WO2024017302A1 - 一种水平井的建模方法及装置 - Google Patents

一种水平井的建模方法及装置 Download PDF

Info

Publication number
WO2024017302A1
WO2024017302A1 PCT/CN2023/108194 CN2023108194W WO2024017302A1 WO 2024017302 A1 WO2024017302 A1 WO 2024017302A1 CN 2023108194 W CN2023108194 W CN 2023108194W WO 2024017302 A1 WO2024017302 A1 WO 2024017302A1
Authority
WO
WIPO (PCT)
Prior art keywords
occurrence
domain
target formation
well
data
Prior art date
Application number
PCT/CN2023/108194
Other languages
English (en)
French (fr)
Inventor
梁瀚
冉崎
张晨
狄贵东
龙隆
许翔
夏青
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2024017302A1 publication Critical patent/WO2024017302A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/003Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by analysing drilling variables or conditions

Definitions

  • the invention relates to the technical field of petroleum extraction, and in particular to a horizontal well modeling method and device.
  • geological models are constructed based on three-dimensional visual stratigraphic comparison and seismic interpretation depth domain fault models.
  • Accuracy leads to the risk that the well trajectory will miss the target and the reservoir will not be drilled.
  • embodiments of the present invention provide a horizontal well modeling method and device, which can at least partially solve the problems existing in the prior art.
  • the present invention proposes a horizontal well modeling method, including:
  • the present invention provides a horizontal well modeling device, including:
  • the first establishment module is used to establish the well trajectory of the target formation based on the movement trajectory of the actual drilling well;
  • the first acquisition module is used to obtain formation occurrence data based on the logging inclination data of actual drilling, and divide the formation occurrence data in the target formation into occurrence domains to obtain the first occurrence of the target formation. area;
  • a second establishment module configured to establish a wellside structural model based on the well trajectory of the target formation and the first occurrence domain of the target formation
  • a second acquisition module configured to obtain the second occurrence domain of the target formation based on the wellside structural model, the well trajectory of the target formation, and pre-stack depth domain seismic data;
  • a judgment module configured to confirm that the pre-stack depth domain seismic data is accurate after judging that the first occurrence domain of the target formation matches the second occurrence domain of the target formation.
  • the present invention provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, it implements any of the above embodiments. Horizontal well modeling method.
  • the present invention provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the horizontal well modeling method described in any of the above embodiments is implemented.
  • the horizontal well modeling method and device provided by embodiments of the present invention establish the well trajectory of the target formation based on the movement trajectory of the actual drilling, obtain the formation occurrence data based on the logging inclination data of the actual drilling, and analyze the formation conditions within the target formation.
  • the formation occurrence data is divided into occurrence domains to obtain the first occurrence domain of the target formation.
  • a wellside structural model is established. According to the wellside structural model, the target formation The well trajectory and pre-stack depth domain seismic data are used to obtain the second occurrence domain of the target formation.
  • the pre-stack depth domain seismic data is confirmed The data is accurate, which can verify the reliability of pre-stack depth domain seismic data and improve the reservoir drilling rate of single wells.
  • Figure 1 is a schematic flowchart of a horizontal well modeling method provided by the first embodiment of the present invention.
  • Figure 2 is a schematic flowchart of a horizontal well modeling method provided by the second embodiment of the present invention.
  • Figure 3 is an intersection diagram of tendency and well depth provided by the third embodiment of the present invention.
  • Figure 4 is an intersection diagram of inclination angle and well depth provided by the fourth embodiment of the present invention.
  • Figure 5 is a schematic flowchart of a horizontal well modeling method provided by the fifth embodiment of the present invention.
  • Figure 6 is a schematic flowchart of a horizontal well modeling method provided by the sixth embodiment of the present invention.
  • Figure 7 is a schematic diagram of a well trajectory in a three-dimensional space provided by the seventh embodiment of the present invention.
  • Figure 8 is a schematic diagram of a wellside structural model provided by the eighth embodiment of the present invention.
  • Figure 9 is a schematic diagram of matching the wellside structural model and pre-stack depth domain seismic data provided by the ninth embodiment of the present invention.
  • Figure 10 is a schematic diagram of the predicted next occurrence domain segment provided by the tenth embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of a horizontal well modeling device provided by an eleventh embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of a horizontal well modeling device provided by the twelfth embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of a horizontal well modeling device provided by a thirteenth embodiment of the present invention.
  • Figure 14 is a schematic structural diagram of a horizontal well modeling device provided by the fourteenth embodiment of the present invention.
