also included.
  • the processor 910 can transmit data through the communication interface 930.
  • the processor 910 in Figure 9 can call the computer execution instructions stored in the memory 920, so that the device 900 can execute the method performed by the detection device in any of the above method embodiments.
  • Embodiments of the present application also relate to a chip system, which includes a processor for calling a computer program or computer instructions stored in a memory, so that the processor executes the above method embodiment.
  • the processor is coupled to the memory through an interface.
  • the chip system further includes a memory, and computer programs or computer instructions are stored in the memory.
  • Embodiments of the present application also relate to a processor, which is configured to call a computer program or computer instructions stored in a memory, so that the processor executes the above method embodiment.
  • the processor mentioned in any of the above places can be a general central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the above-mentioned devices in Figure 9
  • the method in the illustrated embodiment is programmed to execute on an integrated circuit.
  • the memory mentioned in any of the above places can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种角度传感器的校准方法和传感系统,涉及传感器技术领域。该方法包括:获取第一角度传感器的第一基准角度信号,第一角度传感器包括旋转轴(210)和绕旋转轴(210)设置的n极目标件(220),n为大于或等于1的整数(S510);获取第一角度传感器的m个电角度周期信号,电角度周期表示目标件(220)的单极对应的转动周期,m≥n(S520);根据第一基准角度信号和m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,电角度周期补偿参数用于校准n极目标件(220)的电角度周期的角度误差,机械角度周期补偿参数用于校准旋转轴(210)的机械角度周期的角度误差(S530)。该方法有助于实现跨机械角度周期的角度误差校准,进一步提高角度传感器的精度和分辨率。

Description

一种角度传感器的校准方法和传感系统 技术领域
本申请涉及传感器技术领域,特别涉及一种角度传感器的校准方法和传感系统。
背景技术
目前,角度传感器广泛应用于工业、汽车、家电、机器人等领域,可以用来检测各种机械结构(如汽车的方向盘、电机中的转子等)转动的角度信息。其中,旋转类角度传感器较为典型,该旋转类角度传感器的角度误差通常具有较为明显的规律性和周期性,业内常通过识别单周期性角度误差的规律来进行反向补偿,实现对旋转类角度传感器的校准。
其中,为提高角度识别的精度和分辨率,业内提出一种多极角度传感器,即包含多极目标件的旋转类角度传感器,该目标件是能够被感应元件感知的传感器件,多极表示目标件的极对数大于1,旋转轴的单个机械角度周期(360°,即2π)对应目标件的多极电角度周期,如图1a所示,机械角度周期=电角度周期*n,n表示极对数(例如n=5)。该多极角度传感器的校准方法,通常是对单个电角度周期的角度误差进行校准。
然而,角度误差为传感器输出角度与参考角度之间的误差,在多极角度传感器中采用的上述方法只能对单个电角度周期的误差进行校准,而无法进一步减小跨机械角度周期的角度误差。
因此,亟需一种角度传感器的校准方法,以实现跨机械角度周期的角度误差的校准。
发明内容
本申请实施例提供一种角度传感器的校准方法和传感系统,有助于实现跨机械角度周期的角度误差校准,进一步提高角度传感器的精度和分辨率。
第一方面,本申请实施例提供了一种角度传感器的校准方法,该方法可以由检测装置执行,该检测装置是可以与角度传感器通信的电子设备,可以是独立装置,也可以是独立设备的部件,本申请实施例对该检测装置的产品形态不做限定。
该方法可以包括:获取第一角度传感器的第一基准角度信号,其中,所述第一角度传感器包括旋转轴和绕所述旋转轴设置的n极目标件,n为大于或等于1的整数;获取所述第一角度传感器的m个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,m≥n;根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,其中,所述电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,所述机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。
通过上述方法,可以借助于第一基准角度信号来辅助识别第一角度传感器的不同的转动周期(包括电角度周期和机械角度周期)信号,实现对跨机械角度周期信号的区分,以便选择性地校准电角度周期的角度误差或机械角度周期的角度误差,进一步提高多极角度传感器的精度和分辨率。
结合第一方面,一种可能的实现方式中,所述旋转轴与传感系统的柱塞传动连接,在所述旋转轴转动时,所述柱塞在容纳所述柱塞的盲孔内往复滑动,所述获取所述第一角度 传感器的第一基准角度信号,包括:在驱动所述旋转轴将所述柱塞滑动至预设的机械零位时,获取所述第一基准角度信号。
通过上述方法,传感系统可以预设机械零位,通过在该机械零位采集到的角度信号作为第一基准角度信号,来区分第一角度传感器的不同的转动周期(包括电角度周期和机械角度周期)信号,实现对跨机械角度周期信号的区分。
结合第一方面,一种可能的实现方式中,所述预设的机械零位包括所述盲孔的底部。
通过上述方法,预设的机械零位可以设置在盲孔的底部,以便较为精准地采集到该机械零位对应的角度信号。应理解的是,机械零位是本申请实施例中采集参考角度信号的参考机械位置,具体应用中并不限定该位置以及该位置的名称。盲孔底部仅是对本申请实施例的机械零位的示例而非限定,在实际应用中,可以按照实际使用到的传感系统的机械结构或者根据应用场景,按需设置机械零位,本申请实施例对此不做限定。
