WO2023238457A1 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
WO2023238457A1
WO2023238457A1 PCT/JP2023/007481 JP2023007481W WO2023238457A1 WO 2023238457 A1 WO2023238457 A1 WO 2023238457A1 JP 2023007481 W JP2023007481 W JP 2023007481W WO 2023238457 A1 WO2023238457 A1 WO 2023238457A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp house
temperature
led
mounting board
led mounting
Prior art date
Application number
PCT/JP2023/007481
Other languages
English (en)
French (fr)
Inventor
貴洋 安藤
作一郎 足立
祥子 川上
鉄士 川原
拓也 高橋
英嗣 田上
洸幾 横山
寛樹 相原
明広 古川
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023238457A1 publication Critical patent/WO2023238457A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present disclosure relates to an analysis device equipped with an LED light source that generates light that is irradiated onto a sample.
  • samples and reagents are placed in a liquid container.
  • the test items are analyzed based on changes in optical properties such as absorption, fluorescence, and luminescence.
  • absorption analysis using an analyzer light from a light source is irradiated onto a sample or a reaction solution containing a mixture of a sample and a reagent, and the amount of transmitted light at a single or multiple measurement wavelengths that has passed through the sample or reaction solution is measured by a light receiving element.
  • a method is used in which the absorbance is calculated by calculating the absorbance, and the amount of the component is determined from the relationship between the absorbance and the concentration.
  • the light source for absorption analysis has a wide emission spectrum in order to handle a large number of inspection items, and that it can stably obtain a certain amount of light or more at the measurement wavelength in order to perform highly accurate absorbance measurements.
  • xenon lamps, halogen lamps, and the like have conventionally been used. These light sources can provide a certain amount of light or more, but when used in continuous lighting, it takes a relatively long time, about 30 minutes, until the amount of light stabilizes.
  • energy consumption is also large and the lifespan is limited. For example, in the case of a halogen lamp, it is necessary to replace it after about 1000 hours, which increases the frequency of maintenance of the analyzer.
  • LEDs light emitting diodes
  • the reagents and wavelengths of light used vary depending on the component to be measured, and the wavelength range is wide, for example from 340 nm to 800 nm. Therefore, it is difficult to cover the entire wavelength band with one LED light. Therefore, for example, it is possible to use a plurality of LED elements or to convert the excitation light of a blue LED element to use light emitted from a phosphor that generates light in a long wavelength band.
  • Patent Document 1 discloses a technique of providing a phosphor on the light beam of an LED chip.
  • the phosphor disclosed in Patent Document 1 contains at least alumina and at least one of Fe, Cr, Bi, Tl, Ce, Tb, Eu, and Mn, and contains 6.1 to 15% of sodium in the total raw materials. It was manufactured by firing raw materials containing 9% by weight.
  • Patent Document 2 uses a temperature control block in which an LED photometry section and a reaction cell (a member that stores a sample or a reaction solution) are in contact with each other.
  • the device can be made more compact, and the LED light emitting element is fixed to a member with a large heat capacity for preheating and temperature control. Thereby, by maintaining the LED element at a temperature within a certain range without being affected by outside temperature and self-heating, it is possible to obtain light amount stability above a certain level.
  • Patent Document 3 in order to cool and maintain a constant temperature of the lower surface of the LED package to 25 ⁇ 0.1°C, a structure is used in which the lower surface of the LED package is connected to a Peltier element or a metal block with good thermal conductivity that has a flow path inside. It is shown.
  • an object of the present disclosure is to provide an analysis device equipped with an LED light source that can suppress changes in the emission spectrum and light amount and prevent dew condensation.
  • the analyzer of the present disclosure includes an LED light source that generates light that is irradiated onto a sample, an LED mounting board on which the LED light source and a temperature sensor are mounted, and a lamp house surrounding the LED mounting board and accommodating the LED mounting board. a Peltier element that absorbs heat from the LED mounting board or emits heat to the LED mounting board; and a control unit that controls the output of the Peltier element so that the temperature measured by the temperature sensor becomes higher than a threshold temperature. Be prepared.
  • FIG. 1 is a schematic diagram showing an example of the overall configuration of an analyzer of Example 1.
  • FIG. 2 is a hardware block diagram of a control circuit according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration example of an absorbance measurement section that performs absorption analysis of the analyzer of Example 1.
  • 1 is an example of a detailed configuration of a light source section of Example 1.
  • 3 is a flowchart illustrating an example of a method for controlling the temperature of the LED mounting board according to the first embodiment.
  • 3 is an example of a detailed configuration of a light source section in Example 2.
  • 12 is an example of a detailed configuration of a light source section in Example 3. It is an example of the detailed structure of the light source part of Example 4.
  • 12 is a flowchart illustrating an example of a temperature control method for an LED mounting board according to a fifth embodiment.
  • FIG. 1A is a schematic diagram showing an example of the overall configuration of an analyzer using absorption analysis according to Example 1.
  • the analyzer 100 includes three types of disks: a sample disk 103, a reagent disk 106, and a reaction disk 109, and a dispensing mechanism that moves samples (also referred to as samples or specimens) and reagents between these disks. , a control circuit (control unit) 201 that controls these, a light amount measurement circuit 202 that measures the absorbance of the reaction solution, a data processing unit 203 that processes data measured by the light amount measurement circuit 202, and a data processing unit 203.
  • the input section 204 and the output section 205 are provided as an interface with the computer.
  • the dispensing mechanism includes a sample dispensing mechanism 110 and a reagent dispensing mechanism 111.
  • the data processing unit 203 includes an information recording unit 2031 and an analysis unit 2032.
  • the information recording unit 2031 stores control data, measurement data, data used for data analysis, analysis result data, and the like.
  • the data processing unit 203 may be realized using a computer.
  • the computer includes at least a processor such as a CPU (Central Processing Unit) and an information recording section 2031.
  • the processing of the analysis unit 2032 may be realized by storing program codes corresponding to those data processes in the information recording unit 2031 and having the processor execute each program code.
  • the input unit 204 and output unit 205 input and output data to and from the information recording unit 2031.
  • the input unit 204 is an information input device such as a keyboard, touch panel, or numeric keypad.
  • the output unit 205 is a device for the user of the analysis device to check the analysis results, and is, for example, a display.
  • a plurality of sample cups 102 which are storage containers for the sample 101, are arranged on the circumference of the sample disk 103.
  • Sample 101 is, for example, blood.
  • a plurality of reagent bottles 105 which are storage containers for the reagent 104, are arranged on the circumference of the reagent disk 106.
  • a plurality of reaction cells 108 are arranged around the circumference of the reaction disk 109, which are containers for storing a reaction solution 107 in which the sample 101 and the reagent 104 are mixed.
  • the sample dispensing mechanism 110 is a mechanism used to move a certain amount of the sample 101 from the sample cup 102 to the reaction cell 108.
  • the sample dispensing mechanism 110 includes, for example, a nozzle that discharges or suctions a solution, a robot that positions and transports the nozzle to a predetermined position, a pump that discharges or suctions the solution from the nozzle, and a channel that connects the nozzle and the pump. .
  • the reagent dispensing mechanism 111 is a mechanism used to move a certain amount of the reagent 104 from the reagent bottle 105 to the reaction cell 108.
  • the reagent dispensing mechanism 111 also includes, for example, a nozzle that discharges or suctions a solution, a robot that positions and transports the nozzle to a predetermined position, a pump that discharges or suctions the solution from the nozzle, and a flow path that connects the nozzle and the pump. .
  • the solution stirring unit 112 is a mechanical unit that stirs and mixes the sample 101 and the reagent 104 within the reaction cell 108.
  • the reaction cell cleaning unit 114 is a mechanism unit that discharges the reaction solution 107 from the reaction cell 108 after the analysis process and then cleans the reaction cell 108. After the cleaning is completed, the next sample 101 is dispensed from the sample dispensing mechanism 110 into the reaction cell 108 again, and a new reagent 104 is dispensed from the reagent dispensing mechanism 111 to be used for another reaction process. .