  • Figure 15 is a schematic structural diagram of a horizontal well modeling device provided by the fifteenth embodiment of the present invention.
  • Figure 16 is a schematic diagram of the physical structure of an electronic device provided by a sixteenth embodiment of the present invention.
  • the execution subject of the horizontal well modeling method provided by the embodiment of the present invention includes but is not limited to a computer.
  • horizontal wells refer to special wells with a maximum well inclination angle reaching or approaching 90° and maintaining a horizontal well section of a certain length in the target layer.
  • the maximum inclination angle of horizontal wells is generally not less than 86°.
  • Highly deviated wells refer to directional wells in which the ratio of drilling deviation length to vertical depth is greater than 2 and the well deviation angle is between 55° and 86°.
  • pre-stack depth domain seismic data In order to accurately establish highly deviated wells or horizontal wells, it is necessary to check the accuracy of pre-stack depth domain seismic data during the actual drilling process. If the pre-stack depth domain seismic data is inaccurate, it will lead to inaccurate drilling of highly deviated wells or horizontal wells. Drilling to the oil and gas target layer caused the target to miss, leading to development failure. Therefore, when the prestack depth domain seismic data is inaccurate, the seismic data work needs to be redone. When the pre-stack depth domain seismic data is accurate and reliable, the pre-stack depth domain seismic data can be used to determine the next drilling trajectory of the well trajectory to improve the single well reservoir drilling rate and single well production.
  • the present invention provides a horizontal well modeling method, by establishing a wellside structural model of a horizontal well or a highly deviated well, and then projecting the wellside structural model onto a pre-stack depth domain seismic profile, which is compared with the pre-stack depth domain Seismic data are matched to verify the accuracy and reliability of pre-stack depth domain seismic data.
  • pre-stack depth domain seismic data to guide the tracking while drilling and target orientation adjustment of horizontal wells or highly deviated wells can improve the single well reservoir drilling rate and single well production.
  • Figure 1 is a schematic flow chart of a horizontal well modeling method provided by the first embodiment of the present invention. As shown in Figure 1, the horizontal well modeling method provided by the embodiment of the present invention includes:
  • actual drilling will produce a motion trajectory during the drilling process.
  • Each point in the motion trajectory is represented by a coordinate value in the geodetic coordinate system and its corresponding depth value, which is used to represent the vertical depth and horizontal offset of the drilling well. quantity.
  • the target formation is the interval containing the reservoir to be drilled, with a depth range.
  • the portion of the movement trajectory of the actual drilling well within the target formation is obtained as the well trajectory of the target formation.
  • the coordinates corresponding to each point of the well trajectory can be expressed as (x, y, z), where x and y represent the coordinate values of the point in the geodetic coordinate system, and z represents the depth value of the point.
  • the part of the actual drilling trajectory between 7000 and 8000m constitutes the well trajectory of the target formation.
  • a series of formation inclination data and inclination data can be obtained during the process of drilling through the formation, and then the formation inclination data and inclination data are sampled in the depth direction.
  • the formation occurrence data within the depth range of the target formation is used as the formation occurrence data within the target formation.
  • the third layer of the target formation can be obtained.
  • the first occurrence domain of the target formation includes at least one occurrence domain segment.
  • the inclination and inclination angle of each occurrence domain segment are within a corresponding range, and the inclinations and inclination angles of different occurrence domain segments are significantly different.
  • logging instruments can be used to measure and obtain the original data in the well during actual drilling, and then the original data in the well can be analyzed and calculated through relevant software to obtain the logging inclination data and logging stratification data of the actual drilling well.
  • the well logging layered data is the well depth value of the stratigraphic layer. It should be pointed out that the well depth value is not the vertical depth, but the relative depth of the well trajectory itself.
  • a series of formation inclination data and inclination angle data are obtained, and then sample points are obtained at intervals of 4m or 10m depth, and the inclination data and inclination angle data of the strata at each sample point can be obtained.
  • the stratigraphic tendency data and dip angle data constitute stratigraphic occurrence data.
  • the logging inclination data and logging stratification data corresponding to the first occurrence domain of the target formation are projected onto the well trajectory of the target formation, that is, corresponding to the first occurrence domain of the target formation
  • the logging inclination data and logging layering data along the well depth are mapped to the well trajectory of the target formation, thereby establishing a wellside structural model.
  • the well trajectory of the target formation can be projected into the pre-stack depth domain seismic data, and the well trajectories of the target formation can be segmented along the well trajectory.
