WO2023239201A1 - 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐 - Google Patents

자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐 Download PDF

Info

Publication number
WO2023239201A1
WO2023239201A1 PCT/KR2023/007949 KR2023007949W WO2023239201A1 WO 2023239201 A1 WO2023239201 A1 WO 2023239201A1 KR 2023007949 W KR2023007949 W KR 2023007949W WO 2023239201 A1 WO2023239201 A1 WO 2023239201A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
microcapsules
organic
emulsion
producing microcapsules
Prior art date
Application number
PCT/KR2023/007949
Other languages
English (en)
French (fr)
Inventor
정선아
염준석
심우선
Original Assignee
주식회사 엘지생활건강
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지생활건강 filed Critical 주식회사 엘지생활건강
Publication of WO2023239201A1 publication Critical patent/WO2023239201A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/596Mixtures of surface active compounds

Definitions

  • the present invention relates to an organic sunscreen capsule with excellent UV blocking efficiency.
  • UV protection As the amount of ultraviolet rays increases due to the destruction of the ozone layer due to environmental pollution, and the number of people enjoying outdoor sports such as golf, hiking, and fishing increases, the demand for UV protection has increased significantly. In particular, the demand to maintain skin health is increasing day by day, from skin cancer to aging, and numerous studies on UV protection are being conducted to satisfy these demands.
  • organic UV filters absorb ultraviolet rays and prevent them from penetrating the skin.
  • UV filters can cause skin irritation and penetrate into the skin, several technologies to encapsulate organic UV filters have been published to prevent this.
  • the representative encapsulation method is to mix an oil phase consisting of an organic sunscreen and a silica precursor with an aqueous phase in which surfactants are dispersed, creating a core-shell structure in which the organic sunscreen is surrounded by silica through high-speed emulsification and silica reaction. This is a method of manufacturing capsules.
  • the capsules exist in the form of an emulsion dispersed in the water phase.
  • curds are created due to cohesion between capsules, or gelling occurs in the solvent due to the reaction of residual silanol in the water phase, ensuring the stability of the capsule over time. There is difficulty in doing this.
  • the present invention aims to manufacture microcapsules containing organic UV filters and ensure high temperature and temporal stability of the microcapsules.
  • the present invention relates to microcapsules with improved stability over time and ultraviolet ray blocking efficiency and a method of manufacturing the same.
  • the present invention includes the steps of preparing an emulsion by mixing a continuous phase containing an emulsifier and a dispersed phase containing an organic UV filter and an encapsulating component;
  • It provides a method for producing microcapsules including adding an organic acid to the emulsion.
  • the present invention provides microcapsules manufactured by the above-described manufacturing method.
  • the present invention is a method for producing microcapsules comprising the step of preparing an emulsion by mixing a continuous phase containing an emulsifier and a dispersed phase containing an organic UV filter and an encapsulating component,
  • It provides a method for producing microcapsules, comprising the step of adding an organic acid to the emulsion.
  • microcapsules encapsulating organic UV filters by manufacturing microcapsules encapsulating organic UV filters, it is possible to increase UV blocking efficiency and ensure the capsule's stability over time.
  • FIG. 1 is a schematic diagram of a microcapsule manufacturing method according to an example of the present invention.
  • Figure 2 is a photograph of microcapsules manufactured in Examples and Comparative Examples of the present invention.
  • Figure 3 is a graph showing the skin absorption of sunscreen depending on whether or not the microcapsules of the present invention are included.
  • the present invention includes the steps of preparing an emulsion by mixing a continuous phase containing an emulsifier and a dispersed phase containing an organic UV filter and an encapsulating component (hereinafter, step 1); and
  • step 2 Correcting the difference in specific gravity between the continuous phase and the dispersed phase (hereinafter, step 2); and
  • step 3 It relates to a method for producing microcapsules comprising adding an organic acid to the emulsion (hereinafter, step 3).
  • step 1 is a step of preparing an emulsion by mixing the continuous phase and the dispersed phase.
  • the continuous phase includes an emulsifier.
  • the emulsifier can promote the encapsulation reaction of the encapsulation component, which will be described later.
  • the emulsifier may include a tertiary amine-based cationic surfactant.
  • the tertiary amine cationic surfactant includes DTAB (Dodecyltrimethyl ammonium bromide), TTAB (Tetradecyltrimethyl ammonium bromide), CTAB (Cetyltrimethyl ammonium bromide), and CTMS (Cetyltrimethyl ammonium bromide).
  • Trimethylammonium methosulfate Cetyl trimethylammonium methosulfate, STMS (Stearyl trimethylammonium methosulfate), BTMS (Behentrimonium Methosulfate), and Dipalmitoylethyl Dimonium Chloride. It may be one or more selected from the group consisting of.
  • Microcare® Quat EQG which is dipalmitoylethyl dimonium chloride, can be used as an emulsifier.
  • the dipalmitoylethyl dimonium chloride not only promotes the encapsulation reaction of the encapsulating component but can also improve the stability over time of the manufactured microcapsules.
  • the content of the emulsifier is not particularly limited and may be 0.05 to 5% by weight, 1 to 3% by weight, or 1 to 2% by weight based on the total weight of the ingredients used in the production of microcapsules. If the content is less than 0.05% by weight, there is a risk of agglomeration of the capsules, and if it exceeds 5% by weight, a large amount of foam may be generated during the emulsion manufacturing process, causing emulsification of the capsules or failure to form the capsules properly. Within the above content range, the dispersion stability of the emulsion can be secured by preventing coalescence of the microcapsules.
  • the solvent of the continuous phase is not particularly limited as long as it can dissolve the emulsifier, and water can be used in the present invention.
  • the dispersed phase comprises an organic UV filter and an encapsulating component.
  • an organic UV filter refers to a component containing an organic compound that blocks or absorbs ultraviolet rays, and may refer to an organic ultraviolet ray blocking component commonly used in the industry.
  • the organic UV filter is used as an active ingredient.
  • the active ingredient is a substance whose activity is desired to be maintained by the produced capsule, and the active ingredient may later express its activity by destroying the outer wall of the capsule.
  • the active ingredient may further include one or more selected from the group consisting of additional UV blocking ingredients, fragrances, dyes, catalysts, and drugs.
  • the organic UV filter includes Ethylhexyl Salicylate, avobenzone, p-aminobenzoic acid, bemotrizinol, and benzophenone-9. 9), bexophenome-3, bisoctrizole, 3-(4-methylbenzylidene)-camphor, cinoxate, di Diethylamino hydroxybenzoyl hexyl benzoate, dioxybenzone, drometrizole trisiloxane, ecamsule, ethylhexyl triazone, homosalate (homosalate), menthyl anthranilate, octocrylene, octyl salicylate, iscottrizinol, isopentenyl-4-methoxycinnamate 4-methoxycinnamate), octyl-dimethyl-p-aminobenzoic acid, octyl-methoxycinnamate, oxy
  • the content of the organic UV filter is not particularly limited and is 1 to 80% by weight, 3 to 65% by weight, or 5 to 50% by weight based on the total weight of the components used in the production of microcapsules. You can use it.
  • the encapsulation component may constitute the outer wall (i.e., shell) of the microcapsule.
  • These encapsulating components may include one or more selected from the group consisting of silica precursors, titanium oxide precursors, and zirconium oxide precursors.
  • the encapsulation component may include one or more compounds selected from the group consisting of compounds represented by the following formulas 1 to 4.
  • A may be silicon, titanium, or zirconium, and R 1 to R 4 may each independently be hydrogen or an alkyl group having 1 to 8 carbon atoms substituted or unsubstituted with a functional group at the terminal, and the functional group may include amine, hydroxy, amide, carboxy, vinyl, epoxy, phenyl or mercapto.
  • the silica precursor is tetraethylorthosilicate (TEOS), tetramethylorthosilicate, tetrapropylorthosilicate, tetrabutylorthosilicate, dimethyldimethoxysilicate, trimethylmethoxysilicate, methyltrimethoxysilicate, trimethylethoxy From the group consisting of silicates, butyltrimethoxysilicate, N-propyltrimethoxysilane, N-octyltrimethoxysilane, aminopropyltrimethoxysilane, phenyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane. It may contain one or more of the selected ones.
  • TEOS tetraethylorthosilicate
  • tetramethylorthosilicate tetrapropylorthosilicate
  • tetrabutylorthosilicate dimethyldimethoxysilicate, tri
  • the titanium oxide precursor may include one or more selected from the group consisting of titanium methoxide, titanium ethoxide, and titanium butoxide.
  • the zirconium oxide precursor may include one or more selected from the group consisting of zirconium methoxide, zirconium ethoxide, and zirconium butoxide.
  • the content of the encapsulation component is not particularly limited and may be 0.001 to 30% by weight, 0.01 to 25% by weight, or 0.1 to 20% by weight relative to the total weight of the components used in the production of the microcapsule. If the content of the encapsulation component is less than 0.001% by weight, there is a risk that the outer wall of the capsule may be formed so thin that it cannot be maintained even when an encapsulation reaction occurs, and if it exceeds 30 parts by weight, the distinction between the dispersed phase and the continuous phase becomes ambiguous, causing the capsule to become unstable. There is a risk that problems that cannot be formed may arise.
  • the silica precursor, titanium oxide precursor, and zirconium oxide precursor can be converted to silica, titanium oxide, and zirconium oxide, respectively, through an encapsulation reaction.
  • the solvent of the dispersed phase is not particularly limited as long as it is a solvent that is not mixed with the continuous phase.
  • the solvent for the dispersed phase is a hydrocarbon-based solvent; Solvent containing an ether group; Solvent containing an ester group; Solvent containing a ketone group; Solvent containing benzene; Haloalkane-based solvent; and one or more selected from the group consisting of silicone-based solvents.
  • Hydrocarbon-based solvents are linear or nonlinear such as Pentane, Hexane, Cyclohexane, Heptane, Octane, Isododecane, and Dodecane. It can be selected from compounds of the structure, and the solvent containing an ether group is selected from ethyl ether, butyl ether, and methyl-t-butyl ether.
  • the solvent containing an ester group may be selected from ethyl acetate, butyl acetate, and ethyl butyrate.
  • the solvent containing a ketone group may be methyl ethyl ketone
  • the solvent containing benzene may be selected from among Benzene, Toluene, and Xylene.
  • Haloalkane-based solvents may be selected from dichloromethane, dichloroethane, chloroform, and carbon tetrachloride
  • silicone-based solvents may be selected from dichloromethane, dichloroethane, and carbon tetrachloride. It may be selected from Dimethicone and Cyclomethicone.
  • an emulsion can be prepared by mixing the above-described continuous phase and dispersed phase.
  • the content of the dispersed phase may be 1 to 60 parts by weight, 2 to 50 parts by weight, or 3 to 40 parts by weight based on the mixed weight (100 parts by weight) of the dispersed phase and the continuous phase.
  • step 1 may be performed by adding a dispersed phase to the continuous phase and may be performed under stirring.
  • stirring may be performed at 1 to 16000 RPM, 5 to 13000 RPM, or 10 to 10000 RPM at 20 to 30° C., or at room temperature.
  • step 2 is a step of correcting the difference in specific gravity between the continuous phase and the dispersed phase.
  • the specific gravity can be corrected to be similar to that of the continuous phase, thereby solving the problem of floating or settling.
  • Microcapsules containing organic UV filters are emulsified and dispersed by an emulsifier in an aqueous phase (i.e. continuous phase) solvent.
  • an aqueous phase i.e. continuous phase
