WO2023236892A1 - 一种热管理控制方法、装置、整车控制器及介质 - Google Patents

一种热管理控制方法、装置、整车控制器及介质 Download PDF

Info

Publication number
WO2023236892A1
WO2023236892A1 PCT/CN2023/098247 CN2023098247W WO2023236892A1 WO 2023236892 A1 WO2023236892 A1 WO 2023236892A1 CN 2023098247 W CN2023098247 W CN 2023098247W WO 2023236892 A1 WO2023236892 A1 WO 2023236892A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
preset
thermal management
temperature threshold
change rate
Prior art date
Application number
PCT/CN2023/098247
Other languages
English (en)
French (fr)
Inventor
李川
于长虹
刘元治
霍海涛
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023236892A1 publication Critical patent/WO2023236892A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Embodiments of the present application relate to thermal management technology, for example, to a thermal management control method, device, vehicle controller, and medium.
  • the thermal management system of electric vehicles such as pure electric vehicles and extended-range fuel cell vehicles connects various power assemblies through pipelines, and performs heat exchange between each power assembly and the external environment through cooling media, so that each power assembly works within within the optimal temperature range.
  • the vehicle controller collects the temperature of each power assembly and controls the operation of the water pump and fan of the thermal management system to achieve heat exchange and achieve thermal balance for each assembly.
  • This application provides a thermal management control method, device, vehicle controller and medium to achieve thermal characteristics based on the powertrain, predict the temperature change trend of the powertrain based on the power and power change rate of the powertrain, or directly Predict the temperature change trend based on the temperature change rate, thereby adjusting the control strategy to accurately control the powertrain temperature within the ideal range.
  • thermal management control method which is applied to heat pipes.
  • the thermal management system includes thermal management components and a power assembly; the thermal management control method includes:
  • the thermal management control parameters are adjusted according to the powertrain power efficiency and the powertrain power change rate; wherein the thermal management control parameters include the working parameters of the thermal management component and the target temperature threshold reached by the powertrain;
  • the thermal management control parameter is adjusted according to a powertrain temperature change rate.
  • thermo management control device which includes:
  • an adjustment module configured to adjust thermal management control parameters according to powertrain power efficiency and powertrain power change rate in response to the current temperature of the powertrain reaching a preset temperature threshold; wherein the thermal management control parameters include thermal management Component operating parameters and the target temperature threshold reached by the powertrain; or, in response to the current temperature of the powertrain reaching the preset temperature threshold, adjusting the thermal management control parameter according to the powertrain temperature change rate.
  • a vehicle controller which includes:
  • a storage device arranged to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor is caused to implement the thermal management control method as described in the first aspect.
  • embodiments of the present application further provide a storage medium containing computer-executable instructions, which when executed by a computer processor are used to perform thermal management control as described in any one of the first aspects. method.
  • Figure 1 is a flow chart of a thermal management control method provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application.
  • FIG. 3 is a flow chart of another thermal management control method provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a thermal management control device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a vehicle controller provided by an embodiment of the present application.
  • Figure 1 is a flow chart of a thermal management control method provided by an embodiment of the present application. This embodiment can be applied to thermal management analysis situations. The method can be executed by a thermal management control device. As shown in Figure 1, it includes the following steps :
  • the thermal management control parameters When the current temperature of the powertrain reaches the preset temperature threshold, adjust the thermal management control parameters according to the powertrain success rate and the powertrain power change rate; or, when the current powertrain temperature reaches the preset temperature threshold, The thermal management control parameters are adjusted according to the temperature change rate; the thermal management control parameters include the operating parameters of the thermal management components and the target temperature threshold reached by the powertrain.
  • the thermal management control method is applied to the thermal management system, which includes thermal management components and powertrain; the thermal management system of the vehicle connects the powertrain and thermal management components through water cooling pipelines.
  • the medium exchanges heat between the powertrain and the external environment, allowing the powertrain to work within the optimal temperature range.
  • the working efficiency of different powertrains will change with the temperature, and the heating power of the powertrain will also change with the temperature.
  • the temperature of the current powertrain does not reach the preset temperature threshold, the working efficiency of the powertrain does not change at this time, the heating power of the powertrain changes slowly, the temperature of the powertrain changes slowly, and the thermal management control parameters are kept constant. , even if the operating parameters of the thermal management components are kept constant, the target temperature threshold reached by the powertrain is also constant.
  • the vehicle controller will collect and predict the future powertrain based on the power of the powertrain and the change rate of the powertrain success rate. According to the resulting temperature increase, the thermal management control parameters can be appropriately adjusted, that is, the operating parameters of the thermal management components can be adjusted to increase, and the target temperature threshold reached by the powertrain can be reduced to ensure that the powertrain temperature is accurately controlled within the ideal range.
  • the vehicle controller Thermal management control parameters can also be appropriately adjusted based on whether the temperature change in the future period deviates from the temperature increase, that is, adjusting and improving the working parameters of the thermal management components, adjusting and lowering the target temperature threshold reached by the powertrain, so that the powertrain temperature can be accurately controlled Within the ideal range.
  • the thermal management control parameters are adjusted according to the powertrain success rate and the powertrain success rate change rate; or, when the current powertrain temperature reaches the preset temperature threshold, the thermal management control parameters are adjusted according to the powertrain success rate and the powertrain success rate change rate.
  • the thermal management control parameters are adjusted according to the temperature change rate; wherein the thermal management control parameters include the operating parameters of the thermal management component and the target temperature threshold reached by the powertrain.
  • the temperature change trend of the powertrain is predicted based on the power and power change rate of the powertrain, or its temperature change trend is directly predicted based on the temperature change rate, thereby adjusting the control strategy to increase the temperature of the powertrain. Precisely controlled within the ideal range.
  • FIG. 2 is a schematic structural diagram of a thermal management system provided by an embodiment of the present application.
  • the thermal management system includes a power battery 11, an electric cooling device 12 and a first water pump 13; the power battery 11, the electric cooling device 12 and the first water pump 13 forms a circulation loop (ie, a power battery circulation loop) through the cooling medium pipeline 14; the function of the electric cooling device 12 is to provide an electric cooling source for the power battery 11.
  • the power battery circulation circuit has a power battery cooling function.
  • the thermal management system also includes a power motor 15, a second water pump 18, a heat exchange device 16 and a fan 17; the power motor 15, the second water pump 18 and the heat exchange device 16 form another circulation loop through the cooling medium pipeline 14 (i.e.
  • the fan 17 is coupled with the heat exchange device 16; the second water pump 18 can drive the cooling medium in the cooling medium pipeline 14 flow; the function of the heat exchange device 16 is to exchange the heat generated by the power motor 15 with the outside atmosphere; the fan 17 can accelerate the heat exchange between the heat exchange device 16 and the atmosphere; the power motor circulation loop has a power motor cooling function.
  • the power assembly includes a power battery 11 and a power motor 15
  • the thermal management component includes an electric cooling device 12 , a first water pump 13 , a second water pump 18 , a heat exchange device 16 and a fan 17 .