  • the reaction cell 108 is immersed in constant temperature circulating water 115 in a constant temperature water bath whose temperature and flow rate are controlled. Therefore, even while the reaction cell 108 and the reaction solution 107 therein are being moved by the reaction disk 109, the temperature thereof is maintained at a constant temperature by the control circuit 201.
  • An absorbance measurement section (absorption photometer) 113 that performs absorption analysis in the analyzer is arranged on a part of the circumference of the reaction disk 109.
  • FIG. 1B is a hardware block diagram of a control circuit according to the first embodiment.
  • the control circuit 201 includes a processor 2011, a main memory section 2012, an auxiliary memory section 2013, an input/output interface 2014, and a bus 2015 that connects each of the above-mentioned modules.
  • the processor 2011 is a central processing unit that controls the operation of each part of the control circuit 201.
  • the processor 2011 is, for example, a CPU, a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or the like.
  • the processor 2011 expands the program stored in the auxiliary storage unit 2013 into the work area of the main storage unit 2012 in an executable manner.
  • the main storage unit 2012 stores programs executed by the processor 2011, data processed by the processor, and the like.
  • the main storage unit 2012 is a flash memory, RAM (Random Access Memory), or the like.
  • Auxiliary storage unit 2013 stores various programs and various data.
  • the auxiliary storage unit 2013 stores, for example, an OS (Operating System), various programs such as a temperature control program 2013a, and various data such as a threshold temperature 2013b.
  • the auxiliary storage unit 2013 is a silicon disk including a nonvolatile semiconductor memory (flash memory, EPROM (Erasable Programmable ROM)), a solid state drive device, a hard disk drive (HDD) device, or the like.
  • FIG. 2 is a diagram illustrating a configuration example of an absorbance measurement section that performs absorption analysis in the analyzer of Example 1. Irradiation light generated from the light source section 301 for absorption analysis is emitted along the optical axis 401, condensed by a condenser lens 403, and irradiated onto the reaction cell 108. At this time, a light source side slit 402 may be arranged to limit the width of the light emitted from the light source section 301 in order to make the distribution of light amount within the irradiation surface uniform.
  • the light transmitted through the reaction solution 107 in the reaction cell 108 is separated by a diffraction grating 3021 in the spectrometer 302, and is received by a detector array 3022 including a large number of light receivers.
  • a slit 404 on the spectrometer side may be provided to prevent such stray light from entering the spectrometer 302.
  • Examples of measurement wavelengths received by the detector array 3022 include 340 nm, 376 nm, 405 nm, 415 nm, 450 nm, 480 nm, 505 nm, 546 nm, 570 nm, 600 nm, 660 nm, 700 nm, 750 nm, and 800 nm.
  • Light reception signals from these light receivers are transmitted to the information recording section 2031 of the data processing section 203 through the light amount measurement circuit 202.
  • Calculation of the amount of components such as protein, sugar, and lipid contained in the sample 101 is performed by the following procedure.
  • the control circuit 201 instructs the reaction cell cleaning section 114 to clean the reaction cell 108.
  • the control circuit 201 causes the sample dispensing mechanism 110 to dispense a fixed amount of the sample 101 in the sample cup 102 into the reaction cell 108 .
  • the control circuit 201 causes the reagent dispensing mechanism 111 to dispense a fixed amount of the reagent 104 in the reagent bottle 105 into the reaction cell 108 .
  • control circuit 201 rotates the sample disk 103, reagent disk 106, and reaction disk 109 using the corresponding drive units. At this time, the sample cup 102, the reagent bottle 105, and the reaction cell 108 are positioned at predetermined dispensing positions according to the drive timings of their respective dispensing mechanisms.
  • the control circuit 201 controls the solution stirring section 112 to stir the sample 101 and reagent 104 dispensed into the reaction cell 108 to generate a reaction solution 107.
  • the reaction disk 109 rotates, the reaction cell 108 containing the reaction solution 107 passes through the measurement position where the absorbance measurement section 113 is arranged. Every time the reaction cell 108 passes a measurement position, the amount of transmitted light from the reaction solution 107 contained in the reaction cell 108 is measured via the absorbance measuring section 113.
  • the measurement data is sequentially output to the information recording section 2031 and accumulated as reaction process data.
  • reaction process data acquired at regular time intervals is stored in the information recording unit 2031.
  • FIG. 3 is an example of a detailed configuration of the light source section of the first embodiment.
  • the light output side will be referred to as the "output side", and the opposite side will be referred to as the "back side”.
  • the light emitted from the excitation light LED 501 excites the phosphor 502, and the phosphor 502 emits light.
  • the excitation light LED 501 and the phosphor 502 are mounted on an LED package 503, and the LED package 503 is mounted on an LED mounting board 504.
  • a temperature sensor 505 is mounted on the LED mounting board 504 together with the LED package 503.
  • the LED mounting board 504 is a metal-based board made of aluminum, copper, or the like with good thermal conductivity.
  • the temperature sensor 505 is, for example, a thermistor, thermocouple, resistance temperature detector, semiconductor sensor, or the like.
  • the heat absorption side of the Peltier element 506 is in contact with the back surface of the LED mounting board 504 . Further, the heat radiation side of the Peltier element 506 contacts the sub-base 507.
  • the sub-base (holding member) 507 is removably attached to the lamp house 508 and holds the LED mounting board 504 and the like.
  • the Peltier element 506 absorbs heat from the LED mounting board 504 or emits heat to the LED mounting board 504.
  • Sub-base 507 contacts the inner wall of lamp house 508. Therefore, the temperatures of the sub-base 507 and the lamp house 508 are the same.
  • the sub-base 507 is preferably made of metal from the viewpoint of thermal conductivity, and candidate materials include aluminum, copper, stainless steel, and the like.
  • a through hole 509 is provided on the emission side of the lamp house 508 through which the light emitted from the phosphor 502 passes.
  • an optical system such as a condenser lens 403, a light cut filter, a light source side slit 402, a spectrometer side slit 404, etc. may be installed.
  • the optical system provided in the through hole 509 improves the airtightness of the air inside the lamp house 508, and furthermore, it becomes possible to adjust the characteristics of the emitted light.
  • a protrusion 510 that protrudes outward is provided on the outer wall surface of the lamp house 508, and a notch 513 is provided at a location corresponding to the protrusion 510 of the flange 512 of the sub-base 507. It will be done.
  • the projection 510 comes into contact with the notch 513, the position of the sub-base 507 with respect to the lamp house 508 is determined.
  • the lamp house 508 is made of a material with good thermal conductivity such as a metal block, and a flow path 511 for constant temperature circulating water 115 is provided inside the lamp house 508 .
  • This flow path 511 is a constant temperature mechanism for keeping the temperature of the lamp house 508 constant.
  • the constant temperature circulating water 115 is constant temperature circulating water that circulates in the constant temperature water bath of the reaction disk 109 shown in FIG. 1A, and is adjusted to, for example, 37 ⁇ 0.1°C.
  • the flow path 511 is made of stainless steel, for example, and the metal block of the lamp house 508 is made of copper, for example.
  • the constituent members of the flow path 511 and the lamp house 508 are not limited to those described above, and may be made of other metals, ceramics, resins, etc. as long as corrosion resistance and thermal conductivity can be ensured.
  • the temperature of the LED mounting board 504 is preferably higher than the temperature of the lamp house 508 (here, the constant temperature circulating water is close to 37°C), for example.
  • the temperature is 40°C or higher.
  • the temperature in order not to exceed the maximum allowable value of the junction temperature of the excitation light LED 501, it is desirable that the temperature be 60° C. or less, for example. If the airtightness within the lamp house 508 is increased, the possibility of dew condensation will be reduced even if the temperature of the LED package 503 is 40° C. or lower.
  • the temperature of the LED mounting board 504 should be set to the temperature of the lamp house 508. It is desirable to keep it higher than that.
  • automatic analyzers that measure the amount of components contained in samples such as blood and urine often have a large amount of constant-temperature circulating water in a constant-temperature water tank with controlled temperature and flow rate, and high humidity. Therefore, keeping the temperature of the LED mounting board 504 higher than the temperature of the lamp house 508 is effective for preventing dew condensation.
  • the reaction disk rotates, surrounding air may circulate, resulting in high temperature and humidity inside the analyzer.
  • FIG. 4 is a flowchart illustrating an example of the temperature control method for the LED mounting board according to the first embodiment.