  • a difference in specific gravity between the capsule and the aqueous solvent occurs, causing the capsule to sink or float at the top, resulting in problems with stability over time.
  • the microcapsules begin to clump together, gelling of the emulsion progresses, and curd is formed.
  • the specific gravity difference in order to prevent this phenomenon, can be corrected by adding a sugar compound or oil to the emulsion.
  • the specific gravity difference can be adjusted by adding the sugar compound or oil to the dispersed phase before preparing the emulsion. Through correction of this specific gravity difference, the stability of the capsule over time can be ensured.
  • the type of the sugar compound is not particularly limited and includes monosaccharides of fructose, glucose, galactose, mannoheptulose, and sedoheptulose; disaccharides of sucrose, lactose, maltose, trehalose, and cellobiose; and polysaccharides of cellulose, starch, glycogen, chitin, arabinoxylan, and pectin; one or more selected from the group consisting of may be used.
  • the content of the sugar compound is not particularly limited and may vary depending on the specific gravity of the ingredients used to manufacture the microcapsule. If the specific gravity of the capsule is greater than that of the continuous phase, the capsule may sink, and if it is smaller, a creaming phenomenon may occur where the capsule floats at the top. At this time, if the specific gravity of the capsule is larger than that of the continuous phase and precipitation occurs, precipitation of the capsule can be prevented by increasing the specific gravity of the continuous phase through a sugar compound.
  • the content of the sugar compound may be 0.001 to 30% by weight, 0.5 to 20% by weight, or 1 to 10% by weight based on the total weight of ingredients used in the production of microcapsules.
  • the type of oil is not particularly limited as long as it is an oil component that can be typically used in human products.
  • the oil may be one or two or more of the oils commonly used in human products, such as vegetable oil, hydrocarbon oil, ester oil, silicone oil, and synthetic oil.
  • specific examples of the oil include green tea seed oil, argan kernel oil, olive oil, sunflower seed oil, jojoba seed oil, camellia seed oil, Queensland nut oil, monascus extract, sweet almond oil, castor seed oil, and octyldodecane.
  • polyglyceryl-2 triisostearate diisostearyl maleate, cetyl ethyl hexanoate, tridecyl trimellitate, squalane, trioctyl dodecyl citrate, pentaerythrityl tetraisostearate, capryl Lyric/capric triglyceride, caprylyl methicone, diphenyl dimethicone, diphenylsiloxyphenyl trimethicone, isostearic acid, dicaprylyl carbonate, C12-15 alkyl benzoate, dibutyl adipate, isononyl Isononanoate, isodecyl neopentanoate phytosteryl/isostearyl/cetyl/stearyl/behenyl dimer dilinoleate, shea butter, ethylhexyl methoxycinnamate, stearalkonium hectorite
  • the difference in specific gravity can be adjusted by mixing two or more types of oils with different specific gravity.
  • the content of the oil may be 0.001 to 30% by weight, 0.5 to 20% by weight, or 1 to 10% by weight based on the total weight of the ingredients used in the production of microcapsules.
  • step 1 and step 2 may be performed simultaneously.
  • the emulsion can be encapsulated immediately after production, and the encapsulation reaction can continue until the reactive group on the capsule wall disappears.
  • the encapsulation is, for example, a sol-gel reaction in which a silica precursor is solidified into silica, and the sol-gel reaction may be used to include hydrolysis and solidification reactions of the silica precursor.
  • the encapsulation of the silica precursor may form silanol through a hydrolysis reaction and solidify the silanol through a condensation reaction.
  • the step of aging the emulsion may be additionally included as a step prior to Step 3, which will be described later.
  • aging may be performed at 20 to 30° C., or at room temperature for 1 to 10 days, 1 to 5 days, or 2 to 4 days.
  • Step 3 in the present invention is the step of adding an organic acid to the emulsion.
  • organic acids can be used to improve the stability of microcapsules.
  • an appropriate amount of organic acid is added to the emulsion to promote a condensation reaction, thereby leading to a solidification reaction of silanol on the capsule wall, thereby increasing the stability of the capsule.
  • the type of organic acid is not particularly limited and includes citric acid, lactic acid, acetic acid, formic acid, oxalic acid, oxalic acid, succinic acid, carbonic acid, benzoic acid, acetic acid, ascorbic acid, carboxylic acid, sulfinic acid, sulfonic acid, fumaric acid, malic acid.
  • One or more acids selected from the group consisting of butyric acid, propionic acid, and stearic acid may be used.
  • the content of the organic acid is not particularly limited, and may be 0.05 to 10% by weight, 0.3 to 8% by weight, or 0.5 to 5% by weight, based on the total weight of the components used in the production of microcapsules. If it is less than 0.05% by weight, gelling of the emulsion will occur, and if it is more than 10% by weight, the acidity of the emulsion will increase and the hydrolysis reaction of the silica precursor will take the lead, causing the capsule wall to not be formed tightly, which may reduce the stability of the microcapsule. .
  • microcapsules can be manufactured through the above-described steps. Specifically, when using a silica precursor as an encapsulation component, stable microcapsules containing the active ingredient can be produced through hydrolysis and solidification reactions of the silica precursor at the interface between the continuous phase and the dispersed phase, as shown in FIG. 1. Specifically, the silica precursor contains alkoxy, so it is initially mixed in the dispersed phase, which is the core material. However, when hydrolysis occurs at the emulsion interface, the silica precursor changes to hydrophilic and is stacked at the interface. In the process, a solidification reaction occurs and a solid outer wall is formed.
  • the stability of microcapsules can be improved by using organic acids.
  • the prepared capsule emulsion itself can secure high temperature and temporal stability without the additional process of surface treatment and/or freeze-drying of the capsule surface.
  • the present invention relates to microcapsules produced by the above-described microcapsule production method.
  • the microcapsules may have a diameter of 0.01 to 500 ⁇ m, 0.1 to 100 ⁇ m, or 0.5 to 5 ⁇ m. If the diameter is less than 0.01 ⁇ m, there is a risk that the ability to block ultraviolet rays and protect the skin may be reduced, and if it exceeds 500 ⁇ m, there is a risk that stability may decrease due to the coalescence of the capsules.
  • the microcapsules according to the present invention can remain dispersed for more than 2 weeks without precipitation or gelling even at a high temperature of 50°C.
  • the present invention relates to a sunscreen containing the above-described microcapsules.
  • the formulation of the sunscreen may be a cream, emulsion, balm, compact, etc., and is not limited as long as it is a formulation that can be used in the formulation of a sunscreen.
  • the content of microcapsules in the sunscreen may be 0.5 to 20 parts by weight or 1 to 15 parts by weight based on the total weight (100 parts by weight).
  • the present invention is a method for producing microcapsules comprising the step of preparing an emulsion by mixing a continuous phase containing an emulsifier and a dispersed phase containing an organic UV filter and an encapsulating component,
  • It relates to a method for producing microcapsules, comprising the step of adding an organic acid to the emulsion.
  • Microcapsules of Examples and Comparative Examples were prepared using the ingredients and contents (% by weight) shown in Table 1 below.
  • the manufacturing method of microcapsules according to Example 1 and Comparative Example 1 is as follows.
  • a continuous phase was prepared by dissolving the emulsifier in distilled water at room temperature.
  • a dispersed phase was prepared by mixing a silica precursor and an organic UV filter at room temperature.
  • the dispersed phase was slowly added to the continuous phase and stirred at a stirring speed of 8,000 rpm for 10 minutes to form an emulsion.
  • sucrose was slowly added to the emulsion and stirred for 30 minutes.
  • the emulsion was subjected to an aging process at room temperature for 3 days.
  • microcapsules according to Example 2 and Comparative Examples 2 and 3 is as follows.
  • a continuous phase was prepared by dissolving the emulsifier in distilled water at room temperature.
  • a dispersed phase was prepared by mixing silica precursor, oil, and organic UV filter at room temperature.
  • the dispersed phase was slowly added to the continuous phase and stirred at a stirring speed of 8,000 rpm for 10 minutes to form an emulsion.
  • the emulsion was subjected to an aging process at room temperature for 3 days.
  • Microcapsules were manufactured by the method of Example 1, except that the process of aging the emulsion at room temperature for 3 days (i.e., 4 in the manufacturing method of Example 1) was not performed.
  • microcapsules were stored at 50°C and 50% humidity, it was observed whether gelling or precipitation occurred in the emulsion, that is, whether the microcapsules in the water phase remained dispersed.
  • the microcapsules of Examples 1 to 2 and Comparative Examples 1 to 3 all exhibited a milky to light yellow emulsion state without viscosity. After 1 day, capsules precipitated at the bottom of the emulsion in Comparative Example 2 and a lump was formed, and in Comparative Example 1, precipitation and gelling were formed on the 4th day. Comparative Example 3 had a low capsule density and was suspended on the first day. On the other hand, the microcapsules of Examples 1 and 2 did not show precipitation or gelling for up to 2 weeks at high temperature.
  • microcapsules prepared in the above examples and comparative examples were properly formed. Specifically, after manufacturing the microcapsules, the shape of the microcapsules was observed using an optical microscope.
  • FIG. 2 shows the shape of the microcapsule manufactured in Example 1, and (b) shows the shape of the microcapsule manufactured in Comparative Example 4.
  • the average particle size of the microcapsules prepared in Examples and Comparative Examples was measured using Mastersizer 3000 (Malvern).
  • the average particle size was first measured, and the average particle size was measured secondarily at the 4th week of manufacture to confirm the change in particle size, that is, the stability of the capsule over time.
  • the appropriate particle size of the capsule according to the present invention is 0.5 to 5 ⁇ m in diameter, and it can be confirmed that the stability over time of the microcapsule prepared in Comparative Example 2 is reduced.
  • Oil-in-water sunscreens of Preparation Examples 1 to 3 were prepared using the ingredients and contents shown in Table 4 below, and their UV blocking ability was evaluated.
  • Example 1 In the microcapsules of Example 1 and Comparative Example 4, the content of the organic UV filter was 50% by weight, and when 10% by weight was added to each of Preparation Examples 1 to 3, the total amount of UV filters included in the Preparation Examples was 5% by weight. same.
  • the manufacturing method is as follows.
  • Components 2 organic UV filter, Ethylhexyl Salicylate
  • 3 were completely dissolved and dispersed at 75°C to prepare an oil phase.
  • Components 4 to 8 were uniformly dispersed using a disper and heated to 75°C to prepare an aqueous phase.
  • component 1 was added and mixed at 5,000 rpm for 1 minute.
  • In vitro SPF levels were measured as follows. The sample was applied at a thickness of 1.3 mg/cm 2 on a PMMA plate (HelioScreen Labs, France), dried for 15 minutes, and measured using SPF-290S (Optometrics Corporation, USA). The average values of in vitro SPF and PA values measured at 6 different positions on the PMMA plate were used.
  • Preparation Example 3 in which the capsule according to Comparative Example 3 without aging was prescribed, had no significant difference in ultraviolet ray blocking ability compared to Preparation Example 1. This means that the capsule is not formed properly and is therefore ineffective as a capsule.
  • the skin permeability of organic UV filters was measured depending on whether microcapsules were used.
  • Sunscreen according to Preparation Examples 1 and 2 was applied to pig skin, and the penetration content of organic UV filters for each skin layer was compared.
  • microcapsules encapsulating organic UV filters by manufacturing microcapsules encapsulating organic UV filters, it is possible to increase UV blocking efficiency and ensure the capsule's stability over time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