  • the pre-stack depth domain seismic data is used to obtain a pre-stack depth domain seismic reflection profile, and then the wellside structural model is projected onto the pre-stack depth domain seismic reflection profile to obtain the second occurrence domain of the target formation.
  • pre-stack depth domain seismic data can be output.
  • the data in the pre-stack depth domain seismic data can be (x, y, Z), with Z as the altitude value.
  • the pre-stack depth domain seismic data and well trajectory data in the spatial domain can be obtained at the same scale and depth. Since the pre-stack depth domain seismic data can cut a vertical two-dimensional seismic section in any direction, therefore, the pre-stack depth domain seismic data can be cut into a two-dimensional seismic section along the direction of the well trajectory to obtain the pre-stack depth domain seismic reflection profile. That is, the matching of well trajectories and pre-stack depth domain seismic data is achieved.
  • the second occurrence domain of the target formation can be obtained by projecting the wellside structural model onto the pre-stack depth domain seismic reflection profile.
  • the first occurrence domain of the target formation is compared with the second occurrence domain of the target formation. If the first occurrence domain of the target formation is the same as the second occurrence domain of the target formation, Matching means that the error of the pre-stack depth domain seismic data is within an acceptable range, then it is confirmed that the pre-stack depth domain seismic data is accurate. If the first occurrence domain does not match the second occurrence domain, it means that the pre-stack depth domain seismic data is inaccurate, and it can be prompted that the pre-stack depth domain seismic data does not meet the requirements.
  • the inclination angles of the occurrence domain segments corresponding to the first occurrence domain and the second occurrence domain For example, compare the inclination angles of the occurrence domain segments corresponding to the first occurrence domain and the second occurrence domain. If the error in the inclination angle is within the corresponding preset range, then the first occurrence domain and the second occurrence domain match. , if the error of the inclination angle exceeds the corresponding preset range, then the first occurrence domain and the second occurrence domain do not match.
  • the horizontal well modeling method establishes the well trajectory of the target formation based on the motion trajectory of the actual drilling well, obtains the formation occurrence data based on the logging inclination data of the actual drilling well, and analyzes the formation production within the target formation.
  • the occurrence domain is divided based on the occurrence data to obtain the first occurrence domain of the target formation.
  • a wellside structural model is established. According to the wellside structural model and the well location of the target formation, Trajectory and prestack depth Domain seismic data is used to obtain the second occurrence domain of the target formation.
  • the pre-stack depth domain seismic data is accurate and the pre-stack can be verified.
  • the reliability of depth domain seismic data improves the reservoir drilling rate of single wells.
  • the horizontal well modeling method provided by the embodiment of the present invention also includes:
  • a prompt message indicating that the pre-stack depth domain seismic data does not meet the requirements is output.
  • the first occurrence domain of the target formation is compared with the second occurrence domain of the target formation. If the first occurrence domain does not match the second occurrence domain, it means that the pre-stack
  • the depth domain seismic data is not accurate enough, and a prompt message indicating that the pre-stack depth domain seismic data does not meet the requirements is output, so as to obtain accurate pre-stack depth domain seismic data for drilling.
  • Figure 2 is a schematic flow chart of a horizontal well modeling method provided by the second embodiment of the present invention. As shown in Figure 2, on the basis of the above embodiments, further, the formation production in the target formation is The occurrence domain is divided based on the occurrence data. Obtaining the first occurrence domain of the target formation includes:
  • the formation occurrence data includes tendency data and dip angle data. Based on the tendency data in the target formation, an intersection diagram of the tendency of the target formation and the well depth can be drawn. Based on the dip angle data in the target formation, an intersection diagram can be drawn. Plot the intersection of the dip angle of the target formation and the well depth.
  • Table 1 is the formation occurrence data in the target formation section. Based on the formation occurrence data in Table 1, the intersection diagram of dip and well depth shown in Figure 3 and the intersection diagram of dip angle and well depth shown in Figure 4 are drawn. In Figure 3, the abscissa represents the tendency, and the ordinate represents the depth. In Figure 4, the abscissa represents the inclination angle, and the ordinate represents the depth.
  • the absolute value of the difference between two adjacent dip angles in the dip angle data in the target formation can be calculated, and then the absolute value of the difference between the two adjacent dip angles can be calculated.
  • the value is compared with the division threshold. If the absolute value of the difference is greater than the division threshold, it means that a sudden change in occurrence occurs.
  • the depth value between the depth values corresponding to the two adjacent dip angles is taken as the boundary between the two occurrence domain segments.