  • the amount of light emitted from the LED package 503 is always constant.
  • the output of the Peltier element 506 is controlled based on the temperature of the LED mounting board 504 measured by the temperature sensor 505.
  • Each process from step S403 to step S407 in FIG. 4 is executed by the processor 2011 of the control circuit 201 executing the temperature control program 2013a.
  • the user turns on the power of the device (step S401).
  • the control circuit 201 and the like are energized, and the control circuit 201 and the like are activated.
  • the user turns on the power of the light source unit 301 (step S402). This causes the excitation light LED 501 to emit light.
  • the power of the light source unit 301 may be turned on in conjunction with turning on the power of the device.
  • the activated control circuit 201 acquires temperature data measured by the temperature sensor 505 (step S403). Then, the control circuit 201 controls the output of the Peltier element 506 based on the temperature data acquired from the temperature sensor 505 (step S404). Specifically, the control circuit 201 controls the output of the Peltier element 506 so that the temperature measured by the temperature sensor 505 is higher than the threshold temperature Th.
  • This threshold temperature Th is, for example, a threshold temperature 2013b stored in the auxiliary storage unit 2013.
  • the temperature data used by the control circuit 201 may be obtained not only from the temperature sensor 505 installed in the light source section 301 but also from the temperature measured by another temperature sensor of the device environment temperature.
  • the control circuit 201 controls the operation of the absorbance measuring section 113 and performs absorbance measurement (step S405).
  • the light amount measurement circuit 202 stores the light amount data obtained by this absorbance measurement in the information recording section 2031.
  • the control circuit 201 acquires the light amount data from the information recording unit 2031, and determines whether the light amount fluctuation is within a prescribed range required for absorption analysis (step S406). As a result of the determination, if the light amount data does not fall within the prescribed range of light amount fluctuation (step S406: No), the control circuit 201 returns to the process of step S404, and based on the temperature data acquired from the temperature sensor 505, Controls the output of the Peltier element 506.
  • step S406 if the light amount data falls within the prescribed range of light amount fluctuations (step S406: Yes), absorption analysis is started (step S407).
  • a blue LED with a center wavelength of 385 nm is used as the excitation light LED 501, and a white LED (driven at a current of 400 mA) using a phosphor 502 excited by the excitation light is used to form an LED package in the same manner as the example of the configuration shown in FIG. 503 was mounted on an LED mounting board 504, and a thermistor was used as the temperature sensor 505 to control the output of the Peltier element 506.
  • the threshold temperature Th of the thermistor when the Peltier element 506 was operated was 50.0°C.
  • the LED mounting board 504 is an aluminum board on which pattern wiring is formed via an insulating film (resist).
  • the temperature fluctuation width of the LED mounting board 504 was compared between when the Peltier element 506 was operated and when it was not operated.
  • Table 1 when the Peltier element 506 was operated, the temperature fluctuation range was less than 0.01°C, whereas when the Peltier element 506 was not operated, the temperature fluctuation range was less than 0.05°C. There was a wide range of temperature fluctuations.
  • the operation of the Peltier element 506 was effective in keeping the temperature of the LED mounting board 504 constant. Furthermore, even when the Peltier element 506 is not in operation, the temperature fluctuation range is relatively small at 0.05°C, and since the LED is surrounded by the lamp house 508, fluctuations in the environmental temperature outside the lamp house are avoided. It is thought that it is becoming difficult to receive. Note that since the control temperature of the LED mounting board 504 was set at 50.0° C., no dew condensation was observed on the LED light source.
  • the amount of saturated water vapor in the lamp house 508 increases. As a result, it is possible to prevent dew condensation on the LED package 503.
  • the temperature of the lamp house 508 can be kept constant. As a result, it is possible to suppress the inside of the lamp house 508 from being affected by the environmental temperature.
  • a Peltier element 506 is placed between the LED mounting board 504 and the sub-base 507 that contacts the inner wall of the lamp house 508. Thereby, heat can be easily transferred between the lamp house 508 and the LED mounting board 504, and the temperature of the LED mounting board 504 can be kept constant.
  • the position of the sub-base 507 relative to the lamp house 508 can be determined.
  • the position of the LED package 503 held by the sub-base 507 is determined, the position of the phosphor 502 held by the LED package 503 is determined, and it becomes easy to determine the optical axis of the emitted light.
  • the airtightness of the lamp house 508 is improved.
  • the threshold temperature Th to a temperature between 40 and 60° C. higher than the lamp house 508, condensation on the excitation light LED 501 and the phosphor 502 can be prevented at a temperature lower than the junction temperature of the excitation light LED 501. I can do it.
  • FIG. 5 is an example of a detailed configuration of the light source section of the second embodiment.
  • the first embodiment and the second embodiment differ in the structure of the contact portion between the lamp house 508 and the sub-base 507.
  • a notch 520 is provided on the outer wall surface of the lamp house 508, and a protrusion 521 is provided at a location corresponding to the notch 520 of the flange portion 512 of the sub-base 507. provided.
  • the position of the sub-base 507 with respect to the lamp house 508 is determined by the projection 521 coming into contact with the notch 520 .
  • the structure other than the above-mentioned contact portion is the same as that of the first embodiment, so the explanation thereof will be omitted.
  • FIG. 6 is an example of a detailed configuration of the light source section of the third embodiment.
  • the sub-base 507 has a heat insulating part 530.
  • the heat insulating part 530 is provided between the part that holds the LED mounting board 504 and the part that contacts the lamp house 508.
  • the heat insulating part 530 has a part that contacts the heat absorption side of the LED mounting board 504 and the Peltier element 506 and conducts heat, and a part that contacts the heat radiation side of the lamp house 508 and the Peltier element 506 and conducts heat. , thermally cut off.
  • the heat insulating section 530 is made of resin or the like with low thermal conductivity.
  • the Peltier element 506 can transfer the heat of the LED mounting board 504 to the inner wall of the lamp house 508 via the sub-base 507. Heat transfer from the flange portion 512 of the sub-base 507 to the lamp house 508 is blocked by the heat insulating portion 530.
  • the Peltier element 506 is fixed within the lamp house 508.
  • the sub-base 507 is configured to be detachable from the lamp house 508 with the Peltier element 506 remaining inside the lamp house 508.
  • the Peltier element 506 can be removed from the lamp house 508. No need to remove.
  • the other configurations are the same as those in Example 1, so the explanation thereof will be omitted.
  • FIG. 7 is an example of a detailed configuration of the light source section of the fourth embodiment.
  • the back side of the sub-base 507 does not contact the inner wall of the lamp house 508.
  • heat is conducted from the LED mounting board 504 to the lamp house 508 via the flange portion 512 of the sub-base 507.
  • the heat conductivity from the heat dissipation part of the Peltier element 506 to the lamp house 508 is improved.
  • the temperature controllability of the Peltier element 506 can be improved.
  • the other configurations are the same as those in Example 1, so the explanation thereof will be omitted.
  • FIG. 8 is a flowchart illustrating an example of a temperature control method for an LED mounting board according to the fifth embodiment.
  • the LED mounting board 504 is preheated in order to shorten the time from when the excitation light LED 501 is turned on until the light emitted from the excitation light LED 501 becomes stable.
  • the user turns on the power of the device (step S401).
  • the control circuit 201 and the like are energized, and the control circuit 201 and the like are activated.
  • the user turns on the power of the light source unit 301 (step S402).
  • the control circuit 201 controls the output of the Peltier element 506 based on the temperature data acquired from the temperature sensor 505, and preheats the LED mounting board 504. (Step S800).
  • the subsequent processing is the same as in the first embodiment, so its explanation will be omitted.
  • Example 5 (Effects of Example 5) In Example 5, by preheating the LED mounting board 504, the output of the Peltier element 506 becomes smaller than when preheating is not performed, and the time required for temperature stabilization is also shortened.
  • the present disclosure is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present disclosure in an easy-to-understand manner, and the embodiments are not necessarily limited to having all the configurations described.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