본 발명은 경시 안정성 및 자외선 차단 효율을 높인 유기 자외선 차단제 무기 캡슐화 기술 및 이의 제조방법에 관한 것이다. 본 발명에서는 유기 UV 필터를 캡슐화 성분의 캡슐화 반응을 통해 캡슐화함과 동시에 제조된 마이크로 캡슐 유화액의 안정화 조건을 구현하여 고온 및 경시 안정성을 확보할 수 있다.

Description

자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐
본 발명은 자외선 차단 효율이 우수한 유기 자외선 차단제 캡슐에 관한 것이다.
환경오염으로 인한 오존층 파괴로 자외선량이 증가하고, 골프, 등산, 낚시 등 야외 스포츠를 즐기는 사람이 증가하면서 자외선 차단에 대한 수요가 크게 증가하여 왔다. 특히, 피부암부터 노화에 이르기까지 피부건강을 유지하고자 하는 요구가 나날이 늘어가고 있으며, 이러한 요구를 만족시키기 위해 자외선 차단에 대한 수많은 연구가 진행되고 있다.
자외선 차단제 중 유기 UV 필터의 경우, 자외선을 흡수하여 피부에 자외선이 투과하지 못하도록 하는 역할을 한다. 그러나 UV 필터는 피부 자극을 유발하여 피부에 침투될 수 있으므로, 이를 방지하기 위해 유기 UV 필터를 캡슐화 시키는 여러 기술들이 발표되어 왔다.
그 중 대표적인 캡슐화 방법은 유기 자외선 차단제와 실리카 전구체로 이루어진 유상을 계면활성제가 분산된 수상에 혼합하여, 고속 유화 및 실리카 반응을 통해 유기 자외선 차단제를 실리카로 둘러싸고 있는 코어-쉘(core-shell) 구조의 캡슐을 제조하는 방법이다.
이 때 캡슐은 수상 내에 분산되어 있는 유화 에멀젼 형태로 존재하는데 경시에 따라 캡슐간의 응집으로 커드가 생성되거나, 수상 내 잔여 실라놀(silanol)의 반응으로 용매내 겔링이 진행되어 캡슐의 경시 안정성을 확보함에 어려움이 있다.
따라서 기존 기술들은 캡슐 표면을 표면처리를 하거나, 동결건조하여 파우더화 및 용매에 재분산 공정을 추가적으로 수행하는 것이 필수적이었다. 일례로 공개특허 JP2007-501143의 경우 유기 UV 필터를 캡슐화 한 후 동결건조 및 파우더화하고, 제형에 적용 시 다시 바인더에 혼합하는 방법을 제시하였다.
이에, 본 발명에서는 유기 UV 필터를 포함하는 마이크로 캡슐을 제조하고, 상기 마이크로 캡슐의 고온 및 경시 안정성을 확보하고자 한다.
[선행기술문헌]
[특허문헌]
1. 일본공개특허 2007-501143
본 발명은 경시 안정성 및 자외선 차단 효율을 높인 마이크로 캡슐 및 이의 제조방법에 관한 것이다.
본 발명은 유화제를 포함하는 연속상과 유기 UV 필터 및 캡슐화 성분을 포함하는 분산상을 혼합하여 에멀젼을 제조하는 단계;
상기 연속상과 분산상 간의 비중차를 보정하는 단계; 및
상기 에멀젼에 유기산을 첨가하는 단계;를 포함하는 마이크로 캡슐의 제조 방법을 제공한다.
또한, 본 발명은 전술한 제조 방법에 의해 제조된 마이크로 캡슐을 제공한다.
또한, 본 발명은 유화제를 포함하는 연속상과 유기 UV 필터 및 캡슐화 성분을 포함하는 분산상을 혼합하여 에멀젼을 제조하는 단계를 포함하는 마이크로 캡슐의 제조 방법으로서,
상기 연속상과 분산상 간의 비중차를 보정하는 단계; 및
상기 에멀젼에 유기산을 첨가하는 단계;를 포함하는 것을 특징으로 하는 마이크로 캡슐의 제조 방법을 제공한다.
본 발명에서는 유기 UV 필터를 캡슐화시킨 마이크로 캡슐을 제조하여, 자외선 차단 효율을 높이고 캡슐의 경시 안정성을 확보할 수 있다.
도 1은 본 발명의 일례에 따른 마이크로 캡슐 제조 방법의 모식도이다.
도 2는 본 발명의 실시예 및 비교예에서 제조된 마이크로 캡슐의 사진이다.
도 3은 본 발명의 마이크로 캡슐의 포함 여부에 따른 선크림의 피부 흡수도를 나타낸 그래프이다.
본 발명은 유화제를 포함하는 연속상과 유기 UV 필터 및 캡슐화 성분을 포함하는 분산상을 혼합하여 에멀젼을 제조하는 단계(이하, 단계 1); 및
상기 연속상과 분산상 간의 비중차를 보정하는 단계(이하, 단계 2); 및
상기 에멀젼에 유기산을 첨가하는 단계(이하, 단계 3);를 포함하는 마이크로 캡슐의 제조 방법에 관한 것이다.
이하, 본 발명의 구성을 구체적으로 설명한다.
어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 발명에서 단계 1은 연속상 및 분산상을 혼합하여 에멀젼을 제조하는 단계이다.
본 발명에서 연속상은 유화제를 포함한다. 상기 유화제는 후술할 캡슐화 성분의 캡슐화 반응을 촉진시킬 수 있다.
일 구체예에서, 유화제는 3차 아민(tertiary amine)계 양이온성 계면활성제를 포함할 수 있다. 상기 3차 아민 양이온성 계면활성제는 DTAB(도데실트리메틸 암모늄 브로마이드, Dodecyltrimethyl ammonium bromide), TTAB(테트라데실트리메틸 암모늄 브로마이드, Tetradecyltrimethyl ammonium bromide), CTAB(세틸트리메틸 암모늄 브로마이드, Cetyltrimethyl ammonium bromide), CTMS(세틸 트리메틸암모늄 메소설페이트, Cetyl trimethylammonium methosulfate), STMS(세테아릴 트리메틸암모늄 메소설페이트, Stearyl trimethylammonium methosulfate), BTMS(베헨트리모늄 메소설페이트, Behentrimonium Methosulfate) 및 다이팔미토일에틸 다이모늄 클로라이드(Dipalmitoylethyl Dimonium Chloride)로 이루어진 그룹으로부터 선택된 하나 이상일 수 있다. 본 발명에서는 유화제로 다이팔미토일에틸 다이모늄 클로라이드(Dipalmitoylethyl Dimonium Chloride)인 Microcare® Quat EQG을 사용할 수 있다. 상기 다이팔미토일에틸 다이모늄 클로라이드는 캡슐화 성분의 캡슐화 반응을 촉진할 뿐만 아니라 제조되는 마이크로 캡슐의 경시 안정성을 보다 향상시킬 수 있다.
일 구체예에서, 상기 유화제의 함량은 특별히 제한되지 않으며, 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.05 내지 5 중량%, 1 내지 3 중량% 또는 1 내지 2 중량%일 수 있다. 함량이 0.05 중량% 미만일 경우 캡슐의 응집이 발생할 우려가 있고, 5 중량%를 초과할 경우 에멀젼 제조과정에서 거품이 다량 발생하여 캡슐이 유화되거나, 캡슐이 제대로 형성되지 못할 수 있다. 상기 함량 범위에서, 상기 마이크로 캡슐의 응집(coalescence)을 방지하여 에멀젼의 분산 안정성을 확보할 수 있다.
일 구체예에서, 연속상의 용매는 유화제의 용해가 가능하다면 특별히 제한되지 않으며, 본 발명에서는 물을 사용할 수 있다.
본 발명에서 분산상은 유기 UV 필터 및 캡슐화 성분을 포함한다.
본 발명에서 유기 UV 필터는 자외선을 차단 또는 흡수하는 유기화합물을 포함하는 성분을 의미하고, 통상적으로 당업계에서 사용되는 유기 자외선 차단 성분을 의미할 수 있다.
상기 유기 UV 필터는 유효성분으로 사용된다. 상기 유효성분은 생성된 캡슐에 의해서 그 활성이 유지되길 희망하는 물질로, 상기 유효성분은 추후 캡슐의 외벽이 파괴됨으로 그 활성이 발현될 수 있다. 본 발명에서는 유효성분으로 상기 유기 UV 필터 외에 추가의 자외선 차단 성분, 향, 염료, 촉매 및 약물 등으로 이루어진 그룹으로부터 선택된 하나 이상을 추가로 포함할 수 있다.
일 구체예에서, 유기 UV 필터는 에칠헥실 살리실레이트(Ethylhexyl Salicylate), 아보벤존(avobenzone), p-아미노벤조산(p-aminobenzoic acid), 베모트리지놀 (bemotrizinol), 벤조페논-9(benzophenone-9), 벡소페놈-3(bexophenome-3), 비스옥트리졸(bisoctrizole), 3-(4-메틸벤질리덴)-캠퍼(3-(4-methylbenzylidene)-camphor), 시녹세이트(cinoxate), 디에틸아미노 히드록시벤조일 헥실 벤조에이트(diethylamino hydroxybenzoyl hexyl benzoate), 디옥시벤존(dioxybenzone), 드로메트리졸트리실록산(drometrizole trisiloxane), 에캄슐(ecamsule), 에틸헥실 트리아존(ethylhexyl triazone), 호모살레이트(homosalate), 멘틸 안트라닐레이트(menthyl anthranilate), 옥토크릴렌(octocrylene), 옥틸 살리실레이트(octyl salicylate), 이스코트리지놀(iscotrizinol), 이소펜테닐-4-메톡시신나메이트(isopentenyl-4-methoxycinnamate), 옥틸-디메틸-p-아미노벤조산(octyl-dimethyl-p-aminobenzoic acid), 옥틸-메톡시신나메이트(octyl-methoxycinnamate), 옥시벤존(oxybenzone), 폴리실리콘-15(polysilicone-15) 및 트롤아민 살리실레이트(trolamine salicylate)로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.