结合第一方面,一种可能的实现方式中,所述获取所述第一角度传感器的第一基准角度信号,包括:获取所述第一角度传感器的第一角度信号,以及第二角度传感器的第二角度信号,所述第二角度传感器固定在所述旋转轴上;根据所述第一角度信号和所述第二角度信号,确定所述第一基准角度信号。
通过上述方法,传感系统中可以安装有第二角度传感器,该第二角度传感器可以代替机械零位用于获取参考角度信号,即第一基准角度信号。应理解,本申请实施例中,第二角度传感器仅是为了相对于第一角度传感器获取参考角度信号,并不要求第二角度传感器的精度和分辨率。
结合第一方面,一种可能的实现方式中,所述第二角度传感器包括k极目标件,k为大于或等于1的整数,k和n互为质数。
通过上述方法,传感系统中安装的第二角度传感器可以是与第一角度传感器有差异的k极角度传感器,以便获取参考角度信号。
结合第一方面,一种可能的实现方式中,所述根据所述第一角度信号和所述第二角度信号,确定所述第一基准角度信号,包括:通过以下表达式确定所述第一基准角度信号:(A1/n-A2/k)%(360/n),其中,A1表示第一角度信号,A2表示第二角度信号,%表示取余。
通过上述方法,检测装置可以根据第一角度信号和第二角度信号,以及预设的表达式确定第一基准角度信号。可以理解的是,此处仅是对该表达式的示例说明而非任何限定,在其它实施例中,该表达式还可以有其它变形,在此不再赘述。
结合第一方面,一种可能的实现方式中,所述根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,包括:根据所述第一基准角度信号和所述m个电角度周期信号,确定机械角度周期信号,所述机械角度周期表示所述旋转轴的转动周期;根据所述m个电角度周期信号,确定所述电角度周期补偿参数;根据所述机械角度周期信号,确定所述机械角度周期补偿参数。
通过上述方法,检测装置可以利用采集到的m个电角度周期信号进行扩展,得到机械角度周期信号,以便利用该机械角度周期信号获得机械角度周期补偿参数。
结合第一方面,一种可能的实现方式中,所述根据所述第一基准角度信号和所述m个电角度周期信号,确定机械角度周期信号,包括:通过以下表达式,确定所述机械角度周期信号:((M1±360*m)/n)%360,其中,M1表示所述第一基准角度信号,%表示取余。
应理解,此处仅是对进行信号扩展所使用到的表达式的示例说明而非任何限定。在其 它实施例中,该表达式还可以有其它变形,在此不再赘述。
结合第一方面,一种可能的实现方式中,所述检测装置采用以下任一种补偿法确定所述电角度周期补偿参数和所述机械角度周期补偿参数:谐波补偿法或者查表-插值补偿法。
通过上述方法,检测装置可以采用任意合适的补偿法确定电角度周期补偿参数和机械角度周期补偿参数,本申请实施例对此不做限定。
结合第一方面,一种可能的实现方式中,所述方法还包括:保存所述第一基准角度信号、所述电角度周期补偿参数和所述机械角度周期补偿参数。
通过上述方法,检测装置可以保存以上信息,以便在应用该传感系统的过程中,利用保存的信息,选择性地对采集到的角度信号进行调整(例如补偿校准),以提升传感系统的精度和分辨率。
结合第一方面,一种可能的实现方式中,所述方法还包括:获取所述第一角度传感器的第二基准角度信号;获取l个电角度周期信号,l≥n;根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号;根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整。
结合第一方面,一种可能的实现方式中,所述方法还包括:确定所述第一基准角度信号和所述第二基准角度信号之差在允许的角度误差范围内。
第二方面,本申请实施例提供了一种角度传感器的校准方法,该方法可由检测装置执行,该检测装置是可以与角度传感器通信的电子设备,可以是独立装置,也可以是独立设备的部件,本申请实施例对该检测装置的产品形态不做限定。
该方法可以包括:获取第一角度传感器的第二基准角度信号,所述第一角度传感器包括旋转轴和设置在所述旋转轴上的n极目标件,n为大于或等于1的整数;获取所述第一角度传感器的l个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,l≥n;根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号;根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整。
第三方面,本申请实施例提供了一种传感系统,包括检测装置和第一角度传感器,所述第一角度传感器包括旋转轴、感应元件和绕所述旋转轴设置的n极目标件,n为大于或等于1的整数,所述感应元件用于感知所述旋转轴和所述n极目标件的转动角度,其中,所述感应元件用于向所述检测装置提供所述第一角度传感器的第一基准角度信号以及m个电角度周期信号,所述电角度周期表示目标件的单极对应的转动周期,m≥n;所述检测装置用于根据所述第一基准角度信号和所述m个电角度周期信号确定电角度周期补偿参数和机械角度周期补偿参数,所述电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,所述机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。
结合第三方面,一种可能的实现方式中,传感系统还包括缸体和柱塞,所述缸体设置有盲孔,所述柱塞滑动设置于所述盲孔内,且所述柱塞与所述旋转轴传动连接,在所述旋转轴转动时,所述柱塞在所述盲孔内往复滑动,所述旋转轴还用于:在所述检测装置的驱动下,控制所述柱塞滑动至预设的机械零位;所述感应元件用于在所述柱塞滑动至预设的机械零位时,向所述检测装置提供所述第一基准角度信号。
结合第三方面,一种可能的实现方式中,所述预设的机械零位包括所述盲孔的底部。
结合第三方面,一种可能的实现方式中,所述柱塞与所述旋转轴螺纹联接。
结合第三方面,一种可能的实现方式中,还包括第二角度传感器,所述第二角度传感器设置在所述旋转轴或所述旋转轴的传动机构上,所述感应元件向所述检测装置提供所述第一角度传感器的第一基准角度信号包括:向所述检测装置提供第一角度传感器的第一角度信号以及第二角度传感器的第二角度信号,所述第一角度信号和所述第二角度信号用于确定所述第一基准角度信号。
结合第三方面,一种可能的实现方式中,所述第二角度传感器包括k极目标件,k为大于或等于1的整数,k和n互为质数。
结合第三方面,一种可能的实现方式中,所述第一基准角度信号满足以下表达式:(A1/n-A2/k)%(360/n),其中,A1表示第一角度信号,A2表示第二角度信号,%表示取余。
第四方面,本申请实施例提供了一种检测装置,包括:获取单元,用于获取第一角度传感器的第一基准角度信号,其中,所述第一角度传感器包括旋转轴和绕所述旋转轴设置的n极目标件,n为大于或等于1的整数;获取所述第一角度传感器的m个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,m≥n;确定单元,用于根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,其中,所述电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,所述机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。
结合第四方面,一种可能的实现方式中,所述旋转轴与传感系统的柱塞传动连接,在所述旋转轴转动时,所述柱塞在容纳所述柱塞的盲孔内往复滑动,所述获取单元用于:在驱动所述旋转轴将所述柱塞滑动至预设的机械零位时,获取所述第一基准角度信号。
结合第四方面,一种可能的实现方式中,所述预设的机械零位包括所述盲孔的底部。
结合第四方面,一种可能的实现方式中,所述获取单元用于:获取所述第一角度传感器的第一角度信号,以及第二角度传感器的第二角度信号,所述第二角度传感器固定在所述旋转轴上;所述确定单元用于根据所述第一角度信号和所述第二角度信号,确定所述第一基准角度信号。
