WO2023238363A1 - 並列電池管理装置および並列電池制御システム - Google Patents

並列電池管理装置および並列電池制御システム Download PDF

Info

Publication number
WO2023238363A1
WO2023238363A1 PCT/JP2022/023402 JP2022023402W WO2023238363A1 WO 2023238363 A1 WO2023238363 A1 WO 2023238363A1 JP 2022023402 W JP2022023402 W JP 2022023402W WO 2023238363 A1 WO2023238363 A1 WO 2023238363A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel
management device
batteries
parallel battery
battery
Prior art date
Application number
PCT/JP2022/023402
Other languages
English (en)
French (fr)
Inventor
智己 竹上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022562691A priority Critical patent/JP7317247B1/ja
Priority to PCT/JP2022/023402 priority patent/WO2023238363A1/ja
Publication of WO2023238363A1 publication Critical patent/WO2023238363A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to a parallel battery management device and a parallel battery control system.
  • Electric vehicles such as EVs (Electric Vehicles), HEVs (Hybrid Electric Vehicles), and PHVs (Plug-in Hybrid Vehicles) are being put into practical use. Furthermore, the development of electric aircraft is also progressing. Furthermore, stationary power storage systems for utilizing renewable energy are also becoming widespread.
  • Batteries such as lithium ion batteries are used in these devices. It is known that battery performance varies depending on individual differences, degree of deterioration, temperature, etc. Furthermore, it is known that batteries deteriorate with use and over time, and the rate of deterioration is also influenced by how they are used, the environment in which they are used, and the like. Therefore, for optimal battery operation, it is important to understand the current performance of the battery and to control charging and discharging according to the current performance.
  • the state of charge of each battery is determined from the voltage and current of each battery by applying an extended Kalman filter to parallel batteries in which two batteries with different characteristics are connected. (SOC: State of charge) is required. Further, in the battery system described in Patent Document 2, current variations caused by resistance variations of each battery are estimated for a battery assembly including a plurality of parallel-connected secondary batteries. Furthermore, the circulating current between the batteries is also calculated from the difference in open circuit voltage (OCV) between the secondary batteries, and the maximum current is estimated based on the current variation and the OCV difference and used for control.
  • OCV open circuit voltage
  • Patent No. 6238326 (Paragraph 0052, Figure 1) JP 2018-137171 (Paragraphs 0013-0058, Figure 1)
  • Patent Document 1 not only does not explain a specific method of utilizing state estimation results for optimal operation of parallel batteries, but also has the problem that it can only be applied to two parallel batteries. Ta. Furthermore, in the method of Patent Document 2, a specific control method for optimal operation of N parallel batteries in which N arbitrary batteries are connected in parallel is explained. It is said that prepared maps or tables are used, and the performance and status of parallel batteries are not derived theoretically based on a battery model. Therefore, there is a problem in that there is a limit to accurately grasping the performance and condition of each battery depending on individual differences in batteries, differences in degree of deterioration, environmental temperature, charging/discharging history, etc.
  • the present application was made to solve the above-mentioned problems, and provides a parallel battery management device and a parallel battery control system that enable optimal operation through charge/discharge control based on performance and state estimation of N parallel batteries.
  • the purpose is to
  • the parallel battery management device disclosed in the present application is a parallel battery management device that manages parallel batteries in which two or more batteries are connected in parallel
  • the parallel battery management device is a parallel battery management device that manages parallel batteries in which two or more batteries are connected in parallel.
  • a battery information providing unit that provides battery information and a state space model of the parallel batteries
  • the internal state of the parallel batteries is estimated based on the current, the voltage, and the battery information, and an estimated state value is output.
  • the battery pack is characterized by comprising a state estimating section and a control section that outputs a command value for managing the parallel batteries based on the estimated state value and the battery information.
  • a parallel battery management control system disclosed in the present application includes the parallel battery management device described above, a current detection device that detects the current from the parallel battery and outputs it to the parallel battery management device, and a current detection device that detects the current from the parallel battery and outputs it to the parallel battery management device.
  • a voltage detection device that detects and outputs it to the parallel battery management device; a power conversion device that determines the charging/discharging load of the parallel battery; and a command value output from the parallel battery management device based on the current and the voltage.
  • the present invention is characterized by comprising a control device that controls the power conversion device.
  • the state of each battery is estimated based on a state space model of two or more parallel batteries connected in parallel, and the charging/discharging current is controlled based on the estimated state, thereby making it possible to optimally operate the parallel batteries.
  • FIG. 1 is a diagram showing the configuration of a parallel battery control system including a parallel battery management device according to a first embodiment;
  • FIG. 1 is a diagram showing a configuration of parallel batteries managed by a parallel battery management device according to Embodiment 1.
  • FIG. 1 is a diagram showing the configuration of a parallel battery management device according to Embodiment 1.
  • FIG. 1 is a diagram showing a hardware configuration of a parallel battery management device according to Embodiment 1.
  • FIG. 3 is a diagram showing an equivalent circuit model of a single battery in the parallel battery management device according to the first embodiment.
  • FIG. 3 is a flowchart diagram for explaining the operation of the parallel battery management device according to the first embodiment.
  • FIG. 7 is a diagram showing Equation 18 used in the parallel battery management device according to the first embodiment.
  • FIG. 3 is a diagram showing Equation 19 used in the parallel battery management device according to Embodiment 1.
  • FIG. 3 is a diagram showing Equation 20 used in the parallel battery management device according to the first embodiment.
  • 3 is a diagram showing Equation 21 used in the parallel battery management device according to Embodiment 1.
  • FIG. 3 is a diagram showing Equation 22 used in the parallel battery management device according to Embodiment 1.
  • FIG. 1 is a block diagram showing the configuration of a parallel battery control system 100 including a parallel battery management device 1 according to the first embodiment.
  • the parallel battery control system 100 includes a parallel battery management device 1, a parallel battery 2, a current detection device 3, a voltage detection device 4, a control device 5, and a power conversion device 6. .
  • the parallel battery management device 1 is a device that manages parallel batteries 2. Management includes understanding the performance, internal state, or deterioration state of the parallel batteries 2, and determining the current or maximum current during charging and discharging of the parallel batteries 2. It is assumed that the parallel batteries 2 to be managed are configured by N batteries (N is any natural number greater than or equal to 2) connected in parallel.
  • FIG. 2 is a block diagram showing the configuration of parallel batteries 2 managed by parallel battery management device 1 according to the first embodiment.
  • the parallel battery 2 includes two or more batteries 21 1 , 21 2 , . . . , 21 N connected in parallel.
  • switches 22 1 , 22 2 , . . . , 22 N may be provided at the end of each battery.
  • a current detector (not shown) may be provided internally to detect the current of one or more batteries.
  • the batteries 21 1 , 21 2 , . . . , 21 N in each row are not limited to single cells, and may be battery modules configured by arbitrary series-parallel connections of single cells.
  • N-parallel battery although it is called an N-parallel battery, from another point of view, it may be an M-parallel battery with a different number of parallel connections M ( ⁇ N).
  • M a group of series-parallel batteries constituting each row from a certain point of view
  • the single cells in each row may be of the same type with different characteristics and different degrees of deterioration, or may be different types of cells of different types and battery products.
  • N parallel batteries may be formed by connecting N batteries with different characteristics in parallel.
  • the battery cells included in the parallel battery 2 are typically lithium ion batteries.
  • a lead battery, a nickel-metal hydride battery, an all-solid-state battery, a lithium ion capacitor, or any other battery may be included.
  • FIG. 3 is a block diagram showing the configuration of the parallel battery management device 1 according to the first embodiment.
  • the parallel battery management device 1 includes a battery information providing section 11, a state estimation section 12, a load information providing section 13, and a control section 14.
  • the parallel battery management device 1 includes a processor 15 and a storage device 16, as an example of hardware is shown in FIG.
  • the storage device includes a volatile storage device such as a random access memory, and a nonvolatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device such as a hard disk may be provided instead of the flash memory.
  • Processor 15 executes a program input from storage device 16 . In this case, the program is input from the auxiliary storage device to the processor 15 via the volatile storage device.
  • the processor 15 may output data such as calculation results to a volatile storage device of the storage device 16, or may store data in an auxiliary storage device via the volatile storage device.
  • each part constituting the parallel battery management device 1 that is, the functions of the battery information providing unit 11, the state estimating unit 12, the load information providing unit 13, and the control unit 14 are realized by software, firmware, or a combination thereof.
  • Software and firmware are written as programs and stored in the storage device 16.
  • the processor 15 reads a program stored in the storage device 16 and executes the program, thereby realizing the functions of each part of the parallel battery management device 1.
  • the current detection device 3 detects and outputs the current I of the parallel batteries 2. However, in addition to the current I of the parallel battery 2, the current detection device 3 may detect and output the current Ii of one or more single cells i ⁇ 1, 2, . . . , N ⁇ .
  • the unit cell voltage detection device 4 detects and outputs the voltage V of the parallel batteries 2.
  • sampling period of time series data is ts seconds.
  • the battery information providing unit 11 provides information regarding single batteries.
  • information on the relationship between the SOC and OCV of a single cell so-called SOC-OCV characteristics, is provided.
  • information on the relationship between the amount of electricity and OCV may be provided.
  • some or all of the model parameters appearing in the state space model may be provided.
  • the state estimating unit 12 estimates the state of the parallel battery 2 based on the state space model of the parallel battery 2 based on the detected current, the detected voltage, and the information provided by the battery information providing unit 11. A specific state space model and state estimation method will be described later. Note that the model parameters not provided by the battery information providing section 11 are either held internally by the state estimating section 12 or estimated by a known method such as simultaneous estimation of the state and model parameters, which will be described later.
  • the load information providing unit 13 provides information regarding charging/discharging load requests for the parallel batteries 2. Specifically, at least two of the current, voltage, and power of the parallel battery 2 are included.
  • the load information may include prediction information up to an arbitrary time in the future.
