WO2023237123A1 - 混合动力车辆的故障提示方法和车辆 - Google Patents
混合动力车辆的故障提示方法和车辆 Download PDFInfo
- Publication number
- WO2023237123A1 WO2023237123A1 PCT/CN2023/099739 CN2023099739W WO2023237123A1 WO 2023237123 A1 WO2023237123 A1 WO 2023237123A1 CN 2023099739 W CN2023099739 W CN 2023099739W WO 2023237123 A1 WO2023237123 A1 WO 2023237123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fault
- level
- vehicle
- status information
- battery
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000005540 biological transmission Effects 0.000 claims description 61
- 230000015654 memory Effects 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- 230000005236 sound signal Effects 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 description 13
- 238000007726 management method Methods 0.000 description 6
- 238000013024 troubleshooting Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 208000032953 Device battery issue Diseases 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0061—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0084—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q9/00—Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present disclosure relates to the field of hybrid vehicles, and specifically, to a hybrid vehicle fault prompting method and vehicle.
- the system fault prompting method of pure electric vehicles cannot accurately prompt the system faults of hybrid vehicles.
- the composition and functions of hybrid vehicles are becoming increasingly complex.
- the drive motor or generator fails to work, the engine can still drive the vehicle.
- the motor will generate counter electromotive force, permanently damaging the coil structure of the motor.
- pure electric vehicles Without a dual-motor configuration, the system fault prompting method of pure electric vehicles cannot provide fault prompts for the above-mentioned system faults.
- most of the focus is on integrating all the faults of electric vehicles into one system fault to provide prompts and faults. Processing can easily cause users to misjudge system faults. Therefore, it is very necessary to accurately provide fault prompts for system faults in hybrid vehicles.
- the main purpose of the present disclosure is to provide a fault prompting method and vehicle for a hybrid electric vehicle, so as to solve the problem in the prior art that fault prompts cannot be accurately and effectively performed on various systems of the hybrid electric vehicle.
- determining the corresponding fault type when a fault occurs, includes: when it is determined that a fault occurs, determining the system to which the component corresponding to the status information belongs; and determining the corresponding fault type according to the system to which it belongs. , when the system to which it belongs is an electric drive system, determine the corresponding fault type to be the electric drive fault type; when the system to which it belongs is a battery system, determine the fault type to be a battery fault type; when the system to which it belongs is an electronic control system In this case, it is determined that the fault type is an electronic control fault type.
- the method when it is determined that a fault occurs, includes: determining a corresponding fault level according to the content of the fault, wherein the fault level represents the severity of the fault among all faults of the component; according to the fault level and At least one of the status information determines the fault level, where the fault level represents the severity of the fault in all faults of the vehicle; issuing prompt information includes: issuing corresponding prompt information according to the fault level.
- determining the fault level based on at least one of the fault level and the status information includes: determining the fault level based on the status information and the level of the fault.
- determining the fault level according to the status information and the level of the fault includes: in the case of a first level three fault of the drive motor or a second level three fault of the generator, determining the level of the electric drive system.
- the fault level is the first fault level; when the status information indicates that the power transmission mode of the vehicle is in parallel mode and the first level four fault occurs in the generator, the status information indicates that the power transmission mode is in parallel mode and the first level five fault occurs in the generator.
- determining the fault level according to the fault level includes: when the third level three fault occurs in the battery, determining the fault level of the battery system as the first fault level; when the fifth level four fault occurs in the battery In the case of a level 5 fault or the fifth level 5 failure of the battery, the fault level of the battery system is determined to be the second level of failure; in the case of a level 6 failure of the battery, a level 7 failure of the battery, or an eighth level failure of the battery, the fault level of the battery system is determined to be the level 2 fault.
- the fault level of the battery system is the third fault level.
- prompt information is issued, including: issuing corresponding prompt light signals, prompt sound signals, and text information.
- a vehicle including: one or more processors, memories and one or more programs, wherein the above one or more programs are stored in the above memory, And configured to be executed by the above-mentioned one or more processors, the above-mentioned one or more programs include a fault prompting method for executing any one of the above-mentioned hybrid vehicles.
- Figure 1 shows a flow chart of a fault prompting method for a hybrid vehicle according to an embodiment of the present disclosure
- Figure 3 shows a flowchart 1 of a fault prompting method for a hybrid vehicle based on a vehicle controller according to an embodiment of the present disclosure
- a fault prompting method for a hybrid vehicle is provided.
- determining the corresponding fault type includes: when it is determined that a fault occurs, determining the system to which the component corresponding to the status information belongs; determining the corresponding component according to the system to which it belongs.
- Fault type when the system to which it belongs is an electric drive system, determine the corresponding fault type to be an electric drive fault type.
- the system to which it belongs is a battery system
- the system to which it belongs is an electronic control system
- determine the fault type to be a battery fault type In the case of the system, it is determined that the fault type is an electronic control fault type.
- faults are divided into three categories according to the systems they belong to, namely electric drive system faults, battery system faults, and electronic control system faults.
- the three fault types are individually prompted and Troubleshooting helps with troubleshooting and analysis.
- the electric drive system failure includes drive motor failure and generator failure
- the battery system failure includes battery failure
- the electronic control system failure includes other vehicle failures other than the electric drive system and battery system, including but not limited to clutch failure. , chip supply voltage failure, brake failure, etc., the system will classify the faults into three fault types.
- the fault level of The electric drive system is determined when the fault and status information represent that the power transmission mode is in non-parallel mode and the fourth level four fault occurs in the drive motor, or the status information represents that the power transmission mode is in parallel mode and the fourth level five fault occurs in the drive motor.
- the fault level is the third fault level, where the larger the value of the fault level corresponding to the component is, the greater the severity is, and the severity of the first fault level to the third fault level corresponding to the fault increases in sequence.
- the fault level corresponding to the electric drive system is confirmed based on at least one of the fault level and status information of the drive motor or generator. The greater the value of the fault level of the drive motor or generator, the greater the severity of the fault.
- the severity of the fault level of the electric drive system increases.
- the degree of impact on the electric drive system is determined by the failure of the drive motor or generator, and the electric drive system is accurately determined. Corresponding fault level of the drive system to achieve effective fault prompts for the electric drive system.
- determining the fault level according to the fault level includes: when the third level three fault occurs in the battery, determining the fault level of the battery system as the first fault level; when the fifth level fault occurs in the battery In the case of a fourth-level fault or a fifth fifth-level fault in the battery, the fault level of the battery system is determined to be the second fault level; in the case of a sixth-level fault in the battery, a seventh-level fault in the battery, or an eighth-level fault in the battery , determine the fault level of the battery system as the third fault level.
- the fault level corresponding to the battery system is confirmed based on the fault level of the battery. The larger the value of the battery fault level, the greater the severity of the fault. As the value of the battery fault level increases, the fault level of the battery is determined. The degree of impact on the battery system accurately determines the corresponding fault level of the battery system, so as to effectively provide fault prompts for battery system faults.
- the fault level is determined based on at least one of the fault level and status information, including: the control pin of the vehicle's low-voltage management relay is in a short-circuit state, and the vehicle's brake pedal is in a differential fault state.
- the fault level of the electronic control system is determined to be the first fault level; when the vehicle's clutch is in a state that cannot be combined, the clutch is in an abnormal torque transmission state, and the power transmission mode is in parallel mode and the generator is in a torque fault state, the node corresponding to the vehicle's on-board DC transformer is in a missing state, the node corresponding to the vehicle's electronic shifter is in a missing state, and the node corresponding to the vehicle's gateway is in a missing state, determine the electronic control
- the system's fault level is the second fault level; when the vehicle's hybrid CAN bus is in a closed state, the vehicle's transmitter controller is in a communication failure state, the power transmission mode is in a non-parallel state and the clutch is in an inseparable state, and the vehicle's battery management When the node corresponding to the system is in a missing state and the node corresponding to the front motor of the vehicle is in a
- electronic control system faults include other vehicle faults besides the electric drive system and battery system, including but not limited to clutch faults, chip supply voltage faults, brake faults, etc.
- the electronic control system faults can be accurately determined through other vehicle faults.
- the corresponding fault level of the system is used to effectively provide fault prompts for faults in the electronic control system.
- the electronic control system may have multiple components sending faults at the same time. Faults with higher fault levels need to be processed in order. Based on other vehicle faults, confirm the corresponding faults of the electronic control system. Fault level: When the hybrid vehicle model is different, the corresponding fault level of the electronic control system is different.
- issuing prompt information includes: issuing corresponding prompt light signals, prompt sound signals, and text messages.