结合第四方面,一种可能的实现方式中,所述第二角度传感器包括k极目标件,k为大于或等于1的整数,k和n互为质数。
结合第四方面,一种可能的实现方式中,所述确定单元用于:通过以下表达式确定所述第一基准角度信号:
(A1/n-A2/k)%(360/n)
其中,A1表示第一角度信号,A2表示第二角度信号,%表示取余。
结合第四方面,一种可能的实现方式中,所述确定单元用于:根据所述第一基准角度信号和所述m个电角度周期信号,确定机械角度周期信号,所述机械角度周期表示所述旋转轴的转动周期;根据所述m个电角度周期信号,确定所述电角度周期补偿参数;根据所述机械角度周期信号,确定所述机械角度周期补偿参数。
结合第四方面,一种可能的实现方式中,所述确定单元用于:通过以下表达式,确定所述机械角度周期信号:
((M1±360*m)/n)%360
其中,M1表示所述第一基准角度信号,%表示取余。
结合第四方面,一种可能的实现方式中,采用以下任一种补偿法确定所述电角度周期 补偿参数和所述机械角度周期补偿参数:谐波补偿法或者查表-插值补偿法。
结合第四方面,一种可能的实现方式中,所述装置还包括存储单元,用于保存所述电角度周期补偿参数和所述机械角度周期补偿参数。
结合第四方面,一种可能的实现方式中,所述获取单元还用于:获取所述第一角度传感器的第二基准角度信号;获取所述第一角度传感器的l个电角度周期信号,l≥n;所述确定单元还用于:根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号;根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整。
结合第四方面,一种可能的实现方式中,所述确定单元还用于:确定所述第一基准角度信号和所述第二基准角度信号之差在允许的角度误差范围内。
第五方面,本申请实施例提供了一种检测装置,包括:获取单元,用于获取第一角度传感器的第二基准角度信号,所述第一角度传感器包括旋转轴和设置在所述旋转轴上的n极目标件,n为大于或等于1的整数;获取所述第一角度传感器的l个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,l≥n;确定单元,用于根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号;校准单元,用于根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整。
第六方面,本申请实施例提供了一种通信装置,包括一个或多个存储器和一个或多个处理器;其中,所述存储器存储计算机程序代码,所述计算机程序代码包括计算机指令;当所述计算机指令被所述处理器执行时,使得如上第一方面以及第一方面任一可能实现方式所述的方法被执行,或者使得如上第二方面以及第二方面任一可能实现方式所述的方法被执行。
第七方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上第一方面以及第一方面任一可能实现方式所述的方法被执行,或者使得如上第二方面以及第二方面任一可能实现方式所述的方法被执行。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得如上第一方面以及第一方面任一可能实现方式所述的方法被执行,或者使得如上第二方面以及第二方面任一可能实现方式所述的方法被执行。
本申请实施例在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。
上述第二方面至第十一方面中任一方面中的任一可能实现方式可以达到的技术效果,可以相应参照上述第一方面中任一方面中的任一可能实现方式可以达到的技术效果描述,重复之处不予论述。
附图说明
图1a示出了多极角度传感器的输出角度示意图;
图1b示出了角度误差的示意图;
图2示出了本申请实施例的多极角度传感器的示意图;
图3示出了本申请实施例的传感系统的剖面示意图;
图4a示出了本申请实施例的一个示例的传感系统的剖面示意图;
图4b示出了本申请实施例的另一个示例的传感系统的剖面示意图;
图5示出了本申请实施例的校准方法的流程示意图;
图6示出了本申请实施例的校准方法的流程示意图;
图7示出了本申请实施例的角度误差的示意图;
图8示出了本申请实施例的通信装置的示意图;
图9示出了本申请实施例的通信装置的示意图。
具体实施方式
为了便于理解,下面首先对本申请实施例涉及的部分用语进行解释说明。
1、角度传感器(angular transducer):用于检测角度的传感器件,广泛应用于工业、汽车、家电、机器人等领域,可以用来检测各种机械结构(如汽车的方向盘、电机中的转子等)转动的角度信息。
2、多极角度传感器:包含多极目标件的角度传感器。其中,多极角度传感器还包括旋转轴,该旋转轴可以连接到被检测的机械结构,该多极目标件可以套设在旋转轴上。目标件是能够被感应元件感知的传感器件,多极表示目标件的极对数n,n为大于或等于1的整数。n=1为多极角度传感器的一个特例,当n=1时,为单极角度传感器。
3、电角度周期:目标件的单极对应的转动周期。
4、机械角度周期:旋转轴对应的转动周期。通常,对于多极角度传感器而言,多极目标件能够在旋转轴对应的圆周(2π,即360°)上形成n等分的扇形区,旋转轴的单个机械角度周期(360°,即2π)对应目标件的多极电角度周期,如图1a所示,机械角度周期=电角度周期*n,n表示极对数。
5、角度误差(angularerror):角度传感器的输出角度与参考角度之间的差值。
通常,旋转类角度传感器的角度误差具有明显的规律性和周期性,在多极角度传感器中,角度误差可以包括两类:电角度周期的角度误差(下文实施例中可以简称为电角度误差)和机械角度周期的角度误差(下文实施例中可以简称为机械角度误差),这两类角度误差也具有明显的规律性和周期性。
6、补偿参数(compensating parameter):用于补偿角度误差的参数,以对角度传感器输出的角度信号进行调整,以实现信号校准。补偿参数的取值通常与角度误差的取值相反。
本申请实施例中,为了便于区分,将用于校准电角度周期对应的角度误差的补偿参数称为电角度周期补偿参数,将用于校准机械角度周期对应的角度误差的补偿参数称为机械角度周期补偿参数。
需要说明的是,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”、“第三”等序数词是用于 对多个对象进行区分,不用于限定多个对象的优先级或者重要程度。例如,第一基准角度信息、第二基准角度信号,只是为了区分不同的基准角度信号,而不是表示这两个基准角度信号的优先级或者重要程度等的不同。
图1b示出了多极角度传感器的角度误差曲线的示意图。
如图1b所示,以曲线(1)表示电角度周期对应的角度误差曲线,电角度周期对应的角度误差为单个电角度周期的波峰与波谷之间的差值,电角度周期补偿参数为电角度周期的角度误差的相反数。在采用业内对多极角度传感器的校准方法,使用电角度周期补偿参数对多极角度传感器输出的角度信号进行校准后,得到曲线(2),该曲线(2)仍然存在机械角度误差,为单个机械角度周期的波峰与波谷之间的差值。可见,目前对多极角度传感器的校准方法,无法减小跨周期(机械角度周期)的角度误差。因此,需要对机械角度周期的角度误差实施校准,使得角度误差趋近于0,得到理想的曲线(3)。
通常,跨周期(机械角度周期)的角度误差的主要产生原因包括:传感器零部件加工和系统组装的工艺精度导致的传感器非对称性。一般地,通过改善工艺水平可以减小此类角度误差,但该解决方法对时间以及成本的要求相对较高,并非最佳的解决方案。