  • FIG 3 is a flow chart of another thermal management control method provided by an embodiment of the present application. , refer to Figure 2 and Figure 3; the method includes:
  • S210 Determine whether the power battery reaches the first preset temperature threshold, and determine whether the power motor reaches the second preset temperature threshold; wherein the second preset temperature threshold is greater than the first preset temperature threshold.
  • the thermal characteristics of each powertrain are different, and the working efficiency of different powertrains will change with different temperatures; when the power battery reaches the first preset temperature threshold, the working efficiency of the power battery will suddenly drop; When the motor reaches the second preset temperature threshold, the working efficiency of the power motor will suddenly drop; since the working efficiency of the power motor is less affected by temperature, the working efficiency of the power battery is greatly affected by temperature. Therefore, the second preset The temperature threshold is greater than the first preset temperature threshold.
  • the thermal management control parameters are adjusted according to the temperature change rate of the power battery; the thermal management control parameters include the preset cooling power output by the electric cooling device, the first water pump speed and the target temperature threshold reached by the power battery.
  • the thermal management control parameters are not adjusted.
  • the preset cooling power output by the electric cooling device in the power battery circulation loop, the speed of the first water pump and the power battery reach The target temperature threshold is a constant value; when the current temperature of the power battery reaches the When there is a preset temperature threshold, for example, the first preset temperature threshold is 35°C, when the power battery power is less than the preset power, the preset power is 50% of the maximum power of the power battery, and the power battery power change rate is less than the preset When it comes to the power change rate, the preset power change rate is 10KW/s, which means that in the future, the heating power of the power battery will increase slightly and will not cause the temperature of the power battery to rise rapidly.
  • the preset cooling power output by the device does not need to adjust the speed of the first water pump, nor does it need to adjust the target temperature threshold reached by the power battery. It should be noted here that the target temperature threshold is the ideal temperature value reached by the power battery after the power battery cooling cycle.
  • the preset cooling power output by the electric cooling device is adjusted to the first
  • the cooling power is preset
  • the first water pump is adjusted to the first preset rotation speed
  • the target temperature threshold reached by the power battery is adjusted to be the first target temperature threshold.
  • the preset cooling power output by the electric cooling device is adjusted to the first
  • the cooling power is preset
  • the first water pump is adjusted to the first preset rotation speed
  • the target temperature threshold reached by the power battery is adjusted to be the first target temperature threshold.
  • the power battery power is greater than the preset power, and the power change rate of the power battery is less than the preset power change rate, or when the current temperature of the power battery reaches the first preset
  • the power battery heating power will gradually increase, which will cause the power battery temperature to rise rapidly.
  • adjust the electric cooling device to output the first preset cooling power (the first preset cooling power is greater than the preset cooling power output by the electric cooling device in the power battery circulation loop when the temperature of the power battery does not reach the first preset temperature threshold)
  • adjust the first water pump to the first preset speed (the first preset speed is greater than the speed of the first water pump in the power battery circulation loop when the temperature of the power battery does not reach the first preset temperature threshold)
  • adjust the power battery to the first A target temperature threshold (the first target temperature threshold is less than the target temperature threshold reached by the power battery when the temperature of the power battery does not reach the first preset temperature threshold), optionally, the first target temperature threshold is 37°C, so that Powertrain The temperature is accurately controlled within the ideal range.
  • the preset cooling power output by the electric cooling device is adjusted to the second Preset cooling power, adjust the first water pump to the second preset speed, and adjust the target temperature threshold reached by the power battery to the second target temperature threshold; wherein the second target temperature threshold is smaller than the first target temperature threshold; the second preset cooling The power is greater than the first preset cooling power; the second preset rotation speed is greater than the first preset rotation speed.
  • the output power of the electric cooling device is adjusted to the second preset cooling power
  • the speed of the first water pump is adjusted to the second preset speed
  • the target temperature threshold of the power battery is adjusted to the second preset speed.
  • Second target temperature threshold optional, the second target temperature threshold is 35°C, and it immediately enters the power battery cooling mode to prevent thermal runaway of the power battery.
  • the first temperature change rate is 0.1°C per second, which represents the power battery.
  • the temperature is within a controllable range, so the preset cooling power output by the electric cooling device in the power battery circulation loop, the rotation speed of the first water pump, and the target temperature threshold reached by the power battery are constant values, that is, the thermal management control parameters are not adjusted.
  • the output power of the electric cooling device is adjusted to the second preset value. Cooling power, adjust the first water pump speed to the second preset speed, adjust the target temperature threshold reached by the power battery to the second target temperature threshold, optionally, the second target temperature threshold is 35°C, and immediately enter the power battery cooling mode. Prevent thermal runaway of power batteries.
  • the thermal management control parameters are not adjusted.
  • the speed of the second water pump in the power motor circulation loop, the speed of the fan and the target temperature threshold reached by the power motor are constant values. ;
  • the second preset temperature threshold is 55°C.
  • the preset power is 50% of the maximum power of the power motor.
  • the preset power change rate is 10KW/s, which means that in the future, the heating power of the power motor will increase slightly and will not cause the temperature of the power motor to rise rapidly, so There is no need to adjust the speed of the second water pump and the fan speed in the power motor circulation loop, nor to adjust the target temperature threshold reached by the power motor.
  • the power of the power motor is less than the preset power, and the power change rate of the power motor is greater than the preset power change rate, the fan output is adjusted to the first preset fan speed, and the second water pump is adjusted. is the first preset rotation speed, and the target temperature threshold reached by the adjusted power motor is the third target temperature threshold.
  • the power of the power motor is greater than the preset power, and the power change rate of the power motor is less than the preset power change rate, the fan output is adjusted to the first preset fan speed, and the second water pump is adjusted. is the first preset rotation speed, and the target temperature threshold reached by the adjusted power motor is the third target temperature threshold.
  • the power of the power motor is greater than the preset power, and the power change rate of the power motor is less than the preset power change rate, or when the temperature of the current power motor reaches the second preset
  • the temperature threshold when the power motor power is less than the preset power and the power motor power change rate is greater than the preset power change rate, it means that in the future, the heating power of the power motor will gradually increase, which will cause the temperature of the power motor to rise rapidly.
  • the fan speed (the first preset fan speed is greater than the current preset fan speed when the temperature of the power motor does not reach the second preset temperature threshold), and the second water pump is the first preset speed (the first preset speed is greater than the current When the temperature of the power motor does not reach the second preset temperature threshold, the preset speed of the second water pump), adjust the power motor to the third target temperature threshold (the third target temperature threshold is smaller than the current temperature of the power motor and does not reach the second preset When the temperature threshold is the target temperature threshold that the power motor reaches), optionally, the third target temperature threshold is 52°C, so that the temperature of the power motor can be accurately controlled within the ideal range.
  • the power of the power motor is greater than the preset power
  • the power change rate of the power motor is greater than the preset power change rate
  • the fan output is adjusted to the second preset fan speed
  • the second water pump is adjusted.