- prompt information is sent to the dashboard.
- the fault levels of different systems correspond to different prompt messages. It is intended to remind the user of the degree of system failure and achieve the purpose of helping the user solve the fault.
- the method further includes: when the fault level is the second fault level, limiting the vehicle speed and the vehicle's output power information; when the fault level is the third fault level, It is prohibited to output the driving power information of the vehicle.
- the fault level when the fault level is the second fault level, the fault has affected the driving of the vehicle, and the speed of the vehicle should be limited.
- the fault level is the third fault level, the fault has caused the vehicle to fail. To continue driving, you need to stop safely as soon as possible and wait for rescue, which reduces the driving risks to users and ensures users' driving safety.
- the vehicle speed is preferably limited to less than 40km/h, and the fault needs to be checked at an after-sales service point as soon as possible to prevent the vehicle from needing repairs. Under such circumstances, driving at a relatively high speed can easily cause danger to users.
- Embodiments of the present disclosure provide a vehicle, including: one or more processors, a memory, and one or more programs, wherein the above one or more programs are stored in the above memory and configured to be configured by the above one or more programs A plurality of processors are executed, and the above-mentioned one or more programs include a fault prompting method for executing any one of the above-mentioned hybrid vehicles.
- the embodiment of the present disclosure also provides a fault prompting device for a hybrid vehicle. It should be noted that the fault prompting device for a hybrid vehicle according to the embodiment of the present disclosure can be used to perform the method provided by the embodiment of the present disclosure. A fault prompt method for hybrid electric vehicles. A fault prompting device for a hybrid vehicle provided by an embodiment of the present disclosure is introduced below.
- the receiving unit 201 is configured to receive status information, which is fault-related information obtained by detecting components of the vehicle; then, the first determining unit 202 is configured to process the status information, Determine whether the component corresponding to the status information is faulty; finally, the second determination unit 203 is configured to determine the corresponding fault type and issue prompt information in the event of a fault.
- the prompt information at least characterizes the fault type, and the fault type is used to characterize The system where the fault is located.
- the corresponding fault type is determined, and prompt information that at least characterizes the system where the fault is located is issued, thereby enabling accurate prompt information corresponding to the system failure to be issued, and solving the problems in the existing technology. The problem of not being able to accurately and effectively provide fault prompts for various systems of hybrid vehicles.
- the hybrid vehicle in the present disclosure can be a dual-motor configuration, which is one of the many configurations of hybrid vehicles. It is composed of a drive motor, an engine, a generator, a clutch, and a power battery. Different configurations have different Connection methods and different power transmission paths. Among them, the series mode has only one power transmission path. The failure of any link in the power transmission path of the series mode will have an impact on the entire power transmission path. The parallel mode has more than one power transmission path. The parallel mode The failure of a certain link in one power transmission path will not have a direct impact on the other power transmission path.
- the hybrid vehicle in this disclosure has a dual-motor configuration, that is, it has a drive motor, an engine, and a generator at the same time.
- the status information in this disclosure is the power transmission mode corresponding to the wheels of the hybrid vehicle, which is divided into parallel mode and non-parallel mode.
- the parallel mode or non-parallel mode refers to the connection mode of power in the transmission path of the hybrid vehicle.
- the power corresponding to the wheels is provided by the engine, generator, or drive motor.
- the non-parallel mode includes: series mode, series to parallel The intermediate mode of transition, the intermediate mode of transition from parallel to series.
- the electric drive system failure includes drive motor failure and generator failure
- the battery system failure includes battery failure
- the electronic control system failure includes other vehicle failures other than the electric drive system and battery system, including but not limited to clutch failure. , chip supply voltage failure, brake failure, etc., the system will classify the faults into three fault types.
- the device when it is determined that a fault occurs, includes: a third determination unit configured to determine a corresponding fault level according to the content of the fault, wherein the fault level represents the occurrence of the fault in all parts of the component. the severity of the fault; the fourth determination unit is configured to determine the fault level based on at least one of the fault level and status information, Among them, the fault level represents the severity of the fault in all faults of the vehicle; the issuing unit sends out prompt information, including: issuing corresponding prompt information according to the fault level.
- fault levels are used for different faults of the same component, achieving the purpose of distinguishing the fault levels of the same component, and further distinguishing the fault levels of the system based on at least one of the fault level and status information of the component.
- the purpose of accurately prompting system faults is achieved.
- the same component may fail to varying degrees.
- the battery can be divided into one-level faults to eight-level faults according to the degree of failure, and the degree of failure increases as the number of levels increases.
- the vehicle's fault level is divided into three types.
- the prompt information sent includes prompt text and prompt sound.
- the fault level can be confirmed based on the battery's fault level, and then the battery system The fault will send out corresponding prompt information, and the fault level will be confirmed based on the fault level and status information of the drive motor, and then the corresponding prompt message will be issued for the electric drive system failure.
- Level A fault means: the fault will not affect driving in the short term, but it will not recover on its own. Human intervention is still required to troubleshoot and resolve the fault
- Level B fault means: The fault has affected the driving, and the vehicle speed is limited to less than 40km/h. You need to go to the after-sales service point to troubleshoot the fault as soon as possible;
- a C-level fault means: the fault prevents the vehicle from continuing to drive, and you need to stop the vehicle safely as soon as possible and wait for rescue.
- the fourth determination unit includes: a third determination subunit configured to determine the fault level according to the status information and the level of the fault.
- the fault level is determined based on the status information and fault level of the component, thereby avoiding damage to the component due to a single fault judgment condition of the component.
- a level 4 fault occurs in the drive motor in parallel mode and a level 4 fault in the drive motor in non-parallel mode.
- the faults belong to different fault levels. Since the clutch is in a closed state when the drive motor is in parallel mode, if a level four fault occurs in the drive motor, the fault itself will not affect the engine's output power to the wheels, but at this time it is necessary to limit the vehicle speed and output power, so the fault level of the electric drive system needs to be improved to avoid damage to the drive motor due to the generation of counter electromotive force.
- the severity of the fault level to the third fault level increases in sequence.
- the fault level and status information of the drive motor or generator confirm the fault level corresponding to the electric drive system.
- the larger the value of the fault level of the drive motor or generator the greater the severity of the fault.
- the severity of the fault level of the electric drive system also increases.
- the degree of impact on the electric drive system is determined through the failure of the drive motor or generator, and the corresponding faults of the electric drive system are accurately determined. Fault level to achieve effective fault prompts for the electric drive system.
- the fourth determination unit including: a fourth determination subunit, is configured to determine that the fault level of the battery system is the first fault level when a third level three fault occurs in the battery. ;
- the fifth determination subunit is configured to determine the fault level of the battery system as the second fault level when a fifth level four fault occurs in the battery or a fifth level five fault occurs in the battery;
- the sixth determination subunit It is configured to determine the fault level of the battery system to be the third fault level when a level 6 fault occurs in the battery, a level 7 fault occurs in the battery, or a level 8 fault occurs in the battery. In this device, the fault level corresponding to the battery system is confirmed based on the fault level of the battery.
- the fault level of the electronic control system is determined to be third. Failure level.
- electronic control system faults include other vehicle faults besides the electric drive system and battery system, including but not limited to clutch faults, chip supply voltage faults, brake faults, etc.
- the electronic control system can be accurately determined through other vehicle faults.
- the corresponding fault level of the system is used to effectively provide fault prompts for faults in the electronic control system.
- the electronic control system may have multiple components sending faults at the same time. Faults with higher fault levels need to be processed in order. Based on other vehicle faults, confirm the corresponding faults of the electronic control system. Fault level: When the hybrid vehicle model is different, the corresponding fault level of the electronic control system is different.
- the device further includes: a limiting unit configured to limit the speed of the vehicle and the output power information of the vehicle when the fault level is the second fault level; a prohibiting unit configured to When the fault level is the third fault level, it is prohibited to output the driving power information of the vehicle.
- a limiting unit configured to limit the speed of the vehicle and the output power information of the vehicle when the fault level is the second fault level
- a prohibiting unit configured to When the fault level is the third fault level, it is prohibited to output the driving power information of the vehicle.
- the fault level when the fault level is the second fault level, the fault has affected the driving of the vehicle, and the speed of the vehicle should be limited.
- the fault level is the third fault level, the fault has caused the vehicle to fail. To continue driving, you need to stop safely as soon as possible and wait for rescue, which reduces the driving risks to users and ensures users' driving safety.
- the vehicle speed is preferably limited to below 40km/h, and the fault needs to be checked at an after-sales service point as soon as possible to prevent the vehicle from needing repairs. Under such circumstances, driving at a relatively high speed can easily cause danger to users.