针对于此,本申请实施例提出了一种角度传感器的校准方法和传感系统,有助于实现对跨机械角度周期的角度误差的校准,进一步提高多极角度传感器的精度和分辨率,同时,对时间和成本等的要求较低。其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
下面结合附图及实施例进行详细介绍。
图2示出了本申请实施例的角度传感器的示意图。
如图2所示,该角度传感器200包括旋转轴210、n极目标件220以及感应元件230。n表示极对数,n为大于或等于1的整数。其中,n=1时,该角度传感器200称为单极角度传感器,n>1时,该角度传感器200称为多极角度传感器。
该旋转轴210可以连接到被检测的机械结构(例如汽车的方向盘、电机中的转子等,图2中未示出),并能够在该机械结构的电机的驱动下转动。该n极目标件220可以套设(固定设置)在旋转轴210上,且能够随着旋转轴210转动。该感应元件230设置在n极目标件220附近,用于在旋转轴210转动的过程中,感知旋转轴210和n极目标件220的转动角度。
其中,该n极目标件220包含n组目标件,每组目标件为交替排列(等分)的传感器件,n极目标件220在圆周上形成n等分的扇形区,扇形区角度为2π/n,交替排列的单个传感器件对应的角度为π/n。例如,在该n极目标件220包括五对极磁铁环(n=5)时,每对磁铁环包括N极和S极,N极和S极的极性相反,五对极磁铁环的N极和S极在旋转轴210上交替排列,在圆周上形成五个等分的扇形区,每个扇形区的角度为72°,每个N极或每个S极对应的角度为36°。
应理解,图2中仅是对n极目标件的举例说明而非任何限定。本申请实施例中,该n极目标件220可以采用任意感应材料制作而成,包括但不限于磁性材料、电感类金属材料等。相应地,感应元件230可以为Hall/GMR/AMR等磁性元件,也可以是其他类型的感应元件,例如电感类的感应元件等,本申请实施例对n极目标件220或感应元件230的构成不做限定。
需要说明的是,当n极目标件220采用磁性材料时,该n极目标件220中的每组目标件中交替排列的传感器件可以为:N极和S极,例如图2中交替排列的黑色块表示N极,白色块表示S极。当n极目标件220采用磁性材料以外的感应材料,例如电感类金属材料时,该n极目标件220中的每组目标件中交替排列的传感器件可以为:有电感类金属材料、无电感类金属材料。如图2中,每组目标件中,黑色块(或白色块)可以被替换为电感类金属材料,剩余的白色块(或黑色块)可以被替换为无电感类金属材料,例如空白,本申请实施例对此不做限定。
图2所示的角度传感器可以用来检测各种机械结构(如汽车的方向盘、电机中的转子等)转动的角度信息,本申请实施例的传感系统可以包括该角度传感器和被检测的机械结构。为了便于理解,下面以图2所示的角度传感器的多极目标件采用磁性材料为例,对应用该角度传感器的传感系统进行介绍。
图3示出了本申请实施例的传感系统的剖面示意图。如图3所示,该传感系统可以包括图2所示的角度传感器以及被检测的机械结构,该机械结构可以包括基体、轴承、柱塞和缸体。其中,角度传感器的旋转轴可以通过轴承连接到机械结构的基体。缸体内设置有容纳柱塞的盲孔,柱塞可以在该盲孔内滑动。该角度传感器的旋转轴可以与该柱塞传动连接,在该旋转轴转动时,该柱塞可以在盲孔内往复滑动。
需要说明的是,本申请实施例中,图3所示的系统中还可以包括未示出的其它器件或装置,例如电机或检测装置等。其中,电机可以连接到旋转轴,并用于驱动旋转轴转动。检测装置可以连接到感应元件,并用于从感应元件获取角度信号,对获取到的角度信号进行计算和处理,来实施角度信号检测或误差校准等。下文中将结合方法流程图进行介绍,在此暂不赘述。
应理解的是,本申请实施例中,旋转轴与柱塞之间的传动连接可以是螺纹连接或其它连接方式,本申请实施例对此传动连接方式不做限定。
本申请实施例中,为了实现对多极角度传感器的跨机械角度周期的角度误差的校准,进一步提高角度传感器的精度和分辨率,在图3所示传感系统的基础上,一种可能的实现方式是,检测装置可以获取角度传感器的基准角度信号,以基于该基准角度信号进行跨周期信号的识别以及校准跨周期的角度误差。为了实现这一目的,图3所示的传感系统可以包括以下两种结构示例:
示例1:传感系统可以包括机械零位,检测装置可以基于机械零位获取基准角度信号。
根据传感系统的物理特征,该机械零位为对柱塞行程进行限位的参考机械位置。在传感系统的机械结构足够稳定时,在柱塞滑动至该机械零位时可以获得一致的角度信号。进而,从机械零位出发进行圈数计数时,以在机械零位通过感应元件采集到角度信号作为基准角度信号,检测装置即可区分采集到的每个电角度周期信号,从而对旋转轴进行绝对转动角度监控。
如图4a所示,示例地,该机械零位可以设置在盲孔的底部。
在本申请实施例的校准流程或应用流程中,检测装置可以向电机发送控制信号,使得电机驱动旋转轴转动,旋转轴转动时可以将柱塞滑动至预设的机械零位,例如盲孔底部。检测装置可以将在柱塞滑动至盲孔底部时,通过感应元件采集到的角度信号作为基准角度信号,表示为M0。进一步,检测装置可以向电机发送控制信号,使得电机驱动旋转轴至 少转动一周。检测装置可以在旋转轴转动的过程中,通过感应元件获取角度传感器的m个电角度周期信号,m≥n。
在本申请实施例的校准流程中,基于该基准角度信号以及采集到的m个电角度周期信号,检测装置可以获得用于电角度周期的角度误差的补偿参数和用于机械角度周期的角度误差的补偿参数并保存。
在本申请实施例的应用流程中,检测装置可以利用保存的补偿参数对角度传感器采集到的角度信号实施校准,例如校准电角度周期的角度误差和/或机械角度周期的角度误差。详细实现细节可以参见下文结合方法流程图的详细介绍,在此不再赘述。
需要说明的是,在该示例1中,在校准流程或应用流程中,采集到的基准角度信号均可以表示为M0。或者,为了便于区分,可以将在校准流程采集到的基准角度信号表示为M1,称为第一基准角度信号,将在应用流程中采集到的基准角度信号表示为M2,称为第二基准角度信号,本申请实施例对该基准角度信号的表示方式不做限定。
示例2:通过额外的角度传感器2获取待校准的角度传感器1的基准角度信号。
将传感系统中与柱塞传动连接的角度传感器表示为角度传感器1。如图4b所示,该传感系统中还可以增加一个额外的角度传感器,为便于区分,这个额外的角度传感器可以表示为角度传感器2。该角度传感器2可以设置在角度传感器1的旋转轴上,同样用于感知旋转轴的转动角度。检测装置可以利用角度传感器2输出的角度信号,辅助对角度传感器1的相邻电角度周期进行区分,以便跨机械角度周期地对角度传感器1的角度信号进行校准。
示例地,该角度传感器2可以为单极角度传感器或多极角度传感器,以k表示角度传感器2的极对数,k为大于或等于1的整数,n与k互为质数。例如,n=5时,k的取值可以为1、3、7等。或者,n=3时,k的取值可以为1、5、7等。本申请实施例对n、k的具体取值不做限定。
在本申请实施例的校准流程或应用流程中,在任意时刻,检测装置可以获取角度传感器1的角度信号以及角度传感器2的角度信号,并基于该角度传感器1的角度信号以及角度传感器2的角度信号确定基准角度信号。
例如,在校准流程中,以A1表示角度传感器1在第一时刻的第一角度信号,以A2表示角度传感器2在第一时刻的第二角度信号,基准角度信号可以满足如下表达式(1):
M1=(A1/n-A2/k)%(360/n)       (1);
其中,M1表示校准流程中的基准角度信号(例如称为第一基准角度信号),A1表示第一角度信号,n表示角度传感器1的极对数,n为大于或等于1的整数,A2表示第二角度信号,k表示角度传感器2的极对数,k为大于或等于1的整数,n与k互为质数,%表示取余。
又例如,在应用流程中可以采用相同的表达式(1)确定基准角度信号,其中,上述表达式(1)中的M1可以替换为M2,表示应用流程中的基准角度信号(例如称为第二基准角度信号),上述表达式(1)中的A1可以替换为A3,表示角度传感器1在第二时刻的第三角度信号,上述表达式(1)中的A2可以替换为A4,表示角度传感器2在第二时刻的第四角度信号,详细计算过程可参见上述表达式(1),在此不再赘述。
