WO2023236754A1 - 地质导向方法、装置及存储介质 - Google Patents

地质导向方法、装置及存储介质 Download PDF

Info

Publication number
WO2023236754A1
WO2023236754A1 PCT/CN2023/095140 CN2023095140W WO2023236754A1 WO 2023236754 A1 WO2023236754 A1 WO 2023236754A1 CN 2023095140 W CN2023095140 W CN 2023095140W WO 2023236754 A1 WO2023236754 A1 WO 2023236754A1
Authority
WO
WIPO (PCT)
Prior art keywords
geological
well
information
geosteering
layer
Prior art date
Application number
PCT/CN2023/095140
Other languages
English (en)
French (fr)
Inventor
林旺
伍东
薛宏智
朱卫星
Original Assignee
中国石油天然气集团有限公司
中国石油集团工程技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团有限公司, 中国石油集团工程技术研究院有限公司 filed Critical 中国石油天然气集团有限公司
Publication of WO2023236754A1 publication Critical patent/WO2023236754A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • This application relates to the technical field of oil and gas reservoir development, and in particular to a geosteering method, device and storage medium.
  • the current geosteering method mainly includes the following two stages: In the first stage, a geosteering model is established based on the geological information of the reference well of the target well. In the second stage, the established geosteering model is used to conduct geosteering during the actual drilling process of the target well. Specifically, during the actual drilling process, the geosteering model is used to perform actual drilling analysis, and based on the actual drilling analysis results, the designed well trajectory of the target well is adjusted in real time to obtain an adjusted well trajectory, which is used in the drilling process. drilling control. For example, the actual drilling analysis results show that the drilling trajectory deviates from the target geological layer, and the designed well trajectory is adjusted to adjust and control the subsequent drilling trajectory to ensure that the target well has a high drilling encounter rate.
  • the designed well trajectory is a well trajectory designed in advance for the target well based on the geological information of the reference well of the target well. In this application, the designed well trajectory is also referred to as the first well trajectory.
  • the existing geosteering method has the problem of inaccurate steering, resulting in a low drilling rate of the target well and unable to meet the subsequent oil and gas reservoir collection efficiency requirements of the target well.
  • the geological structural line of the first type of geological layer corresponding to the first geological information on the guiding section taking the geological structural line of the first type of geological layer as the benchmark, based on The mentioned Two geological information, determine the geological structure line of the second type of geological layer corresponding to the second geological information on the steering section, and obtain the geological steering model of the target well;
  • the geological structure line is the interface between the geological layer and the steering section
  • the second type of geological layer is a geological layer whose geological attributes are different from the geological attributes of the first type of geological layer;
  • the geosteering model is used to perform geosteering for actual drilling of the target well.
  • the first geological information is geological information of the first specified geological attribute obtained through seismic inversion and/or sedimentary facies research;
  • Determining the geological structure line of a type of geological layer corresponding to the first geological information on the steering section using the plane where the first well trajectory is located as the guiding section includes:
  • the length of the guide section is not less than the actual horizontal length THL of the first well trajectory, and the height of the guide section is not less than the third section of the corresponding area of the first well trajectory.
  • the geological structure line of the first-type geological layer is used as a benchmark, and based on the second geological information, the geological structure of the second-type geological layer corresponding to the second geological information is determined on the guide section. lines, including:
  • using the geosteering model to conduct geosteering for actual drilling of the target well includes:
  • geosteering is performed on actual drilling of the target well.
  • the reference well of the target well is determined as follows:
  • the distance between the geological fault or the plane of the geological fault and the first well is a segmentation node.
  • the first well trajectory is segmented to obtain each first well trajectory segment; the adjacent well located on the same side of the geological fault as the first well trajectory segment is determined to be the first well trajectory segment.
  • the vertical line from the trajectory of the adjacent well to the first well and the The intersection point of a well trajectory is a segment node.
  • the first well trajectory is segmented to obtain each first well trajectory segment; the adjacent well corresponding to the segment node on each first well trajectory segment is determined as a reference. well.
  • the method further includes:
  • the first well trajectory segment is divided into two node sub-segments and a transition sub-segment according to the preset threshold;
  • the node sub-segment is a segment-containing segment.
  • the sub-segment of the node, the transition sub-segment is the sub-segment The sub-segments respectively connected to the two node sub-segments;
  • geological structural lines Based on the geological structure line corresponding to the first geological information and the second geological information using the adjacent wells corresponding to the segmented nodes on the node subsection as reference wells, it is determined that the node subsection corresponds to the second type of geological layer. geological structural lines;
  • geological structure line information of each node subsection corresponding to the transition subsection is smoothed to obtain the geological structure line corresponding to the second type geological layer of the transition subsection.
  • using the plane where the first well trajectory is located as a guiding section to determine the geological structure line of a type of geological layer corresponding to the first geological information on the guiding section also includes:
  • this application provides a geosteering modeling device, which includes: a transceiver module, a modeling module, and a guidance module;
  • the transceiver module is used to obtain the first well trajectory information of the target well, the first geological information and the second geological information of the target well; the first geological information is the third geological information of the corresponding area of the first well trajectory.
  • Geological information obtained after studying the geology of a specified geological attribute includes the interface coordinate information of the geological layer of at least one geological attribute; the second geological information includes the coordinate information of the reference well of the target well Interface coordinate information of geological layers with various geological attributes;
  • the modeling module is used to determine the geological structure line of a type of geological layer corresponding to the first geological information on the guiding section using the plane where the first well trajectory is located, and use the first type of geological layer as a guide section.
  • the geological structural line is used as the benchmark, and based on the second geological information, the geological structural line of the second type of geological layer corresponding to the second geological information is determined on the steering section, and the geological steering model of the target well is obtained;
  • the geological structure line is the intersection line between the interface of the geological layer and the guiding section;
  • the second type of geological layer is a geological layer whose geological attributes are different from the geological attributes of the first type of geological layer;
  • the steering module is used to use the geosteering model to perform geosteering for actual drilling of the target well.
  • this application provides a geosteering modeling device, which includes:
  • the memory stores executable instructions executable by the processor
  • the processor executes executable instructions stored in the memory, so that the processor executes the method as described above.
  • the present application provides a program product, including a computer program, which implements the above method when executed by a processor.
  • Figure 1 is the architecture diagram of the existing geosteering system
  • Figure 2 is an architecture diagram of the geosteering system provided by the embodiment of this application.
  • Figure 4 is a comparison diagram of geosteering models provided by the embodiment of the present application.
  • Figure 5 shows the arrangement sequence and depth information of each geological layer of the reference well YS-2HP provided by the embodiment of the present application
  • Figure 7 is a structural diagram of a geosteering device provided by an embodiment of the present application.
  • the geosteering system architecture of the target well is shown in Figure 1.
  • the specific geosteering process is: the modeling device 13 obtains the geological information of the reference well from the logging device 11, and obtains the pre-designed design for the target well from the design device 12.
  • Well trajectory information The geological information of the reference well includes reference well trajectories, well logging curves, hierarchical data including geological attributes of each geological layer and geological layer interface coordinates, etc.
  • the modeling device 13 takes the plane where the designed well trajectory of the target well is located as the steering profile, and draws the geological structural lines of each geological layer in the design well trajectory area of the target well on the steering profile to form a steering profile of the target well. .
  • the geological structure line is the intersection line between the interface of the geological layer and the steering section.
  • This steering profile is the geosteering model of the target well.
  • the modeling equipment 13 uses the geosteering model to drill the target well The following geosteering is performed: During the actual drilling process of the target well, the modeling device 13 obtains the logging-while-drilling information of the target well from the logging device 11, and combines it with the geosteering model of the target well to perform actual drilling analysis and design of the well trajectory. Adjust in real time to get the adjusted well trajectory. The modeling device 13 sends the adjusted well trajectory to the actual drilling control device 14 in real time, so that the actual drilling control device 14 controls the drill bit based on the adjusted well trajectory.
  • the geological research equipment 22 such as seismic inversion research equipment, sedimentary facies experimental research equipment and other equipment that can conduct experimental research on geology is not specifically limited in this embodiment.
  • the target well area geological research information refers to the geological information obtained by conducting experimental research, such as seismic inversion and sedimentary facies test, on the geology of the first designated geological attribute in the area corresponding to the first well trajectory of the target well through the geological research equipment 22. Interface coordinate information of the geological layer including at least one geological attribute.
  • the reference well geological information refers to the hierarchical information corresponding to the geological layer of the reference well obtained after logging and testing the reference well of the target well through the logging equipment 11, including the interface coordinate information of the geological layer corresponding to each geological attribute of the reference well. .
  • the target well regional geological research information is also called the first geological information in this application; the reference well geological information is also called the second geological information in this application.
  • the geosteering equipment 21 uses the plane where the first well trajectory of the target well is located as the steering section to determine the geological structure line of a type of geological layer corresponding to the first geological information on the steering section.
  • the geological structure line is the intersection line between the interface of the geological layer and the steering section.