  • the target temperature threshold reached by adjusting the power motor is the fourth target temperature threshold; wherein the fourth target temperature threshold is less than the third target temperature threshold; the second preset speed is greater than the first preset speed; the second The preset fan speed is greater than the first preset fan speed.
  • the power of the power motor is greater than the preset power
  • the power change rate of the power motor is greater than the preset power change rate
  • the heating power of the power motor will be The huge increase will cause the temperature of the power motor to rise rapidly. Therefore, adjust the fan output to the second preset fan speed, the second water pump to the second preset speed, and adjust the target temperature threshold reached by the power motor to the fourth target temperature threshold. If selected, the fourth target temperature threshold is 50°C, and the power motor cooling mode will be entered immediately to prevent thermal runaway of the power motor.
  • the thermal management control parameters are not adjusted; where, due to the thermal characteristics of each powertrain Different, the heat capacity of each powertrain is different.
  • the heat capacity of the power battery is greater than the heat capacity value of the power motor; that is, under the same heat, the temperature change of the power motor is greater than the temperature change of the power battery. Therefore, the second temperature The change rate is greater than the first temperature change rate.
  • the second temperature change rate is 0.5°C per second, which means that the temperature of the power motor is within the controllable range. Therefore, the fan in the power motor circulation loop is preset The rotation speed, the rotation speed of the second water pump, and the target temperature threshold reached by the power motor are constant values.
  • the temperature change rate of the power motor is large.
  • adjust the fan output to the second preset fan speed adjust the second water pump to the second preset speed, and adjust the target temperature threshold reached by the power motor to the fourth target temperature threshold; where, the power motor temperature
  • the change rate is greater than the second temperature change rate, it means that the temperature of the power motor is at risk of thermal runaway. Therefore, the fan output is adjusted to the second preset fan speed, the second water pump is adjusted to the second preset speed, and the target temperature threshold reached by the power motor is adjusted.
  • the fourth target temperature threshold is 50°C, and immediately enters the power motor cooling mode to prevent thermal runaway of the power motor.
  • This solution is based on the thermal characteristics of different powertrains. For example, based on the power of each powertrain and the power change rate of each powertrain, or based on the temperature change rate of each powertrain, the thermal management control parameters are adjusted in advance. As different values, the temperature of each powertrain can be accurately controlled within the ideal range.
  • the embodiment of the present application also provides a thermal management control device.
  • the thermal management control device provided by the embodiment of the present application can execute the thermal management control method provided by any embodiment of the present application and has functional modules corresponding to the execution method.
  • Figure 4 is a schematic structural diagram of a thermal management control device provided by an embodiment of the present application. As shown in Figure 4, the control device includes:
  • the acquisition module 10 is configured to acquire the current temperature of the powertrain
  • the adjustment module 20 is configured to adjust the thermal management control parameters according to the powertrain power efficiency and the powertrain power change rate when the current powertrain temperature reaches a preset temperature threshold; wherein the thermal management control parameters include thermal management component working parameters. and the target temperature threshold reached by the powertrain; or, when the current temperature of the powertrain reaches the preset temperature threshold, the thermal management control parameters are adjusted according to the temperature change rate of the powertrain.
  • the thermal management system includes a power battery, an electric cooling device and a first water pump; the power battery, the electric cooling device and the first water pump form a circulation loop through a cooling medium pipeline;
  • Adjustment module 20 including:
  • the first adjustment unit is configured to adjust the thermal management control parameters according to the power battery power and the power battery power change rate when the current temperature of the power battery reaches the first preset temperature threshold, or when When the temperature of the aforementioned power battery reaches the first preset temperature threshold, the thermal management control parameters are adjusted according to the temperature change rate; wherein the thermal management control parameters include the preset cooling power output by the electric cooling device, the third A water pump speed and the target temperature threshold reached by the power motor.
  • the thermal management system also includes a power motor, a second water pump, a heat exchange device and a fan; the power motor, the second water pump and the heat exchange device form another circulation loop through a cooling medium pipeline. ;
  • the fan is coupled with the heat exchange device;
  • Adjustment module 20 including:
  • the second adjustment unit is configured to adjust the thermal management control parameters according to the power of the power motor and the power change rate of the power motor when the current temperature of the power motor reaches the second preset temperature threshold, or the current temperature of the power motor reaches the second preset temperature threshold.
  • the thermal management control parameters are adjusted according to the temperature change rate, where the thermal management control parameters include the fan speed, the second water pump speed and the target temperature threshold reached by the power motor.
  • FIG. 5 is a schematic structural diagram of a vehicle controller provided by an embodiment of the present application.
  • the vehicle controller includes a processor 70, a memory 71, an input device 72 and an output device 73; in the vehicle controller
  • the number of processors 70 can be at least one, and one processor 70 is taken as an example in Figure 5; the processor 70, memory 71, input device 72 and output device 73 in the vehicle controller can be connected through a bus or other means, as shown in Figure 5 In 5, connection via bus is taken as an example.
  • the memory 71 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the thermal management control method in the embodiment of the present application.
  • the processor 70 executes various functional applications and data processing of the vehicle controller by running software programs, instructions and modules stored in the memory 71 , that is, implementing the above thermal management control method.
  • the memory 71 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created according to the use of the terminal, etc.
  • the memory 71 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state memory. state storage device.
  • the memory 71 may further include memories remotely located relative to the processor 70 , and these remote memories may be connected to the vehicle controller through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the input device 72 may be configured to receive input numeric or character information and generate key signal inputs related to user settings and function control of the vehicle controller.
  • the output device 73 may include a display device such as a display screen.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions, which when executed by a computer processor are used to perform a thermal management control method, which method includes:
  • the thermal management control parameters are adjusted according to the powertrain power and the powertrain power change rate; or, when the current temperature of the powertrain reaches the preset When the temperature threshold is reached, the thermal management control parameters are adjusted according to the temperature change rate;
  • the thermal management control parameters include the operating parameters of the thermal management component and the target temperature threshold reached by the powertrain.
  • the embodiments of the present application provide a storage medium containing computer-executable instructions, and the computer-executable instructions are not limited to the method operations described above, and can also execute the thermal management control method provided by any embodiment of the application. related operations.