进一步,检测装置可以向电机发送控制信号,使得电机驱动旋转轴以第一时刻时所在位置为起始位置,至少转动一周。检测装置可以在旋转轴转动的过程中,通过感应元件获 取角度传感器1的m或l个电角度周期信号,其中,m≥n或l≥n。
例如,在本申请实施例的校准流程中,基于相应的基准角度信号M1以及采集到的m个电角度周期信号,检测装置可以获得用于电角度周期的角度误差的补偿参数和用于机械角度周期的角度误差的补偿参数并保存。在本申请实施例的应用流程中,检测装置可以利用保存的补偿参数可用于对角度传感器1采集到的l个电角度周期信号实施校准,例如校准电角度周期的角度误差和/或机械角度周期角度误差。详细实现细节可以参见下文结合方法流程图的详细介绍,在此不再赘述。
需要说明的是,在上述示例2中,只需基于角度传感器2的某个特定周期信号,来区分角度传感器1的相邻电角度周期和相邻机械角度周期即可,对于角度传感器2的精度或分辨率等不做要求。一个可选实施例中,该角度传感器2也可以是普通的角度传感器(例如非多极角度传感器)。
应理解的是,上述图3、图4a和图4b仅是对本申请实施例的传感系统的示例而非任何限定,在其它实施例中,该传感系统也可以采用其它结构,例如齿轮传动系统。相应地,角度传感器2的安装位置不限于角度传感器1的旋转轴,例如角度传感器2可以设置在角度传感器1的旋转轴的传动机构上,在此不再赘述。
图5示出了本申请实施例的校准流程的示意图。其中,该校准流程为获取补偿参数的流程,可以由图4a或图4b所示的传感系统实现。其中,为便于区分,可以将角度传感器1称为第一角度传感器,将角度传感器2称为第二角度传感器,将在校准流程中获得的基准角度信号称为第一基准角度信号,将在应用流程(例如应用获取的补偿参数对角度传感器1输出的角度信号实施校准的过程)中获得的基准角度信号称为第二基准角度信号,下文实施例中将不再逐一赘述。
如图5所示,该校准流程可以包括以下步骤:
S510:检测装置获取第一角度传感器的第一基准角度信号。
本申请实施例中,第一角度传感器为如图2所示的多极角度传感器,参阅图2所示,该第一角度传感器可以包括旋转轴、套设在所述旋转轴上的n极目标件以及设置在n极目标件附近的感应元件,n为极对数,n为大于或等于1的整数。
为便于区分,在S510中获得的第一基准角度信号例如可以表示为M1。
传感系统如上述示例1中采用图4a所示的系统架构时,该M1可以为在校准流程中获得的M0。实施S510时,检测装置可以向电机发送控制信号,使得电机驱动旋转轴转动,旋转轴转动时可以将柱塞滑动至预设的机械零位(例如盲孔的底部)。检测装置可以将在柱塞滑动至机械零位时通过感应元件采集到的角度信号作为该第一基准角度信号。
或者,传感系统如上述示例2中采用图4b所示的系统架构时,该M1可以为在校准流程中获得的M1。实施S510时,检测装置可以在任意时刻获取第一角度传感器的第一角度信号以及第二角度传感器的第二角度信号,并基于该第一角度信号以及该第二角度信号确定第一基准角度信号,参见上述表达式(1),在此不再赘述。
S520:检测装置获取第一角度传感器的m个电角度周期信号。
本申请实施例中,电角度周期表示目标件的单极对应的转动周期,m≥n。
实施S520时,检测装置可以以采集到第一基准角度信号时旋转轴所在的位置作为出发点,控制旋转轴转动至少一周,以获取该m个电角度周期信号。例如,在传感系统采用 图4a所示的架构时,旋转轴的出发点对应机械零位。又例如,在传感系统采用图4b所示的架构时,旋转轴的出发点对应感应元件同时采集第一角度信号和第二角度信号时旋转轴所在的位置。
S530:检测装置根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数。
本申请实施例中,该电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,该机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。
实施S530时,检测装置可以执行以下步骤:
S531:检测装置根据第一基准角度信号和所述m个电角度周期信号计算角度误差。
S532:检测装置基于角度误差确定电角度周期补偿参数和机械角度周期补偿参数。
本申请实施例中,实施S531时,检测装置可以根据第一基准角度信号和所述m个电角度周期信号,确定机械角度周期信号,该机械角度周期表示所述旋转轴的转动周期。进一步,检测装置可以根据m个电角度周期信号,确定第一误差,根据机械角度周期信号确定第二误差。实施S532时,检测装置可以根据第一误差确定电角度周期补偿参数,根据第二误差确定机械角度周期补偿参数。例如电角度周期补偿参数为第一误差的相反数,机械角度周期补偿参数为第二误差的相反数。
示例地,检测装置可以通过以下表达式(2)确定机械角度周期信号:
机械角度周期信号=((M1±360*m)/n)%360     (2)
其中,M1表示所述第一基准角度信号,n表示第一角度传感器的极对数,m表示采集到的电角度周期信号的数量,%表示取余。需要说明的是,表达式(2)仅是本申请实施例中,利用第一基准角度信号和m个电角度周期信号扩展得到机械角度周期信号的一个示例而非限定,在其它实施例中,检测装置可以被配置其它算法,并利用所配置的算法将采集到的第一基准角度信号和m个电角度周期信号扩展为机械角度周期信号,在此不再赘述。
本申请实施例中,检测装置可以采用以下任一种补偿法确定补偿参数:谐波补偿法或者查表-插值补偿法。本申请实施例对具体使用到的补偿法不做限定。
以检测装置采用谐波补偿法为例,实施S531时,检测装置可以通过以下表达式(3)和表达式(4)分别确定电角度周期的角度误差和机械角度周期的角度误差:
Figure PCTCN2022098755-appb-000001
Figure PCTCN2022098755-appb-000002
其中,i和j表示阶次,A i和A j分别对应阶次i和j的谐波幅值;
Figure PCTCN2022098755-appb-000003
Figure PCTCN2022098755-appb-000004
分别对应阶次i和j的谐波相位。a对应电角度周期信号,b对应机械角度周期信号。
实施S532时,检测装置可以利用基于上述表达式(3)和表达式(4)分别创建电角度周期补偿参数和机械角度周期补偿参数。以谐波补偿法为例,该电角度周期补偿参数或机械角度周期补偿参数可以包括中值、幅值和相位等。
需要说明的是,本申请实施例中,利用基准角度信号区分相邻的电角度周期和机械角度周期,可以为相邻的电角度周期以及相邻的机械角度周期获得不同的误差补偿参数,以便进行跨周期补偿。其中,为减少因系统老化、机械零位损坏等影响系统对机械角度周期信号的误差补偿的准确性(即减少角度传感器的精度恶化)的情况,本申请的可选实施例中,还可以包括S540(可选步骤):检测装置可以保存在校准流程中获得的电角度周期补 偿参数和机械角度周期补偿参数,该电角度周期补偿参数和机械角度周期补偿参数可以用于在应用流程中,对第一角度传感器采集到的角度信号进行调整,得到校准后的角度信号,从而保障第一角度传感器的精度和分辨率。
如图6所示,该应用流程可以包括以下步骤:
S610:检测装置获取第一角度传感器的第二基准角度信号。
为便于区分,在S610中获得的第二基准角度信号例如可以表示为M2。该步骤的实施与上述S510相同,详细实现细节可以参见上文中结合S510的相关描述,在此不再赘述。
S620:检测装置获取第一角度传感器的l个电角度周期信号,l≥n。其中,l与m可以相同。该步骤的实施与上述S520相同,详细实现细节可以参见上文中结合S520的相关描述,在此不再赘述。