  • the geosteering equipment 21 uses the geological structural lines of the first-class geological layer as a benchmark, and based on the second geological information, determines the geological structural lines of the second-class geological layer corresponding to the second geological information on the steering section, and obtains the geological steering model of the target well.
  • the second type geological layer is a geological layer whose geological attributes are different from those of the first type geological layer. Therefore, the geosteering model of the target well obtained by the geosteering equipment 21 may include the geological structure lines of the geological layers of all geological attributes corresponding to the second geological information on the steering section.
  • the geosteering equipment 21 obtains the logging-while-drilling information of the target well from the logging equipment 11, and performs actual drilling analysis based on the geosteering model of the target well determined by the geosteering equipment 21. As a result, real-time adjustment of the second well trajectory is performed, and the adjusted well trajectory is obtained.
  • the geosteering equipment 21 sends the real-time adjusted adjusted well trajectory to the actual drilling control equipment 14 in real time, so that the actual drilling control equipment 14 controls the drilling of the drill bit based on the real-time adjusted adjusted well trajectory.
  • the geosteering method provided by this application uses the plane where the first well trajectory of the target well is located as the steering section. Based on the first geological information, it is determined that the first geological information corresponds to the geological structure line of a type of geological layer on the steering section, which is to determine The geological structure line of the geological layer with the first specified geological attribute in the corresponding area of the first well trajectory is determined on the steering section, and based on the geological structure line of the first-class geological layer, combined with the second geological information, the second-class geological layer is determined.
  • the geological structural lines on the steering section are used to form an accurate geosteering model of the target well.
  • the accurate geosteering model is used for precise geosteering of the actual drilling of the target well to ensure that the target well has a high drilling encounter rate.
  • the geosteering method provided by this application solves the steering inaccuracy problem existing in the existing geosteering method, improves the drilling rate of the target geological layer during the actual drilling of the target well, and ensures that the subsequent oil and gas reservoir collection efficiency of the target well meets the requirements. .
  • Figure 3 is a geosteering flow chart provided by an embodiment of the present application.
  • the execution subject of the embodiment shown in FIG. 3 may be the geosteering device 21 in the embodiment shown in FIG. 2 .
  • the method includes:
  • the geosteering equipment 21 acquires the first well trajectory information of the target well, the first geological information and the second geological information of the target well.
  • the first geological information is geological information obtained after studying the geology of the first specified geological attribute in the area corresponding to the first well trajectory;
  • the first geological information includes interface coordinate information of the geological layer of at least one geological attribute;
  • the second geological information includes the interface coordinate information of the geological layers of various geological attributes of the target well and the reference well.
  • the geosteering equipment 21 obtains the first well trajectory information of the target well from the design equipment 12 shown in FIG. 2 , obtains the first geological information of the target well from the geological research equipment 22 shown in FIG. 2 , and obtains the first geological information of the target well from the geological research equipment 22 shown in FIG. 2
  • the illustrated logging equipment 11 acquires second geological information of the target well.
  • the first geological information may also be obtained by the geosteering equipment 21 in the following manner: the geosteering equipment 21 obtains seismic data inversion of the designated area of the target well and related research data of sedimentary phases from the geological research equipment 22. The equipment 21 obtains the trajectories and logging and interpretation results of drilled wells within the specified area of the target well from the logging equipment 11 . The geosteering equipment 21 fuses the acquired seismic data inversion, sedimentary facies-related research data, and drilled well trajectories with well logging and interpretation results to obtain the first geological information.
  • the geosteering equipment 21 obtains the geosteering model of the target well according to steps S3021-S3022:
  • the geosteering equipment 21 uses the plane where the first well trajectory is located as the steering section, and determines the geological structure line of a type of geological layer corresponding to the first geological information on the steering section.
  • the first geological information may be geological information of a first specified geological attribute obtained through seismic inversion and/or sedimentary facies research.
  • the geological guidance equipment 21 determines the geological structure line of a type of geological layer corresponding to the first geological information on the guidance profile according to the following steps (1)-(2):
  • the geosteering equipment 21 creates a steering profile along the first well trajectory of the target well.
  • the length of the steering section is not less than the actual horizontal length (True Horizontal Length, abbreviation: THL) of the first well trajectory
  • the height of the steering section is not less than the total thickness of the geological layer with the second specified geological attribute in the corresponding area of the first well trajectory. maximum value.
  • the second geological layer with specified geological attributes may be one geological layer, or may be at least two geological layers.
  • the maximum value of the total thickness of the geological layer with the second specified geological attribute may be the sum of the maximum thicknesses of the at least two geological layers.
  • the thickness of the geological layer in this application may be True Stratigraphic Thickness (TST).
  • the geological guidance equipment 21 determines the geological structure line on the guidance section of a type of geological layer with the first specified geological attribute corresponding to the first geological information.
  • the geological structure line of the geological layer with the first specified geological attribute corresponding to the first geological information on the steering section that is, determine the precise geological layer structure information of the geological layer with the first specified geological attribute in the target well area. . It improves the matching degree between the geosteering model of the target well and the layered structure of the real geological layer in the target well area, and improves the accuracy of the subsequently established geosteering model of the target well.
  • the geosteering device 21 performs segmentation processing on the first well trajectory using the intersection point of the first well trajectory and the geological fault as a segmentation node to obtain each first well trajectory segmentation. part.
  • the geosteering equipment 21 uses the plane where the first well trajectory segment is located as a guiding section, and determines that the first geological information corresponding to the first well trajectory segment corresponds to a type of geology based on the first geological information corresponding to the first well trajectory segment.
  • the geological structure line on the steering section corresponding to the first well trajectory segment.
  • geological faults destroy the distribution continuity of geological layers in the direction parallel to the surface
  • the intersection of the first well trajectory and the geological fault is used as the segmentation node to segment the first well trajectory of the target well, and then based on each The first geological information corresponding to each well trajectory segment is determined, and the geological structure line of the geological layer corresponding to the first geological information of each first well trajectory segment is determined, which can improve the accuracy of the geosteering model of the target well.
  • the geosteering equipment 21 uses the geological structural line of the first-type geological layer as a benchmark, and based on the second geological information, determines the geological structural line of the second-type geological layer corresponding to the second geological information on the steering section, and obtains the target well. Geosteering model.
  • the geological guidance equipment 21 is based on the arrangement order of the second type of geological layer in the second geological information, taking the geological structure line of the first type of geological layer as a reference, and the same thickness as the thickness of the second type of geological layer in the second geological information.
  • This method determines the geological structure line of the second type of geological layer that co-interfaces the first type of geological layer.
  • the guidance modeling device 21 determines the geological interface and the first-type geological layer according to the arrangement order and equal thickness ratio of the second-type geological layer in the second geological information. Geological structural lines of non-co-interface type II geological layers.
  • the geological information is accurate geological information obtained after experimental research on a type of geological layer with first specified geological attributes in the target well area, and the geological layer has the characteristics of continuous distribution, based on the geological structure line of the first type of geological layer As a benchmark, combined with the second geological information, the geological structural lines of the second type of geological layer are determined, thereby obtaining the geosteering model of the target well.
  • the geosteering model established by this application method is based on the geological structural lines determined by the real and accurate information of the first-class geological layer in the target well area, and comprehensively considers the distribution and continuous characteristics of the second-class geological layer, which improves the accuracy of the geosteering model and ensures This ensures a high drilling rate for subsequent target wells.
  • the reference well for the target well is determined as follows:
  • the geosteering device 21 determines the adjacent wells and/or the pilot well of the target well as the reference well.
  • the geosteering device 21 will use the geological fault or the intersection of the plane where the geological fault is located and the first well trajectory as the segment.
  • the node performs segmentation processing on the first well trajectory of the target well to obtain each first well trajectory segmentation.
  • the geosteering device 21 determines that the adjacent well located on the same side of the geological fault as the first well trajectory segment is the reference well of the first well trajectory segment. For example, if the first well trajectory passes through a geological fault, the geosteering device 21 uses the intersection of the first well trajectory and the geological fault as a segment node.
  • the geosteering device 21 uses the intersection of the plane of the geological fault and the first well trajectory as the segment node. If there is no intersection between the first well trajectory and the plane where the geological fault is located, it means that the first well trajectory is on one side of the geological fault, and the geosteering device 21 determines that the adjacent well that is on the same side of the geological fault as the first well trajectory is the first well. The reference well for the trajectory.
  • geological faults destroy the continuity of geological layers
  • the intersection of the geological fault or the plane of the geological fault and the first well trajectory is used as the segmentation node to segment the first well trajectory of the target well, and then based on the segmentation processing
  • the geological information of each reference well of each first well trajectory segment is determined, and the geological structural line corresponding to the geological layer of each first well trajectory segment is determined, which can improve the accuracy of the geosteering model of the target well.
  • the geosteering equipment 21 will align the first well trajectory vertical line from the adjacent well to the target well with the first well trajectory.
  • the intersection point of is a segmentation node, and the first well trajectory is segmented to obtain each first well trajectory segmentation.
  • the geosteering equipment 21 determines the adjacent well corresponding to the segment node on each first well trajectory segment as a reference well. For example, the geosteering device 21 determines that the adjacent well corresponding to the segment node on the first well trajectory segment is the reference well of the first well trajectory segment.