일 구체예에서, 상기 유기 UV 필터의 함량은 특별히 제한되지 않으며, 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 1 내지 80 중량%, 3 내지 65 중량%, 또는 5 내지 50 중량%의 함량으로 사용할 수 있다.
본 발명에서 캡슐화 성분은 마이크로 캡슐 외벽(즉, 쉘)을 구성할 수 있다. 이러한 캡슐화 성분은 실리카 전구체, 산화 티타늄 전구체 및 산화 지르코늄 전구체로 이루어진 그룹으로부터 선택된 하나 이상을 포함할 수 있다.
일 구체예에서, 캡슐화 성분은 하기 화학식 1내지 4로 표시되는 화합물로 이루어진 그룹으로부터 선택된 하나 이상의 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2023007949-appb-img-000001
[화학식 2]
Figure PCTKR2023007949-appb-img-000002
[화학식 3]
Figure PCTKR2023007949-appb-img-000003
[화학식 4]
Figure PCTKR2023007949-appb-img-000004
상기 화학식 1 내지 4에서, A는 실리콘, 티타늄 또는 지르코늄일 수 있고, R1 내지 R4는 각각 독립적으로 수소 또는 말단에 작용기가 치환 또는 비치환된 탄소수 1 내지 8의 알킬기일 수 있으며, 상기 작용기는 아민, 히드록시, 아미드, 카르복시, 비닐, 에폭시, 페닐 또는 머캅토 등을 포함할 수 있다.
일 구체예에서, 실리카 전구체는 테트라에틸오르토실리케이트(TEOS), 테트라메틸오르토실리케이트, 테트라프로필오르토실리케이트, 테트라부틸오르토실리케이트, 디메틸디메톡시실리케이트, 트리메틸메톡시실리케이트, 메틸트리메톡시실리케이트, 트리메틸에톡시실리케이트, 부틸트리메톡시실리케이트, N-프로필트리메톡시실란, N-옥틸트리메톡시실란, 아미노프로필트리메톡시실리케이트, 페닐트리메톡시실란 및 3-머캅토프로필트리메톡시실란으로 이루어진 그룹으로부터 선택된 하나 이상을 포함할 수 있다.
일 구체예에서, 산화 티타늄 전구체는 티타늄메톡사이드, 티타늄에톡사이드 및 티타늄부톡사이드로 이루어진 그룹으로부터 선택된 하나 이상을 포함할 수 있다.
또한, 일 구체예에서, 산화 지르코늄 전구체는 지르코늄메톡사이드, 지르코늄에톡사이드 및 지르코늄부톡사이드로 이루어진 그룹으로부터 선택된 하나 이상을 포함할 수 있다.
일 구체예에서, 캡슐화 성분의 함량은 특별히 제한되지 않으며, 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.001 내지 30 중량%, 0.01 내지 25 중량%, 또는 0.1 내지 20 중량%일 수 있다. 상기 캡슐화 성분의 함량이 0.001 중량% 미만일 경우 캡슐화 반응이 일어나도 캡슐의 외벽이 유지되지 않을 만큼 얇게 형성되는 문제가 발생할 우려가 있고, 30 중량부% 초과할 경우 분산상과 연속상의 구분이 모호해져 캡슐이 형성되지 않는 문제가 발생할 우려가 있다.
일 구체예에서, 실리카 전구체, 산화 티타늄 전구체 및 산화 지르코늄 전구체는 캡슐화 반응을 통해 각각 실리카, 산화 티타늄 및 산화 지르코늄으로 변환될 수 있다.
일 구체예에서, 분산상의 용매는 연속상과 혼합되어 섞이지 않는 용매라면 특별히 제한되지 않는다. 연속상의 용매로 물을 사용할 경우, 분산상의 용매는 탄화수소(Hydrocarbon) 계열 용매; 에테르기(Ether group)를 포함하는 용매; 에스터기(Ester group)를 포함하는 용매; 케톤기(Ketone group)를 포함하는 용매; 벤젠(Benzene)을 포함하는 용매; 할로알칸(Haloalkane) 계열 용매; 및 실리콘(Silicone) 계열 용매로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.
탄화수소(Hydrocarbon) 계열 용매는 펜탄(Pentane), 헥산(Hexane), 사이클로헥산(Cyclohexane), 헵탄(Heptane), 옥탄(Octane), 이소도데칸(Isododecane) 및 도데칸(Dodecane)과 같은 선형 또는 비선형 구조의 화합물 중에서 선택될 수 있고, 에테르기(Ether group)를 포함하는 용매는 에틸 에테르(Ethyl ether), 부틸 에테르(Butyl ether) 및 메틸-t-부틸 에테르(Methyl-t-butyl ether) 중에서 선택될 수 있으며, 에스터기(Ester group)를 포함하는 용매는 에틸 아세테이트(Ethyl acetate), 부틸 아세테이트(Butyl actetate) 및 에틸 부티레이트(Ethyl butyrate) 중에서 선택될 수 있다. 또한, 케톤기(Ketone group)를 포함하는 용매는 메틸 에틸 케톤(Methyl ethyl ketone)일 수 있고, 벤젠(Benzene)을 포함하는 용매는 벤젠(Benzene), 톨루엔(Toluene) 및 자일렌(Xylene) 중에서 선택될 수 있으며, 할로알칸(Haloalkane) 계열 용매는 디클로로메탄(Dichrolomethane), 디클로로에탄(Dichloroethane), 클로로포름(Chloroform) 및 사염화 탄소(Carbon tetrachloride) 중에서 선택될 수 있고, 실리콘(Silicone) 계열 용매는 디메티콘(Dimethicone) 및 사이클로메티콘(Cyclomethicone) 중에서 선택될 수 있다.
본 발명에서는 전술한 연속상 및 분산상을 혼합하여 에멀젼을 제조할 수 있다.
일 구체예에서 분산상의 함량은 분산상 및 연속상의 혼합 중량(100 중량부)을 기준으로 1 내지 60 중량부, 2 내지 50 중량부, 또는 3 내지 40 중량부일 수 있다.
일 구체예에서, 상기 단계 1은 연속상에 분산상을 첨가하여 수행할 수 있으며, 교반하에서 수행할 수 있다.
일 구체예에서, 교반은 20 내지 30℃, 또는 상온에서 1 내지 16000 RPM, 5 내지 13000 RPM, 또는 10 내지 10000 RPM에서 수행될 수 있다.
본 발명에서 단계 2는 연속상과 분산상 간의 비중차를 보정하는 단계이다. 상기 단계를 통해 비중을 연속상과 유사하게 보정하여 부유 또는 침전되는 문제를 해결할 수 있다.
유기 UV 필터를 포함하는 마이크로 캡슐은 수상(즉, 연속상) 용매 내에 유화제에 의해 유화 분산된 형태를 갖는다. 이때 캡슐과 수상 용매의 비중차가 발생하여 캡슐이 가라앉거나 상단부에 뜨는 현상이 발생하게 되며, 결과적으로 경시 안정성에 문제점을 야기시킨다. 또한 캡슐이 뜨거나 가라앉으면 마이크로 캡슐끼리 뭉치기 시작하여 유화액의 겔링이 진행되고 커드(curd)가 형성된다.
본 발명에서는 이러한 현상을 방지하기 위하여, 당 화합물 또는 오일을 에멀젼에 첨가하여 비중차를 보정할 수 있다. 또는 에멀젼의 제조 전 분산상에 상기 당 화합물 또는 오일을 첨가하여 비중차를 조절할 수 있다. 이러한 비중차 보정을 통해 캡슐의 경시 안정성을 확보할 수 있다.
일 구체예에서, 상기 당 화합물의 종류는 특별히 제한되지 않으며, 프럭토스, 글루코스, 갈락토스, 만노헵툴로스 및 세도헵툴로스의 단당류; 수크로스, 락토스, 말토스, 트레할로스 및 셀로비오스의 이당류; 및 셀룰로스, 녹말, 글리코젠, 키틴, 아라비노자일란 및 펙틴의 다당류;로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.
일 구체예에서, 당 화합물의 함량은 특별히 제한되지 않으며, 마이크로 캡슐의 제조에 사용된 성분들의 비중에 따라 달라질 수 있다. 캡슐의 비중이 연속상보다 클 경우 캡슐이 가라앉을 수 있으며, 작을 경우 상단부에 캡슐이 뜨는 크리밍(creaming) 현상이 발생될 수 있다. 이때 캡슐의 비중이 연속상 보다 커서 침전이 일어나게 된다면 당 화합물을 통해 연속상의 비중을 높여 캡슐의 침전을 방지 할 수도 있다. 예를 들어, 상기 당 화합물의 함량은 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.001 내지 30 중량%, 0.5 내지 20 중량% 또는 1 내지 10 중량%일 수 있다.