  • the present application can be implemented with the help of software and necessary general hardware, and of course can also be implemented with hardware. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to related technologies.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), FLASH, hard disk or optical disk, etc., including a number of instructions to make a computer device (which can be a personal computer, server, or network device equipment, etc.) to perform the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种热管理控制方法、装置、整车控制器及介质。该方法应用于热管理系统,热管理系统包括热管理组件和动力总成;热管理控制方法包括:获取当前动力总成的温度;响应于当前动力总成的温度达到预设温度阈值,根据动力总成功率及动力总成功率变化率调节热管理控制参数;或者,响应于当前动力总成的温度达到预设温度阈值,根据动力总成温度变化率调节热管理控制参数,其中,热管理控制参数包括热管理组件工作参数及动力总成达到的目标温度阈值。

Description

一种热管理控制方法、装置、整车控制器及介质
本申请要求在2022年6月7日提交中国专利局、申请号为202210641460.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及热管理技术,例如涉及一种热管理控制方法、装置、整车控制器及介质。
背景技术
纯电动汽车、增程式燃料电池车等电动汽车的热管理系统是通过管路将各个动力总成连接起来,通过冷却介质对各个动力总成和外界环境进行热交换,使各个动力总成工作在最佳温度范围内。整车控制器通过采集各个动力总成的温度,控制热管理系统的水泵和风扇工作,实现热量交换,使各个总成达到热平衡。
目前的热管理控制策略,都是基于当前的数据进行动力系统的热管理。例如,整车控制器会根据动力总成当前的温度进行判断,从而对动力总成进行冷却或加热,该控制策略实时性较差,动力总成的热管理相对滞后,造成动力总成的温度变化超过预期,不能准确控制动力总成的温度在一定范围内,导致总成温度变化大,导致能量损失大,缩短续驶里程,又减少动力总成的寿命。
发明内容
本申请提供一种热管理控制方法、装置、整车控制器及介质,以实现基于动力总成的热特征,根据动力总成的功率及功率变化率预测动力总成的温度变化趋势,或直接根据温度变化率预测其温度变化趋势,从而调节控制策略,使动力总成温度精确控制在理想范围内。
第一方面,本申请实施例提供了一种热管理控制方法,该方法应用于热管 理系统,所述热管理系统包括热管理组件和动力总成;所述热管理控制方法包括:
获取当前所述动力总成的温度;
响应于当前所述动力总成的温度达到预设温度阈值,根据动力总成功率及动力总成功率变化率调节热管理控制参数;其中,所述热管理控制参数包括所述热管理组件工作参数及所述动力总成达到的目标温度阈值;
或者,响应于当前所述动力总成的温度达到所述预设温度阈值,根据动力总成温度变化率调节所述热管理控制参数。
第二方面,本申请实施例还提供了一种热管理控制装置,该装置包括:
获取模块,设置为获取当前动力总成的温度;
调节模块,设置为响应于当前所述动力总成的温度达到预设温度阈值,根据动力总成功率及动力总成功率变化率调节热管理控制参数;其中,所述热管理控制参数包括热管理组件工作参数及所述动力总成达到的目标温度阈值;或者,响应于当前所述动力总成的温度达到所述预设温度阈值,根据动力总成温度变化率调节所述热管理控制参数。
第三方面,本申请实施例提供了一种整车控制器,所述整车控制器包括:
至少一个处理器;
存储装置,设置为存储至少一个程序,
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如第一方面所述的热管理控制方法。
第四方面,本申请实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如第一方面任一所述的热管理控制方法。
附图说明
图1是本申请实施例提供的一种热管理控制方法的流程图;
图2是本申请实施例提供的一种热管理系统的结构示意图;
图3是本申请实施例提供的另一种热管理控制方法的流程图;
图4是本申请实施例提供的一种热管理控制装置的结构示意图;
图5是本申请实施例提供的一种整车控制器的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。
图1是本申请实施例提供的一种热管理控制方法的流程图,本实施例可适用于热管理分析情况,该方法可以由热管理控制装置来执行,如图1所示,包括如下步骤:
S110、获取当前动力总成的温度。
S120、当当前动力总成的温度达到预设温度阈值时,根据动力总成功率及动力总成功率变化率调节热管理控制参数;或者,当当前动力总成的温度达到预设温度阈值时,根据温度变化率调节热管理控制参数;其中,热管理控制参数包括热管理组件工作参数及动力总成达到的目标温度阈值。
其中,该热管理控制方法应用于热管理系统,热管理系统包括热管理组件和动力总成;整车的热管理系统是通过水冷却管路将动力总成和热管理组件连接起来,通过冷却介质对动力总成和外界环境进行热交换,使动力总成工作在最佳温度范围内。实际的控制过程中,由于动力总成的热特性不同,不同的动力总成的工作效率会随着温度变化,动力总成的发热功率从而也会随着温度变化。
若当前动力总成的温度未达到预设温度阈值时,此时动力总成的工作效率不发生变化,动力总成的发热功率变化平缓,动力总成温度变化平缓,则保持热管理控制参数恒定,即使得热管理组件工作参数恒定,动力总成达到的目标温度阈值也恒定不变。
若当当前动力总成的温度达到预设温度阈值时,动力总成的工作效率会突 然下降,动力总成的发热功率会突然升高,动力总成的温度会急剧增加,因此整车控制器会通过采集并根据动力总成的功率及动力总成功率变化率进行预测未来动力总成的温度增加幅度大小,从而适当调节热管理控制参数,即调节提高热管理组件工作参数,调节降低动力总成达到的目标温度阈值,从而保证动力总成温度精确地控制在理想的范围内。
另外,当前动力总成的温度达到预设温度阈值时,动力总成的工作效率会突然下降,动力总成的发热功率会突然升高,动力总成的温度会急剧增加,因此整车控制器还可以根据未来一段时间的温度变化是否偏离温度增幅,从而适当调节热管理控制参数,即调节提高热管理组件工作参数,调节降低动力总成达到的目标温度阈值,使得动力总成温度精确地控制在理想的范围内。
本申请实施例,通过获取当前动力总成的温度,当当前动力总成的温度达到预设温度阈值时,根据动力总成功率及动力总成功率变化率调节热管理控制参数;或者,当当前动力总成的温度达到预设温度阈值时,根据温度变化率调节热管理控制参数;其中,热管理控制参数包括所述热管理组件工作参数及所述动力总成达到的目标温度阈值。如此基于动力总成的热特征,根据动力总成的功率及功率变化率预测动力总成的温度变化趋势,或直接根据温度变化率预测其温度变化趋势,从而调节控制策略,使动力总成温度精确控制在理想范围内。