  • Using the adjacent wells corresponding to the segment nodes on each first well trajectory segment as reference wells to determine the geological structural lines of the geological layers corresponding to each first well trajectory segment can further improve the accuracy of the geosteering model of the target well.
  • the method provided by this application also includes the following steps I-III:
  • the geosteering device 21 divides the first well trajectory segment into two node sub-sections and a transition sub-section according to the preset threshold.
  • a node subsegment is a subsegment containing a segment node
  • a transition subsegment is a subsegment connected to two node subsegments respectively.
  • the geosteering equipment 21 uses the geological structure line corresponding to the first geological information as the benchmark, and based on the second geological information using the adjacent wells corresponding to the segmented nodes on the node subsection as the reference well, determines the second type geological layer corresponding to the node subsection. Geological structural lines.
  • the geosteering equipment 21 smoothes the geological structure line information of each node subsection corresponding to the transition subsection. Through processing, the geological structural line corresponding to the second type of geological layer in the transition subsection is obtained.
  • the geological layer In the absence of geological faults, the geological layer is usually continuous in the direction parallel to the surface, and the changes in the geological layer are usually smooth. Therefore, if there are two segment nodes on the first well trajectory segment, it will The first well trajectory segment is divided into two node sub-segments and transition sub-segments according to the preset threshold, and then the geological structural lines corresponding to the second type geological layers of each sub-segment are determined according to steps II-III, which can improve the geological steering model of the target well and The matching degree of the layered structure of the real geological layer in the first well trajectory area of the target well.
  • the geosteering equipment 21 uses a geosteering model to perform geosteering for actual drilling of the target well.
  • the geosteering equipment 21 uses the geosteering model determined in step S302 to review and adjust the first well trajectory to obtain the second well trajectory. All horizontal well sections of the second well trajectory are in contact with the target geological layer, for example, the horizontal well sections of the second well trajectory are located in the target geological layer.
  • the geosteering equipment 21 performs geosteering for actual drilling of the target well based on the geosteering model and the second well trajectory.
  • the geosteering equipment 21 uses the geosteering model of the target well determined by it to review and correct the first well trajectory, and obtain a second well trajectory in which the horizontal well section of the well trajectory is located in the target geological layer. .
  • the geosteering device 21 sends the second well trajectory to the actual drilling control device 14, so that the actual drilling control device 14 controls the drill bit to drill along the second well trajectory based on the second well trajectory.
  • the geosteering equipment 21 obtains the logging-while-drilling information of the target well from the logging equipment 11, and combines it with the geosteering model of the target well determined by the geosteering equipment 21 to perform actual drilling analysis and calculation of the second well trajectory.
  • the geosteering equipment 21 sends the real-time adjusted adjusted well trajectory to the actual drilling control equipment 14 in real time, so that the actual drilling control equipment 14 controls the drilling of the drill bit based on the real-time adjusted adjusted well trajectory.
  • the geosteering device 21 converts the second well trajectory or the adjusted well trajectory into drilling coordinate information, and sends the drilling coordinate information to the actual drilling control device 14 .
  • the actual drilling control device 14 sends drilling instructions to the drill bit based on the received drilling coordinate information to control the drill bit to drill according to the well trajectory corresponding to the drilling instructions to ensure that the target well has a high drilling encounter rate.
  • Figure 4 is a comparison diagram of geosteering models provided by the embodiment of the present application.
  • 4a in Figure 4 is the geosteering model used in the existing geosteering method
  • 4b is the geosteering model used in the geosteering method provided by this application.
  • Figure 5 shows the arrangement sequence and depth information of each geological layer of the reference well YS-2HP provided by the embodiment of the present application.
  • the target well is marked YS-2H
  • its target geological layer is the geological layer marked L3
  • the adjacent well is marked YS-2HP.
  • Both the modeling device 13 and the geosteering device 21 determine that the adjacent well YS-2HP is the reference well of the target well YS-2H.
  • FIG. 4a in Figure 4 shows the arrangement sequence of the geological layers of each geological attribute and the location of each geological layer based on the geological information of the reference well YS-2HP after the modeling device 13 obtains the geological information of the reference well YS-2HP from the logging device 11 Based on the interface coordinate information, the geosteering model of the target well YS-2H was established.
  • the geological information of the adjacent well YS-2HP is the second geological information of the target well YS-2H.
  • the first well trajectory of the target well in Figure 4 is the well trajectory pre-designed by the design equipment 12 for the target well YS-2H based on the oil and gas reservoir production requirements and the geological information of the reference well YS-2HP obtained from the logging equipment 11 .
  • the modeling device 13 uses the geosteering model shown in 4a in Figure 4 to check the first well trajectory of the target well obtained from the design device 12.
  • the inspection result is that the horizontal well sections in the first well trajectory are all in the target geological layer L3 , the drilling encounter rate of the first well trajectory is high.
  • the actual drilling analysis showed that after the target well encountered the target geological layer, Immediately, a serious layer emergence problem occurred.
  • drilling along the adjusted trajectory of the adjustment well still failed to encounter the target geological layer. This illustrates the situation shown in 4a in Figure 4. There are inaccuracies in geosteering models.
  • the geosteering equipment 21 obtains the geological information of the reference well YS-2HP from the logging equipment 11, obtains the first well trajectory of the target well from the design equipment 12, and obtains the geology of the first well trajectory area from the geological research equipment 22.
  • the geosteering equipment 21 performs information extraction processing on the obtained geological information of the reference well YS-2HP (ie, the second geological information), and obtains the arrangement sequence and depth information of each geological layer in the second geological information.
  • the arrangement sequence and depth information of each geological layer in the second geological information are shown in Figure 5.
  • Figure 5 also shows the true formation thickness H1, H2, H3, H4, H5, H6 of each of the geological layers L1, L2, L3, L4, L5, L6.
  • each geological layer is L1-L2-L3-L4-L5-L6.
  • the top interface L5 top of the geological layer L5 is co-interfaced with the bottom interface L4, and the bottom interface L5 bot of the geological layer L5 is co-interfaced with the top interface L6.
  • the geological guidance equipment 21 uses the geological structure line corresponding to the top interface L5 top of the geological layer L5 as a benchmark, and determines the geological layer L4 that shares the interface with L5 on the guidance section in a manner that is equal to the thickness of the L4 geological layer in the second geological information. Geological structural lines.
  • the geosteering equipment 21 obtains the logging-while-drilling information of the target well from the logging equipment 11 in real time, performs actual drilling analysis based on the geosteering model, and adjusts the second well trajectory in real time based on the actual drilling analysis results. Get the well trajectory adjusted.
  • the geosteering device 21 sends the real-time adjusted adjusted well trajectory to the actual drilling control device 14 in real time, so that the actual drilling control device 14 controls the drill bit based on the real-time adjusted adjusted well trajectory.
  • the geosteering equipment 21 uses the geosteering model shown in 4b in Figure 4 to conduct geosteering for the actual drilling of the target well YS-2H, the drilling encounter rate of the target well YS-2H during the actual drilling process has been significantly improved, indicating that this application provides The geosteering method has high steering accuracy.
  • the steering module 63 is used to use the geosteering model to conduct geosteering for actual drilling of the target well.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium can be located in Application Specific Integrated Circuits (ASIC).