  • the control unit 14 controls the parallel batteries 2 based on the state estimation value outputted by the state estimating unit 12, the battery information outputted by the battery information providing unit 11, and the load information outputted by the load information providing unit 13. Outputs the command value. Specifically, a maximum current and/or maximum power command value is output.
  • the command value to be output may be a time-varying command value of maximum current and/or maximum power up to an arbitrary time in the future. Since the current flowing through the single cells changes from moment to moment depending on the load on the parallel batteries 2 and the internal state, the command value to the parallel batteries 2 to prevent the current limit from exceeding the current limit of the single cells also changes over time. becomes.
  • the control device 5 controls the power conversion device 6 in accordance with the command value output by the control unit 14.
  • the power conversion device 6 operates under the control of the control device 5, and determines the charging/discharging load of the parallel battery 2 in accordance with the command value output by the control unit 14.
  • the overvoltage ⁇ i originates from a diffusion phenomenon of Li ions inside the battery, and is most easily modeled by a parallel connection of a resistor element r di and a capacitor element c di . In this case, the overvoltage ⁇ i is becomes.
  • equation (2) various known models can be used to calculate overvoltage, and the equation of state for overvoltage is not limited to equation (2).
  • various configurations can be used, such as a configuration in which a plurality of CR parallel elements are connected in series, a configuration called a Cowell type, a configuration called a Foster type.
  • FIG. 5 is a diagram showing an equivalent circuit model of the unit cell i assumed in equations (1) and (2).
  • an equivalent circuit model of a cell i a model in which r i representing the DC component of overvoltage, parallel elements r di and c di representing a transient response, and OCV i are connected in series is used.
  • the open circuit voltage OCV i of a single cell is determined by the function f i representing the relationship with the quantity of electricity q i of the single cell. is required.
  • f i is a certain monotone non-decreasing function, and may be a piecewise linear function, a spline function, a polynomial approximation function, or any other function form.
  • the relationship between the parallel battery current and single cell current is It is expressed as from here, If you calculate numerically, you can find the cell current.
  • it is desirable to be able to directly calculate the inverse matrix M ⁇ -1. In particular, the calculation is easy when N 2, but as N ⁇ 3 and N becomes larger, the amount of calculation required for numerical calculation of the inverse matrix increases exponentially.
  • the inverse matrix M ⁇ ⁇ 1 can be derived as follows.
  • matrix M is created using block square matrices A, B, C, and D of m1 ⁇ m1, m1 ⁇ m2, m2 ⁇ m1, and m2 ⁇ m2.
  • D is regular
  • the Schur complement matrix is is defined as
  • S is regular
  • the equation for the inverse matrix is known to hold true. If this equation is used, the calculation of the inverse matrix M ⁇ -1 is reduced to the calculation of each block element on the right side, so the inverse matrix may be found more easily.
  • the matrix M of equation (6) is It is expressed as here, are each (N-1) ⁇ 1 vector, is a (N-1) ⁇ (N-1) diagonal matrix.
  • D is regular
  • the Schur complement matrix is expressed as can be defined and calculated.
  • s is clearly regular, using the relational expression (10), we get becomes.
  • s ⁇ -1 is a scalar.
  • the (1, 2) block element is becomes.
  • the (2,1) block element is becomes.
  • the (2,2) block element is becomes.
  • Equation (2) Equation (2)
  • Equation (3) Equation (20).
  • the OCV function f b can be obtained by applying a general OCV measurement method to parallel batteries, or by calculating it from the OCV function f i of each unit cell.
  • the latter method specifically, from equations (26) and (28), for multiple OCVs,
  • the one-to-one correspondence between q b and OCV can be obtained and converted into a function.
  • equation (35) can be calculated accurately and at high speed by using this solution.
  • equation (35) becomes Therefore, the state at any time t can be found analytically without the need for repeated calculations.
  • E is a unit matrix. moreover, Therefore, at any time t is found.
  • FCC i is the full charge capacity (FCC) of the cell i.
  • state equations and/or output equations may be added.
  • the equation of state regarding the electrical quantity q b of parallel batteries may be added.
  • the electrical quantity q b of the parallel batteries may be added.
  • the electrical quantity q i of each unit cell Since the relationship always holds true, when q b is included in the state variables, any one of q 1 , . . . , q N does not necessarily have to be included in the state variables.
  • equation (42) may be included in the state variables, and then an equation in which q b is moved to the right side of equation (42) may be included in the output equation.
  • an estimation method such as a Kalman filter, which will be described later, it is sufficient to set the observation noise to equation (42) to zero.
  • equation (42) it is also possible to treat equation (42) as a soft constraint and model it assuming small observation noise.
  • the state variables may also include other model parameters, such as r i , r di , c di , ⁇ di , and the like.
  • model parameters such as r i , r di , c di , ⁇ di , and the like.
  • equation (20) may be added to the output equation. If the current of two or more single cells can be measured, a plurality of equations (43) corresponding to each cell may be added to the output equation.
  • the formula of the state space model differs depending on the type of cell model, the setting of state variables, etc., it is possible to derive the state space model of N parallel batteries using the same or similar procedure as in the present application.
  • the state space model for N-parallel batteries is not limited to the representations described in this application.
  • ⁇ How to apply state/parameter estimation method> Various existing state/parameter estimation methods can be applied to the constructed state space model. For example, typically a least squares method, a Kalman filter, a particle filter, MCMC (Markov chain Monte Carlo methods), etc. are used. There are many variations of these techniques, including offline data batch processing methods, sequential estimation methods suitable for online processing, and fixed-interval batch processing methods that are intermediate between the two, depending on the problem setting and available computational resources. It is possible to use it properly depending on the situation.
  • Kalman filter a method such as a linear Kalman filter can be applied to a linear state space model, and a method such as an EKF (Extended Kalman Filter) or a UKF (Unscented Kalman Filter) can be applied to a nonlinear Kalman filter.
  • EKF Extended Kalman Filter
  • UKF Unscented Kalman Filter
  • the estimation technique can be applied by converting a continuous-time state-space model into a discrete-time state-space model using a known method. Specifically, Euler's method, Runge-Kutta method, etc., which are numerical methods for solving differential equations, can be used. Transformations such as zero-order hold are also available.
  • the state estimation unit 12 acquires current/voltage data and battery information of the parallel batteries 2 (step S601 in FIG. 6).
  • the state estimating unit 12 estimates the state of the parallel battery 2 using a predetermined estimation method from a predetermined state space model of the parallel battery 2 from the acquired data (step S602 in FIG. 6).
  • control unit 14 determines a control command value from the battery information, estimated state value, and load information (step S603 in FIG. 6).
  • control unit 14 transmits the determined control command value to the control device 5 (step S604 in FIG. 6).
  • control device 5 controls the power conversion device 6 according to the transmitted control command value (step S605 in FIG. 6).
  • the power conversion device 6 operates under the control of the control device 5 to control charging and discharging of the parallel batteries 2 (step S606 in FIG. 6).
  • the state space model of parallel batteries can also be used for power load information.
  • the N parallel battery dynamic characteristics for any N can be calculated with high precision. Additionally, if future load information is given, the future voltage of parallel batteries can be calculated based on this model and the future load, which can be used for charge/discharge control, etc. In particular, even for multi-parallel batteries where N ⁇ 3, a state space model can be constructed regardless of the size of N.
  • the state of the measured current of a single cell can be estimated in situations where the current of one or more single cells can be measured in addition to the current of parallel batteries. It is possible to improve the estimation accuracy by using the estimation accuracy.
  • the model parameter for example, the full charge capacity FCC i of a single cell, the resistive elements r i , r di , the capacitor element c di , etc., in the state variables, the model parameter is unknown, or Estimation can be made even when there are fluctuations.
  • state estimation values based on a state space model it is possible to optimally control charging and discharging of parallel batteries.
  • various combinations of the internal states of the cells can be considered, and the current of the cells will accordingly vary. Therefore, by using the state estimation value, it is possible to understand the current of a single cell and limit the current of parallel batteries to prevent deterioration of the single cells, or conversely loosen the current limit to improve performance. becomes possible. For example, if the discharging time continues and the OCV bias of the single cells becomes large, it is necessary to more severely limit the current of the parallel cells when discharging further from there.
  • the maximum current of a single cell may be determined in consideration of conditions such as the C rate defined in the specifications, battery temperature, SOC, and degree of deterioration.
  • the control command value for the parallel batteries does not need to be always used to limit the load request, and may be the maximum current or maximum power that the parallel batteries can produce at that time or at a certain time in the future. In this way, while the load requirements are met under normal conditions, charging and discharging of parallel batteries is limited only when used under conditions that are harsh for parallel batteries, minimizing deterioration in usability. be able to.
  • the bias in the OCV of the single cells during parallel battery operation affects the performance of the parallel batteries and the deterioration of the single cells. Therefore, if you understand the difference between the estimated OCV of a single cell and the OCV of a parallel battery, that is, the OCV of the single cell at equilibrium, and determine the control command value based on that, it is possible to This makes it possible to prevent unexpected performance deterioration and suppress deterioration of single cells.
  • the future voltage of parallel batteries can be calculated based on the state space model and future load, which can be used for charge/discharge control, etc.
  • control system that includes parallel batteries, a current detection device, a voltage detection device, a parallel battery management device, a control device, and a power converter, it is possible to actually realize a system that efficiently controls battery charging and discharging. can.
  • the parallel battery management device 1 manages the parallel batteries 2 in which two or more batteries are connected in parallel
  • the current detection device 3 is From the battery information providing unit 11 that provides battery information of the parallel battery 2 based on the detected current of the parallel battery 2 to be detected and the detected voltage of the parallel battery 2 detected by the voltage detection device 4, and the state equation representing the state of the parallel battery 2.
  • a state estimation unit 12 that estimates the internal state of the parallel battery 2 based on the detected current, detected voltage, and battery information using a state space model and outputs a state estimated value, and a load related to the charging/discharging load of the parallel battery 2. Since it is equipped with a load information providing section 13 that provides information and a control section 14 that outputs a command value for managing the parallel batteries 2 based on the estimated state value, battery information, and load information, it is possible to optimize the parallel batteries. operation becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