일 구체예에서, 상기 오일의 종류는 통상적으로 인체용 제품에 사용될 수 있는 오일 성분이면 특별히 제한되지 않는다. 구체적으로, 상기 오일은 식물성 오일, 탄화수소 오일, 에스테르 오일, 실리콘 오일 및 합성 오일 등의 통상적으로 인체용 제품에 사용되는 오일 중 1종 또는 2종 이상을 사용할 수 있다. 상기 오일의 구체예로, 녹차씨 오일, 아르간커넬 오일, 올리브 오일, 해바라기씨 오일, 호호바씨 오일, 동백나무씨 오일, 퀸즈랜드넛 오일, 모나스커스 추출물, 스위트아몬드 오일, 피마자씨 오일, 옥틸도데칸올, 폴리글리세릴-2트라이아이소스테아레이트, 다이아이소스테아릴말레이트, 세틸에틸헥사노에이트, 트리데실트리멜리테이트, 스쿠알란, 트리옥틸도데실시트레이트, 펜타에리스리틸테트라이소스테아레이트, 카프릴릭/카프릭트리글리세라이드, 카프릴릴메티콘, 디페닐디메티콘, 디페닐실록시페닐트리메티콘, 이소스테아릭애씨드, 디카프릴릴카보네이트, C12-15 알킬벤조에이트, 디부틸아디페이트, 이소노닐이소노나노에이트, 이소데실 네오펜타노에이트피토스테릴/이소스테아릴/세틸/스테아릴/베헤닐다이머디리놀리에이트, 시어버터, 에칠헥실메톡시신나메이트, 스테아랄코늄헥토라이트, 아크릴레이트/다이메티콘 코폴리머, 폴리아이소부텐, 하이드로제네이티드 폴리이소부텐, 하이드로제네이티드 캐스터오일다이머디리놀리에이트, 폴리글리세릴-2이소스테아레이트/다이머디리놀리에이트 코폴리머, 비스-베헤닐/이소스테아릴/피토스테릴다이머디리놀레일다이머디리놀리에이트, 하이드로제네이티드 캐스터오일 이소스테아레이트, 마카다미아씨 오일 폴리글리세릴-6에스터스베헤네이트, 메도우폼델타-락톤, 호호바에스터, 디펜타에리스리틸헥사하이드록시스테아레이트/헥사스테아레이트/헥사로지네이트, 다이리놀레익애씨드/부테인다이올 코폴리머, 에틸렌/프로필렌/스타이렌 코폴리머, 부틸렌/에틸렌/스타이렌 코폴리머, 페트롤라툼, 디메티콘 크로스폴리머 및 디메티콘/비닐디메티콘 크로스폴리머로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.  바람직하게는, 상기 오일로 비중이 서로 다른 2종 이상의 오일을 혼합 사용하여 비중차를 조절할 수 있다. 예를 들어, 상기 오일의 함량은 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.001 내지 30 중량%, 0.5 내지 20 중량% 또는 1 내지 10 중량%일 수 있다.
일 구체예에서, 상기 단계 1과 상기 단계 2는 동시에 수행될 수 있다.
본 발명에서 에멀젼은 제조 직후부터 캡슐화가 진행될 수 있으며, 상기 캡슐화는 캡슐 벽의 반응기가 사라질 때까지 반응이 계속 진행될 수 있다. 상기 캡슐화는 일례로, 실리카 전구체가 실리카로 고형화되는 졸-겔 반응으로, 상기 졸-겔 반응은 실리카 전구체의 가수분해 및 고형화 반응을 포함하는 의미로 사용될 수 있다. 구체적으로, 상기 실리카 전구체의 캡슐화는 가수분해 반응에 의해 실라놀(silanol)이 형성되며, 축합 반응에 의해 실라놀이 고형화 될 수 있다.
본 발명에서는 후술할 단계 3의 이전 단계로, 에멀젼을 에이징하는 단계를 추가로 포함할 수 있다. 상기 에이징 과정을 통해, 마이크로 캡슐의 외벽인 쉘이 형성되는데 충분한 조건을 부여하여 외부 압력에 쉽게 파열되지 않도록 마이크로 캡슐의 내구성을 확보할 수 있다.
일 구체예에서, 에이징은 20 내지 30℃, 또는 상온에서 1 내지 10일, 1 내지 5일 또는 2 내지 4일 동안 수행될 수 있다.
본 발명에서 단계 3은 에멀젼에 유기산을 첨가하는 단계이다. 본 발명에서 유기산은 마이크로 캡슐의 안정성을 향상시키기 위하여 사용할 수 있다.
캡슐화 반응에서, 반응 환경이 산성이면 가수분해 보다 축합반응이 지배적으로 일어나며, 염기성이면 가수분해 반응이 지배적으로 일어난다고 알려져 있다.
일례로, 본 발명에서는 적정량의 유기산을 에멀젼에 첨가하여, 축합 반응을 촉진시켜 캡슐 벽에서 실라놀의 고형화 반응을 주도적으로 일으켜 상기 캡슐의 안정성을 높일 수 있다.
일 구체예에서, 유기산의 종류는 특별히 제한되지 않으며, 시트르산, 젖산, 아세트산, 포름산, 옥살산, 수산, 호박산, 탄산, 안식향산, 초산, 아스코르브산, 카르복실산, 설핀산, 설폰산, 푸마르산, 말릭산, 부티르산, 프로피온산 및 스테아르산으로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.
일 구체예에서, 유기산의 함량은 특별히 제한되지 않으며, 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.05 내지 10 중량%, 0.3 내지 8 중량% 또는 0.5 내지 5 중량%일 수 있다. 0.05 중량% 미만일 경우 에멀젼의 겔링이 발생하고, 10 중량% 초과할 경우 에멀젼의 산도가 높아져 실리카 전구체의 가수분해 반응이 주도적으로 일어나 캡슐 벽이 단단하게 형성되지 않아 마이크로 캡슐의 안정성이 떨어질 우려가 있다.
본 발명에서는 전술한 단계를 통해 마이크로 캡슐을 제조할 수 있다. 구체적으로, 캡슐화 성분으로 실리카 전구체를 사용할 경우, 도 1에 나타난 바와 같이, 연속상과 분산상의 계면에서 실리카 전구체의 가수분해 및 고형화 반응을 통해 유효성분이 포함된 안정한 마이크로 캡슐이 제조될 수 있다. 구체적으로, 실리카 전구체는 알콕시를 포함하므로 초기에는 코어 물질인 분산상에 섞여 있는 상태이나, 에멀젼 계면에서 가수분해가 일어나면 상기 실리카 전구체는 친수성으로 변화되며 계면에서 적층되게 된다. 그 과정에서 고형화 반응이 일어나 고체 외벽이 형성된다.
본 발명에서는 유기산을 사용하여 마이크로 캡슐의 안정성을 향상시킬 수 있다. 이를 통해, 캡슐 표면의 표면처리 및/또는 동결건조의 추가 공정 없이도 제조된 캡슐 유화액 그 자체로 고온 및 경시 안정성을 확보할 수 있다.
또한, 본 발명은 전술한 마이크로 캡슐의 제조 방법에 의해 제조된 마이크로 캡슐에 관한 것이다.
일 구체예에서, 마이크로 캡슐은 직경이 0.01 내지 500 ㎛, 0.1 내지 100 ㎛, 또는 0.5 내지 5 ㎛일 수 있다. 직경이 0.01 ㎛ 미만일 경우 자외선을 차단하며 피부를 보호하는 기능이 떨어질 우려가 있으며, 500 ㎛를 초과할 경우 캡슐의 합일로 안정성이 떨어지는 문제가 발생할 우려가 있다.
일 구체예에서, 본 발명에 따른 마이크로 캡슐은 50℃의 고온에도 침전이나 겔링 현상 없이 2주 이상 분산된 상태를 유지할 수 있다.
또한, 본 발명은 전술한 마이크로 캡슐을 포함하는 자외선 차단제에 관한 것이다. 상기 자외선 차단제의 제형은 크림, 에멀젼, 밤, 팩트 등이 될 수 있으며, 자외선 차단제 제형에 사용될 수 있는 제형이면 제한되지 않는다.
일 구체예에서 자외선 차단제에서 마이크로 캡슐의 함량은 전체 중량(100 중량부) 대비 0.5 내지 20 중량부 또는 1 내지 15 중량부일 수 있다.
또한, 본 발명은 유화제를 포함하는 연속상과 유기 UV 필터 및 캡슐화 성분을 포함하는 분산상을 혼합하여 에멀젼을 제조하는 단계를 포함하는 마이크로 캡슐의 제조 방법으로서,
상기 연속상과 분산상 간의 비중차를 보정하는 단계; 및
상기 에멀젼에 유기산을 첨가하는 단계;를 포함하는 것을 특징으로 하는 마이크로 캡슐의 제조 방법에 관한 것이다.
이하, 본 발명을 실시예를 통해 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 본 발명에서 사용된 원료들은 통상적으로 구매할 수 있는 원료 업체들로부터 구매하였다.
실시예
실시예 1 및 비교예 1 내지 3. 유기 UV 필터를 내포한 마이크로 캡슐 제조
하기 표 1에 기재된 성분 및 함량(중량%)으로 실시예 및 비교예의 마이크로 캡슐을 제조하였다.
성분명 실시예 1 실시예2 비교예1 비교예2 비교예3
Ethylhexyl Salicylate 40 40 40 40 40
Ethylhexyl Methoxycinnamate 10 3 10 10  
Dibutyl Adipate   7     10
Tetraethyl Orthosilicate 10 10 10 10 10
Dipalmitoylethyl Dimonium Chloride 2 2 2 2 2
Distilled Water 잔량 잔량 잔량 잔량 잔량
Sucrose 3 - 3 - -