  • ASIC Application Specific Integrated Circuits
  • the processor and the storage medium may also exist as discrete components in an electronic device or a host control device.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above-mentioned method embodiments are executed; and the aforementioned storage media include: ROM, RAM, magnetic disks, optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请提供一种地质导向方法、装置及存储介质,其中,方法包括:获取目标井的第一井轨迹信息、所述目标井的第一地质信息和第二地质信息;以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,以所述一类地质层的地质构造线为基准,基于所述第二地质信息,确定所述第二地质信息对应的二类地质层在所述导向剖面上的地质构造线,获得所述目标井的地质导向模型;采用所述地质导向模型进行所述目标井实钻的地质导向。本申请的方法,解决了现有的地质导向方法存在导向不精准的问题。

Description

地质导向方法、装置及存储介质
本申请要求于2022年06月08日提交中国国家知识产权局、申请号为202210638287.5、申请名称为“地质导向方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及油气藏开发技术领域,尤其涉及一种地质导向方法、装置及存储介质。
背景技术
在复杂油气藏的开发中,油气藏水平井的油气藏开采效率与水平井的钻遇率呈正比,钻遇率是指在水平井的实钻过程中钻遇储藏油或气的目标地质层的概率。对水平井的实钻过程进行精准的地质导向可以确保水平井具有高的钻遇率。地质导向(Geosteering)是指在水平井的钻进过程中,根据各种地质资料、随钻测井及测量数据,实时地调整井眼轨迹的测量控制技术。
目前的地质导向方法主要包括如下两个阶段:第一阶段,基于目标井的参考井的地质信息建立地质导向模型。第二阶段,采用所建立的地质导向模型对目标井的实钻过程进行地质导向。具体地,在实钻过程中,采用地质导向模型进行实钻分析,并基于实钻分析结果,对目标井的设计井轨迹进行实时调整,得到调整井轨迹,该调整井轨迹用于钻进过程的钻进控制。例如实钻分析结果显示钻进轨迹偏离了目标地质层,则对设计井轨迹进行调整,实现对后续的钻进轨迹的调整和控制,以确保目标井具有高的钻遇率。设计井轨迹为基于目标井的参考井的地质信息,预先为目标井设计的井眼轨迹。在本申请中,设计井轨迹也称为第一井轨迹。
现有的地质导向方法存在导向不精准的问题,导致目标井的钻遇率低,无法满足目标井后续的油气藏采集效率要求。
发明内容
本申请提供一种地质导向方法、装置及存储介质,以解决现有的地质导向方法存在的导向不精准的问题。
第一方面,本申请提供一种地质导向方法,包括:
获取目标井的第一井轨迹信息、所述目标井的第一地质信息和第二地质信息;所述第一地质信息为对所述第一井轨迹对应区域的第一指定地质属性的地质进行研究后所获得的地质信息;所述第一地质信息包括至少一种地质属性的地质层的界面坐标信息;所述第二地质信息包括所述目标井的参考井的各地质属性的地质层的界面坐标信息;
以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,以所述一类地质层的地质构造线为基准,基于所述第 二地质信息,确定所述第二地质信息对应的二类地质层在所述导向剖面上的地质构造线,获得所述目标井的地质导向模型;所述地质构造线为地质层的界面与导向剖面的交线;所述二类地质层为地质属性与所述一类地质层的地质属性不相同的地质层;
采用所述地质导向模型进行所述目标井实钻的地质导向。
可选的,所述第一地质信息为通过地震反演和/或沉积相研究所获得的第一指定地质属性的地质信息;
所述以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,包括:
沿着所述第一井轨迹创建导向剖面;所述导向剖面的长度不小于所述第一井轨迹的实际水平长度THL,所述导向剖面的高度不小于所述第一井轨迹对应区域的第二指定地质属性的地质层总厚度的最大值;
确定所述第一地质信息对应的第一指定地质属性的一类地质层在所述导向剖面上的地质构造线。
可选的,所述以所述一类地质层的地质构造线为基准,基于所述第二地质信息,确定所述第二地质信息对应的二类地质层在所述导向剖面上的地质构造线,包括:
基于所述第二地质信息中所述二类地质层的排布顺序,以所述一类地质层的地质构造线为基准,按与所述第二地质信息中所述二类地质层厚度等厚的方式,确定地质界面与所述一类地质层共界面的二类地质层的地质构造线;
按所述第二地质信息中所述二类地质层的排布顺序以及等厚度比例的方式,确定地质界面与所述一类地质层非共界面的二类地质层的地质构造线。
可选的,所述采用所述地质导向模型进行所述目标井实钻的地质导向,包括:
采用所述地质导向模型对所述第一井轨迹进行审核调整,得到第二井轨迹,所述第二井轨迹的所有水平井段与目标地质层接触;
基于所述地质导向模型和所述第二井轨迹,对所述目标井的实钻进行地质导向。
可选的,所述目标井的参考井是按如下方式确定的:
若在指定区域内与所述目标井相邻的邻井的数量小于或等于一,则确定所述邻井和/或所述目标井的导眼井为参考井;
若在指定区域内与所述目标井相邻的邻井的数量大于一,且所述邻井之间有地质断层,则以所述地质断层或所述地质断层所在平面与所述第一井轨迹的交点为分段节点将所述第一井轨迹进行分段处理,得到各第一井轨迹分段;确定与第一井轨迹分段同处于所述地质断层的同一侧的邻井为所述第一井轨迹分段的参考井;
若在指定区域内与所述目标井相邻的邻井的数量大于一,且所述邻井之间没有地质断层,则以所述邻井到所述第一井轨迹垂线与所述第一井轨迹的交点为分段节点对所述第一井轨迹进行分段处理,得到各第一井轨迹分段;确定各第一井轨迹分段上的分段节点所对应的邻井为参考井。
可选的,在所述确定各第一井轨迹分段上的分段节点所对应的邻井为参考井之后,所述方法还包括:
若第一井轨迹分段上有两个分段节点,则将所述第一井轨迹分段按预设阈值分为两个节点子段和过渡子段;所述节点子段为包含分段节点的子段,所述过渡子段为分 别与所述两个节点子段相连的子段;
以所述第一地质信息对应的地质构造线为基准,基于以所述节点子段上分段节点对应邻井为参考井的第二地质信息,确定所述节点子段对应二类地质层的地质构造线;
对所述过渡子段对应的各节点子段的地质构造线信息进行平滑处理,得到所述过渡子段对应二类地质层的地质构造线。
可选的,所述以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,还包括:
若所述第一井轨迹与地质断层相交,则以所述第一井轨迹与所述地质断层的交点为分段节点将所述第一井轨迹进行分段处理,得到各第一井轨迹分段;
以所述第一井轨迹分段所在平面为导向剖面,基于所述第一井轨迹分段对应的第一地质信息,确定所述第一井轨迹分段对应的第一地质信息对应一类地质层在所述第一井轨迹分段对应的导向剖面上的地质构造线。
第二方面,本申请提供一种地质导向建模设备,所述设备包括:收发模块、建模模块、导向模块;
所述收发模块,用于获取目标井的第一井轨迹信息、所述目标井的第一地质信息和第二地质信息;所述第一地质信息为对所述第一井轨迹对应区域的第一指定地质属性的地质进行研究后所获得的地质信息;所述第一地质信息包括至少一种地质属性的地质层的界面坐标信息;所述第二地质信息包括所述目标井的参考井的各地质属性的地质层的界面坐标信息;
所述建模模块,用于以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,以所述一类地质层的地质构造线为基准,基于所述第二地质信息,确定所述第二地质信息对应的二类地质层在所述导向剖面上的地质构造线,获得所述目标井的地质导向模型;所述地质构造线为地质层的界面与导向剖面的交线;所述二类地质层为地质属性与所述一类地质层的地质属性不相同的地质层;
所述导向模块,用于采用所述地质导向模型进行所述目标井实钻的地质导向。
第三方面,本申请提供一种地质导向建模装置,所述装置包括:
处理器和存储器;
所述存储器存储所述处理器可执行的可执行指令;
其中,所述处理器执行所述存储器存储的可执行指令,使得所述处理器执行如上所述的方法。
第四方面,本申请提供一种存储介质,所述存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如上所述的方法。
第五方面,本申请提供一种程序产品,包括计算机程序,该计算机程序被处理器执行时实现如上所述的方法。
本申请提供的地质导向方法、装置及存储介质,通过以目标井的第一井轨迹所在平面为导向剖面,基于第一地质信息,确定第一地质信息对应一类地质层在导向剖面上的地质构造线,也就确定了第一井轨迹对应区域的第一指定地质属性的地质层在导向剖面上的地质构造线,并以一类地质层的地质构造线为基准,结合第二地质信息,确定 二类地质层在导向剖面上的地质构造线,以形成目标井的精准的地质导向模型,采用精准的地质导向模型进行目标井实钻的精准地质导向,以确保目标井具有高的钻遇率。本申请解决了现有的地质导向方法存在导向不精准问题。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为现有的地质导向系统架构图;
图2为本申请实施例提供的地质导向系统架构图;
图3为本申请实施例提供的地质导向流程图;
图4为本申请实施例提供的地质导向模型对比图;
图5为本申请实施例提供的参考井YS-2HP的各地质层的排布顺序和深度信息;
图6为本申请实施例提供的地质导向设备结构图;