2以上の電池が並列接続された並列電池(2)を管理する並列電池管理装置(1)であって、電流検出装置(3)が検出する並列電池(2)の検出電流および電圧検出装置(4)が検出する並列電池(2)の検出電圧に基づき、並列電池(2)の電池情報を提供する電池情報提供部(11)と、並列電池(2)の状態空間モデルを用いて、検出電流、検出電圧および電池情報に基づき、並列電池(2)の内部状態を推定し、状態推定値を出力する状態推定部(12)と、並列電池(2)の充放電負荷に関する負荷情報を提供する負荷情報提供部(13)と、状態推定値、電池情報および負荷情報に基づき、並列電池(2)を管理する指令値を出力する制御部(14)と、を備える。

Description

並列電池管理装置および並列電池制御システム
 本願は、並列電池管理装置および並列電池制御システムに関するものである。
 環境負荷低減のため、EV(電気自動車:Electric Vehicle)、HEV(ハイブリッド電気自動車:Hybrid Electric Vehicle)、PHV(プラグインハイブリッド自動車:Plug-in Hybrid Vehicle)などの電動車両が実用化されている。さらには、電動航空機などの開発も進んでいる。また、再生可能エネルギーの活用のための定置用蓄電システムも普及している。
 これらの機器には、リチウムイオン電池をはじめとした電池が用いられている。電池の性能は個体差、劣化度、温度などに応じて変動することが知られている。また、電池は使用および時間の経過とともに劣化が進行し、その進行速度も使い方、使用環境などに左右されることが知られている。それゆえ、電池の最適な運用には、電池の現在性能の把握と、現在性能に応じた充放電制御が重要となる。
 近年、特にリチウムイオン電池の普及に伴い、中古電池が大量に発生しつつあり、中古電池を並列接続した並列電池のリユースが検討されている。特性の異なる電池を並列接続すると電流に分布が生じるため、使用方法によっては特定の電池に大電流が流れるなどして、劣化が促進される可能性がある。また、各電池の性能特性および内部状態に応じ、並列電池の入出力性能は時々刻々と変動する。そこで、並列電池の最適運用のための、現在性能と状態の把握と、現在性能と状態に応じた充放電制御が求められている。
 特許文献1に記載のハイブリッド二次電池の状態推定装置では、特性の異なる2つの電池を接続した並列電池を対象に、拡張カルマンフィルタを適用することで電圧と各電池の電流から各電池の充電状態(SOC:State of charge)を求めている。また、特許文献2に記載の電池システムでは、並列接続された複数の二次電池を含んで構成される組電池を対象に、各電池の抵抗ばらつきにより生じる電流ばらつきを推定している。さらに、二次電池間の開回路電圧(OCV:Open circuit voltage)の差から電池間の循環電流も算出し、電流ばらつきとOCV差に基づき最大電流を推定し制御に利用している。
特許第6238326号(段落0052、図1) 特開2018-137171号(段落0013~0058、図1)
 しかしながら、特許文献1の方法は、状態推定結果を並列電池の最適運用のために活用する具体的方法は説明されていないだけでなく、2並列の場合にしか適用することができないという問題があった。また、特許文献2の方法では、任意のN個の電池を並列接続したN並列電池の最適運用のための具体的制御方法が説明されているが、電流ばらつきと循環電流の推定には事前に用意されたマップまたはテーブルを用いるとされており、電池モデルに基づき並列電池の性能と状態を理論的に導出しているわけではない。それゆえ、電池の個体差、劣化度差、環境温度、充放電履歴などに応じた各電池の性能と状態を精度良く把握するには限界があるという問題があった。
 本願は、上記のような課題を解決するためになされたものであり、N並列電池の性能・状態推定に基づく充放電制御による最適運用を可能とする並列電池管理装置および並列電池制御システムを提供することを目的とする。
 本願に開示される並列電池管理装置は、2以上の電池が並列接続された並列電池を管理する並列電池管理装置であって、前記並列電池の電流および前記並列電池の電圧に基づく前記並列電池の電池情報を提供する電池情報提供部と、前記並列電池の状態空間モデルを用いて、前記電流、前記電圧および前記電池情報に基づき、前記並列電池の内部状態を推定し、状態推定値を出力する状態推定部と、前記状態推定値および前記電池情報に基づき、前記並列電池を管理する指令値を出力する制御部と、を備えたことを特徴とする。
 本願に開示される並列電池管理制御システムは、上記記載の並列電池管理装置と、前記並列電池から前記電流を検出し前記並列電池管理装置に出力する電流検出装置と、前記並列電池から前記電圧を検出し前記並列電池管理装置に出力する電圧検出装置と、前記並列電池の充放電負荷を決定する電力変換装置と、前記電流および前記電圧に基づき前記並列電池管理装置から出力される前記指令値により前記電力変換装置を制御する制御装置と、を備えたことを特徴とする。
 本願によれば、2以上並列接続した並列電池の状態空間モデルに基づき各電池の状態を推定し、推定した状態に基づき充放電電流を制御することで、並列電池の最適な運用が可能となる。
実施の形態1に係る並列電池管理装置を含む並列電池制御システムの構成を示す図である。 実施の形態1に係る並列電池管理装置で管理する並列電池の構成を示す図である。 実施の形態1に係る並列電池管理装置の構成を示す図である。 実施の形態1に係る並列電池管理装置のハードウエアの構成を示す図である。 実施の形態1に係る並列電池管理装置での単電池の等価回路モデルを示す図である。 実施の形態1に係る並列電池管理装置の動作を説明するためのフローチャート図である。 実施の形態1に係る並列電池管理装置で用いられる式18を示す図である。 実施の形態1に係る並列電池管理装置で用いられる式19を示す図である。 実施の形態1に係る並列電池管理装置で用いられる式20を示す図である。 実施の形態1に係る並列電池管理装置で用いられる式21を示す図である。 実施の形態1に係る並列電池管理装置で用いられる式22を示す図である。
 以下、本願を実施するための実施の形態に係る並列電池管理装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
 実施の形態1.
 図1は、実施の形態1に係る並列電池管理装置1を含む並列電池制御システム100の構成を示すブロック図である。図1に示すように、並列電池制御システム100は、並列電池管理装置1と、並列電池2と、電流検出装置3と、電圧検出装置4と、制御装置5と、電力変換装置6とを備える。
 並列電池管理装置1は、並列電池2を管理する装置である。管理とは、並列電池2の性能、内部状態または劣化状態の把握と、並列電池2の充放電時の電流または最大電流の決定とを含む。管理対象の並列電池2は、N個(Nは2以上の任意の自然数)の電池が並列接続されて構成されているものとする。
 図2は、実施の形態1に係る並列電池管理装置1で管理する並列電池2の構成を示すブロック図である。図2に示すように、並列電池2は、2以上の電池21、21、・・・、21が並列に接続されている。また、必須ではないが、各電池の先にはそれぞれスイッチ22、22、・・・、22が備わっていてもよい。また、必須ではないが、1個以上の電池の電流を検出できるよう電流検出器(図示せず)が内部に備わっていてもよい。各列の電池21、21、・・・、21も、単電池とは限らず、単電池の任意の直並列接続で構成された電池モジュールであってもよい。つまり、N並列電池といっても、別の観点でみれば異なる並列接続数M(≠N)によるM並列電池であってもよい。以下では、ある観点での各列を構成するひとかたまりの直並列電池のことを便宜上単電池と呼び、並列電池2と区別する。また、各列の単電池は、異なる特性、異なる劣化度の同種電池であってもよいし、異なる種類、異なる電池製品による異種電池であってもよい。つまり、特性の相異なるN個の電池の並列接続によるN並列電池であってもよい。また、並列電池2が内部に含む電池セルは、典型的にはリチウムイオン電池である。他に、鉛電池、ニッケル水素電池、全固体電池、リチウムイオンキャパシタなどでもよく、任意の電池が含まれていても良い。