発光スペクトル及び光量の変化を抑え、且つ結露防止が可能なLED光源を備える分析装置を提供する。分析装置は、試料に照射される光を発生するLED光源(励起光LED501、蛍光体502、LEDパッケージ503)と、LED光源及び温度センサ505が実装されるLED実装基板504と、LED実装基板504の周囲を取り囲み、LED実装基板504を収容するランプハウス508と、LED実装基板504の熱を吸収又はLED実装基板504に熱を放出するペルチェ素子506と、温度センサ505によって測定される温度が閾値温度よりも高くなるようにペルチェ素子506の出力を制御する制御部と、を備える。

Description

分析装置
 本開示は、試料に照射される光を発生するLED光源を備える分析装置に関する。
 タンパク質、糖、脂質、酵素、ホルモン、無機イオン、疾患マーカー等の血液や尿等の試料に含まれる成分量を測定するための分析装置においては、液体収容用の容器に対して試料と試薬とを分注し、吸光・蛍光・発光等の光学特性の変化に基づいて検査項目を分析するのが一般的である。分析装置の吸光分析においては、光源からの光を試料又は試料と試薬とが混合した反応溶液に照射し、試料又は反応溶液を通過した単一または複数の測定波長の透過光量を受光素子によって測定して吸光度を算出し、吸光度と濃度との関係から成分量を求める方法が用いられる。
 吸光分析の光源は、多数の検査項目に対応するために発光スペクトルが広く、また、高精度の吸光度計測をするために、測定波長において一定以上の光量を安定して得られるものが望ましい。そのため、従来、キセノンランプやハロゲンランプ等が用いられてきた。これらの光源は、一定以上の光量が得られるが、連続点灯で用いる場合において、光量が安定するまでの時間はおよそ30分程度と比較的長い。さらには、光量が大きい分、エネルギー消費も大きく、寿命も限定的である。例えばハロゲンランプの場合には、約1000時間での交換が必要とされ、分析装置としてのメンテナンス頻度は多くなる。
 吸光分析の光源として、近年、長寿命が期待される発光ダイオード(Light Emitting Diode、以下LED)が検討されている。例えば、臨床検査で用いる血液自動分析装置では、測定対象とする成分に応じて、使用する試薬及び光の波長が異なり、その波長範囲は、例えば340nm~800nmと広範囲である。したがって、1つのLED光で全波長帯域をカバーすることは難しい。そのため、例えば複数のLED素子を用いることや青色LED素子の励起光を変換して長波長帯域の発光を生じる蛍光体からの発光を使うこと、が考えられる。
 特許文献1には、LEDチップの光束上に蛍光体を設ける技術が開示されている。特許文献1に開示される蛍光体は、少なくともアルミナと、Fe、Cr、Bi、Tl、Ce、Tb、Eu、Mnの少なくとも一種と、を含み、全原料中にナトリウムを6.1~15.9重量%含有する原料を焼成して製造されたものである。
 吸光分析の光源としてLEDを用いる場合、点灯時の自己発熱や環境温度によって発光スペクトルと光量が変化して分析精度が低下することが懸念される。これを防ぐために、特許文献2においては、LED測光部と反応セル(試料または反応溶液を格納する部材)とが接触した温調ブロックを用いている。LEDを用いることにより装置のコンパクト化を図るとともに、LEDの発光素子を熱容量の大きい部材に固定して予熱温調している。これにより、外気温度と自己発熱の影響を受けることなくLED素子を一定範囲の温度に保持することにより、一定レベル以上の光量安定性を得ることを可能にしている。
 また、特許文献3においては、LEDのパッケージ下面を25±0.1℃に冷却及び恒温化するために、ペルチェ素子や、内部に流路を有する熱伝導性の良い金属ブロックに接続する構造が示されている。
特開2020-87974号公報 特許第3964291号 特許第6637407号
 吸光分析に求められる光量安定性をLED光源で実現するためには、以下の3つの課題が挙げられる。
 (i)LED光源の点灯時の自己発熱や環境温度による発光スペクトル及び光量の変化を抑えるため、LED光源の周辺が環境温度の影響を受けにくくする必要があり、
 (ii)その上で、LED光源が実装されたLED実装基板の温度を一定に保ち、LED光源の温度を一定にする必要がある。
 (iii)また、LED光源の結露防止のため、LED実装基板やLED光源の周辺温度が低くならないようにする必要がある。
 そこで、本開示は、発光スペクトル及び光量の変化を抑え、且つ結露防止が可能なLED光源を備える分析装置を提供することを目的とする。
 本開示の分析装置は、試料に照射される光を発生するLED光源と、LED光源及び温度センサが実装されるLED実装基板と、LED実装基板の周囲を取り囲み、LED実装基板を収容するランプハウスと、LED実装基板の熱を吸収又はLED実装基板に熱を放出するペルチェ素子と、温度センサによって測定される温度が閾値温度よりも高くなるようにペルチェ素子の出力を制御する制御部と、を備える。
 本開示によれば、LED光源の発光スペクトル及び光量の変化を抑え、且つ結露防止が可能となる。上述した以外の、課題、構成及び効果は、以下の実施形態の説明にて明らかにされる。
実施例1の分析装置の全体構成例を示す模式図である。 実施例1の制御回路のハードウェアブロック図である。 実施例1の分析装置の吸光分析を行う吸光度測定部の構成例を示す図である。 実施例1の光源部の詳細構成の一例である。 実施例1のLED実装基板の温度制御方法の例を示すフローチャートである。 実施例2の光源部の詳細構成の一例である。 実施例3の光源部の詳細構成の一例である。 実施例4の光源部の詳細構成の一例である。 実施例5のLED実装基板の温度制御方法の例を示すフローチャートである。
 本開示の実施の形態を図面に基づいて詳細に説明する。以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 以下、図面を参照しながら本開示の実施の形態を説明する。
<実施例1>
 (分析装置100)
 図1Aは、実施例1の吸光分析を用いる分析装置の全体構成例を示す模式図である。本構成例に係る分析装置100は、サンプルディスク103、試薬ディスク106、及び反応ディスク109の3種類のディスクと、これらのディスク間でサンプル(試料、検体とも言う)や試薬を移動させる分注機構と、これらを制御する制御回路(制御部)201と、反応溶液の吸光度を測定する光量測定回路202と、光量測定回路202で測定されたデータを処理するデータ処理部203と、データ処理部203とのインターフェースである入力部204及び出力部205と、を備える。また、分注機構は、サンプル分注機構110及び試薬分注機構111を備える。
 データ処理部203は、情報記録部2031と解析部2032とを有する。情報記録部2031には、制御データ、測定データ、データ解析に用いるデータ、解析結果データ等が格納される。データ処理部203は、コンピュータを用いて実現されてもよい。コンピュータは、CPU(Central Processing Unit)などのプロセッサと、情報記録部2031とを少なくとも備える。解析部2032の処理は、それらのデータ処理に対応するプログラムコードが情報記録部2031に格納され、プロセッサが各プログラムコードを実行することによって実現されてもよい。
 入力部204及び出力部205は、情報記録部2031との間でデータを入出力する。入力部204は、キーボード、タッチパネル、テンキーなどの情報入力装置である。出力部205は、分析装置のユーザが解析結果を確認するための装置であり、例えば、ディスプレイなどである。
 サンプルディスク103の円周上には、サンプル101の収容容器であるサンプルカップ102が複数配置される。サンプル101は、例えば血液である。試薬ディスク106の円周上には、試薬104の収容容器である試薬ボトル105が複数配置される。反応ディスク109の円周上には、サンプル101と試薬104とを混合させた反応溶液107の収容容器である反応セル108が複数配置される。