图7为本申请实施例提供的地质导向装置结构图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着常规油气资源的逐渐减少,目前,石油行业对复杂油气藏的开发力度越来越大。复杂油气藏例如薄油气藏、裂缝型油气藏等。复杂油气藏存在地质构造变化快、储层非均质性强的特性,目前主要通过泄油面积大、控制储量大的水平井对复杂油气藏进行开采。水平井是最大井斜角达到或接近90°(一般不小于86°),并在储藏油和/或气的目标地质层中维持一定长度的水平井段的特殊井。水平井中与目标地质层接触的水平井段越长,则水平井的油气藏开发效率越高。在作为目标井的复杂油气藏水平井的钻井过程中,目标地质层的钻遇率直接决定了目标井后续的油气藏开采效率。因此,在目标井的钻进过程中,只有基于精准的地质导向,才能确保钻进过程中达到高的钻遇率,尤其是水平井段的钻遇率。
目前,目标井的地质导向系统架构如图1所示,具体的地质导向过程为:建模设备13从测井设备11获取参考井的地质信息,从设计设备12获取为目标井预先设计的设计井轨迹信息。参考井的地质信息如参考井轨迹、测井曲线、包括各地质层的地质属性以及地质层界面坐标在内的分层数据等。建模设备13基于参考井的地质信息,以目标井的设计井轨迹所在平面为导向剖面,在导向剖面上绘制目标井设计井轨迹区域各个地质层的地质构造线,形成目标井的导向剖面图。地质构造线为地质层的界面与导向剖面的交线。该导向剖面图即为目标井的地质导向模型。建模设备13采用地质导向模型对目标井的实钻 进行如下地质导向:在目标井的实钻过程中,建模设备13从测井设备11获取目标井的随钻测井信息,结合目标井的地质导向模型,进行实钻分析和设计井轨迹的实时调整,得到调整井轨迹。建模设备13将调整井轨迹实时发送到实钻控制设备14,以便于实钻控制设备14基于调整井轨迹对钻头进行钻进控制。
由于复杂油气藏存在地质构造变化快的特性,现有的建模方法仅依据参考井的地质信息建立目标井的地质导向模型,所建立的地质导向模型与目标井区域内的实际地质层的分层构造情况偏差较大。地质导向模型与目标井区域内实际地质层构造之间的较大偏差,导致目标井在实钻过程中的地质导向不精准,致使目标井在实钻过程中出现水平井的水平井段出层的情况,进而造成水平井的钻遇率低,严重制约了该水平井后续的油气藏采集效率。
对此,本申请提供一种地质导向方法,通过将参考井的地质信息与目标井区域的地质研究数据结合,建立目标井的精准的地质导向模型,以解决现有技术中仅依据参考井的地质信息建立的目标井的地质导向模型不精准,进而导致现有的地质导向方法存在导向不精准的问题。地质研究数据如通过地震反演、地质沉积相研究分析得到的目标井区域第一指定地质属性的地质构造数据。
下面结合部分实施例对本申请提出的地质导向方法进行说明。
图2为本申请实施例提供的地质导向系统架构图。如图2所示,地质导向设备21从地质研究设备22获取目标井区域地质研究信息。地质导向设备21从测井设备11获取参考井的地质信息。地质导向设备21从设计设备12获取目标井的第一井轨迹信息。示例性地,第一井轨迹为设计设备12从测井设备11获取参考井的地质信息后,基于参考井的地质信息,预先为目标井设计的井眼轨迹,即目标井的设计井轨迹。地质研究设备22如地震反演研究设备、沉积相试验研究设备等可对地质进行试验研究的设备,本实施例此处不作具体限定。目标井区域地质研究信息是指通过地质研究设备22对目标井的第一井轨迹对应区域的第一指定地质属性的地质进行如地震反演、沉积相试验的试验研究后所获得的地质信息,包括了至少一种地质属性的地质层的界面坐标信息。参考井地质信息是指通过测井设备11对目标井的参考井进行测井检测后所获得的参考井对应地质层的分层信息,包括了参考井的各地质属性对应地质层的界面坐标信息。目标井区域地质研究信息在本申请中也称为第一地质信息;参考井地质信息在本申请中也称为第二地质信息。
地质导向设备21以目标井的第一井轨迹所在平面为导向剖面,确定第一地质信息对应的一类地质层在导向剖面上的地质构造线。地质构造线为地质层的界面与导向剖面的交线。地质导向设备21以一类地质层的地质构造线为基准,并基于第二地质信息,确定第二地质信息对应的二类地质层在导向剖面上的地质构造线,获得目标井的地质导向模型。其中,二类地质层为地质属性与一类地质层的地质属性不相同的地质层。由此,地质导向设备21所获得的目标井的地质导向模型可以包括第二地质信息对应的所有地质属性的地质层在该导向剖面上的地质构造线。
地质导向设备21采用该地质导向模型进行目标井实钻的地质导向。示例性地,地质导向设备21采用该地质导向模型进行地质导向的过程过下:地质导向设备21在实钻之前对第一井轨迹进行审核调整,得到第二井轨迹。该第二井轨迹为水平井段与目 标地质层接触的井轨迹。地质导向设备21将第二井轨迹发送到实钻控制设备14,以便于实钻控制设备14基于第二井轨迹对钻头进行钻进控制。在实钻过程中,地质导向设备21从测井设备11获得目标井的随钻测井信息,结合地质导向设备21所确定的目标井的地质导向模型,进行实钻分析,并基于实钻分析结果进行第二井轨迹的实时调整,得到调整井轨迹。地质导向设备21将实时调整后的调整井轨迹实时发送到实钻控制设备14,以便于实钻控制设备14基于实时调整后的调整井轨迹对钻头进行钻进控制。
可选地,地质导向设备21还可以采用该地质导向模型对目标井进行其他作业的地质导向。
本申请提供的地质导向方法,以目标井的第一井轨迹所在平面为导向剖面,基于第一地质信息,确定第一地质信息对应一类地质层在导向剖面上的地质构造线,也就确定了第一井轨迹对应区域的第一指定地质属性的地质层在导向剖面上的地质构造线,并以一类地质层的地质构造线为基准,结合第二地质信息,确定二类地质层在导向剖面上的地质构造线,以形成目标井的精准的地质导向模型,采用精准的地质导向模型进行目标井实钻的精准地质导向,以确保目标井具有高的钻遇率。本申请提供的地质导向方法解决了现有的地质导向方法存在的导向不精准问题,提高了目标井实钻过程中目标地质层的钻遇率,确保了目标井后续的油气藏采集效率满足要求。
下面结合图2和图3对本申请提供的地质导向方法进行详细说明。图3为本申请实施例提供的地质导向流程图。图3所示实施例的执行主体可以是图2所示实施例中的地质导向设备21。如图3所示,该方法包括:
S301、获取目标井的第一井轨迹信息、目标井的第一地质信息和第二地质信息。
具体而言,地质导向设备21获取目标井的第一井轨迹信息、目标井的第一地质信息和第二地质信息。其中,第一地质信息为对第一井轨迹对应区域的第一指定地质属性的地质进行研究后所获得的地质信息;第一地质信息包括至少一种地质属性的地质层的界面坐标信息;第二地质信息包括目标井的参考井的各地质属性的地质层的界面坐标信息。
示例性地,地质导向设备21从图2所示的设计设备12获取目标井的第一井轨迹信息,从图2所示的地质研究设备22获取目标井的第一地质信息,以及从图2所示的测井设备11获取目标井的第二地质信息。
可选地,第一地质信息也可以是地质导向设备21通过如下方式获得的:地质导向设备21从地质研究设备22获取目标井的指定区域地震数据反演以及沉积相的相关研究数据,地质导向设备21从测井设备11获取目标井的指定区域范围内已钻井的轨迹与测井、解释成果。地质导向设备21将所获取的地震数据反演、沉积相的相关研究数据以及已钻井的轨迹与测井、解释成果进行融合处理,得到第一地质信息。
S302、以第一井轨迹所在平面为导向剖面,确定第一地质信息对应的一类地质层在导向剖面上的地质构造线,以一类地质层的地质构造线为基准,基于第二地质信息,确定第二地质信息对应的二类地质层在导向剖面上的地质构造线,获得目标井的地质导向模型。
其中,地质构造线为地质层的界面与导向剖面的交线。二类地质层为地质属性与一类地质层的地质属性不相同的地质层。
具体而言,地质导向设备21按步骤S3021-S3022获得目标井的地质导向模型:
S3021、以第一井轨迹所在平面为导向剖面,确定第一地质信息对应的一类地质层在导向剖面上的地质构造线。
具体而言,地质导向设备21以第一井轨迹所在平面为导向剖面,确定第一地质信息对应的一类地质层在导向剖面上的地质构造线。
可选地,第一地质信息可以为通过地震反演和/或沉积相研究所获得的第一指定地质属性的地质信息。地质导向设备21按如下步骤(1)-(2)确定第一地质信息对应的一类地质层在导向剖面上的地质构造线:
(1)地质导向设备21沿着目标井的第一井轨迹创建导向剖面。其中,导向剖面的长度不小于第一井轨迹的实际水平长度(True Horizontal Length,简称:THL),导向剖面的高度不小于第一井轨迹对应区域的第二指定地质属性的地质层总厚度的最大值。示例性地,第二指定地质属性的地质层可以为一个地质层,也可以为至少两个地质层。可选地,若第二指定地质属性的地质层为至少两个地质层,则第二指定地质属性的地质层总厚度的最大值可以为该至少两个地质层各自的最大厚度之和。示例性地,本申请中地质层的厚度可以为真地层厚度(True Stratigraphic Thickness,简称:TST)。
(2)地质导向设备21基于第一地质信息,确定第一地质信息对应的第一指定地质属性的一类地质层在导向剖面上的地质构造线。
基于第一地质信息,确定第一地质信息对应的第一指定地质属性的地质层在导向剖面上的地质构造线,即确定出目标井区域第一指定地质属性的地质层的精准地质层构造信息。提高了目标井的地质导向模型与目标井区域真实地质层的分层构造情况的匹配度,提高了后续建立的目标井地质导向模型的精准度。
可选地,若第一井轨迹与地质断层相交,地质导向设备21则以第一井轨迹与地质断层的交点为分段节点将第一井轨迹进行分段处理,得到各第一井轨迹分段。地质导向设备21以第一井轨迹分段所在平面为导向剖面,基于该第一井轨迹分段对应的第一地质信息,确定该第一井轨迹分段对应的第一地质信息对应一类地质层在该第一井轨迹分段对应的导向剖面上的地质构造线。
由于地质断层破坏了地质层在平行于地表方向上的分布连续性,因此以第一井轨迹与地质断层的交点为分段节点将目标井的第一井轨迹进行分段处理,再基于各第一井轨迹分段各自对应的第一地质信息,确定各第一井轨迹分段各自的第一地质信息对应地质层的地质构造线,可以提高目标井的地质导向模型的精度。
S3022、以一类地质层的地质构造线为基准,基于第二地质信息,确定第二地质信息对应的二类地质层在导向剖面上的地质构造线,获得目标井的地质导向模型。
具体而言,地质导向设备21以一类地质层的地质构造线为基准,基于第二地质信息,确定第二地质信息对应的二类地质层在导向剖面上的地质构造线,获得目标井的地质导向模型。