- Figure 3 shows a flowchart 1 of a fault prompting method for a hybrid vehicle based on a vehicle controller according to an embodiment of the present disclosure.
- the vehicle controller Receive signals corresponding to components calculated and collected from various controllers and sensors.
- the vehicle controller interprets and analyzes the input signals to diagnose and identify the fault status of the current component.
- the fault status includes fault level and/or status information, and Store fault status.
- Table 2 and Table 3 determine the fault level of the system, and then take corresponding fault handling according to Table 4, Table 5 and Table 6 according to the fault level of the system, and at the same time issue a fault prompt message to achieve Accurately sending out prompt information corresponding to system faults solves the problem in the existing technology that cannot accurately and effectively provide fault prompts for various systems of hybrid vehicles.
- vehicle controller responsible for interpreting and analyzing input signals, diagnosing and identifying the current vehicle fault state, storing fault codes, and issuing relevant control instructions to the instrument panel
- battery Controller responsible for monitoring and reporting the current working status of the battery, such as whether there is a fault, and the corresponding fault level
- drive motor controller responsible for monitoring and reporting the current working status of the drive motor, such as whether there is a fault, and the corresponding fault level
- power generation Engine controller responsible for monitoring and reporting the current working status of the generator, such as whether there is a fault, and the corresponding fault level
- Engine controller responsible for monitoring and reporting the current working status of the generator, such as whether there is a fault, and the corresponding fault type
- Clutch controller responsible for monitoring and reporting the current working status of the generator, such as whether there is a fault and the corresponding fault type
- Instrument controller responsible for receiving instructions from the vehicle controller, lighting up indicator icons, issuing text reminders, and alarm prompts Sound, etc.;
- Instrument controller responsible for receiving instructions from the vehicle controller, lighting up indicator icons
- controllers that can be equipped with a hybrid vehicle fault prompting method in the present disclosure, have corresponding computing capabilities, and can analyze signals, determine and process faults, all fall within the scope of the present disclosure.
- domain controller For example, domain controller.
- the processor contains a core, which retrieves the corresponding program unit from the memory.
- One or more kernels can be set, and the problem in the existing technology that cannot accurately and effectively provide fault prompts for each system of the hybrid vehicle can be solved by adjusting the kernel parameters.
- Memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM).
- RAM random access memory
- ROM read-only memory
- flash RAM flash memory
- Embodiments of the present disclosure provide a computer-readable storage medium on which a program is stored.
- the program is executed by a processor, the fault prompting method for a hybrid vehicle is implemented.
- Embodiments of the present disclosure provide a processor, the processor being configured to run a program, wherein when the program is run, the fault prompting method for a hybrid vehicle is executed.
- the embodiment of the present disclosure provides a device.
- the device includes a processor, a memory, and a program stored in the memory and executable on the processor.
- the processor executes the program, it implements the following steps:
- Step S101 Receive status information, which is fault-related information obtained by detecting components of the vehicle.
- Step S102 Process the status information to determine whether the component corresponding to the status information is faulty.
- Step S103 When a fault occurs, the corresponding fault type is determined and prompt information is issued.
- the prompt information at least represents the fault type, and the fault type is used to represent the system where the fault is located.
- the devices in this article can be servers, PCs, PADs, mobile phones, etc.
- the present disclosure also provides a computer program product, which, when executed on a data processing device, is adapted to execute a program initialized with the following method steps:
- Step S103 When a fault occurs, the corresponding fault type is determined and prompt information is issued.