 次に、実施の形態1に係る並列電池管理装置1の構成について、図3を参照して説明する。図3は、実施の形態1に係る並列電池管理装置1の構成を示すブロック図である。図3に示すように、並列電池管理装置1は、電池情報提供部11と、状態推定部12と、負荷情報提供部13と、制御部14とを備える。
 なお、並列電池管理装置1は、ハードウエアの一例を図4に示すように、プロセッサ15と記憶装置16から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ15は、記憶装置16から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ15にプログラムが入力される。また、プロセッサ15は、演算結果等のデータを記憶装置16の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 並列電池管理装置1を構成する各部の機能、即ち電池情報提供部11、状態推定部12、負荷情報提供部13、制御部14の機能は、ソフトウェア、ファームウェア、またはそれらの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述されており、記憶装置16に格納されている。プロセッサ15は、記憶装置16に記憶されたプログラムを読み出して、そのプログラムを実行することにより、並列電池管理装置1の各部の機能を実現する。
 電流検出装置3は、図1に示すように、並列電池2の電流Iを検出し出力する。ただし電流検出装置3は、並列電池2の電流Iに加え、1つ以上の単電池i∈{1,2,・・・,N}の電流Iiを検出し出力してもよい。単電池の電圧検出装置4は、並列電池2の電圧Vを検出し出力する。
 以下、時系列データのサンプリング周期はts秒であるとする。
 電池情報提供部11は、図3に示すように、単電池に関する情報を提供する。典型的には、単電池のSOCとOCVとの関係、いわゆるSOC-OCV特性の情報を提供する。または、電気量とOCVとの関係の情報を提供してもよい。また、状態空間モデルに登場するモデルパラメータの一部または全部を提供してもよい。
 状態推定部12は、検出電流と検出電圧と電池情報提供部11から提供される情報に基づいて、並列電池2の状態空間モデルに基づき並列電池2の状態を推定する。具体的な状態空間モデルと状態推定手法については後述する。なお、電池情報提供部11から提供されないモデルパラメータは、状態推定部12が内部に保有しているか、後述する状態とモデルパラメータの同時推定などの公知の方法により推定する。
 負荷情報提供部13は、並列電池2の充放電負荷要求に関する情報を提供する。具体的には、少なくとも並列電池2の電流、電圧、電力のうちの少なくとも2つを含む。負荷情報には、将来の任意の時刻までの予測情報が含まれていてもよい。
 制御部14は、状態推定部12が出力する状態推定値と、電池情報提供部11が出力する電池情報と、負荷情報提供部13が出力する負荷情報と、に基づいて、並列電池2の制御指令値を出力する。具体的には、最大電流および/または最大電力の指令値を出力する。並列電池2においては、同じ電流に対しても、内部状態に応じて、単電池に流れる電流はさまざまな値をとりうる。それゆえ、内部状態に応じて、単電池の仕様、特性などにより定まる単電池の電流上限値を超えないように並列電池2の電流を制限する。また、将来負荷予測が利用できる場合、出力する指令値は、将来の任意の時刻までの最大電流および/または最大電力の時変な指令値であってもよい。並列電池2に対する負荷および内部状態に応じて単電池に流れる電流は時々刻々と変わるため、単電池の電流上限値を超えないようにするための並列電池2への指令値もまた時変のものとなる。
 制御装置5は、制御部14が出力する指令値に従うようにして、電力変換装置6を制御する。
 電力変換装置6は、制御装置5による制御により動作し、制御部14が出力する指令値に従うようにして、並列電池2の充放電負荷を決定する。
 以下、並列電池2の状態空間モデル、状態推定方法、制御方法の詳細な技術内容を説明する。
 <単電池と並列電池の特性>
 並列電池2の電流と電圧の関係式は、並列電池2の電圧と全ての単電池の電圧が等しいから、
Figure JPOXMLDOC01-appb-M000001
と表される。ここで、rは単電池iの直流抵抗、ηは単電池iの直流成分以外の過電圧、OCVは単電池iのOCVを表わす。
 過電圧ηは、電池内部のLiイオンの拡散現象などに由来し、最も簡単には抵抗素子rdiとコンデンサ素子cdiの並列接続によりモデル化される。この場合、過電圧ηは、
Figure JPOXMLDOC01-appb-M000002
となる。ここで、τdi=rdidiは過電圧の時定数である。ただし、過電圧の計算には公知のさまざまなモデルが利用可能であり、過電圧の状態方程式は式(2)に限定されない。たとえば、複数個のCR並列素子を直列接続した構成、カウエル型、フォスター型と呼ばれる構成など、さまざまな構成が利用可能である。
 図5は、式(1)および式(2)で仮定されている単電池iの等価回路モデルを示す図である。ここでは、単電池iの等価回路モデルとして、過電圧の直流成分を表わすr、過渡的な応答を表わすrdiとcdiの並列素子、およびOCVを直列接続したものを用いている。
 単電池の開回路電圧OCVは、単電池の電気量qとの関係を表わす関数fにより、
Figure JPOXMLDOC01-appb-M000003
と求められる。ここで、fはある単調非減少関数であり、区分線形関数、スプライン関数、多項式近似関数、その他任意の関数形であってよい。
 一方、並列電池の電流と単電池の電流とのあいだには、キルヒホッフの電流則により、等式、
Figure JPOXMLDOC01-appb-M000004
が成り立つ。
 よって、式(1)、式(3)および式(4)より、並列電池の電流と電圧の関係は、
Figure JPOXMLDOC01-appb-M000005
となる。
 また、式(1)と式(4)から電圧を消去すると、並列電池の電流と単電池の電流の関係は、
Figure JPOXMLDOC01-appb-M000006
と表される。ここから、
Figure JPOXMLDOC01-appb-M000007
を数値的に計算すれば単電池電流が求まる。しかしながら、計算の効率性、状態空間モデルの構築、状態推定技術の適用を考えたとき、逆行列M-1を直接計算できることが望ましい。とくに、N=2の場合などは容易に計算できるが、N≧3でNが大きくなればなるほど、逆行列の数値計算に必要な計算量は指数的に大きくなる。逆行列M-1は、以下のようにして導出可能である。
 <逆行列の解析解による単電池電流の導出>
 まず、行列Mを、m1×m1、m1×m2、m2×m1、m2×m2のブロック正方行列A、B、C、Dを用いて、
Figure JPOXMLDOC01-appb-M000008
と表せるとする。このとき、Dが正則ならば、Schur補行列が、
Figure JPOXMLDOC01-appb-M000009
と定義される。そして、Sが正則ならば、逆行列に関する等式、
Figure JPOXMLDOC01-appb-M000010
が成り立つことが知られている。この等式を利用すれば、逆行列M-1の計算が右辺の各ブロック要素の計算に帰着されるため、逆行列がより簡単に求まることがある。
 そこで、式(8)に対応するものとして、式(6)の行列Mを、
Figure JPOXMLDOC01-appb-M000011
と表わす。ここで、
Figure JPOXMLDOC01-appb-M000012
はそれぞれ(N-1)×1のベクトルであり、
Figure JPOXMLDOC01-appb-M000013
は(N-1)×(N-1)の対角行列である。このとき、Dの対角成分は正の抵抗値であるからDは正則であり、Schur補行列を、
Figure JPOXMLDOC01-appb-M000014
と定義し計算することができる。このとき、sは明らかに正則だから、式(10)の関係式を利用すると、
Figure JPOXMLDOC01-appb-M000015
となる。ただし、二つ目の等号では、s-1がスカラーであることを用いた。