示例性地,地质导向设备21基于第二地质信息中二类地质层的排布顺序,以一类地质层的地质构造线为基准,按与第二地质信息中二类地质层厚度等厚的方式,确定地质界面与一类地质层共界面的二类地质层的地质构造线。导向建模设备21按第二地质信息中二类地质层的排布顺序以及等厚度比例的方式,确定地质界面与一类地质层 非共界面的二类地质层的地质构造线。
由于第一地质信息是对目标井区域的第一指定地质属性的一类地质层进行试验研究后获得的精准的地质信息,且地质层具有连续分布的特性,以一类地质层的地质构造线为基准,结合第二地质信息,确定出二类地质层的地质构造线,从而获得了目标井的地质导向模型。本申请方法建立的地质导向模型以目标井区域一类地质层的真实精准信息确定的地质构造线为基础,综合考虑了二类地质层的分布连续特性,提高了该地质导向模型的精度,确保了后续目标井的高钻遇率。
可选地,目标井的参考井是按如下方式确定的:
若在指定区域内与目标井相邻的邻井的数量小于或等于一,地质导向设备21则确定邻井和/或目标井的导眼井为参考井。
若在指定区域内与目标井相邻的邻井的数量大于一,且邻井之间有地质断层,地质导向设备21则以地质断层或地质断层所在平面与第一井轨迹的交点为分段节点将目标井的第一井轨迹进行分段处理,得到各第一井轨迹分段。地质导向设备21确定与第一井轨迹分段同处于地质断层的同一侧的邻井为第一井轨迹分段的参考井。示例性地,若第一井轨迹穿过了地质断层,地质导向设备21则以第一井轨迹与地质断层的交点为分段节点。若第一井轨迹没有穿过地质断层,地质导向设备21则以地质断层所在平面与第一井轨迹的交点为分段节点。若第一井轨迹与地质断层所在平面没有交点,则说明第一井轨迹在地质断层的一侧,地质导向设备21确定与第一井轨迹同处于地质断层同一侧的邻井为该第一井轨迹的参考井。由于地质断层破坏了地质层的连续性,因此以地质断层或地质断层所在平面与第一井轨迹的交点为分段节点将目标井的第一井轨迹进行分段处理,再基于分段处理后的各第一井轨迹分段各自的参考井的地质信息,确定各第一井轨迹分段对应地质层的地质构造线,可以提高目标井的地质导向模型的精度。
若在指定区域内与目标井相邻的邻井的数量大于一,且邻井之间没有地质断层,则地质导向设备21以邻井到目标井的第一井轨迹垂线与第一井轨迹的交点为分段节点,对第一井轨迹进行分段处理,得到各第一井轨迹分段。地质导向设备21确定各第一井轨迹分段上的分段节点所对应的邻井为参考井。示例性地,地质导向设备21确定第一井轨迹分段上的分段节点所对应的邻井为该第一井轨迹分段的参考井。以各第一井轨迹分段上的分段节点所对应的邻井为参考井确定各第一井轨迹分段对应地质层的地质构造线,可以进一步提高目标井的地质导向模型的精度。
进一步地,在确定各第一井轨迹分段上的分段节点所对应的邻井为参考井之后,本申请提供的方法还包括如下步骤I-III:
I、若第一井轨迹分段上有两个分段节点,则地质导向设备21将第一井轨迹分段按预设阈值分为两个节点子段和过渡子段。节点子段为包含分段节点的子段,过渡子段为分别与两个节点子段相连的子段。
II、地质导向设备21以第一地质信息对应的地质构造线为基准,基于以节点子段上分段节点对应邻井为参考井的第二地质信息,确定节点子段对应二类地质层的地质构造线。
III、地质导向设备21对过渡子段对应的各节点子段的地质构造线信息进行平滑处 理,得到过渡子段对应二类地质层的地质构造线。
在没有地质断层的情况下,地质层在平行于地表的方向上通常是连续的,其地质层的变化通常是平滑的,因此,若第一井轨迹分段上有两个分段节点,将第一井轨迹分段按预设阈值分为两个节点子段和过渡子段后按步骤II-III确定各子段对应二类地质层的地质构造线,可以提高目标井的地质导向模型与目标井第一井轨迹区域的真实地质层的分层构造情况的匹配度。
S303、采用地质导向模型进行目标井实钻的地质导向。
具体而言,地质导向设备21采用地质导向模型进行目标井实钻的地质导向。
可选地,地质导向设备21采用步骤S302所确定的地质导向模型对第一井轨迹进行审核调整,得到第二井轨迹。该第二井轨迹的所有水平井段与目标地质层接触,如第二井轨迹的水平井段位于目标地质层中。地质导向设备21基于地质导向模型和第二井轨迹,对目标井的实钻进行地质导向。
示例性地,在实钻之前,地质导向设备21采用其所确定的目标井的地质导向模型对第一井轨迹进行审核修正,得到井轨迹的水平井段位于目标地质层中的第二井轨迹。地质导向设备21将第二井轨迹发送到实钻控制设备14,以便实钻控制设备14基于第二井轨迹控制钻头沿第二井轨迹钻进。在实钻过程中,地质导向设备21从测井设备11获取目标井的随钻测井信息,结合地质导向设备21所确定的目标井的地质导向模型,进行实钻分析和第二井轨迹的实时调整,得到调整井轨迹。地质导向设备21将实时调整后的调整井轨迹实时发送到实钻控制设备14,以便于实钻控制设备14基于实时调整后的调整井轨迹对钻头进行钻进控制。或者,地质导向设备21将第二井轨迹或调整井轨迹转化成钻进坐标信息,将钻进坐标信息发送到实钻控制设备14。由实钻控制设备14基于所收到的钻进坐标信息向钻头发送钻进指令,以控制钻头按钻进指令对应的井轨迹钻进,确保目标井具有高的钻遇率。
下面结合图1、图2、图4以及图5,以一具体实例对现有的地质导向方法和本申请提供的地质导向方法各自对应的地质导向模型的精度进行对比说明。图4为本申请实施例提供的地质导向模型对比图。图4中4a为现有的地质导向方法中采用的地质导向模型,4b为本申请提供的地质导向方法中采用的地质导向模型。图5为本申请实施例提供的参考井YS-2HP的各地质层的排布顺序和深度信息。
假设目标井标识为YS-2H,其目标地质层为标识为L3的地质层,邻井标识为YS-2HP。建模设备13和地质导向设备21均确定邻井YS-2HP为目标井YS-2H的参考井。
图4中4a为建模设备13从测井设备11获得参考井YS-2HP的地质信息后,基于参考井YS-2HP的地质信息中各地质属性的地质层的排布顺序和各地质层的界面坐标信息,建立的目标井YS-2H的地质导向模型。邻井YS-2HP的地质信息即为目标井YS-2H的第二地质信息。图4中目标井的第一井轨迹,是设计设备12基于油气藏开采要求和从测井设备11获取的参考井YS-2HP的地质信息,为目标井YS-2H预先设计的井轨迹。建模设备13采用图4中4a所示的地质导向模型,对从设计设备12获得的目标井的第一井轨迹进行检查,检查结果为第一井轨迹中水平井段均处于目标地质层L3中,该第一井轨迹的钻遇率高。但在目标井YS-2H的实钻过程中,当采用图4中4a的地质导向模型对目标井YS-2H的实钻进行地质导向,实钻分析显示目标井在钻遇目标地质层后,随即出现了严重的出层问题,对第一井轨迹进行多次调整后,沿调整后的调整井轨迹钻仍然无法钻遇目标地质层,由此说明图4中4a所示的 地质导向模型存在不精准的问题。
然而,采用本申请提供的方法对目标井YS-2H的实钻进行地质导向后,目标井的钻遇率得以显著提高。采用本申请提供的方法对目标井YS-2H的实钻进行地质导向的具体过程如下(a)-(e)所示:
(a)、地质导向设备21分别从测井设备11获取参考井YS-2HP的地质信息,从设计设备12获取目标井的第一井轨迹,从地质研究设备22获得第一井轨迹区域的地质层L5的地质属性以及地质层L5的顶层界面L5top和底层界面L5bot的坐标信息。地质导向设备21对所获取的参考井YS-2HP地质信息(即第二地质信息)进行信息提取处理,得到第二地质信息中各地质层的排布顺序和深度信息。第二地质信息中各地质层的排布顺序和深度信息如图5所示。图5还示出了地质层L1、L2、L3、L4、L5、L6各自的真地层厚度H1、H2、H3、H4、H5、H6。
(b)、地质导向设备21以目标井YS-2H的第一井轨迹所在平面为导向剖面,基于从地质研究设备22所获得的顶层界面L5top和底层界面L5bot的坐标信息,确定地质层L5在导向剖面上的地质构造线。地质层L5在导向剖面上的地质构造线如图4中4b所示的L5地质层的上下两条边界线。
(c)、根据图5所示的第二地质信息可知,各地质层的排布顺序为L1-L2-L3-L4-L5-L6。地质层L5的顶层界面L5top与地质层L4的底层界面是共界面的,地质层L5的底层界面L5bot与L6的顶层界面是共界面的。地质导向设备21以地质层L5的顶层界面L5top对应地质构造线为基准,按与第二地质信息中L4地质层厚度等厚的方式,确定与L5共界面的地质层L4在导向剖面上的地质构造线。具体地,地质导向设备21以L5top对应地质构造线作为L4地质层的底层界面的地质构造线,以第二地质信息中L4地质层的厚度H4作为厚度,确定L4地质层的顶层界面的地质构造线,确保地质导向设备21所建立的如图4中4b所示的地质导向模型中L4地质层的厚度与第二地质信息中L4地质层的厚度是等厚的。同理地,地质导向设备21以L5bot对应地质构造线作为L6地质层的顶层界面的地质构造线,以第二地质信息中L6地质层的厚度H6作为厚度,确定L6地质层的底层界面的地质构造线。
(d)、对于与地质层L5非共界面的其他地质层如L1、L2、L3,地质导向设备21按第二地质信息中地质层L1、L2、L3的排布顺序以及等厚度比例的方式,确定L1、L2、L3在导向剖面上的地质构造线。具体地,由于L3底层界面与L4顶层界面共界面,L1的顶层界面距离地表最近,通过地质研究设备22可以直接测量获得L1顶层界面的坐标。地质导向设备21则以L4的顶层界面的地质构造线作为L3底层界面的地质构造线。地质导向设备21基于L1顶层界面的坐标确定L1顶层界面的地质构造线。地质导向设备21以L1顶层界面的地质构造线和L3底层界面的地质构造线为基准,按第二地质信息中L1、L2、L3的厚度比例(即H1:H2:H3),确定出L1的底层界面、L2的顶层和底层界面、L3的顶层界面各自对应的地质构造线。至此,地质导向设备21完成目标井YS-2H的地质导向模型的构建,建成如图4中4b所示的目标井YS-2H的地质导向模型。
(e)、地质导向设备21采用图4中4b所示的地质导向模型对目标井YS-2H的第一井轨迹进行检查,检查结果为第一井轨迹的大部分水平井段位于地质层L6中,即大部分水平井段已经出层,只有少部分井段位于目标地质层L3中。基于该检查结果,在对目标井YS-2H的第一井轨迹进行调整,得到第二井轨迹。地质导向设备21将第二井轨迹发送到实钻控制设 备14,以便实钻控制设备14基于第二井轨迹控制钻头沿第二井轨迹钻进。在实钻开始后,地质导向设备21从测井设备11实时获取目标井的随钻测井信息,结合地质导向模型,进行实钻分析,基于实钻分析结果对第二井轨迹进行实时调整,得到调整井轨迹。地质导向设备21将实时调整后的调整井轨迹实时发送到实钻控制设备14,以使实钻控制设备14基于实时调整后的调整井轨迹对钻头进行钻进控制。