  • the stratigraphic occurrence data corresponding to the dip angle with a smaller depth value among the above two adjacent dip angles and the dip angle with a depth value smaller than the depth value corresponding to the dip angle and the absolute value of the difference between the two adjacent dip angles is less than or equal to the division threshold constitutes a Occurrence domain segment.
  • the number of occurrence domain segments included in the first occurrence domain of the target formation is equal to the preset number plus 1. If there is only one division threshold, then after obtaining the above occurrence domain segments, the remaining formations in the target formation The occurrence data constitutes another occurrence field segment.
  • the stratigraphic occurrence data in the target formation can be data cleaned to remove anomalies in the stratigraphic occurrence data in the target formation.
  • data For example, you can set an abnormal tendency threshold and an abnormal dip angle threshold. If the stratigraphic occurrence data includes a tendency that is greater than the abnormal tendency threshold, the data corresponding to the tendency that is greater than the abnormal tendency threshold will be removed from the stratigraphic occurrence data; if the stratigraphic occurrence data includes If the dip angle is greater than the abnormal dip angle threshold, the data corresponding to the dip angle that is greater than the abnormal dip angle threshold will be eliminated from the stratigraphic occurrence data.
  • a division threshold of 10 can be set.
  • three abnormal tendencies are obvious.
  • Set the dip threshold to 200, and remove the dip angle data in the dip target formation corresponding to the three abnormal dips.
  • Starting from depth 7853.21 calculate the absolute value of the difference between two adjacent inclination angles in sequence, and compare the absolute value of the difference with the division threshold 10.
  • the inclination angle corresponding to depth 8063.97 is 9.65 and the inclination angle corresponding to 8128.48 is 26.4.
  • the absolute value of the difference is 16.75, which is greater than 10.
  • the stratigraphic occurrence data in the target formation after removing the abnormal data between depth 7853.21 and depth 8063.97 constitute the first occurrence domain segment in the first occurrence domain of the target formation.
  • the remaining stratigraphic occurrence data in the target formation constitutes the second occurrence domain segment in the first occurrence domain of the target formation.
  • the average value of depth 8063.97 and depth 8128.48 is calculated to be 8096.23, which is rounded to 8100, which is used as the boundary between the first occurrence domain segment and the second occurrence domain segment.
  • the average value 9 of each inclination angle in the first occurrence domain segment can be calculated as the inclination angle of the first occurrence domain segment, and the average value 22 of each inclination angle in the second occurrence domain segment can be calculated as the second occurrence domain segment.
  • the inclination angle of the domain segment can be calculated as the inclination angle of the first occurrence domain segment.
  • Figure 5 is a schematic flow chart of a horizontal well modeling method provided by the fifth embodiment of the present invention. As shown in Figure 5, the method is based on the wellside structural model, the well trajectory of the target formation and pre-stack depth domain seismic Data to obtain the second occurrence domain of the target formation include:
  • pre-stack depth domain seismic data can be used to cut vertical two-dimensional seismic sections in any direction
  • the pre-stack depth domain seismic data can be used to cut two-dimensional seismic sections along the direction of the well trajectory to obtain the pre-stack depth domain seismic reflection profile.
  • the pre-stack depth domain seismic reflection profile matches well trajectories with pre-stack depth domain seismic data.
  • the wellside structural model is obtained based on the well trajectory of the target formation and the first occurrence domain of the target formation, including the data of the well trajectory of the target formation and the data of the first occurrence domain, Project the structural model near the well onto the pre-stack depth domain seismic reflection profile of the target formation along the well trajectory, and the data of the first occurrence domain will also be projected onto the pre-stack depth domain seismic reflection profile of the target formation to form The second occurrence domain of the target formation.
  • determining that the first occurrence domain of the target formation matches the second occurrence domain of the target formation includes:
  • the first occurrence domain segment of the target formation occurrence domain and the second of the target formation Occurrence domain matching include the same number of occurrence domain segments and correspond one to one.
  • the first occurrence domain of the target formation and the second occurrence domain of the target formation have the same number of occurrence domain segments, and the occurrence domain segments correspond one to one.
  • the average value of each inclination angle of each occurrence domain segment can be calculated as the inclination angle of each occurrence domain segment.
  • the inclination matching rules include:
  • the inclination angle of each occurrence domain segment in the first occurrence domain and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain belong to the corresponding threshold range, and each occurrence domain segment in the first occurrence domain belongs to the corresponding threshold range.
  • the absolute value of the error between the inclination angle of each occurrence domain segment and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain is less than the corresponding set value.