- the prompt information at least represents the fault type, and the fault type is used to represent the system where the fault is located.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
- the technical solution of the present disclosure is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the steps of the above methods in various embodiments of the present disclosure.
- the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code. .
- the status information is received, and the status information is fault-related information obtained by detecting vehicle components; the status information is processed to determine whether the component corresponding to the status information appears. Fault; when a fault occurs, the corresponding fault type is determined and a prompt message is issued. The prompt message at least represents the fault type, and the fault type is used to characterize the system where the fault is located.
- prompt information is issued that at least characterizes the system where the fault is located, thereby enabling accurate prompt information corresponding to the system failure to be issued, and solving the problems in the existing technology. The problem of not being able to accurately and effectively provide fault prompts for various systems of hybrid vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Human Computer Interaction (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本公开提供了一种混合动力车辆的故障提示方法和车辆,该方法包括:接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息;对状态信息进行处理,确定状态信息对应的部件是否出现故障;在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。该方法通过在状态信息对应的部件出现故障时,确定对应的故障类型,再依据故障类型发出系统故障对应的提示信息,实现了可以精准的发出系统故障对应的提示信息,解决了现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
Description
相关申请的交叉引用
本公开要求于2022年06月10日提交至中国专利局,申请号为202210655727.8,申请名称为“混合动力车辆的故障提示方法和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开涉及混合动力车辆领域,具体而言,涉及一种混合动力车辆的故障提示方法和车辆。
随着电动车辆技术的不断发展,尤其是混合动力车辆的出现,使得纯电动车辆的系统故障提示方法不能精准的对混合动力车辆的系统故障进行故障提示,混合动力车辆的构成及功能日益复杂,拥有双电机构型,当驱动电机或者发电机发生故障无法工作时,发动机仍可驱动整车行驶,但车速过高时,电机会产生反电动势,永久性破坏电机的线圈结构,而纯电动车辆不具有双电机构型,纯电动车辆的系统故障提示方法不能针对上述系统故障进行故障提示,现有技术中,多侧重于将电动车辆所有的故障混编整合成一条系统故障,进行提示和故障处理,容易造成用户对系统故障的误判,因此,精准的对混合动力车辆的系统故障进行故障提示是十分有必要的。
针对相关技术中存在的上述问题,目前尚未提出有效的解决方案。
在背景技术部分中公开的以上信息只是用来加强对本文所描述技术的背景技术的理解,因此,背景技术中可能包含某些信息,这些信息对于本领域技术人员来说并未形成在本国已知的现有技术。
发明内容
本公开的主要目的在于提供一种混合动力车辆的故障提示方法和车辆,以解决现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
为了实现上述目的,根据本公开的一个方面,提供了一种混合动力车辆的故障提示方法,包括:接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息;对状态信息进行处理,确定状态信息对应的部件是否出现故障;在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。
在一些示例性实施例中,在出现故障的情况下,确定对应的故障类型,包括:在确定出现故障的情况下,确定状态信息对应的部件所属的系统;根据所属的系统确定对应的故障类型,在所属的系统为电驱系统时,确定对应的故障类型为电驱故障类型,在所属的系统为电池系统的情况下,确定故障类型为电池故障类型,在所属的系统为电控系统的情况下,确定故障类型为电控故障类型。
在一些示例性实施例中,在确定出现故障的情况下,该方法包括:根据故障的内容确定对应的故障级别,其中,故障级别表征故障在部件的所有故障中的严重程度;依据故障级别与状态信息的至少一个,确定故障等级,其中,故障等级表征故障在车辆的所有故障中的严重程度;发出提示信息,包括:根据故障等级发出对应的提示信息。
在一些示例性实施例中,依据故障级别与状态信息的至少一个,确定故障等级,包括:根据状态信息和故障的级别确定故障等级。
在一些示例性实施例中,根据状态信息和故障的级别确定故障等级,包括:在驱动电机发生第一种三级故障或发电机发生第二种三级故障的情况下,确定电驱系统的故障等级为第一故障等级;在状态信息表征车辆的动力传输模式处于并联模式且发电机发生第一种四级故障、状态信息表征动力传输模式处于并联模式且发电机发生第一种五级故障、状态信息表征动力传输模式处于并联模式且驱动电机发生第二种四级故障或状态信息表征动力传输模式处于并联模式且驱动电机发生第二种五级故障的情况下,确定电驱系统的故障等级为第二故障等级;在状态信息表征动力传输模式处于非并联模式且发电机发生第三种四级故障、状态信息表征动力传输模式处于非并联模式且发电机发生第三种五级故障、状态信息表征动力传输模式处于非并联模式且驱动电机发生第四种四级故障或状态信息表征动力传输模式处于并联模式且驱动电机发生第四种五级故障的情况下,确定电驱系统的故障等级为第三故障等级,其中,部件对应的故障级别的数值越大表征严重程度越大,故障对应的第一故障等级至第三故障等级的严重程度依次增大。
在一些示例性实施例中,依据故障级别,确定故障等级,包括:在电池发生第三种三级故障的情况下,确定电池系统的故障等级为第一故障等级;在电池发生第五种四级故障或电池发生第五种五级故障的情况下,确定电池系统的故障等级为第二故障等级;在电池发生六级故障、电池发生七级故障或电池发生八级故障的情况下,确定电池系统的故障等级为第三故障等级。
在一些示例性实施例中,依据故障级别与状态信息的至少一个,确定故障等级,包括:在车辆的低压管理继电器的控制引脚处于短路状态、车辆的制动踏板处于差异性故障状态、车辆的车身稳定系统控制器处于通讯失效状态的情况下,确定电控系统的故障等级为第一故障等级;在车辆的离合器处于无法结合状态、离合器处于扭矩传输异常状态、动力传输模式处于并联模式且发电机处于扭矩故障状态、车辆的车载直流变压器对应的节点处于丢失状态、车辆的电子换挡器对应的节点处于丢失状态、车辆的网关对应的节点处于丢失状态的情况下,确定电控系统的故障等级为第二故障等级;在车辆的混动CAN总线处于关闭状态、车辆的发送机控制器处于通讯失效状态、动力传输模式处于非并联状态且离合器处于无法分离状态、
车辆的电池管理系统对应的节点处于丢失状态、车辆的前电机对应的节点处于丢失状态的情况下,确定电控系统的故障等级为第三故障等级。
在一些示例性实施例中,在出现故障的情况下,发出提示信息,包括:发出对应的提示光信号、提示声音信号以及文字信息。
在一些示例性实施例中,该方法还包括:在故障等级为第二故障等级的情况下,限制车辆的车速与车辆的输出功率信息;在故障等级为第三故障等级的情况下,禁止输出车辆的驱动功率信息。
为了实现上述目的,根据本公开的一个方面,提供了一种车辆,包括:一个或多个处理器,存储器以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置为由上述一个或多个处理器执行,上述一个或多个程序包括用于执行任一种上述一种混合动力车辆的故障提示方法。
应用本公开的技术方案,通过接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息;对状态信息进行处理,确定状态信息对应的部件是否出现故障;在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。该方法通过在状态信息对应的部件出现故障时,确定对应的故障类型,再依据故障类型发出提示信息,实现了可以精准的向系统发出故障提示信息,解决了现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题,进而达到了有针对性的对混合动力汽车的各个系统的故障进行排查分析的目的。
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开实施例的一种混合动力车辆的故障提示方法的流程图;
图2示出了根据本公开实施例的一种混合动力车辆的故障提示装置的示意图;
图3示出了根据本公开实施例的基于整车控制器的混合动力车辆的故障提示方法的流程图一;