图2是本申请实施例提供的一种热管理系统的结构示意图,如图2所示,热管理系统包括动力电池11、电冷却装置12及第一水泵13;动力电池11、电冷却装置12及第一水泵13通过冷却介质管路14构成一循环回路(即动力电池循环回路);电冷却装置12的作用是给动力电池11提供电冷却源。动力电池循环回路具备动力电池冷却功能。参照图2,热管理系统还包括动力电机15、第二水泵18、热交换装置16及风扇17;动力电机15、第二水泵18及热交换装置16通过冷却介质管路14构成另一循环回路(即动力电机循环回路);风扇17与热交换装置16耦合连接;第二水泵18可以驱动冷却介质在冷却介质管路14中 流动;热交换装置16的作用是使得动力电机15产生的热量与外界大气交换;风扇17则可以加速热交换装置16与大气热量交换;动力电机循环回路具备动力电机冷却功能。
需要说明的是,动力总成包括动力电池11和动力电机15,热管理组件包括电冷却装置12、第一水泵13、第二水泵18、热交换装置16及风扇17。
由于动力电池和动力电机的热特性不同,下面分别对动力电池循环回路和动力电机循环回路进行不同的调节热管理控制,图3是本申请实施例提供的另一种热管理控制方法的流程图,参照图2和图3;该方法包括:
S210、判断动力电池是否达到第一预设温度阈值,判断动力电机是否达到第二预设温度阈值;其中,第二预设温度阈值大于第一预设温度阈值。
其中,各动力总成的热特性不同,不同的动力总成的工作效率会随着不同的温度变化;动力电池当达到第一预设温度阈值时,其动力电池的工作效率会突然下降;动力电机当达到第二预设温度阈值时,其动力电机的工作效率会突然下降;由于动力电机的工作效率受温度影响较小,动力电池的工作效率受温度影响较大,因此,第二预设温度阈值大于第一预设温度阈值。
S220、当当前动力电池的温度达到第一预设温度阈值时,根据动力电池功率及动力电池功率变化率调节热管理控制参数,或者,当当前动力电池的温度达到第一预设温度阈值时,根据动力电池温度变化率调节热管理控制参数;其中,热管理控制参数包括电冷却装置输出的预设冷却功率、第一水泵转速及动力电池达到的目标温度阈值。
示例性的,当当前动力电池的温度达到第一预设温度阈值时,动力电池功率小于预设功率,动力电池功率变化率小于预设功率变化率时,则不调节热管理控制参数。
其中,在一般的热管理控制策略中,当动力电池的温度未达到第一预设温度阈值时,动力电池循环回路中电冷却装置输出的预设冷却功率、第一水泵的转速及动力电池达到的目标温度阈值为恒定值;当当前动力电池的温度达到第 一预设温度阈值时,示例性的,第一预设温度阈值为35℃,当动力电池功率小于预设功率,预设功率为动力电池最大功率的50%,动力电池功率变化率小于预设功率变化率时,预设功率变化率为10KW/s,代表在未来一段时间内,动力电池发热功率增加较小,不会造成动力电池温度快速升高,因此不用调整动力电池循环回路中电冷却装置输出的预设冷却功率、不用调节第一水泵的转速,也不用调节动力电池达到的目标温度阈值。这里需说明的是,目标温度阈值为动力电池在动力电池冷却循环后达到的理想温度值。
当当前动力电池的温度达到第一预设温度阈值时,动力电池功率小于预设功率,动力电池功率变化率大于预设功率变化率时,则调节电冷却装置输出的预设冷却功率为第一预设冷却功率,调节第一水泵为第一预设转速,调节动力电池达到的目标温度阈值为第一目标温度阈值。
当当前动力电池的温度达到第一预设温度阈值时,动力电池功率大于预设功率,动力电池功率变化率小于预设功率变化率时,则调节电冷却装置输出的预设冷却功率为第一预设冷却功率,调节第一水泵为第一预设转速,调节动力电池达到的目标温度阈值为第一目标温度阈值。
其中,当当前动力电池的温度达到第一预设温度阈值时,动力电池功率大于预设功率,动力电池功率变化率小于预设功率变化率时,或者当当前动力电池的温度达到第一预设温度阈值时,动力电池功率小于预设功率,动力电池功率变化率大于预设功率变化率时,代表在未来一段时间内,动力电池发热功率增加幅度逐渐增大,会造成动力电池温度快速升高,调节电冷却装置输出第一预设冷却功率(第一预设冷却功率大于当动力电池的温度未达到第一预设温度阈值时,动力电池循环回路中电冷却装置输出的预设冷却功率),调节第一水泵为第一预设转速(第一预设转速大于当动力电池的温度未达到第一预设温度阈值时,动力电池循环回路中第一水泵的转速),调节动力电池为第一目标温度阈值(第一目标温度阈值小于当动力电池的温度未达到第一预设温度阈值时,动力电池达到的目标温度阈值),可选的,第一目标温度阈值为37℃,以使动力总 成温度精确地控制在理想的范围内。
当当前动力电池的温度达到第一预设温度阈值时,动力电池功率大于预设功率,动力电池功率变化率大于预设功率变化率时,则调节电冷却装置输出的预设冷却功率为第二预设冷却功率,调节第一水泵为第二预设转速,调节动力电池达到的目标温度阈值为第二目标温度阈值;其中,第二目标温度阈值小于第一目标温度阈值;第二预设冷却功率大于第一预设冷却功率;第二预设转速大于第一预设转速。
其中,当当前动力电池的温度达到第一预设温度阈值时,动力电池功率大于预设功率,动力电池功率变化率大于预设功率变化率时,则代表在未来一段时间内,动力电池发热功率增加幅度巨大,会造成动力电池温度迅速升高,因此调节电冷却装置输出功率为第二预设冷却功率,调节第一水泵转速为第二预设转速,调节动力电池达到的目标温度阈值为第二目标温度阈值,可选的,第二目标温度阈值为35℃,立刻进入动力电池冷却模式,防止动力电池发生热失控。
示例性的,当当前动力电池的温度达到第一预设温度阈值时,动力电池温度变化率小于第一温度变化率时,可选的,第一温度变化率为0.1℃每秒,代表动力电池温度处于可控范围内,因此动力电池循环回路中电冷却装置输出的预设冷却功率、第一水泵的转速及动力电池达到的目标温度阈值为恒定值,即不调节热管理控制参数。
当当前动力电池的温度达到第一预设温度阈值时,动力电池温度变化率大于第一温度变化率时,代表动力电池温度有热失控的风险,因此调节电冷却装置输出功率为第二预设冷却功率,调节第一水泵转速为第二预设转速,调节动力电池达到的目标温度阈值为第二目标温度阈值,可选的,第二目标温度阈值为35℃,立刻进入动力电池冷却模式,防止动力电池发生热失控。
S230、当当前动力电机的温度达到第二预设温度阈值时,根据动力电机功率及动力电机功率变化率调节热管理控制参数;或者当当前动力电机的温度达 到第二预设温度阈值时,根据动力电机温度变化率调节热管理控制参数;其中,热管理控制参数包括风扇转速、第二水泵转速及动力电机达到的目标温度阈值。
示例性的,当当前动力电机的温度达到第二预设温度阈值时,动力电机功率小于预设功率,动力电机功率变化率小于预设功率变化率时,则不调节热管理控制参数。
其中,在一般的热管理控制策略中,当动力电机的温度未达到第二预设温度阈值时,动力电机循环回路中第二水泵的转速、风扇转速及动力电机达到的目标温度阈值为恒定值;当当前动力电机的温度达到第二预设温度阈值时,示例性的,第二预设温度阈值为55℃,当动力电机功率小于预设功率,预设功率为动力电机最大功率的50%,动力电机功率变化率小于预设功率变化率时,预设功率变化率为10KW/s,代表在未来一段时间内,动力电机发热功率增加较小,不会造成动力电机温度快速升高,因此不用调整动力电机循环回路中第二水泵的转速及风扇转速、也不用调节动力电机达到的目标温度阈值。
当动力电机的温度达到第二预设温度阈值时,动力电机功率小于预设功率,动力电机功率变化率大于预设功率变化率时,则调节风扇输出第一预设风扇转速,调节第二水泵为第一预设转速,调节动力电机达到的目标温度阈值为第三目标温度阈值。