 サンプル分注機構110は、サンプルカップ102から反応セル108にサンプル101を一定量移動させる際に使用する機構である。サンプル分注機構110は、例えば溶液を吐出または吸引するノズルと、ノズルを所定位置に位置決め及び搬送するロボット、溶液をノズルから吐出またはノズルに吸引するポンプ、及びノズルとポンプを繋ぐ流路を備える。
 試薬分注機構111は、試薬ボトル105から反応セル108に試薬104を一定量移動させる際に使用する機構である。試薬分注機構111も、例えば溶液を吐出または吸引するノズルと、ノズルを所定位置に位置決め及び搬送するロボット、溶液をノズルから吐出またはノズルに吸引するポンプ、及びノズルとポンプを繋ぐ流路を備える。
 溶液攪拌部112は、反応セル108内で、サンプル101と試薬104とを攪拌し混合させる機構部である。反応セル洗浄部114は、分析処理が終了した反応セル108から反応溶液107を排出し、その後、反応セル108を洗浄する機構部である。洗浄終了後の反応セル108には、再び、サンプル分注機構110から次のサンプル101が分注され、試薬分注機構111から新しい試薬104が分注されて、別の反応処理に使用される。
 反応ディスク109において、反応セル108は、温度及び流量が制御された恒温水槽内の恒温循環水115に浸漬されている。このため、反応セル108及びその中の反応溶液107は、反応ディスク109による移動中も、制御回路201によってその温度は一定温度に保たれる。反応ディスク109の円周上の一部に、分析装置において吸光分析を行う吸光度測定部(吸光光度計)113が配置される。
 (制御回路201)
 図1Bは、実施例1の制御回路のハードウェアブロック図である。制御回路201は、プロセッサ2011と、主記憶部2012と、補助記憶部2013と、入出力インターフェース2014と、上記した各モジュールを接続するバス2015とを有する。
 プロセッサ2011は、制御回路201の各部の動作の制御を行う中央処理演算装置である。プロセッサ2011は、例えば、CPU、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)等である。プロセッサ2011は、補助記憶部2013に記憶されたプログラムを主記憶部2012の作業領域に実行可能に展開する。主記憶部2012は、プロセッサ2011が実行するプログラム、当該プロセッサが処理するデータ等を記憶する。主記憶部2012は、フラッシュメモリ、RAM(Random Access Memory)等である。補助記憶部2013は、各種のプログラムおよび各種のデータを記憶する。補助記憶部2013は、例えば、OS(Operating System)、温度制御プログラム2013a等の各種プログラム、閾値温度2013b等の各種データを記憶する。補助記憶部2013は、不揮発性半導体メモリ(フラッシュメモリ、EPROM(Erasable Programmable ROM))を含むシリコンディスク、ソリッドステートドライブ装置、ハードディスク(HDD、Hard Disk Drive)装置等である。
 (吸光度測定部113)
 図2は、実施例1の分析装置の吸光分析を行う吸光度測定部の構成例を示す図である。吸光分析の光源部301から発生した照射光は、光軸401に沿って出射され、集光レンズ403により集光されて反応セル108に照射される。このとき、光の照射面内光量分布を均一にするために光源側スリット402を配置し、光源部301からの出射光の幅を制限することがある。
 反応セル108の中の反応溶液107を透過した光は、分光器302中の回折格子3021で分光され、多数の受光器を備える検出器アレイ3022で受光される。このとき、反応溶液107を透過していない光はノイズになるため、そうした迷光が分光器302に入るのを防ぐために分光器側スリット404を配置することがある。
 検出器アレイ3022で受光する測定波長は、一例として、340nm、376nm、405nm、415nm、450nm、480nm、505nm、546nm、570nm、600nm、660nm、700nm、750nm、800nmなどがある。これら受光器による受光信号は、光量測定回路202を通じ、データ処理部203の情報記録部2031に送信される。
 サンプル101に含まれるタンパク質、糖、脂質などの成分量の算出は、次の手順により行われる。まず、制御回路201は、反応セル洗浄部114に指示し、反応セル108を洗浄する。次に、制御回路201は、サンプル分注機構110により、サンプルカップ102内のサンプル101を反応セル108に一定量分注する。次に、制御回路201は、試薬分注機構111により、試薬ボトル105内の試薬104を反応セル108に一定量分注する。
 各溶液の分注時、制御回路201は、それぞれに対応する駆動部により、サンプルディスク103、試薬ディスク106、反応ディスク109を回転駆動させる。この際、サンプルカップ102、試薬ボトル105、反応セル108は、それぞれに対応する分注機構の駆動タイミングに応じ、所定の分注位置に位置決めされる。
 続いて、制御回路201は、溶液攪拌部112を制御して、反応セル108内に分注されたサンプル101と試薬104とを攪拌し、反応溶液107を生成する。反応ディスク109の回転により、反応溶液107を収容する反応セル108は、吸光度測定部113が配置された測定位置を通過する。反応セル108が測定位置を通過するたび、その反応セル108に収容される反応溶液107からの透過光量が吸光度測定部113を介して測定される。測定データは、情報記録部2031に順次出力され、反応過程データとして蓄積される。
 この反応過程データの蓄積の間、必要であれば、別の試薬104を試薬分注機構111により反応セル108に追加で分注し、溶液攪拌部112により攪拌し、さらに一定時間測定する。これにより、一定の時間間隔で取得された反応過程データが、情報記録部2031に格納される。
 (光源部301)
 図3は、実施例1の光源部の詳細構成の一例である。以下の説明では、図面に示す通り、光の出射側を「出射側」と称し、その反対側を「背面側」と称する。励起光LED501から発せられた光で蛍光体502が励起され、蛍光体502から光が出射される。励起光LED501と蛍光体502とは、LEDパッケージ503に実装され、そのLEDパッケージ503は、LED実装基板504に実装される。
 LED実装基板504には、LEDパッケージ503とともに温度センサ505が実装される。LED実装基板504は、熱伝導性の良いアルミニウムや銅などを用いた金属ベースの基板である。温度センサ505は、例えばサーミスタ、熱電対、測温抵抗体、半導体センサなどである。LED実装基板504の背面には、ペルチェ素子506の吸熱側が接触する。また、ペルチェ素子506の放熱側は、サブベース507に接触する。サブベース(保持部材)507は、ランプハウス508に着脱可能であって、LED実装基板504などを保持する。ペルチェ素子506は、LED実装基板504の熱を吸収、又はLED実装基板504に熱を放出する。サブベース507は、ランプハウス508の内壁と接触する。そのため、サブベース507とランプハウス508との温度は同じになっている。サブベース507は、熱伝導性の観点から金属製が望ましく、アルミニウム、銅、ステンレスなどが部材の候補として挙げられる。
 ランプハウス508の出射側には、蛍光体502から出射された光が通過する貫通孔509が設けられている。この貫通孔509には、集光レンズ403、光線カットフィルタ、光源側スリット402、分光器側スリット404などの光学系を設置してもよい。このように構成すれば、貫通孔509に設けられた光学系によって、ランプハウス508の内側の空気の気密性が良くなり、さらに出射光の特性を調整することも可能となる。