 以下、式(15)の各ブロック要素を計算すると、(1,2)ブロック要素は、
Figure JPOXMLDOC01-appb-M000016
となる。つぎに、(2,1)ブロック要素は、
Figure JPOXMLDOC01-appb-M000017
となる。さらに、(2,2)ブロック要素は、
Figure JPOXMLDOC01-appb-M000018
となる。
 最後に、各ブロック要素の計算結果に基づき、式(15)を計算すると、
Figure JPOXMLDOC01-appb-M000019
となる。以上より、逆行列を求めることができた。
 よって、単電池電流は
Figure JPOXMLDOC01-appb-M000020
となる。
 <並列電池の状態空間モデル>
 式(3)と式(20)より、単電池iの電気量qに関する状態方程式は、
Figure JPOXMLDOC01-appb-M000021
となる。
 また、単電池iの過電圧ηに関する状態方程式は、式(2)、式(3)および式(20)より、
Figure JPOXMLDOC01-appb-M000022
となる。
 一方、式(5)を変形すると、出力方程式は、
Figure JPOXMLDOC01-appb-M000023
となる。
 ただし、
Figure JPOXMLDOC01-appb-M000024
である。
 よって、式(21)、式(22)および式(23)をまとめると、並列電池の状態空間モデルは、
Figure JPOXMLDOC01-appb-M000025
となる。
 <並列電池の状態空間モデルの線形解析>
 式(25)の非線形性は単電池iのOCV関数fの非線形性に由来するため、これを線形近似することを考える。そのためにまず、並列電池の電気量qに対し並列電池のOCV特性を、
Figure JPOXMLDOC01-appb-M000026
とする。
 このとき、並列電池の休止平衡時の単電池iの電気量を
Figure JPOXMLDOC01-appb-M000027
とすると、q
Figure JPOXMLDOC01-appb-I000028
との間には、
Figure JPOXMLDOC01-appb-M000029
という関係が成り立ち、
Figure JPOXMLDOC01-appb-M000030
はqに対し一意に決まる。
 なお、OCV関数fは、一般的なOCVの計測方法を並列電池に対し適用することでも取得できるし、各単電池のOCV関数fから算出することでも取得できる。後者の方法で算出する場合、具体的には、式(26)および式(28)より、複数のOCVに対し、
Figure JPOXMLDOC01-appb-M000031
の計算を実行し、qとOCVとの一対一の対応関係を取得のうえ関数化すればよい。
 さて、OCV関数f(q)を点、
Figure JPOXMLDOC01-appb-I000032
の周りで線形近似すると、
Figure JPOXMLDOC01-appb-M000033
となる。よって、
Figure JPOXMLDOC01-appb-M000034
となるから、式(21)、式(22)および式(32)より、式(25)の状態方程式は、係数行列A、Aηを用いて、
Figure JPOXMLDOC01-appb-M000035
と線形状態方程式で表すことができる。出力方程式についても同様である。
 このとき、式(33)の状態方程式の解は、初期時刻をt=0、初期状態を、
Figure JPOXMLDOC01-appb-M000036
とすると、
Figure JPOXMLDOC01-appb-M000037
と表わされる。
 状態方程式の解は、並列電池の充放電制御に活用可能である。また、特殊な入力電流のときには式(35)の解析解が得られるため、これを利用すれば精確かつ高速に式(35)を計算することができる。
 一例として、定電流I=Iが継続的に入力されることを仮定すると、式(35)は、
Figure JPOXMLDOC01-appb-M000038
となり、任意の時刻tでの状態が繰り返し計算不要で解析的に求まる。ただし、Eは単位行列である。さらに、
Figure JPOXMLDOC01-appb-M000039
であることから、任意の時刻tでの
Figure JPOXMLDOC01-appb-M000040
が求まる。
 別の例として、電流I=0の休止状態を考える。このとき、式(35)から即座に、
Figure JPOXMLDOC01-appb-M000041
となり、単電池の電流Iについても、
Figure JPOXMLDOC01-appb-M000042
から求まる。以上が線形解析の例である。
 なお、状態空間モデルの構築には自由度がある。たとえば、簡単な変換により、状態量として単電池iの電気量qにかえて単電池iの充電状態SOC=q/FCCを用いた状態空間モデルを構築してもよい。ただし、FCCは単電池iの満充電容量(FCC:Full charge capacity)である。
 たとえば、式(6)は単電池i=1を基準として立式しているため、そこから導かれた状態空間モデルもまた単電池i=1を基準とした式となっているが、i≠1であるような単電池iを基準として立式してもよい。その場合も、本願と同様にして状態空間モデルを導出できる。
 また、状態方程式および/または出力方程式を追加しても良い。たとえば、並列電池の電気量qに関する状態方程式、
Figure JPOXMLDOC01-appb-M000043
を加えてもよい。並列電池の電気量qと各単電池の電気量qとの間には、
Figure JPOXMLDOC01-appb-M000044
の関係が常に成り立つから、qを状態変数に含める場合、q、・・・、qのうちの任意の1個は必ずしも状態変数に含まなくてもよいことになる。
 また、qとq、・・・、qのN+1個を全て状態変数に含めたうえで、式(42)でqを右辺に移行した等式を出力方程式に含めてもよい。この場合、後述するカルマンフィルタなどの推定手法を適用するにあたっては、式(42)に対する観測ノイズをゼロとすればよい。ただし、式(42)をソフト制約と捉え、微小な観測ノイズを仮定してモデル化することも可能である。
 また、状態変数に他のモデルパラメータ、たとえばr、rdi、cdi、τdiなどを含めてもよい。こうした方法は、後述する推定手法を適用するにあたり、状態とパラメータの同時推定を実現する公知の技術である。この方法を用いれば、モデルパラメータの正しい値を事前に保有しておく必要がなくなり、モデルパラメータの個体差、温度依存性、劣化依存性などに由来する変動にも対応可能となる。
 また、ある単電池pの電流Iが計測できる場合には、式(20)より、
Figure JPOXMLDOC01-appb-M000045
を出力方程式に加えてもよい。2個以上の単電池の電流が計測できる場合、各電池に対応する複数の式(43)を出力方程式に加えてもよい。
 このように、単電池のモデルの種類、状態変数の設定などにより、状態空間モデルの数式は異なってくるが、本願と同様または類似の手順によりN並列電池の状態空間モデルを導出可能であり、N並列電池の状態空間モデルは本願に記述した表現のみに制限されない。
 <状態・パラメータ推定手法の適用方法>
 構築した状態空間モデルに対しては、既存のさまざまな状態・パラメータ推定手法が適用可能である。たとえば、典型的には最小二乗法、カルマンフィルタ、粒子フィルタ、MCMC(Markov chain Monte Carlo methods)等である。これらの技術には、オフラインデータ一括処理の手法、オンライン処理に適した逐次推定手法、両者の中間的な固定区間一括処理の手法など、さまざまなバリエーションが存在し、問題設定、利用可能な計算資源等に応じて使い分けることが可能である。
 また、状態空間モデルの種類に応じて異なる手法が知られている。たとえば、カルマンフィルタにおいては、線形状態空間モデルには線形カルマンフィルタ、非線形カルマンフィルタにはEKF(Extended Kalman Filter)、UKF(Unscented Kalman Filter)などの手法を適用することが可能である。
 推定技術は、公知の方法により連続時間の状態空間モデルを離散時間の状態空間モデルに変換することで適用可能となる。具体的には、微分方程式の数値解法であるオイラー法、ルンゲ=クッタ法などが利用可能である。ゼロ次ホールドなどによる変換も利用可能である。