图4示出了根据本公开实施例的基于整车控制器的混合动力车辆的故障提示方法的流程图二。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“连接”至该另一元件。
正如背景技术中所说的,现有技术中的缺少精准有效的对混合动力汽车的各个系统进行故障提示方法的问题,为了解决上述问题,本公开的一种典型的实施方式中,提供了一种混合动力车辆的故障提示方法和车辆。
根据本公开的实施例,提供了一种混合动力车辆的故障提示方法。
图1是根据本公开实施例的一种混合动力车辆的故障提示方法的流程图。如图1所示,该方法包括以下步骤:
步骤S101,接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息。
步骤S102,对状态信息进行处理,确定状态信息对应的部件是否出现故障。
步骤S103,在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。
上述地,首先,接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息;然后,对状态信息进行处理,确定状态信息对应的部件是否出现故障;最后,在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。该方法中,在车辆出现故障的情况下,确定对应的故障类型,并发出至少表征故障所在的系统的提示信息,从而实现了可以精准的发出系统故障对应的提示信息,解决了现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
本公开中的混合动力车辆可以为双电机构型,是混合动力车辆众多构型中的一种,由驱动电机、发动机、发电机、离合器,以及动力电池等组成,不同的构型具有不同的连接方式以及不同的动力传输通路,其中,串联模式只有一条动力传输通路,串联模式的动力传输通路上任何一个环节故障,都会对整个动力传输通路产生影响,并联模式不止一条动力传输通路,并联模式的一条动力传输通路上某个环节故障,不会对另一条动力传输通路产生直接的影响。
本公开中的混合动力车辆具有双电机构型,即同时具备驱动电机、发动机以及发电机,本公开中的状态信息为混合动力车辆的车轮对应的动力传输模式,分为并联模式、非并联模式,其中,并联模式或非并联模式指的是动力在混合动力车辆的传输通路的连接模式,车轮
对应的动力由发动机、发电机、或驱动电机提供,非并联模式包括:串联模式,串联向并联过渡的中间模式,并联向串联过渡的中间模式。
在一种可选的实施例中,在出现故障的情况下,确定对应的故障类型,包括:在确定出现故障的情况下,确定状态信息对应的部件所属的系统;根据所属的系统确定对应的故障类型,在所属的系统为电驱系统时,确定对应的故障类型为电驱故障类型,在所属的系统为电池系统的情况下,确定故障类型为电池故障类型,在所属的系统为电控系统的情况下,确定故障类型为电控故障类型。该方法中,在确认状态信息的情况下,按照所属的系统将故障分为三类,分别为电驱系统故障、电池系统故障、电控系统故障,通过对三种故障类型分别进行单独提示和故障处理,有助于故障排查分析。
该实施例中,电驱系统故障包括驱动电机故障和发电机故障,电池系统故障包括电池故障,电控系统故障包括除了电驱系统和电池系统以外的其他整车故障,包含但不限于离合器故障、芯片供电电压故障、制动器故障等,将所属的系统将故障分为三种故障类型。
在一种可选的实施例中,在确定出现故障的情况下,该方法包括:根据故障的内容确定对应的故障级别,其中,故障级别表征故障在部件的所有故障中的严重程度;依据故障级别与状态信息的至少一个,确定故障等级,其中,故障等级表征故障在车辆的所有故障中的严重程度;发出提示信息,包括:根据故障等级发出对应的提示信息。该方法中,针对相同部件的不同故障采用了故障级别,实现了对相同部件的故障程度进行区分的目的,依据部件的故障级别与状态信息的至少一个,进而对系统的故障等级进行了区分,实现了精准的对系统的故障进行提示的目的。
该实施例中,相同的部件会发生不同程度的故障,例如,电池按照故障程度可以分为一级故障至八级故障,且故障程度随着级数的增大而增大。依据部件的故障级别与状态信息的至少一个,将车辆的故障等级分为三种,发出的提示信息包括提示文字及提示音,例如,依据电池的故障级别即可确认故障等级,进而对电池系统故障发出对应的提示信息,依据驱动电机的故障级别以及状态信息来确认故障等级,进而对电驱系统故障发出对应的提示信息。本公开将车辆的故障等级分为三种,减少了显示在仪表盘上的故障提示信息的数量,有利于提升用户的驾驶体验,例如,故障等级分为A级、B级、C级,故障等级的严重程度依次为:C级>B级>A级,A级故障表示:故障短期内不会影响驱动行驶,但不会自行恢复,仍需要人为介入排查并解除故障;B级故障表示:故障已经对驱动行驶产生影响,车速被限制在40km/h以下,需要尽快去售后服务点排查故障;C级故障表示:故障导致车辆无法继续行驶,需要尽快就近安全停车,等待救援。
在一种可选的实施例中,依据故障级别与状态信息的至少一个,确定故障等级,包括:根据状态信息和故障的级别确定故障等级。该方法中,依据部件的状态信息和故障级别确定故障等级,避免了因部件的故障判断条件单一造成部件的损坏。
该实施例中,在状态信息不同的情况下,即使部件的故障等级相同也会产生不同的故障等级,例如,驱动电机在并联模式下发生四级故障和驱动电机在非并联模式下发生四级故障
属于不同的故障等级,由于在驱动电机处于并联模式的情况下,离合器处于闭合状态,若驱动电机发生了四级故障,故障本身并不影响发动机对车轮输出动力,但此时需要限制车速与输出功率,所以需要提升电驱系统的故障等级,避免了驱动电机因产生反电动势能而受到损坏。
在一种可选的实施例中,根据状态信息和故障的级别确定故障等级,包括:在驱动电机发生第一种三级故障或发电机发生第二种三级故障的情况下,确定电驱系统的故障等级为第一故障等级;在状态信息表征车辆的动力传输模式处于并联模式且发电机发生第一种四级故障、状态信息表征动力传输模式处于并联模式且发电机发生第一种五级故障、状态信息表征动力传输模式处于并联模式且驱动电机发生第二种四级故障或状态信息表征动力传输模式处于并联模式且驱动电机发生第二种五级故障的情况下,确定电驱系统的故障等级为第二故障等级;在状态信息表征动力传输模式处于非并联模式且发电机发生第三种四级故障、状态信息表征动力传输模式处于非并联模式且发电机发生第三种五级故障、状态信息表征动力传输模式处于非并联模式且驱动电机发生第四种四级故障或状态信息表征动力传输模式处于并联模式且驱动电机发生第四种五级故障的情况下,确定电驱系统的故障等级为第三故障等级,其中,部件对应的故障级别的数值越大表征严重程度越大,故障对应的第一故障等级至第三故障等级的严重程度依次增大。该方法中,依据驱动电机或发电机的故障级别与状态信息的至少一个,确认电驱系统对应的故障等级,驱动电机或发电机的故障级别的数值越大表征故障严重程度越大,随着驱动电机或发电机的故障级别的数值增大,电驱系统的故障等级的严重程度也增大,通过驱动电机或发电机的故障确定了对电驱系统造成的影响程度,精准的确定了电驱系统对应的故障等级,以实现有效的对电驱系统进行故障提示。
该实施例中,如表1所示,在驱动电机对应的故障级别为四级故障或五级故障,发电机对应的故障级别为四级故障或五级故障的情况下,还需要考虑状态信息对故障等级的影响。此外,在驱动电机对应的故障级别为一级故障或二级故障,发电机对应的故障级别为一级故障或二级故障的情况下,不需要确认故障等级,这是由于故障后果的影响较小或系统内的控制器可以处理此故障。需要说明的是:依据驱动电机或发电机的故障级别与状态信息的至少一个,确认电驱系统对应的故障等级,在混合动力车辆的车型不同的情况下,电驱系统对应的故障等级存在差异。
表1电驱系统故障对应的故障等级
在一种可选的实施例中,依据故障级别,确定故障等级,包括:在电池发生第三种三级故障的情况下,确定电池系统的故障等级为第一故障等级;在电池发生第五种四级故障或电池发生第五种五级故障的情况下,确定电池系统的故障等级为第二故障等级;在电池发生六级故障、电池发生七级故障或电池发生八级故障的情况下,确定电池系统的故障等级为第三故障等级。该方法中,依据电池的故障级别,确认电池系统对应的故障等级,电池的故障级别的数值越大表征故障严重程度越大,随着电池的故障级别的数值增大,通过电池的故障确定了对电池系统造成的影响程度,精准的确定了电池系统对应的故障等级,以实现有效的对电池系统的故障进行故障提示。
该实施例中,如表2所示,在电池对应的故障级别为一级故障或二级故障的情况下,不需要确认电池系统的故障等级,这是由于故障后果的影响较小或系统内的控制器可以处理此故障。需要说明的是:依据电池的故障级别,确认电池系统对应的故障等级,在混合动力车辆的车型不同的情况下,电池系统对应的故障等级存在差异。
表2电池系统故障对应的故障等级
在一种可选的实施例中,依据故障级别与状态信息的至少一个,确定故障等级,包括:在车辆的低压管理继电器的控制引脚处于短路状态、车辆的制动踏板处于差异性故障状态、车辆的车身稳定系统控制器处于通讯失效状态的情况下,确定电控系统的故障等级为第一故障等级;在车辆的离合器处于无法结合状态、离合器处于扭矩传输异常状态、动力传输模式处于并联模式且发电机处于扭矩故障状态、车辆的车载直流变压器对应的节点处于丢失状态、车辆的电子换挡器对应的节点处于丢失状态、车辆的网关对应的节点处于丢失状态的情况下,确定电控系统的故障等级为第二故障等级;在车辆的混动CAN总线处于关闭状态、车辆的发送机控制器处于通讯失效状态、动力传输模式处于非并联状态且离合器处于无法分离状态、车辆的电池管理系统对应的节点处于丢失状态、车辆的前电机对应的节点处于丢失状态的情况下,确定电控系统的故障等级为第三故障等级。该方法中,电控系统故障包括除了电驱系统和电池系统以外的其他整车故障,包含但不限于离合器故障、芯片供电电压故障、制动器故障等,通过其他整车故障精准的确定了电控系统对应的故障等级,以实现有效的对电控系统的故障进行故障提示。
该实施例中,如表3所示,电控系统可能会出现多个部件同时发送故障的情况,需按照故障等级较高的故障依次进行处理,依据其他整车故障,确认电控系统对应的故障等级,在混合动力车辆的车型不同的情况下,电控系统对应的故障等级存在差异。
表3电控系统对应的故障等级
在一种可选的实施例中,在出现故障的情况下,发出提示信息,包括:发出对应的提示光信号、提示声音信号以及文字信息。该方法中,在出现故障的情况下,发送提示信息至仪表盘,不同系统的故障级别对应不同的提示信息,旨在对用户发出系统的故障程度的提醒,实现了帮助用户解决故障的目的。
该实施例中,在出现故障的情况下,如表4所示,发出不同系统的故障类型对应的提示光信号用以点亮故障类型对应的故障图标;发出声音信号以鸣响特定的报警音;如表5所示,发出文字信息以在仪表盘上显示特定的提示文字。需要说明的是,点亮系统的故障类型对应的系统故障的图标,与发送系统的故障类型对应的提示文字是一一对应的,例如,点亮电池系统故障图标,发送的是电池系统故障的提示文字,不会出现点亮电池系统故障图标,但发送的是电驱系统故障的提示文字。