Citric acid 0.5 0.5 - 0.5 0.5
실시예 1 및 비교예 1에 따른 마이크로 캡슐의 제조 방법은 다음과 같다.
① 상온에서 증류수에 유화제를 녹인 연속상을 제조하였다. 동시에 상온에서 실리카 전구체와 유기 UV 필터를 혼합하여 분산상을 제조하였다.
② 연속상에 분산상을 천천히 투입하고, 교반 속도를 8,000 rpm으로 10 분 동안 교반하여 유화 에멀젼을 형성하였다.
③ 그 후, 에멀젼에 수크로스를 천천히 투입하여 30 분간 교반하였다.
④ 유화 에멀젼을 상온에서 3일 동안 에이징 과정을 수행하였다.
⑤ 그 후, 시트르산(citric acid)을 투입하였다.
실시예 2, 비교예 2 및 3에 따른 마이크로 캡슐의 제조 방법은 다음과 같다.
① 상온에서 증류수에 유화제를 녹인 연속상을 제조하였다. 동시에 상온에서 실리카 전구체, 오일 및 유기 UV 필터를 혼합하여 분산상을 제조하였다.
② 연속상에 분산상을 천천히 투입하고, 교반 속도를 8,000 rpm으로 10 분 동안 교반하여 유화 에멀젼을 형성하였다.
③ 유화 에멀젼을 상온에서 3일 동안 에이징 과정을 수행하였다.
④ 그 후, 시트르산(citric acid)을 투입하였다.
비교예 4. 유기 UV 필터를 내포한 마이크로 캡슐 제조
유화 에멀젼을 상온에서 3일 동안 에이징하는 과정(즉, 실시예 1의 제조 방법에서 ④)을 수행하지 않은 것을 제외하고는, 실시예 1의 방법으로 마이크로 캡슐을 제조하였다.
실험예 1. 고온 및 경시 안정성 비교
상기 실시예 및 비교예에서 제조한 마이크로 캡슐의 경시 안정성을 비교하였다.
상기 마이크로 캡슐을 50℃, 습도 50%에서 보관하면서 에멀젼 내 겔링이나 침전이 일어나는지, 즉 수상 내 마이크로 캡슐이 분산된 상태가 유지되는지를 관찰하였다.
그 결과를 표 2에 나타내었다.
구분 실시예 1 실시예 2 비교예 1 비교예2 비교예3
50℃ 안정성 2주 안정 2주 안정 4일차 침전 1일차 침전 1일차 부유
제조 직후에는 실시예 1 내지 2 및 비교예 1 내지 3의 마이크로 캡슐은 모두 유유빛 내지 미황색의 점도가 없는 유화액 상태를 나타내었다. 1 일 경과 시, 비교예 2 에서 에멀젼 하단부에 캡슐이 침전되어 덩어리가 형성되었고, 비교예 1에서는 4 일차에 침전 및 겔링이 형성되었다. 비교예 3는 캡슐의 밀도가 낮아 1일차에 부유되었다. 반면, 실시예 1 내지 2의 마이크로 캡슐은 고온에서 2 주까지 침전 및 겔링이 나타나지 않았다.
상기 결과를 종합하면, 유화제 및 당 화합물, 유기산의 적정 함량 처방으로 에멀젼의 제형 안정성을 확보할 수 있음을 확인할 수 있다.
실험예 2: 마이크로 캡슐의 형태 관찰
상기 실시예 및 비교예에서 제조한 마이크로 캡슐이 제대로 형성되었는지 확인하였다. 구체적으로, 마이크로 캡슐의 제조 후 광학현미경을 이용하여 마이크로 캡슐의 형태를 관찰하였다.
관찰 결과를 도 2에 나타내었다. 상기 도 2에서 (a)는 실시예 1, (b)는 비교예 4에서 제조된 마이크로 캡슐의 형태를 나타낸다.
도 2에 나타난 바와 같이, 실시예 1의 마이크로 캡슐은 1 um 내외의 균일한 크기의 입자가 형성(도 2(a))된 반면, 에이징 과정를 거치지 않은 비교예 4의 마이크로 캡슐의 경우, 실리가 전구체가 실리카로 고형화되어 쉘을 형성할 시간이 충분하지 않으므로, 캡슐의 형태를 유지하지 못하고 쉽게 파열되는 것을 확인할 수 있다(도 2(b)).
실험예 3: 마이크로 캡슐의 평균입도 측정
실시예 및 비교예에서 제조한 마이크로 캡슐의 평균입도를 Mastersizer 3000(Malvern)을 이용해 측정하였다.
마이크로 캡슐의 제조 후 평균 입도를 1차 측정했으며, 제조 4 주차에 평균 입도를 2차 측정하여, 입도 변화, 즉 캡슐의 경시 안정성을 확인하였다.
상기 측정 결과를 하기 표 3에 나타내었다.
시료 평균입도(1차, μm) 평균입도(2차, μm)
실시예 1.07 1.56
비교예2 2.33 5.81
표 3에 나타난 바와 같이, 본 발명에 의한 캡슐의 적정 입도는 0.5 내지 5 μm의 직경이며, 비교예2에서 제조된 마이크로 캡슐은 경시 안정성이 저하되는 것을 확인할 수 있다.
실험예 4: 자외선 차단 지수 (SPF 및 PA) 평가
실시예 1에서 제조된 마이크로 캡슐의 자외선 차단 능력을 확인하였다.
하기 표 4의 성분 및 함량으로 제조예 1 내지 제조예 3의 수중유형 선크림을 제조하고 자외선 차단 능력을 평가하였다.
실시예 1과 비교예 4의 마이크로 캡슐에서, 유기 UV 필터의 함량은 50 중량%로 이를 제조예 1 내지 3에 각각 10 중량% 첨가하면, 상기 제조예에 포함된 UV 필터는 모두 5 중량%로 동일하다.
1. O/W 선크림 제조
중량 % 제조예1 제조예2 제조예3
1 실시예1 - 10 -
비교예3 - - 10
2 Ethylhexyl salicylate 5 - -
3 Isononyl isononanoate 30 30 30
4 Tween 20 2 2 2
5 에탄올 10 10 10
6 Carbopol 980 5 5 5
7 글리세린 3 3 3
8 증류수 잔량 잔량 잔량
제조 방법은 다음과 같다.
1) 성분 2(유기 UV 필터, Ethylhexyl Salicylate)와 3을 75℃에서 완전 용해 분산시켜 유상을 제조하였다.
2) 성분 4 내지 8을 Disper로 균일하게 분산시킨 후 75℃로 가온하여 수상을 제조하였다.
3) 수상에 유상을 천천히 투입하고, 호모믹서로 8,000 rpm으로 10 분 동안 유화하였다.
4) 50℃까지 냉각시킨 뒤, 성분 1을 투입하여 5,000 rpm에서 1 분간 혼합하였다.
5) 30℃까지 냉각 후 탈포하였다.
2. 자외선 차단 능력 평가방법
In vitro SPF 수치는 다음과 같은 방법으로 측정하였다. PMMA plate(HelioScreen Labs, France)에 시료를 1.3 mg/cm2의 두께로 도포하고 15 분 동안 건조시킨 후 SPF-290S(Optometrics Corporation, U.S.A.)를 통해 측정하였다. PMMA plate의 6개의 다른 위치에서 측정된 in vitro SPF과 PA 수치의 평균값을 사용하였다.
측정 결과를 하기 표 5에 나타내었다.
항목 제조예 1 제조예 2 제조예 3
SPF 7.86 14.89 7.70
PA 6.71 12.28 6.93
상기 표 5에 나타난 바와 같이, 실시예 1의 마이크로 캡슐을 포함하는 제조예 2의 경우 마이크로 캡슐을 포함하지 않는 제조예 1의 자외선 차단지수와 비교하여, SPF는 약 89%가 상승하였고 PA는 약 83%가 증가한 것을 확인할 수 있다. 이는 유기 UV 필터를 캡슐화하여 제형에 적용시 기존 유화 제형보다 자외선 차단능력이 크게 증가하는 것을 의미한다.
또한 에이징을 거치지 않은 비교예 3에 따른 캡슐을 처방한 제조예 3은 제조예 1 과 비교하여 자외선 차단능력에 큰 차이가 없는 것을 확인할 수 있다. 이는, 캡슐이 제대로 형성되지 않아 캡슐로서 효능이 없음을 의미한다.
3. 유기 UV 필터의 피부 투과도 평가
마이크로 캡슐의 사용 여부에 따른 유기 UV 필터의 피부 투과도를 측정하였다.
돼지 피부에 제조예 1 및 2에 따른 선크림을 도포하여 피부층별 유기 UV 필터의 침투 함량을 비교하였다.
먼저, Franz cell에 reservoir 용액으로 PBS/EtOH (8/2 v/v)를 담은 다음, 각질을 윗부분으로 하여 돼지 피부 2.5 (cm) x 2.5 (cm)를 올리고, cell의 윗부분을 올린 후 집게로 체결 고정하였다. 그 후 피스톤 피펫으로 선크림 40 μm를 각질 위에 고르게 도포하였다. 이후 바스켓에 담고 37℃ 항온 항습기에서 overnight으로 incubation하였다. 다음날 돼지 피부를 벗겨내고 각 조직(각질, 표피 및 진피) 별로 나누어 담은 뒤, ethanol을 일정량 넣고 조직파쇄기로 파쇄하였다. 이후 액상을 뽑고 UV spectrometer로 absorbance를 측정하여 각 조직 내에 투과된 유기 UV 필터의 함량을 분석하였다.
그 결과를 도 3에 나타내었다.
도 3에 나타난 바와 같이, 제조예 2의 경우 모든 조직 층에서 투과된 유기 UV 필터의 양이 적었다. 제조예 1의 경우 상당량의 유기 UV 필터가 투과된 것을 확인할 수 있다. 이를 통해, 본 발명에 따른 마이크로 캡슐을 사용함으로써 피부의 안전성을 높일 수 있음을 확인할 수 있다.
본 발명에서는 유기 UV 필터를 캡슐화시킨 마이크로 캡슐을 제조하여, 자외선 차단 효율을 높이고 캡슐의 경시 안정성을 확보할 수 있다.