当动力电机的温度达到第二预设温度阈值时,动力电机功率大于预设功率,动力电机功率变化率小于预设功率变化率时,则调节风扇输出第一预设风扇转速,调节第二水泵为第一预设转速,调节动力电机达到的目标温度阈值为第三目标温度阈值。
其中,当当前动力电机的温度达到第二预设温度阈值时,动力电机功率大于预设功率,动力电机功率变化率小于预设功率变化率时,或者当当前动力电机的温度达到第二预设温度阈值时,动力电机功率小于预设功率,动力电机功率变化率大于预设功率变化率时,代表在未来一段时间内,动力电机发热功率增加幅度逐渐增大,会造成动力电机温度快速升高,调节风扇输出第一预设风 扇转速(第一预设风扇转速大于当前动力电机的温度未达到第二预设温度阈值时,风扇的预设风扇转速),第二水泵为第一预设转速(第一预设转速大于当前动力电机的温度未达到第二预设温度阈值时,第二水泵的预设转速),调节动力电机为第三目标温度阈值(第三目标温度阈值小于当前动力电机的温度未达到第二预设温度阈值时,动力电机达到的目标温度阈值),可选的,第三目标温度阈值为52℃,以使动力电机温度精确地控制在理想的范围内。
当动力电机的温度达到第二预设温度阈值时,动力电机功率大于预设功率,动力电机功率变化率大于预设功率变化率时,则调节风扇输出第二预设风扇转速,调节第二水泵为第二预设转速,调节动力电机达到的目标温度阈值为第四目标温度阈值;其中,第四目标温度阈值小于第三目标温度阈值;第二预设转速大于第一预设转速;第二预设风扇转速大于第一预设风扇转速。
其中,当当前动力电机的温度达到第二预设温度阈值时,动力电机功率大于预设功率,动力电机功率变化率大于预设功率变化率时,则代表在未来一段时间内,动力电机发热功率增加幅度巨大,会造成动力电机温度迅速升高,因此调节风扇输出第二预设风扇转速,第二水泵为第二预设转速,调节动力电机达到的目标温度阈值为第四目标温度阈值,可选的,第四目标温度阈值为50℃,立刻进入动力电机冷却模式,防止动力电机发生热失控。
示例性的,当当前动力电机的温度达到第二预设温度阈值时,动力电机温度变化率小于第二温度变化率时,则不调节热管理控制参数;其中,由于各动力总成的热特性不同,各动力总成的热容不同,一般地,由于动力电池的热容大于动力电机的热容值;即相同热量下,动力电机的温度变化大于动力电池的温度变化,因此,第二温度变化率大于第一温度变化率。其中,当动力电机温度变化率小于第二温度变化率时,可选的,第二温度变化率为0.5℃每秒,代表动力电机温度处于可控范围内,因此动力电机循环回路中风扇预设转速及第二水泵的转速、动力电机达到的目标温度阈值为恒定值。
当当前动力电机的温度达到第二预设温度阈值时,动力电机温度变化率大 于第二温度变化率时,则调节风扇输出第二预设风扇转速,调节第二水泵为第二预设转速,调节动力电机达到的目标温度阈值为第四目标温度阈值;其中,动力电机温度变化率大于第二温度变化率时,代表动力电机温度有热失控的风险,因此调节风扇输出第二预设风扇转速,调节第二水泵为第二预设转速,调节动力电机达到的目标温度阈值为第四目标温度阈值,可选的,第四目标温度阈值为50℃,立刻进入动力电机冷却模式,防止动力电机发生热失控。
本方案基于不同的动力总成的热特性,例如根据各动力总成的功率大小及各动力总成的功率变化率大小,或者根据各动力总成温度变化率的大小,提前调节热管理控制参数为不同的值,使得各动力总成温度精确地控制在理想的范围内。
本申请实施例还提供了一种热管理控制装置,本申请实施例所提供的热管理控制装置可执行本申请任意实施例所提供的热管理控制方法,具备执行方法相应的功能模块。图4是本申请实施例提供的一种热管理控制装置的结构示意图,如图4所示,该控制装置包括:
获取模块10,设置为获取当前动力总成的温度;
调节模块20,设置为当当前动力总成的温度达到预设温度阈值时,根据动力总成功率及动力总成功率变化率调节热管理控制参数;其中,热管理控制参数包括热管理组件工作参数及动力总成达到的目标温度阈值;或者,当当前动力总成的温度达到预设温度阈值,根据动力总成温度变化率调节热管理控制参数。
可选的,所述热管理系统包括动力电池、电冷却装置及第一水泵;所述动力电池、所述电冷却装置及所述第一水泵通过冷却介质管路构成一循环回路;
调节模块20,包括:
第一调节单元,设置为当当前所述动力电池的温度达到第一预设温度阈值时,根据动力电池功率及动力电池功率变化率调节热管理控制参数,或者当当 前所述动力电池的温度达到第一预设温度阈值时,根据温度变化率调节热管理控制参数;其中,所述热管理控制参数包括所述电冷却装置输出的预设冷却功率、所述第一水泵转速及所述动力电机达到的目标温度阈值。
可选的,所述热管理系统还包括动力电机、第二水泵、热交换装置及风扇;所述动力电机、所述第二水泵及所述热交换装置通过冷却介质管路构成另一循环回路;所述风扇与所述热交换装置耦合连接;
调节模块20,包括:
第二调节单元,设置为当当前所述动力电机的温度达到第二预设温度阈值时,根据动力电机功率及动力电机功率变化率调节热管理控制参数,或者当前所述动力电机的温度达到第二预设温度阈值时,根据温度变化率调节热管理控制参数,其中,所述热管理控制参数包括风扇转速、第二水泵转速及所述动力电机达到的目标温度阈值。
图5是本申请实施例提供的一种整车控制器的结构示意图,如图5所示,整车控制器包括处理器70、存储器71、输入装置72和输出装置73;整车控制器中处理器70的数量可以是至少一个,图5中以一个处理器70为例;整车控制器中的处理器70、存储器71、输入装置72和输出装置73可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器71作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的热管理控制方法对应的程序指令/模块。处理器70通过运行存储在存储器71中的软件程序、指令以及模块,从而执行整车控制器的各种功能应用以及数据处理,即实现上述的热管理控制方法。
存储器71可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器71可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固 态存储器件。在一些实例中,存储器71可进一步包括相对于处理器70远程设置的存储器,这些远程存储器可以通过网络连接至整车控制器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置72可设置为接收输入的数字或字符信息,以及产生与整车控制器的用户设置以及功能控制有关的键信号输入。输出装置73可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种热管理控制方法,该方法包括:
获取当前所述动力总成的温度;
当当前所述动力总成的温度达到预设温度阈值时,根据动力总成功率及动力总成功率变化率调节热管理控制参数;或者,当当前所述动力总成的温度达到所述预设温度阈值时,根据温度变化率调节所述热管理控制参数;
其中,所述热管理控制参数包括所述热管理组件工作参数及所述动力总成达到的目标温度阈值。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的热管理控制方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设 备等)执行本申请各个实施例所述的方法。