表4不同系统的故障类型图标与提示光信号的对应关系
表5故障等级与文字信息的对应关系
在一种可选的实施例中,该方法还包括:在故障等级为第二故障等级的情况下,限制车辆的车速与车辆的输出功率信息;在故障等级为第三故障等级的情况下,禁止输出车辆的驱动功率信息。该方法中,在故障等级为第二故障等级的情况下,故障已经对车辆的驱动行驶产生影响,应对车辆的速度进行限制,在故障等级为第三故障等级的情况下,故障已导致车辆无法继续行驶,需要尽快就近安全停车,等待救援,降低了给用户带来的驾驶风险,保证用户的驾驶安全。
该实施例中,如表6所示,在故障等级为第二故障等级的情况下,优选地,车速被限制在40km/h以下,需要尽快去售后服务点排查故障,以防止车辆在需要维修的情况下,还以较大的速度行驶,容易给用户造成危险。
表6故障等级与系统故障处理措施的对应关系
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本公开实施例提供了一种车辆,包括:一个或多个处理器,存储器以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置为由上述一个或多个处理器执行,上述一个或多个程序包括用于执行任一种上述一种混合动力车辆的故障提示方法。
本公开实施例还提供了一种混合动力车辆的故障提示装置,需要说明的是,本公开实施例的一种混合动力车辆的故障提示装置可以用于执行本公开实施例所提供的用于一种混合动力车辆的故障提示方法。以下对本公开实施例提供的一种混合动力车辆的故障提示装置进行介绍。
图2是根据本公开实施例的一种混合动力车辆的故障提示装置的示意图。如图2所示,该装置包括:接收单元201,被配置为接收状态信息,状态信息为对车辆的部件进行检测得到
的与故障相关的信息;第一确定单元202,被配置为对状态信息进行处理,确定状态信息对应的部件是否出现故障;第二确定单元203,被配置为在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。
上述地,首先,接收单元201,被配置为接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息;然后,第一确定单元202,被配置为对状态信息进行处理,确定状态信息对应的部件是否出现故障;最后,第二确定单元203,被配置为在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。该装置中,在车辆出现故障的情况下,确定对应的故障类型,并发出至少表征故障所在的系统的提示信息,从而实现了可以精准的发出系统故障对应的提示信息,解决了现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
本公开中的混合动力车辆可以为双电机构型,是混合动力车辆众多构型中的一种,由驱动电机、发动机、发电机、离合器,以及动力电池等组成,不同的构型具有不同的连接方式以及不同的动力传输通路,其中,串联模式只有一条动力传输通路,串联模式的动力传输通路上任何一个环节故障,都会对整个动力传输通路产生影响,并联模式不止一条动力传输通路,并联模式的一条动力传输通路上某个环节故障,不会对另一条动力传输通路产生直接的影响。
本公开中的混合动力车辆具有双电机构型,即同时具备驱动电机、发动机以及发电机,本公开中的状态信息为混合动力车辆的车轮对应的动力传输模式,分为并联模式、非并联模式,其中,并联模式或非并联模式指的是动力在混合动力车辆的传输通路的连接模式,车轮对应的动力由发动机、发电机、或驱动电机提供,非并联模式包括:串联模式,串联向并联过渡的中间模式,并联向串联过渡的中间模式。
在一种可选的实施例中,在出现故障的情况下,第二确定单元203,包括:第一确定子单元,被配置为在确定出现故障的情况下,确定状态信息对应的部件所属的系统;第二确定子单元,被配置为根据所属的系统确定对应的故障类型,在所属的系统为电驱系统时,确定对应的故障类型为电驱故障类型,在所属的系统为电池系统的情况下,确定故障类型为电池故障类型,在所属的系统为电控系统的情况下,确定故障类型为电控故障类型。该装置中,在确认状态信息的情况下,按照所属的系统将故障分为三类,分别为电驱系统故障、电池系统故障、电控系统故障,通过对三种故障类型分别进行单独提示和故障处理,有助于故障排查分析,实现了准确确定哪个系统发生了故障。
该实施例中,电驱系统故障包括驱动电机故障和发电机故障,电池系统故障包括电池故障,电控系统故障包括除了电驱系统和电池系统以外的其他整车故障,包含但不限于离合器故障、芯片供电电压故障、制动器故障等,将所属的系统将故障分为三种故障类型。
在一种可选的实施例中,在确定出现故障的情况下,该装置包括:第三确定单元,被配置为根据故障的内容确定对应的故障级别,其中,故障级别表征故障在部件的所有故障中的严重程度;第四确定单元,被配置为依据故障级别与状态信息的至少一个,确定故障等级,
其中,故障等级表征故障在车辆的所有故障中的严重程度;发出单元,发出提示信息,包括:根据故障等级发出对应的提示信息。该装置中,针对相同部件的不同故障采用了故障级别,实现了对相同部件的故障程度进行区分的目的,依据部件的故障级别与状态信息的至少一个,进而对系统的故障等级进行了区分,实现了精准的对系统的故障进行提示的目的。
该实施例中,相同的部件会发生不同程度的故障,例如,电池按照故障程度可以分为一级故障至八级故障,且故障程度随着级数的增大而增大。依据部件的故障级别与状态信息的至少一个,将车辆的故障等级分为三种,发出的提示信息包括提示文字及提示音,例如,依据电池的故障级别即可确认故障等级,进而对电池系统故障发出对应的提示信息,依据驱动电机的故障级别以及状态信息来确认故障等级,进而对电驱系统故障发出对应的提示信息。本公开将车辆的故障等级分为三种,减少了显示在仪表盘上的故障提示信息的数量,有利于提升用户的驾驶体验,例如,故障等级分为A级、B级、C级,故障等级的严重程度依次为:C级>B级>A级,A级故障表示:故障短期内不会影响驱动行驶,但不会自行恢复,仍需要人为介入排查并解除故障;B级故障表示:故障已经对驱动行驶产生影响,车速被限制在40km/h以下,需要尽快去售后服务点排查故障;C级故障表示:故障导致车辆无法继续行驶,需要尽快就近安全停车,等待救援。
在一种可选的实施例中,第四确定单元,包括:第三确定子单元,被配置为根据状态信息和故障的级别确定故障等级。该装置中,依据部件的状态信息和故障级别确定故障等级,避免了因部件的故障判断条件单一造成部件的损坏。
该实施例中,在状态信息不同的情况下,即使部件的故障等级相同也会产生不同的故障等级,例如,驱动电机在并联模式下发生四级故障和驱动电机在非并联模式下发生四级故障属于不同的故障等级,由于在驱动电机处于并联模式的情况下,离合器处于闭合状态,若驱动电机发生了四级故障,故障本身并不影响发动机对车轮输出动力,但此时需要限制车速与输出功率,所以需要提升电驱系统的故障等级,避免了驱动电机因产生反电动势能而受到损坏。
在一种可选的实施例中,第三确定子单元,包括:第一确定模块,被配置为在驱动电机发生第一种三级故障或发电机发生第二种三级故障的情况下,确定电驱系统的故障等级为第一故障等级;第二确定模块,被配置为在状态信息表征车辆的动力传输模式处于并联模式且发电机发生第一种四级故障、状态信息表征动力传输模式处于并联模式且发电机发生第一种五级故障、状态信息表征动力传输模式处于并联模式且驱动电机发生第二种四级故障或状态信息表征动力传输模式处于并联模式且驱动电机发生第二种五级故障的情况下,确定电驱系统的故障等级为第二故障等级;第三确定模块,被配置为在状态信息表征动力传输模式处于非并联模式且发电机发生第三种四级故障、状态信息表征动力传输模式处于非并联模式且发电机发生第三种五级故障、状态信息表征动力传输模式处于非并联模式且驱动电机发生第四种四级故障或状态信息表征动力传输模式处于并联模式且驱动电机发生第四种五级故障的情况下,确定电驱系统的故障等级为第三故障等级,其中,部件对应的故障级别的数值越大表征严重程度越大,故障对应的第一故障等级至第三故障等级的严重程度依次增大。该装置中,
依据驱动电机或发电机的故障级别与状态信息的至少一个,确认电驱系统对应的故障等级,驱动电机或发电机的故障级别的数值越大表征故障严重程度越大,随着驱动电机或发电机的故障级别的数值增大,电驱系统的故障等级的严重程度也增大,通过驱动电机或发电机的故障确定了对电驱系统造成的影响程度,精准的确定了电驱系统对应的故障等级,以实现有效的对电驱系统进行故障提示。
该实施例中,如表7所示,在驱动电机对应的故障级别为四级故障或五级故障,发电机对应的故障级别为四级故障或五级故障的情况下,还需要考虑状态信息对故障等级的影响。此外,在驱动电机对应的故障级别为一级故障或二级故障,发电机对应的故障级别为一级故障或二级故障的情况下,不需要确认故障等级,这是由于故障后果的影响较小或系统内的控制器可以处理此故障。需要说明的是:依据驱动电机或发电机的故障级别与状态信息的至少一个,确认电驱系统对应的故障等级,在混合动力车辆的车型不同的情况下,电驱系统对应的故障等级存在差异。
表7电驱系统故障对应的故障等级
在一种可选的实施例中,第四确定单元,包括:第四确定子单元,被配置为在电池发生第三种三级故障的情况下,确定电池系统的故障等级为第一故障等级;第五确定子单元,被配置为在电池发生第五种四级故障或电池发生第五种五级故障的情况下,确定电池系统的故障等级为第二故障等级;第六确定子单元,被配置为在电池发生六级故障、电池发生七级故障或电池发生八级故障的情况下,确定电池系统的故障等级为第三故障等级。该装置中,依据电池的故障级别,确认电池系统对应的故障等级,电池的故障级别的数值越大表征故障严重程度越大,随着电池的故障级别的数值增大,通过电池的故障确定了对电池系统造成的影响程度,精准的确定了电池系统对应的故障等级,以实现有效的对电池系统的故障进行故障提示。
该实施例中,如表8所示,在电池对应的故障级别为一级故障或二级故障的情况下,不需要确认电池系统的故障等级,这是由于故障后果的影响较小或系统内的控制器可以处理此故障。需要说明的是:依据电池的故障级别,确认电池系统对应的故障等级,在混合动力车辆的车型不同的情况下,电池系统对应的故障等级存在差异。
表8电池系统故障对应的故障等级
在一种可选的实施例中,第四确定单元,包括:第七确定子单元,被配置为在车辆的低压管理继电器的控制引脚处于短路状态、车辆的制动踏板处于差异性故障状态、车辆的车身稳定系统控制器处于通讯失效状态的情况下,确定电控系统的故障等级为第一故障等级;第八确定子单元,被配置为在车辆的离合器处于无法结合状态、离合器处于扭矩传输异常状态、动力传输模式处于并联模式且发电机处于扭矩故障状态、车辆的车载直流变压器对应的节点处于丢失状态、车辆的电子换挡器对应的节点处于丢失状态、车辆的网关对应的节点处于丢失状态的情况下,确定电控系统的故障等级为第二故障等级;第九确定子单元,被配置为在车辆的混动CAN总线处于关闭状态、车辆的发送机控制器处于通讯失效状态、动力传输模式处于非并联状态且离合器处于无法分离状态、车辆的电池管理系统对应的节点处于丢失状态、车辆的前电机对应的节点处于丢失状态的情况下,确定电控系统的故障等级为第三故障等级。该装置中,电控系统故障包括除了电驱系统和电池系统以外的其他整车故障,包含但不限于离合器故障、芯片供电电压故障、制动器故障等,通过其他整车故障精准的确定了电控系统对应的故障等级,以实现有效的对电控系统的故障进行故障提示。