Claims (14)

  1. 유화제를 포함하는 연속상과 유기 UV 필터 및 캡슐화 성분을 포함하는 분산상을 혼합하여 에멀젼을 제조하는 단계;
    상기 연속상과 분산상 간의 비중차를 보정하는 단계; 및
    상기 에멀젼에 유기산을 첨가하는 단계;를 포함하는 마이크로 캡슐의 제조 방법.
  2. 제 1 항에 있어서,
    유화제는 3차 아민(tertiary amine)계 양이온성 계면활성제를 포함하는 것인 마이크로 캡슐의 제조 방법.
  3. 제 1 항에 있어서,
    유화제는 DTAB(도데실트리메틸 암모늄 브로마이드, Dodecyltrimethyl ammonium bromide), TTAB(테트라데실트리메틸 암모늄 브로마이드, Tetradecyltrimethyl ammonium bromide), CTAB(세틸트리메틸 암모늄 브로마이드, Cetyltrimethyl ammonium bromide), CTMS(세틸 트리메틸암모늄 메소설페이트, Cetyl trimethylammonium methosulfate), STMS(세테아릴 트리메틸암모늄 메소설페이트, Stearyl trimethylammonium methosulfate), BTMS(베헨트리모늄 메소설페이트, Behentrimonium Methosulfate) 및 다이팔미토일에틸 다이모늄 클로라이드(Dipalmitoylethyl Dimonium Chloride)로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 것인 마이크로 캡슐의 제조 방법.
  4. 제 1 항에 있어서,
    유화제의 함량은 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.05 내지 5 중량%인 마이크로 캡슐의 제조 방법.
  5. 제 1 항에 있어서,
    캡슐화 성분은 실리카 전구체, 산화 티타늄 전구체 및 산화 지르코늄 전구체로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 것인 마이크로 캡슐의 제조 방법.
  6. 제 1 항에 있어서,
    연속상과 분산상 간의 비중차를 보정하는 단계는 당 화합물 또는 오일을 첨가하여 비중차를 보정하는 것인 마이크로 캡슐의 제조 방법.
  7. 제 6 항에 있어서,
    당 화합물은 프럭토스, 글루코스, 갈락토스, 만노헵툴로스 및 세도헵툴로스의 단당류; 수크로스, 락토스, 말토스, 트레할로스 및 셀로비오스의 이당류; 및 셀룰로스, 녹말, 글리코젠, 키틴, 아라비노자일란 및 펙틴의 다당류;로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 것인 마이크로 캡슐의 제조 방법.
  8. 제 6 항에 있어서,
    당 화합물의 함량은 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.001 내지 30 중량%인 마이크로 캡슐의 제조 방법.
  9. 제 1 항에 있어서,
    유기산을 첨가하기 전에, 에멀젼을 에이징하는 단계를 추가로 포함하는 것인 마이크로 캡슐의 제조 방법.
  10. 제 9 항에 있어서,
    에이징은 20 내지 30℃에서 1 내지 10일 동안 수행되는 것인 마이크로 캡슐의 제조 방법.
  11. 제 1 항에 있어서,
    유기산은 시트르산, 젖산, 아세트산, 포름산, 옥살산, 수산, 호박산, 탄산, 안식향산, 초산, 아스코르브산, 카르복실산, 설핀산, 설폰산, 푸마르산, 말릭산, 부티르산, 프로피온산 및 스테아르산으로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 것인 마이크로 캡슐의 제조 방법.
  12. 제 1 항에 있어서,
    유기산의 함량은 마이크로 캡슐의 제조에 사용된 성분들의 전체 중량 대비 0.05 내지 10 중량%인 마이크로 캡슐의 제조 방법.
  13. 제 1 항에 따른 제조 방법에 의해 제조되며,
    직경은 0.01 내지 500 ㎛인 마이크로 캡슐.
  14. 유화제를 포함하는 연속상과 유기 UV 필터 및 캡슐화 성분을 포함하는 분산상을 혼합하여 에멀젼을 제조하는 단계를 포함하는 마이크로 캡슐의 제조 방법으로서,
    상기 연속상과 분산상 간의 비중차를 보정하는 단계; 및
    상기 에멀젼에 유기산을 첨가하는 단계;를 포함하는 것을 특징으로 하는 마이크로 캡슐의 제조 방법.
PCT/KR2023/007949 2022-06-10 2023-06-09 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐 WO2023239201A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220070801A KR102470009B1 (ko) 2022-06-10 2022-06-10 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐
KR10-2022-0070801 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023239201A1 true WO2023239201A1 (ko) 2023-12-14