值得注意的是,上述搜索装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (10)

  1. 一种热管理控制方法,应用于热管理系统,所述热管理系统包括热管理组件和动力总成;所述热管理控制方法包括:
    获取当前所述动力总成的温度;
    响应于当前所述动力总成的温度达到预设温度阈值,根据动力总成功率及动力总成功率变化率调节热管理控制参数;其中,所述热管理控制参数包括所述热管理组件工作参数及所述动力总成达到的目标温度阈值;
    或者,响应于当前所述动力总成的温度达到所述预设温度阈值,根据动力总成温度变化率调节所述热管理控制参数。
  2. 根据权利要求1所述的热管理控制方法,其中,所述热管理系统包括动力电池、电冷却装置及第一水泵;所述动力电池、所述电冷却装置及所述第一水泵通过冷却介质管路构成一循环回路;
    响应于当前所述动力总成的温度达到预设温度阈值,根据动力总成功率及动力总成功率变化率调节热管理控制参数,包括:
    响应于当前所述动力电池的温度达到第一预设温度阈值,根据动力电池功率及动力电池功率变化率调节热管理控制参数,其中,所述热管理控制参数包括所述电冷却装置输出的预设冷却功率、所述第一水泵的转速及所述动力电池达到的目标温度阈值。
  3. 根据权利要求2所述的热管理控制方法,其中,响应于当前所述动力电池的温度达到第一预设温度阈值,根据动力电池功率及动力电池功率变化率调节热管理控制参数,其中,所述热管理控制参数包括所述电冷却装置输出的预设冷却功率、所述第一水泵转速及所述动力电池达到的目标温度阈值,包括:
    响应于当前所述动力电池的温度达到第一预设温度阈值,且所述动力电池功率小于预设功率,所述动力电池功率变化率小于预设功率变化率,不调节所述热管理控制参数;
    响应于当前所述动力电池的温度达到所述第一预设温度阈值,且所述动力电池功率小于所述预设功率,所述动力电池功率变化率大于所述预设功率变化 率,调节所述电冷却装置输出的预设冷却功率为第一预设冷却功率,调节所述第一水泵为第一预设转速,调节所述动力电池达到的目标温度阈值为第一目标温度阈值;
    响应于当前所述动力电池的温度达到所述第一预设温度阈值,且所述动力电池功率大于所述预设功率,所述动力电池功率变化率小于所述预设功率变化率,调节所述电冷却装置输出的预设冷却功率为所述第一预设冷却功率,调节所述第一水泵为所述第一预设转速,调节所述动力电池达到的目标温度阈值为所述第一目标温度阈值;
    响应于当前所述动力电池的温度达到所述第一预设温度阈值,且所述动力电池功率大于所述预设功率,所述动力电池功率变化率大于所述预设功率变化率,调节所述电冷却装置输出的预设冷却功率为第二预设冷却功率,调节所述第一水泵为第二预设转速,调节所述动力电池达到的目标温度阈值为为第二目标温度阈值;其中,所述第二目标温度阈值小于所述第一目标温度阈值;所述第二预设冷却功率大于所述第一预设冷却功率;所述第二预设转速大于所述第一预设转速。
  4. 根据权利要求3所述的热管理控制方法,其中,响应于当前所述动力总成的温度达到预设温度阈值,根据动力总成温度变化率调节所述热管理控制参数,包括:
    响应于当前所述动力电池的温度达到所述第一预设温度阈值,根据动力电池温度变化率调节所述热管理控制参数,其中,所述热管理控制参数包括所述电冷却装置输出的预设冷却功率、所述第一水泵的转速及所述动力电池达到的目标温度阈值;
    响应于当前所述动力电池的温度达到所述第一预设温度阈值,根据动力电池温度变化率调节所述热管理控制参数,其中,所述热管理控制参数包括所述电冷却装置输出的预设冷却功率、所述第一水泵的转速及所述动力电池达到的目标温度阈值,包括:
    响应于当前所述动力电池的温度达到所述第一预设温度阈值,且所述动力电池温度变化率小于第一温度变化率,不调节所述热管理控制参数;
    响应于当前所述动力电池的温度达到所述第一预设温度阈值,且所述动力电池温度变化率大于所述第一温度变化率,调节所述电冷却装置输出的预设冷却功率为所述第二预设冷却功率,调节所述第一水泵为所述第二预设转速,调节所述动力电池达到的目标温度阈值为所述第二目标温度阈值。
  5. 根据权利要求4所述的热管理控制方法,其中,所述热管理系统还包括动力电机、第二水泵、热交换装置及风扇;所述动力电机、所述第二水泵及所述热交换装置通过冷却介质管路构成另一循环回路;所述风扇与所述热交换装置耦合连接;
    响应于当前所述动力总成的温度达到预设温度阈值,根据动力总成功率及动力总成功率变化率调节热管理控制参数,包括:
    响应于当前所述动力电机的温度达到第二预设温度阈值,根据动力电机功率及动力电机功率变化率调节热管理控制参数,其中,所述热管理控制参数包括风扇转速、第二水泵转速及所述动力电机达到的目标温度阈值。
  6. 根据权利要求5所述的热管理控制方法,其中,响应于当前所述动力电机的温度达到第二预设温度阈值,根据动力电机功率及动力电机功率变化率调节热管理控制参数,其中,所述热管理控制参数包括风扇转速、第二水泵转速及所述动力电机达到的目标温度阈值,包括:
    响应于当前所述动力电机的温度达到第二预设温度阈值,且所述动力电机功率小于所述预设功率,所述动力电机功率变化率小于所述预设功率变化率时,不调节所述热管理控制参数;
    响应于所述动力电机的温度达到所述第二预设温度阈值,且所述动力电机功率小于所述预设功率,所述动力电机功率变化率大于所述预设功率变化率,调节所述风扇输出第一预设风扇转速,调节所述第二水泵为所述第一预设转速,调节所述动力电机达到的目标温度阈值为第三目标温度阈值;
    响应于所述动力电机的温度达到所述第二预设温度阈值,所述动力电机功率大于所述预设功率,所述动力电机功率变化率小于所述预设功率变化率时,调节所述风扇输出所述第一预设风扇转速,调节所述第二水泵为所述第一预设转速,调节所述动力电机达到的目标温度阈值为所述第三目标温度阈值;
    响应于所述动力电机的温度达到所述第二预设温度阈值,所述动力电机功率大于所述预设功率,所述动力电机功率变化率大于所述预设功率变化率时,调节所述风扇输出第二预设风扇转速,调节所述第二水泵为所述第二预设转速,调节所述动力电机达到的目标温度阈值为第四目标温度阈值;其中,所述第四目标温度阈值小于所述第三目标温度阈值;所述第二预设转速大于所述第一预设转速;所述第二预设风扇转速大于所述第一预设风扇转速;
    其中,所述第二预设温度阈值大于所述第一预设温度阈值。
  7. 根据权利要求6所述的热管理控制方法,其中,响应于当前所述动力总成的温度达到第二预设温度阈值,根据动力总成温度变化率调节所述热管理控制参数,包括:
    响应于当前所述动力电机的温度达到所述第二预设温度阈值,根据动力电机温度变化率调节所述热管理控制参数,其中,所述热管理控制参数包括风扇转速、第二水泵转速及所述动力电机达到的目标温度阈值;
    响应于当前所述动力电机的温度达到所述第二预设温度阈值,根据动力电机温度变化率调节所述热管理控制参数,其中,所述热管理控制参数包括风扇转速、第二水泵转速及所述动力电机达到的目标温度阈值,包括:
    响应于当前所述动力电机的温度达到所述第二预设温度阈值,且所述动力电机温度变化率小于第二温度变化率,不调节所述热管理控制参数;
    响应于当前所述动力电机的温度达到所述第二预设温度阈值,且所述动力电机温度变化率大于所述第二温度变化率,调节所述风扇输出所述第二预设风扇转速,调节所述第二水泵为所述第二预设转速,调节所述动力电机达到的目标温度阈值为所述第四目标温度阈值;
    其中,所述第二温度变化率大于所述第一温度变化率。