地质导向设备21采用图4中4b所示的地质导向模型对目标井YS-2H实钻进行地质导向后,目标井YS-2H在实钻过程中的钻遇率得以显著提升,表明本申请提供的地质导向方法的导向精准度高。
本申请提供的地质导向方法,以目标井的第一井轨迹所在平面为导向剖面,基于第一地质信息,确定第一地质信息对应的一类地质层在导向剖面上的地质构造线,并以一类地质层的地质构造线为基准,结合第二地质信息中与一类地质层地质属性不同的二类地质层的排布顺序和厚度信息,分别按等厚和等厚度比例的方式确定出与一类地质层共界面和非共界面的二类地质层的地质构造线,形成目标井的精准地质导向模型,采用该地质导向模型进行了目标井实钻的精准地质导向。本申请提供的地质导向方法以精准的一类地质层的地质信息确定的地质构造线为基准,综合考虑二类地质层的分布连续特性后确定出二类地质层的地质构造线,从而获得精准的地质导向模型,确保了地质导向的精准性,也就有效确保了后续目标井的高钻遇率,极大提高了目标井后续的油气藏开采效率。
本申请实施例还提供一种地质导向建模设备。图6为本申请实施例提供的地质导向设备结构图。如图6所示,该设备包括:收发模块61、建模模块62、导向模块63。
收发模块61,用于获取目标井的第一井轨迹信息、目标井的第一地质信息和第二地质信息。第一地质信息为对第一井轨迹对应区域的第一指定地质属性的地质进行研究后所获得的地质信息。第一地质信息包括至少一种地质属性的地质层的界面坐标信息。第二地质信息包括目标井的参考井的各地质属性的地质层的界面坐标信息。
建模模块62,用于以第一井轨迹所在平面为导向剖面,确定第一地质信息对应的一类地质层在导向剖面上的地质构造线,以一类地质层的地质构造线为基准,基于第二地质信息,确定第二地质信息对应的二类地质层在导向剖面上的地质构造线,获得目标井的地质导向模型。地质构造线为地质层的界面与导向剖面的交线。二类地质层为地质属性与一类地质层的地质属性不相同的地质层。
导向模块63,用于采用地质导向模型进行目标井实钻的地质导向。
本申请实施例提供的地质导向建模设备,其具体实现原理和技术效果与图3所示实施例的具体实现原理和技术效果类似,本实施例此处不再赘述。
本申请实施例还提供一种地质导向建模装置。图7为本申请实施例提供的地质导向装置结构图。如图7所示,该装置包括处理器71和存储器72,存储器72存储有处理器71可执行指令,使得该处理器71可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。应理解,上述处理器71可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。 结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。存储器72可能包含高速随机存取存储器(英文:Random Access Memory,简称:RAM),也可能还包括非易失性存储器(英文:Non-volatile memory,简称:NVM),例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
本申请实施例还提供一种存储介质,该存储介质中存储有计算机执行指令,这些计算机执行指令被处理器执行时,实现上述的地质导向方法。存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(英文:Static Random-Access Memory,简称:SRAM),电可擦除可编程只读存储器(英文:Electrically-Erasable Programmable Read-Only Memory,简称:EEPROM),可擦除可编程只读存储器(英文:Erasable Programmable Read-Only Memory,简称:EPROM),可编程只读存储器(英文:Programmable Read-Only Memory,简称:PROM),只读存储器(英文:Read-Only Memory,简称:ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(英文:Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于电子设备或主控设备中。
本申请实施例还提供一种程序产品,如计算机程序,该计算机程序被处理器执行时实现本申请所涵盖的地质导向方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施方式仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施方式对本发明已经进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施方式技术方案的范围。

Claims (11)

  1. 一种地质导向方法,其特征在于,包括:
    获取目标井的第一井轨迹信息、所述目标井的第一地质信息和第二地质信息;所述第一地质信息为对所述第一井轨迹对应区域的第一指定地质属性的地质进行研究后所获得的地质信息;所述第一地质信息包括至少一种地质属性的地质层的界面坐标信息;所述第二地质信息包括所述目标井的参考井的各地质属性的地质层的界面坐标信息;
    以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,以所述一类地质层的地质构造线为基准,基于所述第二地质信息,确定所述第二地质信息对应的二类地质层在所述导向剖面上的地质构造线,获得所述目标井的地质导向模型;所述地质构造线为地质层的界面与导向剖面的交线;所述二类地质层为地质属性与所述一类地质层的地质属性不相同的地质层;
    采用所述地质导向模型进行所述目标井实钻的地质导向。
  2. 根据权利要求1所述的方法,其特征在于,所述第一地质信息为通过地震反演和/或沉积相研究所获得的第一指定地质属性的地质信息;
    所述以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,包括:
    沿着所述第一井轨迹创建导向剖面;所述导向剖面的长度不小于所述第一井轨迹的实际水平长度THL,所述导向剖面的高度不小于所述第一井轨迹对应区域的第二指定地质属性的地质层总厚度的最大值;
    确定所述第一地质信息对应的第一指定地质属性的一类地质层在所述导向剖面上的地质构造线。
  3. 根据权利要求1所述的方法,其特征在于,所述以所述一类地质层的地质构造线为基准,基于所述第二地质信息,确定所述第二地质信息对应的二类地质层在所述导向剖面上的地质构造线,包括:
    基于所述第二地质信息中所述二类地质层的排布顺序,以所述一类地质层的地质构造线为基准,按与所述第二地质信息中所述二类地质层厚度等厚的方式,确定地质界面与所述一类地质层共界面的二类地质层的地质构造线;
    按所述第二地质信息中所述二类地质层的排布顺序以及等厚度比例的方式,确定地质界面与所述一类地质层非共界面的二类地质层的地质构造线。
  4. 根据权利要求1所述的方法,其特征在于,所述采用所述地质导向模型进行所述目标井实钻的地质导向,包括:
    采用所述地质导向模型对所述第一井轨迹进行审核调整,得到第二井轨迹,所述第二井轨迹的所有水平井段与目标地质层接触;
    基于所述地质导向模型和所述第二井轨迹,对所述目标井的实钻进行地质导向。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述目标井的参考井是按如下方式确定的:
    若在指定区域内与所述目标井相邻的邻井的数量小于或等于一,则确定所述邻井和/或所述目标井的导眼井为参考井;
    若在指定区域内与所述目标井相邻的邻井的数量大于一,且所述邻井之间有地质断层,则以所述地质断层或所述地质断层所在平面与所述第一井轨迹的交点为分段节点将所述第一井轨迹进行分段处理,得到各第一井轨迹分段;确定与第一井轨迹分段同处于所述地质断层的同一侧的邻井为所述第一井轨迹分段的参考井;
    若在指定区域内与所述目标井相邻的邻井的数量大于一,且所述邻井之间没有地质断层,则以所述邻井到所述第一井轨迹垂线与所述第一井轨迹的交点为分段节点对所述第一井轨迹进行分段处理,得到各第一井轨迹分段;确定各第一井轨迹分段上的分段节点所对应的邻井为参考井。
  6. 根据权利要求5所述的方法,其特征在于,在所述确定各第一井轨迹分段上的分段节点所对应的邻井为参考井之后,所述方法还包括:
    若第一井轨迹分段上有两个分段节点,则将所述第一井轨迹分段按预设阈值分为两个节点子段和过渡子段;所述节点子段为包含分段节点的子段,所述过渡子段为分别与所述两个节点子段相连的子段;
    以所述第一地质信息对应的地质构造线为基准,基于以所述节点子段上分段节点对应邻井为参考井的第二地质信息,确定所述节点子段对应二类地质层的地质构造线;
    对所述过渡子段对应的各节点子段的地质构造线信息进行平滑处理,得到所述过渡子段对应二类地质层的地质构造线。
  7. 根据权利要求6所述的方法,其特征在于,所述以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,还包括:
    若所述第一井轨迹与地质断层相交,则以所述第一井轨迹与所述地质断层的交点为分段节点将所述第一井轨迹进行分段处理,得到各第一井轨迹分段;
    以所述第一井轨迹分段所在平面为导向剖面,基于所述第一井轨迹分段对应的第一地质信息,确定所述第一井轨迹分段对应的第一地质信息对应一类地质层在所述第一井轨迹分段对应的导向剖面上的地质构造线。
  8. 一种地质导向建模设备,其特征在于,所述设备包括:收发模块、建模模块、导向模块;
    所述收发模块,用于获取目标井的第一井轨迹信息、所述目标井的第一地质信息和第二地质信息;所述第一地质信息为对所述第一井轨迹对应区域的第一指定地质属性的地质进行研究后所获得的地质信息;所述第一地质信息包括至少一种地质属性的地质层的界面坐标信息;所述第二地质信息包括所述目标井的参考井的各地质属性的地质层的界面坐标信息;