 これらの方法により、式(25)は、
Figure JPOXMLDOC01-appb-M000046
に変換される。ただし、離散時間kと連続時間tの間にはサンプリング周期tに対しt=ktの関係が成り立つ。
 <並列電池管理装置による管理の一例>
 並列電池管理装置1による管理の一例を、図6を用いて説明する。
 まず最初に、状態推定部12が、並列電池2の電流・電圧データと電池情報を取得する(図6のステップS601)。
 続いて、状態推定部12が、取得したデータから並列電池2の所定の状態空間モデルから所定の推定手法により並列電池2の状態を推定する(図6のステップS602)。
 次いで、制御部14が、電池情報と状態推定値と負荷情報から制御指令値を決定する(図6のステップS603)。
 続いて、制御部14が、決定した制御指令値を制御装置5に送信する(図6のステップS604)。
 次いで、制御装置5が、送信されてきた制御指令値に従い電力変換装置6を制御する(図6のステップS605)。
 最後に、電力変換装置6が、制御装置5の制御により動作し、並列電池2の充放電を制御する(図6のステップS606)。
 なお、負荷情報として並列電池への要求電力負荷pのみが与えられることもある。この場合にも、P=VIの関係と式(5)とから、以下のように電圧を消去して並列電池の電流を求めることができる。
Figure JPOXMLDOC01-appb-M000047
 この等式を用いれば、電力負荷情報に対しても並列電池の状態空間モデルを利用可能である。
 このように、本願で定式化した状態空間モデルを用いることで、任意のNに対するN並列電池動特性を高精度かつに算出できる。また、将来の負荷情報が与えられている場合、本モデルと将来負荷に基づき並列電池の将来に渡る電圧の算出することができ、充放電制御などに活用できる。とくに、N≧3であるような多並列電池であっても、Nの大きさに関わらず状態空間モデルを構築可能である。
 式(7)の逆行列M-1の解析解を用いた並列電池の状態空間モデルを構成することで、Nが大きい場合にも少ない計算量で電池動作を計算可能である。一般に、N×Nの逆行列の数値計算には計算手法に応じて0(N)から0(N)程度の計算量が必要となるため、並列数Nが大きいほど逆行列の数値計算にはより大きな計算コストがかかる。ゆえに、とくにN≧3であるような多並列電池においては、逆行列の解析解を用いることのメリットが大きくなる。また、並列電池の電流を入力とした状態方程式を陽に記述でき、公知の推定技術を容易に適用することが可能である。
 単電池の過電圧をコンデンサ素子と抵抗素子の組み合わせで表現し、コンデンサの電圧または電気量を状態方程式に含めることで、より高精度に並列電池の過渡応答の算出、内部状態の推定などを実行可能となる。
 状態空間モデルを線形近似した線形状態空間モデルを構成することで、計算コストの削減および特別な条件下での解析解の導出が可能となる。導出した解析解は計算コストの削減につながり、かつ最適制御に活用可能となる。
 単電池の電流と並列電池の電流との関係式を出力方程式に含めることで、並列電池の電流に加え1個以上の単電池の電流も計測できる状況において、計測した単電池の電流を状態推定に活用し推定精度を向上させることが可能となる。
 状態空間モデルの状態推定において、たとえば非線形カルマンフィルタを用いることで、状態空間モデルが非線形であっても精度良く内部状態を推定可能となる。また、1個以上の単電池の電流も計測できる状況においては、カルマンフィルタにより計測値を最大限活用して推定精度を向上させることができる。
 非線形カルマンフィルタにおいて、少なくとも1つのモデルパラメータ、たとえば単電池の満充電容量FCC、抵抗素子r、rdi、コンデンサ素子cdiなど、を状態変数に含めることで、モデルパラメータが未知の場合、あるいは変動する場合などにおいても推定することが可能となる。
 状態空間モデルに基づく状態推定値を用いることで、並列電池の充放電を最適に制御することが可能となる。並列電池のある電流と電圧を実現するにあたり、単電池の内部状態はさまざま組み合わせが考えられ、それに応じて単電池の電流もさまざまに異なる値となる。それゆえ、状態推定値を利用することで、単電池の電流を把握し、単電池が劣化しないように並列電池の電流を制限したり、逆に性能を高めるように電流制限を緩めたりすることが可能となる。たとえば、放電の時間が続き単電池のOCVの偏りが大きくなっている場合、そこからさらに放電するときの並列電池の電流はより厳しく制限する必要がある。逆に、そこから充電に切り替わる場合は、放電側にOCVの偏りが生じているぶん、短時間であれば通常時よりも大電流で充電できる可能性がある。状態空間モデルおよび状態推定結果を利用することで、こうした充放電制御を定量的に精度よく実行することができる。なお、単電池の最大電流は、仕様書で定められたCレート、電池の温度、SOC、劣化度などの条件を考慮して決めればよい。
 並列電池の制御指令値は、負荷要求に対し制限をかけるものとして常に行われる必要はなく、そのとき、あるいは将来のある時刻において並列電池が出せる最大電流または最大電力の値であってもよい。このようにすれば、通常時は負荷要求を満たしつつ、並列電池にとって過酷な条件で使用された場合にのみ並列電池の充放電が制限されることになるので、ユーザビリティの低下を最小限に抑えることができる。
 並列電池動作中の単電池のOCVの偏りが並列電池の性能および単電池の劣化に影響を及ぼす。それゆえ、単電池のOCVの推定値と、並列電池のOCV、すなわち単電池の平衡時のOCV、との差を把握し、それに基づいて制御指令値を決定するようにすれば、並列電池の予期せぬ性能低下を未然に防いだり、単電池の劣化を抑制することが可能となる。
 将来の負荷要求が利用可能な場合、状態空間モデルと将来負荷に基づき並列電池の将来に渡る電圧の算出することができ、充放電制御などに活用可能となる。
 定電流が続くときには、線形状態空間モデルの状態方程式の解析解が利用可能である。解析解を用いれば、数値計算不要で瞬時に将来の内部状態および単電池電流を算出可能であり、現在から将来に渡る制御指令値を決定するうえで有用である。
 同様に、電流ゼロの休止が続くときには、技術詳細で説明したとおり、線形状態空間モデルの状態方程式の解析解が利用可能である。とくに、休止中は並列電池のOCVが一定であり、単電池のOCVが並列電池のOCVに漸近していくことから、並列電池のOCVに対する電気量qに対応する平衡時の単電池電気量
Figure JPOXMLDOC01-appb-I000048
のまわりでの線形近似の近似精度は高いと考えられる。それゆえ、精度良く単電池OCVの変動を予測して制御指令値の算出に活用することができる。
 並列電池、電流検出装置、電圧検出装置、並列電池管理装置、制御装置、電力変換器を含む制御システムを構成することで、実際に電池の充放電を効率的に制御するシステムを実現することができる。
 以上のように、本実施の形態1に係る並列電池管理装置1によれば、2以上の電池が並列接続された並列電池2を管理する並列電池管理装置1であって、電流検出装置3が検出する並列電池2の検出電流および電圧検出装置4が検出する並列電池2の検出電圧に基づく並列電池2の電池情報を提供する電池情報提供部11と、並列電池2の状態を表す状態方程式からなる状態空間モデルを用いて、検出電流、検出電圧および電池情報に基づき、並列電池2の内部状態を推定し、状態推定値を出力する状態推定部12と、並列電池2の充放電負荷に関する負荷情報を提供する負荷情報提供部13と、状態推定値、電池情報および負荷情報に基づき、並列電池2を管理する指令値を出力する制御部14と、を備えるようにしたので、並列電池の最適な運用が可能となる。
 本願は、様々な例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の構成要素と組み合わせる場合が含まれるものとする。
 1 並列電池管理装置、2 並列電池、3 電流検出装置、4 電圧検出装置、5 制御装置、6 電力変換装置、11 電池情報提供部、12 状態推定部、13 負荷情報提供部、14 制御部、100 並列電池制御システム。