Family

ID=84236790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007949 WO2023239201A1 (ko) 2022-06-10 2023-06-09 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐

Country Status (2)

Country Link
KR (2) KR102470009B1 (ko)
WO (1) WO2023239201A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470009B1 (ko) * 2022-06-10 2022-11-23 주식회사 엘지생활건강 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070279A (ko) * 1999-11-17 2002-09-05 타그라 바이오테크놀러지 엘티디. 마이크로 캡슐화 방법
KR20030007446A (ko) * 2000-03-04 2003-01-23 코그니스 이베리아 에스.엘. 마이크로캡슐 ―ⅵ
KR20090031868A (ko) * 2006-06-27 2009-03-30 다우 코닝 코포레이션 테트라알콕시실란의 에멀젼 중합에 의해 제조된 마이크로캡슐
JP2017119650A (ja) * 2015-12-28 2017-07-06 森下仁丹株式会社 粉末状成分含有シームレスカプセルおよびその製造方法
KR102382354B1 (ko) * 2013-02-28 2022-04-04 타그라 바이오테크놀로지스 리미티드 자외선차단제를 포함하는 마이크로캡슐
KR102470009B1 (ko) * 2022-06-10 2022-11-23 주식회사 엘지생활건강 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1023563C2 (nl) 2003-05-28 2004-11-30 Dsm Ip Assets Bv Thermohardend materiaal; werkwijze en installatie voor het vervormen van een al dan niet uitgehard thermohardend materiaal.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070279A (ko) * 1999-11-17 2002-09-05 타그라 바이오테크놀러지 엘티디. 마이크로 캡슐화 방법
KR20030007446A (ko) * 2000-03-04 2003-01-23 코그니스 이베리아 에스.엘. 마이크로캡슐 ―ⅵ
KR20090031868A (ko) * 2006-06-27 2009-03-30 다우 코닝 코포레이션 테트라알콕시실란의 에멀젼 중합에 의해 제조된 마이크로캡슐
KR102382354B1 (ko) * 2013-02-28 2022-04-04 타그라 바이오테크놀로지스 리미티드 자외선차단제를 포함하는 마이크로캡슐
JP2017119650A (ja) * 2015-12-28 2017-07-06 森下仁丹株式会社 粉末状成分含有シームレスカプセルおよびその製造方法
KR102470009B1 (ko) * 2022-06-10 2022-11-23 주식회사 엘지생활건강 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐

Also Published As

Publication number Publication date
KR20230170547A (ko) 2023-12-19
KR102470009B1 (ko) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2023239201A1 (ko) 자외선 차단 효율 상승효과를 갖는 유기 자외선 차단제 캡슐
WO2013039350A2 (ko) 세라마이드를 포함하는 피부 외용제 조성물
US9399008B2 (en) Sunscreen compositions
EP2923736B1 (en) Method of making an anhydrous, pigmented composition
WO2020145495A1 (ko) 수용성 추출물이 흡수된 화장용 캡슐을 포함하는 화장료 조성물
EP3127531B1 (en) Oil-in-water type emulsified cosmetic
EP1356805A1 (de) O/W-Emulsion enthaltend eine glycosilierte Organosiliciumverbindung und ein Metalloxid
WO2018124572A1 (ko) 실리콘 수지 조성물, 이의 제조방법 및 이를 포함하는 흉터 치료제
WO2017003129A1 (ko) 라멜라 구조체를 포함하는 메이크업 화장료 조성물
WO2019059580A1 (ko) 고내상 유중수형 화장료 조성물
WO2018088831A1 (ko) 스틱형 화장료 조성물의 제조방법
EP2172185B1 (en) Cosmetic material comprising octyl hydroxy stearate oligomer
WO2017119728A1 (ko) 형상기억 능력을 갖는 화장료 조성물
WO2020141781A1 (ko) 흡수성 및 흡유성이 향상된 화장품용 조성물
KR20210036837A (ko) 세륨옥사이드 플레이크 및 무기 자외선 차단제 입자를 포함하는 자외선 차단제 조성물
KR20210036835A (ko) 표면개질된 세륨옥사이드 입자를 포함하는 자외선 차단제 조성물 및 이의 제조방법
US20190117533A1 (en) Sunscreen composition containing surface-modified cerium oxide particles
RU2111738C1 (ru) Средство для усиления солнцезащитной активности фотозащитных агентов
KR20210015461A (ko) 세륨옥사이드 플레이크 및 이를 포함하는 자외선 차단제 조성물
WO2017039338A1 (ko) 고내상 유중수형 화장료 조성물
WO2023128614A1 (ko) 틴트형 화장료 조성물 및 이의 제조방법
WO2022092579A1 (ko) 유중수형 메이크업 화장료 조성물
WO2022245029A1 (ko) 고함량의 분체를 포함하는 유화 또는 유분산 화장료 조성물
WO2020045983A1 (ko) 유화입자를 형성하는 나노캡슐 및 이를 포함하는 유화 조성물
WO2023182857A1 (ko) 피부 흡수성이 개선된 화장료 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23820136

Country of ref document: EP

Kind code of ref document: A1