    所述建模模块,用于以所述第一井轨迹所在平面为导向剖面,确定所述第一地质信息对应的一类地质层在导向剖面上的地质构造线,以所述一类地质层的地质构造线为基准,基于所述第二地质信息,确定所述第二地质信息对应的二类地质层在所述导向剖面上的地质构造线,获得所述目标井的地质导向模型;所述地质构造线为地质层的界面与导向剖面的交线;所述二类地质层为地质属性与所述一类地质层的地质属性不相同的地质层;
    所述导向模块,用于采用所述地质导向模型进行所述目标井实钻的地质导向。
  9. 一种地质导向建模装置,其特征在于,所述装置包括:
    处理器和存储器;
    所述存储器存储所述处理器可执行的可执行指令;
    其中,所述处理器执行所述存储器存储的可执行指令,使得所述处理器执行如权利要求1-7任一项所述的方法。
  10. 一种存储介质,其特征在于,所述存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1-7任一项所述的方法。
  11. 一种程序产品,包括计算机程序,该计算机程序被处理器执行时实现权利要求1-7任一项所述的方法。
PCT/CN2023/095140 2022-06-08 2023-05-18 地质导向方法、装置及存储介质 WO2023236754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210638287.5 2022-06-08
CN202210638287.5A CN114970182B (zh) 2022-06-08 2022-06-08 地质导向方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023236754A1 true WO2023236754A1 (zh) 2023-12-14

Family

ID=82959315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095140 WO2023236754A1 (zh) 2022-06-08 2023-05-18 地质导向方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114970182B (zh)
WO (1) WO2023236754A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114970182B (zh) * 2022-06-08 2023-09-12 中国石油天然气集团有限公司 地质导向方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106894761A (zh) * 2017-01-13 2017-06-27 武汉时代地智科技股份有限公司 利用时间域地震体的地质导向模型的地质导向方法
CN108625782A (zh) * 2018-05-30 2018-10-09 徐芝香 一种水平井造斜段地质导向方法
US20200248545A1 (en) * 2019-02-05 2020-08-06 Magnetic Variation Services, Llc Geosteering methods and systems for improved drilling performance
WO2021256950A1 (ru) * 2020-06-17 2021-12-23 Общество с ограниченной ответственностью "Геонавигационные технологии" Способ и система объединения модели геологической проводки скважины
CN114970182A (zh) * 2022-06-08 2022-08-30 中国石油天然气集团有限公司 地质导向方法、装置及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108442882B (zh) * 2018-03-01 2020-05-05 中石化江汉石油工程有限公司 基于二维地震资料的页岩气大位移水平井随钻地质导向方法
US11162349B2 (en) * 2018-10-05 2021-11-02 Ubiterra Corporation Systems and methods for geosteering during well drilling
CN109557584A (zh) * 2018-12-07 2019-04-02 防灾科技学院 一种水平钻井实时地震地质综合导向方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106894761A (zh) * 2017-01-13 2017-06-27 武汉时代地智科技股份有限公司 利用时间域地震体的地质导向模型的地质导向方法
CN108625782A (zh) * 2018-05-30 2018-10-09 徐芝香 一种水平井造斜段地质导向方法
US20200248545A1 (en) * 2019-02-05 2020-08-06 Magnetic Variation Services, Llc Geosteering methods and systems for improved drilling performance
WO2021256950A1 (ru) * 2020-06-17 2021-12-23 Общество с ограниченной ответственностью "Геонавигационные технологии" Способ и система объединения модели геологической проводки скважины
CN114970182A (zh) * 2022-06-08 2022-08-30 中国石油天然气集团有限公司 地质导向方法、装置及存储介质

Also Published As

Publication number Publication date
CN114970182A (zh) 2022-08-30
CN114970182B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US10318662B2 (en) Systems and methods for horizontal well correlation and geosteering
US9081918B2 (en) Methods and systems regarding models of underground formations
WO2023236754A1 (zh) 地质导向方法、装置及存储介质
US20100312478A1 (en) Log processing in highly deviated wellbores
US11459868B2 (en) Multi-well ranging and drill path determination
US10936561B2 (en) Extensible well data integrity smart detector
US8593462B2 (en) Method and system of correlating a measured log to a predicted log
CN110359841B (zh) 水平井的轨迹确定方法
CN111260791A (zh) 一种更新地质导向模型的方法
CN114329878A (zh) 页岩气井小层划分方法、装置、设备和存储介质
US20230324580A1 (en) Creation of near bit gamma ray image from a gamma ray curve
WO2024017302A1 (zh) 一种水平井的建模方法及装置
CN111722276A (zh) 岩石钻井的地震导向方法及系统
Tyvonchuk Predicting of the geometrical behavior of formations in subsurface based on the analysis of LWD/MWD data while drilling horizontal wells
CN113495303B (zh) 剥蚀量恢复的方法和装置
CN111577250B (zh) 水平井地质导向方法及装置
US11459873B2 (en) Geomodel-driven dynamic well path optimization
US11709287B2 (en) Well logging to identify low resistivity pay zones in a subterranean formation using elastic attributes
US20230333277A1 (en) Lithofacies Guided Core Description Using Unsupervised Machine Learning
CN116025281A (zh) 一种薄油层水平井着陆轨迹控制方法
CN115822557A (zh) 随钻地质导向模型重构方法、系统、存储介质和电子设备
CN117452490A (zh) 基于层拉平地震剖面及剥蚀关系的地层对比剖面编绘方法
CN114718552A (zh) 水平井入窗后的井眼轨迹调整方法、装置、设备及介质
CN115573703A (zh) 一种提高水平井地层对比精度的计算方法
CN115982992A (zh) 基于出入层特征识别的轨迹与储层关系确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818919

Country of ref document: EP

Kind code of ref document: A1