 ランプハウス508とサブベース507との接触部の構造について説明する。図3に示すように、ランプハウス508の外壁面には、外側に突出する突起部510が設けられ、サブベース507のフランジ部512の突起部510に対応する箇所には、切欠部513が設けられる。切欠部513に突起部510が当接することによって、ランプハウス508に対してサブベース507の位置が定まる。
 ランプハウス508は、金属ブロックのような熱伝導性の良いものが用いられ、その内部には恒温循環水115の流路511が設けられている。この流路511は、ランプハウス508の温度を一定に保つための恒温機構である。恒温循環水115は、図1Aに示した反応ディスク109の恒温水槽内を循環する恒温循環水であって、例えば37±0.1℃に調整されている。流路511は、例えばステンレス製であって、ランプハウス508の金属ブロックは例えば銅である。流路511及びランプハウス508の構成部材は、上記に限定されず、耐腐食性や熱伝導性が確保できれば、他の金属、セラミックス、又は樹脂などで構成されてもよい。
 励起光LED501や蛍光体502への結露を防止するため、LED実装基板504の温度は、ランプハウス508の温度(ここでは恒温循環水37℃に近い)よりも高い温度であることが望ましく、例えば40℃以上である。また、励起光LED501のジャンクション温度の最大許容値を超えないために、例えば60℃以下であることが望ましい。ランプハウス508内の気密性を高くすれば、LEDパッケージ503の温度が40℃以下であっても結露の可能性は低くなる。ただし、LEDパッケージ503の交換性を考えた場合に、ランプハウス508内外の空気のやり取りを完全に防ぐことは難しく、汎用的な結露防止にはLED実装基板504の温度は、ランプハウス508の温度よりも高くしておくことが望ましい。特に、血液や尿等の試料に含まれる成分量を測定する自動分析装置においては、装置内に温度及び流量が制御された恒温水槽内の恒温循環水が豊富に存在することが多く、高湿度となるため、LED実装基板504の温度を、ランプハウス508の温度よりも高くしておくことが、結露防止には効果的である。反応ディスクが回転する場合においては、周辺の空気が循環して分析装置内が高い温湿度になることが起きうる。
 (LED実装基板504の温度制御方法)
 図4は、実施例1のLED実装基板の温度制御方法の例を示すフローチャートである。分析装置100の吸光分析の分析性能を安定的に得るためには、LEDパッケージ503から照射される光の光量が常に一定であることが好適である。光量を一定に保つ手段として、本開示の構成によれば、温度センサ505によって測定されたLED実装基板504の温度に基づいて、ペルチェ素子506の出力制御を行う。図4のステップS403~ステップS407の各処理は、制御回路201のプロセッサ2011が温度制御プログラム2013aを実行することによって、実行される。
 図4のフローチャートに示すように、図1Aの分析装置100の吸光分析において、ユーザは、装置の電源をONにする(ステップS401)。これにより、制御回路201等が通電し、制御回路201等が起動する。また、ユーザは、光源部301の電源をONにする(ステップS402)。これにより、励起光LED501が発光する。なお、装置の電源のONに連動して、光源部301の電源がONになってもよい。
 起動した制御回路201は、温度センサ505が測定した温度データを取得する(ステップS403)。そして、制御回路201は、温度センサ505から取得した温度データに基づいて、ペルチェ素子506の出力を制御する(ステップS404)。具体的には、制御回路201は、温度センサ505によって測定される温度が閾値温度Thよりも高くなるようにペルチェ素子506の出力を制御する。この閾値温度Thは、例えば、補助記憶部2013に記憶される閾値温度2013bである。
 この閾値温度Thは、予め設定された値Vであってもよいし、恒温循環水115の温度を調整するための設定温度Sに依存する値(Th=S(例えば37℃)+α(例えば13℃))であってもよいし、恒温循環水115の温度を測定する温度計が測定した温度Twに基づいて決定された値(Th=Tw+α)であってもよいし、ランプハウス508の温度を測定する温度計か測定した温度Tlに基づいて決定された値(Th=Tl+α)であってもよい。また、制御回路201が使用する温度データは、光源部301に設置した温度センサ505だけでなく、装置環境温度を別の温度センサにて測定した温度を併用してもよい。
 次に、制御回路201は、吸光度測定部113の動作を制御し、吸光度測定を実施する(ステップS405)。光量測定回路202は、この吸光度測定によって得られた光量データを情報記録部2031に記憶する。そして、制御回路201は、情報記録部2031から光量データを取得し、吸光分析に必要とされる規定範囲の光量変動に収まっているか否かを判定する(ステップS406)。判定の結果、光量データが規定範囲の光量変動に収まっていない場合には(ステップS406:No)、制御回路201は、ステップS404の処理に戻り、温度センサ505から取得した温度データに基づいて、ペルチェ素子506の出力を制御する。
 また、判定の結果、光量データが規定範囲の光量変動に収まっている場合には(ステップS406:Yes)、吸光分析を開始する(ステップS407)。
 (実験結果)
 励起光LED501に中心波長385nmの青色LEDを用いて、その励起光で励起される蛍光体502を用いた白色LED(電流400mAにて駆動)を用いて、図3の構成一例と同じく、LEDパッケージ503をLED実装基板504に実装し、温度センサ505にはサーミスタを用いてペルチェ素子506の出力を制御した。
 ペルチェ素子506を稼働したときのサーミスタの閾値温度Thは、50.0℃とした。LED実装基板504は、アルミ基板であり、絶縁膜(レジスト)を介してパターン配線が形成されたものである。励起光LED501の点灯時に、ペルチェ素子506を稼働した時と稼働していない時とで、LED実装基板504の温度変動幅を比較した。その結果、表1に示すとおり、ペルチェ素子506を稼働した時は、0.01℃未満の温度変動幅であったのに対して、ペルチェ素子506を稼働していない時には、0.05℃の温度変動幅となった。この結果から、ペルチェ素子506の稼働によってLED実装基板504の温度を一定に保つ効果が確認された。また、ペルチェ素子506を稼働していない時においても、温度変動幅は0.05℃と比較的小さく、LED周辺がランプハウス508に囲まれていることから、ランプハウス外の環境温度の変動を受けにくくなっていると考えられる。なお、LED実装基板504の制御温度を50.0℃に設定したことから、LED光源に結露の発生は見られなかった。
Figure JPOXMLDOC01-appb-T000001
 (実施例1の効果)
 ランプハウス508でLED実装基板504の周囲を取り囲み、且つLED実装基板504を収容することによって、LEDパッケージ503の周辺が環境温度の影響を受けにくくなる。また、ペルチェ素子506の出力を制御することによって、LEDパッケージ503が実装されたLED実装基板504の温度を一定に保つことが可能となる。その結果、LEDパッケージ503から出射される出射光の発光スペクトル及び光量の変化を抑えることができる。
 また、温度センサ505によって測定される温度が閾値温度よりも高くなるようにペルチェ素子506の出力を制御することによって、ランプハウス508内の飽和水蒸気量が多くなる。その結果、LEDパッケージ503が結露するのを防止することができる。
 また、ランプハウス508に流路511を形成し、当該流路511に恒温循環水115を流すことによって、ランプハウス508の温度を一定に保つことができる。その結果、ランプハウス508内が環境温度の影響を受けるのを抑制することができる。