S630:检测装置根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号。该步骤的实施与上述S530相同,详细实现细节可以参见上文中结合S530的相关描述,在此不再赘述。
S640:检测装置根据保存的电角度周期补偿参数和/或机械角度周期补偿参数,对所述待校准的周期信号进行调整。
本申请实施例中,在实际应用中,实施S640时,检测装置可以根据实际场景,选择性地利用保存的电角度周期补偿参数和/或机械角度周期补偿参数,对所述待校准的周期信号进行调整。
例如,检测装置可以确定所述第一基准角度信号和所述第二基准角度信号之差是否在允许的角度误差范围内。示例地,该允许的角度误差可以是半个电角度周期,表示为1/2Tel,第二基准角度信号M2与第一基准角度信号M1之差表示为Abs(M2-M1),判断第二基准角度信号M2与第一基准角度信号M1之差是否符合允许的误差范围,只需判断以下表达式(5)是否成立:
Abs(M2-M1)<1/2Tel   (5);
如果表达式(5)成立,则实施S640时,检测装置可以根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整,即同时进行电角度周期的误差补偿和跨机械角度周期的误差补偿。由此,可以跨机械角度周期对第一角度传感器输出的角度信号实施校准,提高第一角度传感器的精度和分辨率。
如果表达式(5)不成立,则实施S640时,检测装置可以根据保存的电角度周期补偿参数,对所述待校准的周期信号进行调整,即仅进行电角度周期的误差补偿,放弃机械角度周期的误差补偿。由此,在允许的角度误差范围内,对第一角度传感器示出的角度信号实施校准,确保第一角度传感器的精度和分辨率。
如图7中曲线(1)、曲线(2)和曲线(3)所示,通过本申请实施例的方法,在第一角度传感器存在原始公差(°)(参见曲线(1))的情况下,即使仅通过电角度周期维度的误差校准(参见曲线(2)),也能够将跨机械角度周期的角度误差控制在允许的误差范围内。而在第一基准角度信号和第二基准角度信号之差超出允许的角度误差范围时,同时实施电角度周期的误差校准和机械角度周期的误差校准后(参见曲线(3)),几乎可以补偿第一角度传感器的整体误差。
由此,通过上述图4a或图4b所示的传感系统,以及图5和图6所示的方法,通过传感系统具备的物理特征或者其它角度信号获取基准角度信号,来辅助识别第一角度传感器 的不同的电角度周期信号,实现对跨机械角度周期信号的区分,以便校准跨机械角度周期的角度误差,进一步提高多极角度传感器的精度和分辨率。
结合上述方法实施例,本申请实施例还提供了一种通信装置,该通信装置可以用于执行上述方法实施例中检测装置所执行的方法。
如图8所示,该通信装置800可以包括:获取单元801,用于获取第一角度传感器的第一基准角度信号,其中,所述第一角度传感器包括旋转轴和绕所述旋转轴设置的n极目标件,n为大于或等于1的整数;获取第一角度传感器的m个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,m≥n;确定单元802,用于根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,其中,所述电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,所述机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。具体实现细节可参见上文中结合校准流程的相关描述,在此不再赘述。
在另一个实现方式中,该获取单元801,用于获取第一角度传感器的第二基准角度信号,所述第一角度传感器包括旋转轴和设置在所述旋转轴上的n极目标件,n为大于或等于1的整数;获取所述第一角度传感器的l个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,l≥n;确定单元802,用于根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号;装置800还可以包括:校准单元803,用于根据保存的电角度周期补偿参数和/或机械角度周期补偿参数,对所述待校准的周期信号进行调整。具体实现细节可参见上文中结合应用流程的相关描述,在此不再赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在一个简单的实施例中,本领域的技术人员可以想到上述实施例中的云管理平台或电子端设备均可采用图9所示的形式。如图9所示的通信装置900,包括至少一个处理器910、存储器920,可选的,还可以包括通信接口930。
存储器920可以是易失性存储器,例如随机存取存储器;存储器也可以是非易失性存储器,例如只读存储器,快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、或者存储器920是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器920可以是上述存储器的组合。
本申请实施例中不限定上述处理器910以及存储器920之间的具体连接介质。
在如图9的装置中,还包括通信接口930,处理器910在与其他设备进行通信时,可以通过通信接口930进行数据传输。
当检测装置采用图9所示的形式时,图9中的处理器910可以通过调用存储器920中存储的计算机执行指令,使得装置900可以执行上述任一方法实施例中检测装置所执行的方法。
本申请实施例还涉及一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述方法实施例。
在一种可能的实现方式中,该处理器通过接口与存储器耦合。
在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
本申请实施例还涉及一种处理器,该处理器用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述方法实施例。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图9所示的实施例中的方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种角度传感器的校准方法,其特征在于,所述方法包括:
    获取第一角度传感器的第一基准角度信号,其中,所述第一角度传感器包括旋转轴和绕所述旋转轴设置的n极目标件,n为大于或等于1的整数;
    获取所述第一角度传感器的m个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,m≥n;
    根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,其中,所述电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,所述机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。
  2. 根据权利要求1所述的方法,其特征在于,所述旋转轴与传感系统的柱塞传动连接,在所述旋转轴转动时,所述柱塞在容纳所述柱塞的盲孔内往复滑动,所述获取所述第一角度传感器的第一基准角度信号,包括:
    在驱动所述旋转轴将所述柱塞滑动至预设的机械零位时,获取所述第一基准角度信号。
  3. 根据权利要求2所述的方法,其特征在于,所述预设的机械零位包括所述盲孔的底部。
  4. 根据权利要求1所述的方法,其特征在于,所述获取所述第一角度传感器的第一基准角度信号,包括:
    获取所述第一角度传感器的第一角度信号,以及第二角度传感器的第二角度信号,所述第二角度传感器固定在所述旋转轴上;
    根据所述第一角度信号和所述第二角度信号,确定所述第一基准角度信号。