该实施例中,如表9所示,电控系统可能会出现多个部件同时发送故障的情况,需按照故障等级较高的故障依次进行处理,依据其他整车故障,确认电控系统对应的故障等级,在混合动力车辆的车型不同的情况下,电控系统对应的故障等级存在差异。
表9电控系统对应的故障等级
在一种可选的实施例中,发出单元,包括:发出子单元,被配置为发出对应的提示光信号、提示声音信号以及文字信息。该装置中,在出现故障的情况下,发送提示信息至仪表盘,不同系统的故障级别对应不同的提示信息,旨在对用户发出系统的故障程度的提醒,实现了帮助用户解决故障的目的。
该实施例中,在出现故障的情况下,如表10所示,发出不同系统的故障类型对应的提示光信号用以点亮故障类型对应的故障图标;发出声音信号以鸣响特定的报警音;如表11所示,发出文字信息以在仪表盘上显示特定的提示文字。需要说明的是,点亮系统的故障类型对应的系统故障的图标,与发送系统的故障类型对应的提示文字是一一对应的,例如,点亮电池系统故障图标,发送的是电池系统故障的提示文字,不会出现点亮电池系统故障图标,但发送的是电驱系统故障的提示文字。
表10不同系统的故障类型图标与提示光信号的对应关系
表11故障等级与文字信息的对应关系
在一种可选的实施例中,该装置还包括:限制单元,被配置为在故障等级为第二故障等级的情况下,限制车辆的车速与车辆的输出功率信息;禁止单元,被配置为在故障等级为第三故障等级的情况下,禁止输出车辆的驱动功率信息。该装置中,在故障等级为第二故障等级的情况下,故障已经对车辆的驱动行驶产生影响,应对车辆的速度进行限制,在故障等级为第三故障等级的情况下,故障已导致车辆无法继续行驶,需要尽快就近安全停车,等待救援,降低了给用户带来的驾驶风险,保证用户的驾驶安全。
该实施例中,如表12所示,在故障等级为第二故障等级的情况下,优选地,车速被限制在40km/h以下,需要尽快去售后服务点排查故障,以防止车辆在需要维修的情况下,还以较大的速度行驶,容易给用户造成危险。
表12故障等级与系统故障处理措施的对应关系
为了使得本领域的技术人员更加清楚明确地了解本公开的技术方案,下面将结合具体的实施例进行说明:
实施例
在本公开提供的一种实施例中,如图3所示,图3示出了根据本公开实施例的基于整车控制器的混合动力车辆的故障提示方法的流程图一,整车控制器接收来自各个控制器、传感器通过计算、采集到的部件对应的信号,整车控制器对输入的信号进行解读分析,诊断识别当前部件的故障状态,故障状态包括故障级别和/或状态信息,并存储故障状态。按表1、表2以及表3的所述策略,确定系统的故障等级,再根据系统的故障等级,按照表4、表5以及表6采取相应的故障处理,同时发出故障提示信息实现了可以精准的发出系统故障对应的提示信息,解决了现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
该实施例的主要组成部分以及功能简述如下:整车控制器:负责对输入的信号进行解读分析,诊断识别当前的整车故障状态,存储故障码,给仪表盘下达相关的控制指令;电池控制器:负责监测上报当前电池的工作状态,如是否有故障,以及相应的故障等级;驱动电机控制器:负责监测上报当前驱动电机的工作状态,如是否有故障,以及相应的故障等级;发电机控制器:负责监测上报当前发电机的工作状态,如是否有故障,以及相应的故障等级;发动机控制器:负责监测上报当前发电机的工作状态,如是否有故障,以及相应的故障种类;离合器控制器:负责监测上报当前发电机的工作状态,如是否有故障,以及相应的故障种类;仪表控制器:负责接收整车控制器的指令,点亮指示图标、发出文字提醒,以及报警提示音等;相关传感器:负责采集并上报车身较为重要的性能参数,如离合器开闭状态,制动踏板和油门踏板开度等;存储单元:负责存储对应的故障码,集成在整车控制器中。
需要说明的是,能搭载本公开中的一种混合动力车辆的故障提示方法,具备相应计算能力,能对信号进行解析、对故障进行判定以及处理的控制器均属于本公开的保护范围,例如,域控制器。
在本公开提供的另一种实施例中,如图4所示,图4示出了根据本公开实施例的基于整车控制器的混合动力车辆的故障提示方法的流程图二,状态上报:各个部件的控制器对自身的故障状态进行监测和自我诊断,并将信号发送给整车控制器,各个传感器将监测到的状态
信号上传给整车控制器;故障诊断:整车控制器对接收的信号进行故障诊断;系统故障归纳分类:整车控制器将依据部件的故障级别和/或状态信息进行确定部件对应的系统的故障等级;系统故障仲裁:依据系统的故障等级,确认发出何种故障提示信息;系统故障提示及处理:依据系统的故障等级,发出对应的提示光信号、提示声音信号、文字信息,以及采取故障等级对应的处理手段;响应提示指令:执行提示指令,以对用户准确的发出系统故障的提醒。
所述一种混合动力车辆的故障提示装置包括处理器和存储器,上述接收单元201等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来解决现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本公开实施例提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现所述一种混合动力车辆的故障提示方法。
本公开实施例提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行所述一种混合动力车辆的故障提示方法。
本公开实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现以下步骤:
步骤S101,接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息。
步骤S102,对状态信息进行处理,确定状态信息对应的部件是否出现故障。
步骤S103,在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。
本文中的设备可以是服务器、PC、PAD、手机等。
本公开还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:
步骤S101,接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息。
步骤S102,对状态信息进行处理,确定状态信息对应的部件是否出现故障。
步骤S103,在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。
在本公开的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的
部分,可以参见其他实施例的相关描述。
在本公开所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
1)、本公开的混合动力车辆的故障提示方法中,接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息;对状态信息进行处理,确定状态信息对应的部件是否出现故障;在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。该方法中,在车辆出现故障的情况下,确定对应的故障类型,并发出至少表征故障所在的系统的提示信息,从而实现了可以精准的发出系统故障对应的提示信息,解决了现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
2)、本公开的混合动力车辆的故障提示装置中,接收单元被配置为接收状态信息,状态信息为对车辆的部件进行检测得到的与故障相关的信息;第一确定单元被配置为对状态信息进行处理,确定状态信息对应的部件是否出现故障;第二确定单元被配置为在出现故障的情况下,确定对应的故障类型并发出提示信息,提示信息至少表征故障类型,故障类型用于表征故障所在的系统。该装置中,在车辆出现故障的情况下,确定对应的故障类型,并发出至少表征故障所在的系统的提示信息,从而实现了可以精准的发出系统故障对应的提示信息,解决了现有技术中不能精准有效的对混合动力汽车的各个系统进行故障提示的问题。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (10)
- 一种混合动力车辆的故障提示方法,其中,包括:接收状态信息,所述状态信息为对车辆的部件进行检测得到的与故障相关的信息;对所述状态信息进行处理,确定所述状态信息对应的部件是否出现故障;在出现故障的情况下,确定对应的故障类型并发出提示信息,所述提示信息至少表征所述故障类型,所述故障类型用于表征所述故障所在的系统。
- 根据权利要求1所述的方法,其中,在出现故障的情况下,确定对应的故障类型,包括:在确定出现故障的情况下,确定所述状态信息对应的部件所属的系统;根据所属的系统确定对应的所述故障类型,在所属的系统为电驱系统时,确定对应的所述故障类型为电驱故障类型,在所属的系统为电池系统的情况下,确定所述故障类型为电池故障类型,在所属的系统为电控系统的情况下,确定所述故障类型为电控故障类型。
- 根据权利要求2所述的方法,其中,在确定出现故障的情况下,所述方法包括:根据所述故障的内容确定对应的故障级别,其中,所述故障级别表征所述故障在所述部件的所有故障中的严重程度;依据所述故障级别与所述状态信息的至少一个,确定故障等级,其中,所述故障等级表征所述故障在所述车辆的所有故障中的严重程度;发出所述提示信息,包括:根据所述故障等级发出对应的所述提示信息。
- 根据权利要求3所述的方法,其中,依据所述故障级别与所述状态信息的至少一个,确定故障等级,包括:根据所述状态信息和所述故障的级别确定所述故障等级。
- 根据权利要求4所述的方法,其中,根据所述状态信息和所述故障的级别确定所述故障等级,包括:在驱动电机发生第一种三级故障或发电机发生第二种三级故障的情况下,确定所述电驱系统的所述故障等级为第一故障等级;在所述状态信息表征所述车辆的动力传输模式处于并联模式且所述发电机发生第一种四级故障、所述状态信息表征所述动力传输模式处于所述并联模式且所述发电机发生第一种五级故障、所述状态信息表征所述动力传输模式处于所述并联模式且所述驱动电机发生第二种四级故障或所述状态信息表征所述动力传输模式处于所述并联模式且所述驱动电机发生第二种五级故障的情况下,确定所述电驱系统的所述故障等级为第二故障 等级;在所述状态信息表征所述动力传输模式处于非并联模式且所述发电机发生第三种四级故障、所述状态信息表征所述动力传输模式处于所述非并联模式且所述发电机发生第三种五级故障、所述状态信息表征所述动力传输模式处于所述非并联模式且所述驱动电机发生第四种四级故障或所述状态信息表征所述动力传输模式处于所述并联模式且所述驱动电机发生第四种五级故障的情况下,确定所述电驱系统的所述故障等级为第三故障等级,其中,所述部件对应的所述故障级别的数值越大表征所述严重程度越大,所述故障对应的所述第一故障等级至所述第三故障等级的所述严重程度依次增大。