  8. 一种热管理控制装置,包括:
    获取模块,设置为获取当前动力总成的温度;
    调节模块,设置为响应于当前所述动力总成的温度达到预设温度阈值,根据动力总成功率及动力总成功率变化率调节热管理控制参数;其中,所述热管理控制参数包括热管理组件工作参数及所述动力总成达到的目标温度阈值;或者,响应于当前所述动力总成的温度达到所述预设温度阈值,根据动力总成温度变化率调节所述热管理控制参数。
  9. 一种整车控制器,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一所述的热管理控制方法。
  10. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一所述的热管理控制方法。
PCT/CN2023/098247 2022-06-07 2023-06-05 一种热管理控制方法、装置、整车控制器及介质 WO2023236892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210641460.7A CN114865153B (zh) 2022-06-07 2022-06-07 一种热管理控制方法、装置、整车控制器及介质
CN202210641460.7 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023236892A1 true WO2023236892A1 (zh) 2023-12-14

Family

ID=82624823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098247 WO2023236892A1 (zh) 2022-06-07 2023-06-05 一种热管理控制方法、装置、整车控制器及介质

Country Status (2)

Country Link
CN (1) CN114865153B (zh)
WO (1) WO2023236892A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865153B (zh) * 2022-06-07 2024-05-03 中国第一汽车股份有限公司 一种热管理控制方法、装置、整车控制器及介质
CN114919466A (zh) * 2022-06-07 2022-08-19 中国第一汽车股份有限公司 一种热管理控制方法、装置、整车控制器及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289042A (ja) * 1996-04-19 1997-11-04 Nissan Motor Co Ltd 電気自動車用電池の冷却装置
CN107181017A (zh) * 2017-04-24 2017-09-19 北京长城华冠汽车科技股份有限公司 一种电动汽车动力电池温控系统和方法
KR20200048341A (ko) * 2018-10-30 2020-05-08 한국철도기술연구원 철도차량 견인전동기를 냉각하기 위한 냉각팬 제어장치 및 이를 이용한 냉각팬 제어방법
CN112721737A (zh) * 2021-01-20 2021-04-30 重庆邮电大学 一种纯电动汽车综合热能利用热管理系统及其控制方法
CN114865153A (zh) * 2022-06-07 2022-08-05 中国第一汽车股份有限公司 一种热管理控制方法、装置、整车控制器及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289042A (ja) * 1996-04-19 1997-11-04 Nissan Motor Co Ltd 電気自動車用電池の冷却装置
CN107181017A (zh) * 2017-04-24 2017-09-19 北京长城华冠汽车科技股份有限公司 一种电动汽车动力电池温控系统和方法
KR20200048341A (ko) * 2018-10-30 2020-05-08 한국철도기술연구원 철도차량 견인전동기를 냉각하기 위한 냉각팬 제어장치 및 이를 이용한 냉각팬 제어방법
CN112721737A (zh) * 2021-01-20 2021-04-30 重庆邮电大学 一种纯电动汽车综合热能利用热管理系统及其控制方法
CN114865153A (zh) * 2022-06-07 2022-08-05 中国第一汽车股份有限公司 一种热管理控制方法、装置、整车控制器及介质

Also Published As

Publication number Publication date
CN114865153A (zh) 2022-08-05
CN114865153B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2023236892A1 (zh) 一种热管理控制方法、装置、整车控制器及介质
WO2023236888A1 (zh) 一种热管理控制方法、装置、整车控制器及介质
CN110600831B (zh) 电池包的温度控制方法、系统、电子设备和存储介质
CN111600052B (zh) 一种燃料电池的电堆温度控制方法及控制装置
CN106229574B (zh) 电池包的冷却方法及系统
CN111976540B (zh) 一种锂离子动力储能电池热管理方法及系统
CN104733801A (zh) 动力电池热管理装置及方法
CN116826245B (zh) 一种储能电池热管理方法及系统
KR101822245B1 (ko) 연료전지 차량의 냉각수펌프 제어방법
CN113193269A (zh) 一种电池热管理方法和装置
CN113036261A (zh) 一种储能系统及其电池系统的温度控制方法
CN113895310A (zh) 一种动力电池智能温度控制方法、系统、车辆及存储介质
CN106494241A (zh) 燃料电池增程式电动汽车的冷却系统
CN112162576A (zh) 纯电动工程设备的散热控制方法、系统及电子设备
CN115320427B (zh) 充电桩散热系统控制方法、控制设备及直流充电桩
CN115289052B (zh) 一种风机控制方法、装置、计算机设备及存储介质
CN115033988A (zh) 一种动力总成温度估算方法、装置、整车控制器及介质
CN113859049B (zh) 电池热管理方法、装置、电子设备及计算机可读存储介质
CN116160916A (zh) 一种电动汽车整车热管理方法、装置、设备及存储介质
CN114475360B (zh) 电动汽车电机冷却液回收控制方法、电子设备及系统
CN112259764A (zh) 电池控制系统及其控制方法、电池控制设备
CN113212249A (zh) 电池热管理系统及方法
CN108790787B (zh) 一种用于混动车辆热管理系统的控制方法及控制系统
CN112349987B (zh) 一种电芯的温控系统的启动方法、装置、设备及存储介质
CN115158103A (zh) 一种动力电池热管理方法、装置、车辆及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819057

Country of ref document: EP

Kind code of ref document: A1