  5. 根据权利要求4所述的方法,其特征在于,所述第二角度传感器包括k极目标件,k为大于或等于1的整数,k和n互为质数。
  6. 根据权利要求4或5所述的方法,其特征在于,所述根据所述第一角度信号和所述第二角度信号,确定所述第一基准角度信号,包括:
    通过以下表达式确定所述第一基准角度信号:
    (A1/n-A2/k)%(360/n)
    其中,A1表示第一角度信号,A2表示第二角度信号,%表示取余。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,包括:
    根据所述第一基准角度信号和所述m个电角度周期信号,确定机械角度周期信号,所述机械角度周期表示所述旋转轴的转动周期;
    根据所述m个电角度周期信号,确定所述电角度周期补偿参数;
    根据所述机械角度周期信号,确定所述机械角度周期补偿参数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一基准角度信号和所述m个电角度周期信号,确定机械角度周期信号,包括:
    通过以下表达式,确定所述机械角度周期信号:
    ((M1±360*m)/n)%360
    其中,M1表示所述第一基准角度信号,%表示取余。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,采用以下任一种补偿法确定所述电角度周期补偿参数和所述机械角度周期补偿参数:谐波补偿法或者查表-插值补偿法。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    保存所述电角度周期补偿参数和所述机械角度周期补偿参数。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    获取所述第一角度传感器的第二基准角度信号;
    获取所述第一角度传感器的l个电角度周期信号,l≥n;
    根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号;
    所述检测装置根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    确定所述第一基准角度信号和所述第二基准角度信号之差在允许的角度误差范围内。
  13. 一种角度传感器的校准方法,其特征在于,所述方法包括:
    获取第一角度传感器的第二基准角度信号,所述第一角度传感器包括旋转轴和设置在所述旋转轴上的n极目标件,n为大于或等于1的整数;
    获取所述第一角度传感器的l个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,l≥n;
    根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号;
    根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整。
  14. 一种传感系统,其特征在于,包括检测装置和第一角度传感器,所述第一角度传感器包括旋转轴、感应元件和绕所述旋转轴设置的n极目标件,n为大于或等于1的整数,所述感应元件用于感知所述旋转轴和所述n极目标件的转动角度,
    其中,所述感应元件用于向所述检测装置提供所述第一角度传感器的第一基准角度信号以及m个电角度周期信号,所述电角度周期表示目标件的单极对应的转动周期,m≥n;
    所述检测装置用于根据所述第一基准角度信号和所述m个电角度周期信号确定电角度周期补偿参数和机械角度周期补偿参数,所述电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,所述机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。
  15. 根据权利要求14所述的传感系统,其特征在于,还包括缸体和柱塞,所述缸体设置有盲孔,所述柱塞滑动设置于所述盲孔内,且所述柱塞与所述旋转轴传动连接,在所述旋转轴转动时,所述柱塞在所述盲孔内往复滑动,所述旋转轴还用于:
    在所述检测装置的驱动下,控制所述柱塞滑动至预设的机械零位;
    所述感应元件用于在所述柱塞滑动至预设的机械零位时,向所述检测装置提供所述第一基准角度信号。
  16. 根据权利要求15所述的传感系统,其特征在于,所述预设的机械零位包括所述盲孔的底部。
  17. 根据权利要求15或16所述的传感系统,其特征在于,所述柱塞与所述旋转轴螺纹联接。
  18. 根据权利要求14所述的传感系统,其特征在于,还包括第二角度传感器,所述第二角度传感器设置在所述旋转轴或所述旋转轴的传动机构上,所述感应元件向所述检测装置提供所述第一角度传感器的第一基准角度信号包括:
    向所述检测装置提供第一角度传感器的第一角度信号以及第二角度传感器的第二角度信号,所述第一角度信号和所述第二角度信号用于确定所述第一基准角度信号。
  19. 根据权利要求18所述的传感系统,其特征在于,所述第二角度传感器包括k极目标件,k为大于或等于1的整数,k和n互为质数。
  20. 根据权利要求18或19所述的传感系统,其特征在于,所述第一基准角度信号满足以下表达式:
    (A1/n-A2/k)%(360/n)
    其中,A1表示第一角度信号,A2表示第二角度信号,%表示取余。
  21. 一种检测装置,其特征在于,包括:
    获取单元,用于获取第一角度传感器的第一基准角度信号,其中,所述第一角度传感器包括旋转轴和绕所述旋转轴设置的n极目标件,n为大于或等于1的整数;获取所述第一角度传感器的m个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,m≥n;
    确定单元,用于根据所述第一基准角度信号和所述m个电角度周期信号,确定电角度周期补偿参数和机械角度周期补偿参数,其中,所述电角度周期补偿参数用于校准所述n极目标件的电角度周期的角度误差,所述机械角度周期补偿参数用于校准所述旋转轴的机械角度周期的角度误差。
  22. 一种检测装置,其特征在于,包括:
    获取单元,用于获取第一角度传感器的第二基准角度信号,所述第一角度传感器包括旋转轴和设置在所述旋转轴上的n极目标件,n为大于或等于1的整数;获取所述第一角度传感器的l个电角度周期信号,其中,所述电角度周期表示目标件的单极对应的转动周期,l≥n;
    确定单元,用于根据所述第二基准角度信号和所述l个电角度周期信号,确定待校准的周期信号,所述第三周期表示所述旋转轴的转动周期;
    校准单元,用于根据保存的电角度周期补偿参数和机械角度周期补偿参数,对所述待校准的周期信号进行调整。
  23. 一种通信装置,其特征在于,包括一个或多个存储器和一个或多个处理器;其中,所述存储器存储计算机程序代码,所述计算机程序代码包括计算机指令;当所述计算机指令被所述处理器执行时,使得如权利要1-12中任一项所述的方法被执行,或者使得如权利要求13所述的方法被执行。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得如权利要求1-12中任一项所述的方法被执行,或使得如权利要求13所述的方法被执行。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得如权利要求1-12中任一项所述的方法被执行,或使得如权利要求13所述的方法被执行。