 ペルチェ素子506をLED実装基板504とランプハウス508の内壁に接触するサブベース507との間に配置する。これにより、ランプハウス508とLED実装基板504との間で容易に熱移動を行うことができ、LED実装基板504の温度を一定に保つことが可能となる。
 サブベース507の切欠部513とランプハウス508の突起部510とを当接させることによって、ランプハウス508に対するサブベース507の位置を決めることができる。その結果、サブベース507に保持されるLEDパッケージ503の位置が決まり、LEDパッケージ503に保持される蛍光体502の位置が定まり、出射光の光軸を定めることが容易になる。
 また、ランプハウス508の貫通孔509に光学系を設けることによって、ランプハウス508の気密性が向上する。
 また、閾値温度Thをランプハウス508より高い40~60℃の間の温度にすることによって、励起光LED501のジャンクション温度より低い温度で、励起光LED501や蛍光体502が結露するのを防止することができる。
<実施例2>
 図5は、実施例2の光源部の詳細構成の一例である。実施例1と実施例2とでは、ランプハウス508とサブベース507との接触部の構造が異なる。図5に示すように、実施例2では、ランプハウス508の外壁面には、切欠部520が設けられ、サブベース507のフランジ部512の切欠部520に対応する箇所には、突起部521が設けられる。切欠部520に突起部521が当接することによって、ランプハウス508に対してサブベース507の位置が定まる。上記した接触部以外の構造は、実施例1と同様であるので、その説明を省略する。
 (実施例2の効果)
 サブベース507の突起部521とランプハウス508の切欠部520とを当接させることによって、ランプハウス508に対するサブベース507の位置を決めることができる。その結果、サブベース507に保持されるLEDパッケージ503の位置が決まり、LEDパッケージ503に保持される蛍光体502の位置が定まり、出射光の光軸を定めることが容易になる。
<実施例3>
 図6は、実施例3の光源部の詳細構成の一例である。実施例3は、実施例1と異なり、サブベース507が断熱部530を有する。断熱部530は、LED実装基板504を保持する部分とランプハウス508と接触する部分との間に設けられる。この断熱部530は、LED実装基板504及びペルチェ素子506の吸熱側に接触して熱伝導している部分と、ランプハウス508及びペルチェ素子506の放熱側に接触して熱伝導している部分と、を熱的に遮断する。断熱部530は、熱伝導性の低い樹脂などで構成されている。この構造によって、ペルチェ素子506は、LED実装基板504の熱を、サブベース507を介してランプハウス508の内壁に移動させることができる。サブベース507のフランジ部512からランプハウス508への熱移動は、断熱部530により遮断される。
 そして、ペルチェ素子506は、ランプハウス508内に固定される。サブベース507は、ペルチェ素子506をランプハウス508内に残した状態でランプハウス508に着脱可能に構成される。その結果、例えば励起光LED501の寿命でLED実装基板504及びサブベース507をランプハウス508から取り外して、LEDパッケージ503やLED実装基板504を交換する際にも、ペルチェ素子506をランプハウス508内から取り外す必要がない。その他の構成は、実施例1と同様であるので、その説明を省略する。
 (実施例3の効果)
 ペルチェ素子506をランプハウス508の内壁及びサブベース507に接触させ、且つ上記した断熱部530を設けることによって、LED実装基板504とランプハウス508の内壁との間で効率的に熱移動を行うことができる。これにより、容易に、LEDパッケージ503の温度を一定に保ち、且つ閾値温度よりも高くすることができる。
<実施例4>
 図7は、実施例4の光源部の詳細構成の一例である。実施例4では、サブベース507の背面側は、ランプハウス508の内壁に接触しない。そして、実施例4では、サブベース507のフランジ部512を介して、LED実装基板504からランプハウス508に熱伝導させている。この構造により、サブベース507の背面側をランプハウス508の内壁に接触させて熱伝導性を高める必要がなくなり、サブベース507をフランジ部512側に引き出すだけでLEDパッケージ503やLED実装基板504の交換が可能になる。また、サブベース507に、例えば銅のような熱伝導性の高い部材で構成される熱伝導路540を設けることで、ペルチェ素子506の放熱部からランプハウス508への熱伝導性が向上し、ペルチェ素子506の温度制御性を高めることができる。その他の構成は、実施例1と同様であるので、その説明を省略する。
 (実施例4の効果)
 サブベース507をランプハウス508の内壁に接触することなくランプハウス508に装着することによって、サブベース507の着脱性が向上する。また、熱伝導路540を設けることによって、LED実装基板504の温度制御を容易に行うことができる。
<実施例5>
 図8は、実施例5のLED実装基板の温度制御方法の例を示すフローチャートである。実施例5では、励起光LED501を点灯させてから当該励起光LED501からの出射光が安定するまでの時間短縮を図るため、LED実装基板504をプレヒートする。図8のフローチャートに示すように、図1Aの分析装置100の吸光分析において、ユーザは、装置の電源をONにする(ステップS401)。これにより、制御回路201等が通電し、制御回路201等が起動する。その後、ユーザは、光源部301の電源をONにする(ステップS402)。実施例5では、ユーザが光源部301の電源をONする前に、制御回路201は、温度センサ505から取得した温度データに基づいて、ペルチェ素子506の出力を制御し、LED実装基板504をプレヒートする(ステップS800)。その後の処理は、実施例1と同様であるので、その説明を省略する。
 (実施例5の効果)
 実施例5では、LED実装基板504をプレヒートすることにより、ペルチェ素子506の出力は、プレヒートをしない場合と比べて小さくなり、温度安定までの時間も短縮される。
 なお、本開示は、上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の例は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
100:分析装置、 101:サンプル、 102:サンプルカップ、 103:サンプルディスク、 104:試薬、 105:試薬ボトル、 106:試薬ディスク、 107:反応溶液、 108:反応セル、 109:反応ディスク、 110:サンプル分注機構、 111:試薬分注機構、 112:溶液攪拌部、 113:吸光度測定部、 114:反応セル洗浄部、 115:恒温循環水、 201:制御回路、 2011:プロセッサ、 2012:主記憶部、 2013:補助記憶部、 2013a:温度制御プログラム、 2013b:閾値温度、 2014:入出力インターフェース、 2015:バス、 202:光量測定回路、 203:データ処理部、 2031:情報記録部、 2032:解析部、 204:入力部、 205:出力部、 301:光源部、 302:分光器、 3021:回折格子、 3022:検出器アレイ、 401:光軸、 402:光源側スリット、 403:集光レンズ、 404:分光器側スリット、 501:励起光LED、 502:蛍光体、 503:LEDパッケージ、 504:LED実装基板、 505:温度センサ、 506:ペルチェ素子、 507:サブベース、 508:ランプハウス、 510,521:突起部、 513,520:切欠部、 511:流路、 530:断熱部、 540:熱伝導路