- 根据权利要求3所述的方法,其中,依据所述故障级别,确定故障等级,包括:在电池发生第三种三级故障的情况下,确定所述电池系统的所述故障等级为第一故障等级;在所述电池发生第五种四级故障或所述电池发生第五种五级故障的情况下,确定所述电池系统的所述故障等级为第二故障等级;在所述电池发生六级故障、所述电池发生七级故障或所述电池发生八级故障的情况下,确定所述电池系统的所述故障等级为第三故障等级。
- 根据权利要求3所述的方法,其中,依据所述故障级别与所述状态信息的至少一个,确定故障等级,包括:在所述车辆的低压管理继电器的控制引脚处于短路状态、所述车辆的制动踏板处于差异性故障状态、所述车辆的车身稳定系统控制器处于通讯失效状态的情况下,确定所述电控系统的所述故障等级为第一故障等级;在所述车辆的离合器处于无法结合状态、所述离合器处于扭矩传输异常状态、动力传输模式处于并联模式且发电机处于扭矩故障状态、所述车辆的车载直流变压器对应的节点处于丢失状态、所述车辆的电子换挡器对应的节点处于丢失状态、所述车辆的网关对应的节点处于丢失状态的情况下,确定所述电控系统的所述故障等级为第二故障等级;在所述车辆的混动CAN总线处于关闭状态、所述车辆的发送机控制器处于通讯失效状态、所述动力传输模式处于非并联状态且所述离合器处于无法分离状态、所述车辆的电池管理系统对应的节点处于丢失状态、所述车辆的前电机对应的节点处于丢失状态的情况下,确定所述电控系统的所述故障等级为第三故障等级。
- 根据权利要求1至7中任一项所述的方法,其中,在出现故障的情况下,发出提示信息,包括:发出对应的提示光信号、提示声音信号以及文字信息。
- 根据权利要求5所述的方法,其中,所述方法还包括:在所述故障等级为所述第二故障等级的情况下,限制所述车辆的车速与所述车辆的输出功率信息;在所述故障等级为所述第三故障等级的情况下,禁止输出所述车辆的驱动功率信息。
- 一种车辆,其中,包括:一个或多个处理器,存储器以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行权利要求1至9中任意一项所述一种混合动力车辆的故障提示方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210655727.8A CN115027271A (zh) | 2022-06-10 | 2022-06-10 | 混合动力车辆的故障提示方法和车辆 |
CN202210655727.8 | 2022-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023237123A1 true WO2023237123A1 (zh) | 2023-12-14 |
Family
ID=83123154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/099739 WO2023237123A1 (zh) | 2022-06-10 | 2023-06-12 | 混合动力车辆的故障提示方法和车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115027271A (zh) |
WO (1) | WO2023237123A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115027271A (zh) * | 2022-06-10 | 2022-09-09 | 中国第一汽车股份有限公司 | 混合动力车辆的故障提示方法和车辆 |
CN117141726A (zh) * | 2023-09-14 | 2023-12-01 | 山西彗星智能科技有限责任公司 | 一种航空混动能源系统用保护方法与系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103373229A (zh) * | 2012-04-24 | 2013-10-30 | 现代摩比斯株式会社 | 混合动力车上动力流的显示装置及显示方法 |
DE102013211444A1 (de) * | 2012-06-22 | 2013-12-24 | Gm Global Technology Operations, Llc | Warnsysteme und -verfahren für ein Fahrzeug |
CN105774557A (zh) * | 2016-03-01 | 2016-07-20 | 武汉理工大学 | 一种电动汽车智能高压管理系统 |
CN112848896A (zh) * | 2019-11-27 | 2021-05-28 | 比亚迪股份有限公司 | 一种牵引驱动系统的故障处理方法和电动车辆 |
CN114932807A (zh) * | 2022-05-27 | 2022-08-23 | 中国第一汽车股份有限公司 | 电动车动力系统的故障处理方法及故障处理系统 |
CN115027271A (zh) * | 2022-06-10 | 2022-09-09 | 中国第一汽车股份有限公司 | 混合动力车辆的故障提示方法和车辆 |
-
2022
- 2022-06-10 CN CN202210655727.8A patent/CN115027271A/zh active Pending
-
2023
- 2023-06-12 WO PCT/CN2023/099739 patent/WO2023237123A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103373229A (zh) * | 2012-04-24 | 2013-10-30 | 现代摩比斯株式会社 | 混合动力车上动力流的显示装置及显示方法 |
DE102013211444A1 (de) * | 2012-06-22 | 2013-12-24 | Gm Global Technology Operations, Llc | Warnsysteme und -verfahren für ein Fahrzeug |
CN105774557A (zh) * | 2016-03-01 | 2016-07-20 | 武汉理工大学 | 一种电动汽车智能高压管理系统 |
CN112848896A (zh) * | 2019-11-27 | 2021-05-28 | 比亚迪股份有限公司 | 一种牵引驱动系统的故障处理方法和电动车辆 |
CN114932807A (zh) * | 2022-05-27 | 2022-08-23 | 中国第一汽车股份有限公司 | 电动车动力系统的故障处理方法及故障处理系统 |
CN115027271A (zh) * | 2022-06-10 | 2022-09-09 | 中国第一汽车股份有限公司 | 混合动力车辆的故障提示方法和车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN115027271A (zh) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023237123A1 (zh) | 混合动力车辆的故障提示方法和车辆 | |
CN111653840B (zh) | 一种预警方法、装置、设备及存储介质 | |
CN105416206B (zh) | 一种电动汽车整车控制器及控制方法 | |
US20210088591A1 (en) | Method and system for battery-management in devices | |
JP6875125B2 (ja) | 電動車両のための多出力協調制御一体型充電器の協調または制御を監視するシステム及び方法 | |
CN112798951A (zh) | 一种故障处理方法、装置、电子设备及存储介质 | |
CN104076808B (zh) | 工控设备的故障诊断系统和方法 | |
CN109733238B (zh) | 故障检测方法、装置、存储介质及处理器 | |
CN113341923B (zh) | 车辆的低压线束故障检测方法、信号诊断单元及车辆 | |
TW201119173A (en) | Method of using power supply to execute remote monitoring of an electronic system | |
WO2022267828A1 (zh) | 蓄电池的连接器、蓄电池的检测系统及方法 | |
CN104321660A (zh) | 用于生成与电池组相关联的诊断测试文件的系统和方法 | |
BRPI1014945B1 (pt) | Método para detectar barramento can de veículo de motor híbrido | |
US11036573B2 (en) | Control processor unit (CPU) error detection by another CPU via communication bus | |
CN114013554B (zh) | 驱动组件管理系统、故障检测方法及电助力自行车 | |
CN114932807A (zh) | 电动车动力系统的故障处理方法及故障处理系统 | |
CN117707112B (zh) | 一种故障诊断方法、系统、设备及存储介质 | |
CN114327968A (zh) | 具有通用接口的服务器硬件故障电话预警实现方法及装置 | |
CN108146250A (zh) | 一种基于多核cpu的汽车扭矩安全控制方法 | |
WO2023160412A1 (zh) | 车载直流变直流变换器状态识别方法、装置、设备和介质 | |
CN116683050A (zh) | 一种电池投退方法、系统、电子装置和存储介质 | |
CN115185313B (zh) | 水电机组轴承瓦温的趋势跟踪预警方法及装置 | |
WO2022222782A1 (zh) | 车辆远程诊断系统及方法 | |
CN116009510A (zh) | 车载控制系统异常处理方法、装置和车辆 | |
CN108279663A (zh) | 车辆错误信号的控制系统及控制方法、存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23819286 Country of ref document: EP Kind code of ref document: A1 |