Claims (17)

  1.  2以上の電池を並列接続した並列電池を管理する並列電池管理装置であって、
     電流検出装置が検出する前記並列電池の検出電流および電圧検出装置が検出する前記並列電池の検出電圧に基づき、前記並列電池の電池情報を提供する電池情報提供部と、
     前記並列電池の状態を表す状態方程式からなる状態空間モデルを用いて、前記検出電流、前記検出電圧および前記電池情報に基づき、前記並列電池の内部状態を推定し、状態推定値を出力する状態推定部と、
     前記状態推定値および前記電池情報に基づき、前記並列電池を制御する指令値を出力する制御部と、
    を備えたことを特徴とする並列電池管理装置。
  2.  前記並列電池は、3以上の前記電池を並列接続したことを特徴とする請求項1に記載の並列電池管理装置。
  3.  前記電池情報は、前記並列電池を構成する電池のSOCとOCVとの関係および電気量とOCVとの関係の情報を含むことを特徴とする請求項1または請求項2に記載の並列電池管理装置。
  4.  前記並列電池の充放電負荷に関する負荷情報を提供する負荷情報提供部を備え、前記制御部は、前記状態推定値、前記電池情報および前記負荷情報に基づき、前記並列電池を制御する指令値を出力することを特徴とする請求項1から請求項3のいずれか1項に記載の並列電池管理装置。
  5.  前記負荷情報は、現在要求する前記並列電池の電流値、電圧値および電力値のうちの少なくとも2つの情報を含むことを特徴とする請求項4に記載の並列電池管理装置。
  6.  前記負荷情報は、将来の予測される負荷の情報を含み、前記制御部は、前記負荷の予測に基づき前記指令値を算出することを特徴とする請求項5に記載の並列電池管理装置。
  7.  前記状態空間モデルは、前記並列電池の電圧等式と電流等式で構成される連立方程式の解析解に基づくことを特徴とする請求項1から請求項6のいずれか1項に記載の並列電池管理装置。
  8.  前記状態空間モデルは、前記並列電池の過電圧を抵抗素子とコンデンサ素子との組み合わせで表現した等価回路モデルを用い、前記コンデンサ素子の電荷量または電圧を状態量として含むことを特徴とする請求項1から請求項7のいずれか1項に記載の並列電池管理装置。
  9.  前記状態空間モデルは、前記並列電池の線形状態空間モデルであることを特徴とする請求項1から請求項8のいずれか1項に記載の並列電池管理装置。
  10.  前記制御部は、前記並列電池を構成する前記電池のOCVの推定値と前記並列電池のOCVの推定値との差に基づき前記指令値を算出することを特徴とする請求項1から請求項9のいずれか1項に記載の並列電池管理装置。
  11.  前記制御部は、前記指令値を算出する際に前記線形状態空間モデルにおける定電流負荷時の解析解を利用することを特徴とする請求項9に記載の並列電池管理装置。
  12.  前記制御部は、前記指令値を算出するに際に前記線形状態空間モデルにおける休止時の解析解を利用することを特徴とする請求項9に記載の並列電池管理装置。
  13.  前記状態推定部は、前記電流検出装置により検出される前記並列電池を構成する少なくとも1の前記電池の検出電流を用いて前記内部状態を推定し、前記状態空間モデルは、出力方程式に前記電池の検出電流と前記並列電池の前記検出電流との関係式をさらに含むことを特徴とする請求項1から請求項12のいずれか1項に記載の並列電池管理装置。
  14.  前記状態推定部は、前記内部状態の推定において非線形カルマンフィルタを用いることを特徴とする請求項1から請求項13のいずれか1項に記載の並列電池管理装置。
  15.  前記状態空間モデルにモデルパラメータの少なくとも1つを状態変数として含めることを特徴とする請求項1から請求項14のいずれか1項に記載の並列電池管理装置。
  16.  前記指令値は、電流または電力の上限の指令値であることを特徴とする請求項1から請求項15のいずれか1項に記載の並列電池管理装置。
  17.  請求項1から請求項16のいずれか1項に記載の並列電池管理装置と、
     前記並列電池から前記検出電流を検出し前記並列電池管理装置に出力する前記電流検出装置と、
     前記並列電池から前記検出電圧を検出し前記並列電池管理装置に出力する前記電圧検出装置と、
     前記並列電池の充放電負荷を決定する電力変換装置と、
     前記検出電流および前記検出電圧に基づき前記並列電池管理装置から出力される前記指令値により前記電力変換装置を制御する制御装置と、
    を備えたことを特徴とする並列電池制御システム。
PCT/JP2022/023402 2022-06-10 2022-06-10 並列電池管理装置および並列電池制御システム WO2023238363A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022562691A JP7317247B1 (ja) 2022-06-10 2022-06-10 並列電池管理装置および並列電池制御システム
PCT/JP2022/023402 WO2023238363A1 (ja) 2022-06-10 2022-06-10 並列電池管理装置および並列電池制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023402 WO2023238363A1 (ja) 2022-06-10 2022-06-10 並列電池管理装置および並列電池制御システム