Claims (14)

  1.  試料に照射される光を発生するLED光源と、
     前記LED光源及び温度センサが実装されるLED実装基板と、
     前記LED実装基板の周囲を取り囲み、前記LED実装基板を収容するランプハウスと、
     前記LED実装基板の熱を吸収又は前記LED実装基板に熱を放出するペルチェ素子と、
     前記温度センサによって測定される温度が閾値温度よりも高くなるように前記ペルチェ素子の出力を制御する制御部と、を備える
     ことを特徴とする分析装置。
  2.  前記ランプハウスの温度を一定に保つための恒温機構をさらに備える
     ことを特徴とする請求項1に記載の分析装置。
  3.  前記ペルチェ素子を前記ランプハウスの内壁と前記LED実装基板との間に配置する
     ことを特徴とする請求項1に記載の分析装置。
  4.  前記ランプハウスに着脱可能であって、前記LED実装基板を保持する保持部材をさらに備え、
     前記保持部材は、切欠部を有し、
     前記ランプハウスは、前記切欠部に当接する突起部を有する
     ことを特徴とする請求項1に記載の分析装置。
  5.  前記ランプハウスに着脱可能であって、前記LED実装基板を保持する保持部材をさらに備え、
     前記ランプハウスは、切欠部を有し、
     前記保持部材は、前記切欠部に当接する突起部を有する
     ことを特徴とする請求項1に記載の分析装置。
  6.  前記ランプハウスに着脱可能であって、前記LED実装基板を保持する保持部材をさらに備え、
     前記ペルチェ素子を前記ランプハウスの内壁及び前記保持部材に接触させ、
     前記保持部材は、前記LED実装基板を保持する部分と前記ランプハウスと接触する部分との間に設けられた断熱部を有する
     ことを特徴とする請求項1に記載の分析装置。
  7.  前記ランプハウスに着脱可能であって、前記LED実装基板を保持する保持部材をさらに備え、
     前記保持部材は、前記ランプハウスの内壁に接触することなく前記ランプハウスに装着される
     ことを特徴とする請求項1に記載の分析装置。
  8.  前記ランプハウス内に前記ペルチェ素子を残した状態で前記ランプハウスに着脱可能であって、前記LED実装基板を保持する保持部材をさらに備える
     ことを特徴とする請求項1に記載の分析装置。
  9.  前記ランプハウスには、前記LED光源から出射された光が通過する貫通孔が形成されており、
     前記貫通孔には、光学系が設けられる
     ことを特徴とする請求項1に記載の分析装置。
  10.  前記閾値温度は、前記ランプハウスの温度に基づいて決定された温度である
     ことを特徴とする請求項1に記載の分析装置。
  11.  前記閾値温度は、前記ランプハウスの温度より高い40~60℃の間の温度である
     ことを特徴とする請求項1に記載の分析装置。
  12.  前記制御部は、前記LED光源が発光する前に、前記LED実装基板に熱を放出するよう前記ペルチェ素子の出力を制御する
     ことを特徴とする請求項1に記載の分析装置。
  13.  前記試料は反応容器に収容され、
     前記反応容器と、前記反応容器内の前記試料を一定温度に保つための恒温循環水と、を備える
     ことを特徴とする請求項1に記載の分析装置。
  14.  少なくとも1つの前記反応容器を円周上に載置するための反応ディスクと、
     前記反応ディスクに載置された前記反応容器を前記恒温循環水に浸漬するための恒温水槽と、
     前記反応ディスクを回転駆動させる制御部と、を備える
     ことを特徴とする請求項13に記載の分析装置。
PCT/JP2023/007481 2022-06-07 2023-03-01 分析装置 WO2023238457A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-092124 2022-06-07
JP2022092124A JP2023179070A (ja) 2022-06-07 2022-06-07 分析装置

Publications (1)

Publication Number Publication Date
WO2023238457A1 true WO2023238457A1 (ja) 2023-12-14

Family

ID=89117964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007481 WO2023238457A1 (ja) 2022-06-07 2023-03-01 分析装置

Country Status (2)

Country Link
JP (1) JP2023179070A (ja)
WO (1) WO2023238457A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156829A (ja) * 2004-11-30 2006-06-15 Toshiba Lighting & Technology Corp 発光装置
JP2006214859A (ja) * 2005-02-03 2006-08-17 Matsushita Electric Ind Co Ltd 撮像装置
JP2007258520A (ja) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd 電子機器の冷却装置
WO2011108571A1 (ja) * 2010-03-05 2011-09-09 日本電気株式会社 発光装置の冷却システム、およびそれを用いた発光装置
JP2021081312A (ja) * 2019-11-20 2021-05-27 株式会社日立ハイテク 自動分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156829A (ja) * 2004-11-30 2006-06-15 Toshiba Lighting & Technology Corp 発光装置
JP2006214859A (ja) * 2005-02-03 2006-08-17 Matsushita Electric Ind Co Ltd 撮像装置
JP2007258520A (ja) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd 電子機器の冷却装置
WO2011108571A1 (ja) * 2010-03-05 2011-09-09 日本電気株式会社 発光装置の冷却システム、およびそれを用いた発光装置
JP2021081312A (ja) * 2019-11-20 2021-05-27 株式会社日立ハイテク 自動分析装置

Also Published As

Publication number Publication date
JP2023179070A (ja) 2023-12-19

Similar Documents

Publication Publication Date Title
EP4063829A1 (en) Automatic analysis device
JP5112518B2 (ja) 試料分析装置
CN111257229B (zh) 光学测定装置
JP5859527B2 (ja) 測光において使用可能なダイナミックレンジの拡大
US20100290952A1 (en) Sample analyzer and blood coagulation analyzer
CN110073200B (zh) 自动分析装置
US20210053047A1 (en) Measuring arrangement for measuring the total nitrogen bound in a measuring liquid
WO2013092344A1 (en) Light source lifetime extension in an optical system
WO2023238457A1 (ja) 分析装置
US8696993B2 (en) Method of raising temperature of received object, and analyzing device
JP2016040528A (ja) 自動分析装置
US20110058984A1 (en) Automatic analyzer
CN109690320B (zh) 自动分析装置及其分析方法
EP4306962A1 (en) Light source and automatic analysis device
WO2023276659A1 (ja) 光源および自動分析装置
JP2007309840A (ja) 光源装置及び分析装置
WO2024105966A1 (ja) 自動分析装置
JP4838086B2 (ja) 化学発光測定装置
WO2024029337A1 (ja) 自動分析装置
WO2024070206A1 (ja) 分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818221

Country of ref document: EP

Kind code of ref document: A1