PCT/CN2022/098755 2022-06-14 2022-06-14 一种角度传感器的校准方法和传感系统 WO2023240468A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098755 WO2023240468A1 (zh) 2022-06-14 2022-06-14 一种角度传感器的校准方法和传感系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/098755 WO2023240468A1 (zh) 2022-06-14 2022-06-14 一种角度传感器的校准方法和传感系统

Publications (1)

Publication Number Publication Date
WO2023240468A1 true WO2023240468A1 (zh) 2023-12-21

Family

ID=89193004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098755 WO2023240468A1 (zh) 2022-06-14 2022-06-14 一种角度传感器的校准方法和传感系统

Country Status (1)

Country Link
WO (1) WO2023240468A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933222A (zh) * 2008-01-31 2010-12-29 西门子公司 求得电整流的可逆的同步马达的转子的角度位置的修正值的方法
JP2012042352A (ja) * 2010-08-19 2012-03-01 Tdk Corp 回転角・トルクセンサ
CN107860404A (zh) * 2016-09-21 2018-03-30 日本电产三协株式会社 旋转编码器及旋转编码器的绝对角度位置检测方法
CN109870177A (zh) * 2019-02-15 2019-06-11 广州极飞科技有限公司 磁编码器及其校准方法和校准装置、电机以及无人飞行器
CN109889114A (zh) * 2019-02-15 2019-06-14 广州极飞科技有限公司 磁编码器的校准方法和校准装置、电机、蠕动泵和灌药机
CN111106774A (zh) * 2020-01-13 2020-05-05 深圳市星图智控科技有限公司 foc驱动的无刷电机带磁编码器的电角度与机械角度的校准方法
CN111504360A (zh) * 2020-05-19 2020-08-07 哈尔滨理工大学 基于时间坐标磁电编码器角度精分方法及装置
CN112781484A (zh) * 2020-12-22 2021-05-11 广州极飞科技股份有限公司 线性霍尔传感器的转子角度校准方法及装置、电子设备
CN113029222A (zh) * 2021-03-08 2021-06-25 深圳市昂霸科技有限公司 一种用于磁编码器的校准方法,装置和磁编码器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933222A (zh) * 2008-01-31 2010-12-29 西门子公司 求得电整流的可逆的同步马达的转子的角度位置的修正值的方法
JP2012042352A (ja) * 2010-08-19 2012-03-01 Tdk Corp 回転角・トルクセンサ
CN107860404A (zh) * 2016-09-21 2018-03-30 日本电产三协株式会社 旋转编码器及旋转编码器的绝对角度位置检测方法
CN109870177A (zh) * 2019-02-15 2019-06-11 广州极飞科技有限公司 磁编码器及其校准方法和校准装置、电机以及无人飞行器
CN109889114A (zh) * 2019-02-15 2019-06-14 广州极飞科技有限公司 磁编码器的校准方法和校准装置、电机、蠕动泵和灌药机
CN111106774A (zh) * 2020-01-13 2020-05-05 深圳市星图智控科技有限公司 foc驱动的无刷电机带磁编码器的电角度与机械角度的校准方法
CN111504360A (zh) * 2020-05-19 2020-08-07 哈尔滨理工大学 基于时间坐标磁电编码器角度精分方法及装置
CN112781484A (zh) * 2020-12-22 2021-05-11 广州极飞科技股份有限公司 线性霍尔传感器的转子角度校准方法及装置、电子设备
CN113029222A (zh) * 2021-03-08 2021-06-25 深圳市昂霸科技有限公司 一种用于磁编码器的校准方法,装置和磁编码器

Similar Documents

Publication Publication Date Title
JP5613839B2 (ja) 移動する物体の絶対的な位置特定のための方法及び装置
US6826499B2 (en) Method and apparatus for calibrating and initializing an electronically commutated motor
US9200924B2 (en) Magnetic out-of-axis angle sensing principle
US8368392B2 (en) Magnetic encoder and method of detecting absolute rotational position
CN107919830B (zh) 一种电机位置传感器的标定方法及装置
EP2559971B1 (en) Rotation angle detection device
US10876862B2 (en) Rotary encoder
KR101273978B1 (ko) 절대 회전 위치 검출 방법
US11125768B2 (en) Angle based speed sensor device
TW201802436A (zh) 旋轉編碼器及旋轉編碼之角度校正方法
US11264870B2 (en) Method and device for acquiring mechanical position of electric motor
EP2975364A1 (en) Position sensor device and method for providing a filtered position signal
JP5177639B2 (ja) 磁気式エンコーダ装置及びこれを用いた位置検出方法
CN110617760B (zh) 旋转角检测装置的初始设定方法以及初始设定装置
WO2023240468A1 (zh) 一种角度传感器的校准方法和传感系统
US20150316371A1 (en) Method for determining the absolute position of a linear actuator
JP4214466B2 (ja) 磁気式エンコーダ及びその回転角度算出方法
CN112350626A (zh) 求机械换向的直流电动机的电动机轴转速和旋转角度的方法和设备
TW201944031A (zh) 編碼器
JP4224154B2 (ja) 自己校正型角度検出装置及び検出精度校正方法
CN110661467B (zh) 一种基于磁链特性坐标变换的开关磁阻电机位置预估方法
CN110492818B (zh) 电机的零位校正方法和校正装置、电机控制系统
JP2020153980A (ja) 回転部材の少なくとも1つの回転パラメータを決定するシステム
CN110388944A (zh) 编码器
JP2006197684A (ja) ブラシレスモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946167

Country of ref document: EP

Kind code of ref document: A1