Publications (1)

Publication Number Publication Date
WO2023238363A1 true WO2023238363A1 (ja) 2023-12-14

Family

ID=87378583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023402 WO2023238363A1 (ja) 2022-06-10 2022-06-10 並列電池管理装置および並列電池制御システム

Country Status (2)

Country Link
JP (1) JP7317247B1 (ja)
WO (1) WO2023238363A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122622A (ja) * 2016-01-06 2017-07-13 株式会社Gsユアサ 状態推定装置、状態推定方法
JP2018077076A (ja) * 2016-11-08 2018-05-17 本田技研工業株式会社 二次電池の状態推定装置及び二次電池の状態推定方法
WO2021010113A1 (ja) * 2019-07-18 2021-01-21 パナソニックIpマネジメント株式会社 管理装置、及び電源システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872758B2 (ja) 2003-01-08 2007-01-24 株式会社日立製作所 電源制御装置
JP2015052461A (ja) 2013-09-05 2015-03-19 株式会社豊田自動織機 蓄電システムおよび充電率推定方法
JP2019058050A (ja) 2017-09-22 2019-04-11 住友電気工業株式会社 充電量調整装置、電池装置、充電量調整方法及びコンピュータプログラム
JP6978339B2 (ja) 2018-02-16 2021-12-08 株式会社半導体エネルギー研究所 二次電池の充電状態推定装置及び異常検出装置、及び二次電池の管理システム
WO2022014124A1 (ja) 2020-07-16 2022-01-20 株式会社日立製作所 電池管理装置、電池管理方法、電力貯蔵システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122622A (ja) * 2016-01-06 2017-07-13 株式会社Gsユアサ 状態推定装置、状態推定方法
JP2018077076A (ja) * 2016-11-08 2018-05-17 本田技研工業株式会社 二次電池の状態推定装置及び二次電池の状態推定方法
WO2021010113A1 (ja) * 2019-07-18 2021-01-21 パナソニックIpマネジメント株式会社 管理装置、及び電源システム

Also Published As

Publication number Publication date
JPWO2023238363A1 (ja) 2023-12-14
JP7317247B1 (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
Misyris et al. State-of-charge estimation for li-ion batteries: A more accurate hybrid approach
Zhang et al. Robust and adaptive estimation of state of charge for lithium-ion batteries
Diao et al. Active battery cell equalization based on residual available energy maximization
Xiong et al. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
He et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles
Zou et al. A framework for simplification of PDE-based lithium-ion battery models
Saji et al. SoC estimation of lithium ion battery using combined coulomb counting and fuzzy logic method
Kwak et al. Parameter identification and SOC estimation of a battery under the hysteresis effect
Yao et al. Modeling of lithium-ion battery using MATLAB/simulink
Malysz et al. Battery state-of-power peak current calculation and verification using an asymmetric parameter equivalent circuit model
Cen et al. Lithium‐ion battery SOC/SOH adaptive estimation via simplified single particle model
Lawder et al. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications
Xiong et al. Modeling for lithium-ion battery used in electric vehicles
Wang et al. Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation
Berrueta et al. Comparison of State-of-Charge estimation methods for stationary Lithium-ion batteries
Omar et al. Optimization of an advanced battery model parameter minimization tool and development of a novel electrical model for lithium‐ion batteries
Meng et al. Comparative study of lithium‐ion battery open‐circuit‐voltage online estimation methods
Firouz et al. Electro-thermal modeling of new prismatic lithium-ion capacitors
Kim et al. Maximum power estimation of lithium-ion batteries accounting for thermal and electrical constraints
JP2013183509A (ja) 充放電量予測システム及び充放電量予測方法
Koga et al. State estimation for lithium-ion batteries with phase transition materials via boundary observers
Lin et al. Active equalization control strategy of Li‐ion battery based on state of charge estimation of an electrochemical‐thermal coupling model
Rahul et al. Comparative study on modeling and estimation of State of Charge in battery
Rajamand Analysis of effect of physical parameters on the performance of lead acid battery as efficient storage unit in power systems using new finite-element-method-based model
Alsabari et al. Modeling and validation of lithium-ion battery with initial state of charge estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945863

Country of ref document: EP

Kind code of ref document: A1