  • the absolute value of the error between the inclination angle of each occurrence domain segment in the first occurrence domain and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain is calculated, and the third occurrence domain segment is determined. Whether the inclination angle of each occurrence domain segment in one occurrence domain and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain belong to the corresponding preset range, if they belong to the corresponding preset range, then the above-mentioned The absolute value of the error is compared with the corresponding set value. If the absolute value of the above error is less than the corresponding set value, then the inclination angle of each formation domain segment in the first formation domain is the same as that in the second formation domain. The inclination angle of the corresponding occurrence domain segment in satisfies the inclination angle matching rule.
  • the preset range and setting value are set according to actual needs, and are not limited in the embodiment of the present invention.
  • the first occurrence domain of the target formation includes two occurrence domain segments
  • the second occurrence domain of the target formation also includes two occurrence domain segments.
  • the corresponding tilt angle matching rules are:
  • the inclination angle of the first occurrence domain segment in the first occurrence domain and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain belong to the first threshold range, and the first occurrence domain
  • the absolute value of the error between the inclination angle of the first occurrence domain segment and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain is less than the first set value
  • the inclination angle of the second occurrence domain segment in the first occurrence domain and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain belong to the second threshold range, and the first occurrence domain
  • the absolute value of the error between the inclination angle of the second occurrence domain segment and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain is less than the second set value.
  • the first occurrence domain of the target formation includes occurrence domain segment A and occurrence domain segment B
  • the second occurrence domain of the target formation includes occurrence domain segment a and occurrence domain segment b
  • occurrence domain segment A and occurrence domain segment Occurrence domain segment a corresponds to occurrence domain segment B
  • occurrence domain segment B corresponds to occurrence domain segment b.
  • Set the first threshold range to (p 1 , p 2 ], the first threshold range corresponds to the first set value k 1 ; the second threshold range is (p 3 , p 4 ], and the second threshold range corresponds to the second set value k 2.
  • the inclination angle of occurrence domain segment a and occurrence domain segment b The inclination angle can be obtained by measurement.
  • Calculate the absolute value of the error between the inclination angle of occurrence domain segment A and the inclination angle of occurrence domain segment a obtain the first numerical value, and calculate the inclination angle of occurrence domain segment B and the inclination angle of occurrence domain segment b
  • the absolute value of the error in the inclination angle is used to obtain the second value.
  • the first production value of the target formation If the first value is less than k 1 and the second value is less than k 2 , then the first production value of the target formation.
  • establishing the well trajectory of the target formation according to the motion trajectory of the actual drilling includes:
  • the well trajectory of the target formation is established with an aspect ratio of 1:1 to keep the vertical depth of the well trajectory and the lateral offset at the same ratio, As a result, the subsequent well-site structural model will not be distorted due to tension or compression, which will help ensure that the measured inclination angle is true and reliable.
  • Figure 6 is a schematic flow chart of a horizontal well modeling method provided by the sixth embodiment of the present invention. As shown in Figure 6, on the basis of the above embodiments, further, the horizontal well modeling method provided by the embodiment of the present invention Methods also include:
  • the seismic data occurrence after the well trajectory extension can be measured and obtained, and the seismic data occurrence after the well trajectory extension includes the dip angle.
  • the target layer is obtained in advance, and the layer of the oil reservoir can be drilled.
  • the inclination angle corresponding to the seismic data occurrence after the well trajectory extension is compared with the inclination angle of the first occurrence and the last occurrence domain section of the target formation. If the seismic data after the well trajectory extension The inclination angle corresponding to the data occurrence is consistent with the inclination angle of the last occurrence domain segment of the first occurrence domain of the target formation, indicating that the well trajectory extension can drill into the reservoir in the target formation, so there is no need to adjust the well trajectory tendency. If the inclination angle corresponding to the occurrence of seismic data after the well trajectory is extended is inconsistent with the inclination angle of the last occurrence domain segment of the first occurrence domain of the target formation, it means that the direct extension of the well trajectory cannot drill into the target formation.
  • the inclination angle corresponding to the seismic data occurrence after the well trajectory extension is obtained by calculating the average value of each inclination angle in the seismic data occurrence after the well trajectory extension.
  • the absolute value of the difference between the inclination angle corresponding to the seismic data occurrence after the well trajectory extension and the inclination angle of the last occurrence domain segment of the first occurrence domain of the target formation is less than or equal to the preset value, then the The dip angle corresponding to the occurrence of the seismic data after the extension of the well trajectory is consistent with the dip angle of the last occurrence domain section of the first occurrence domain of the target formation.
  • the well If the absolute value of the difference between the inclination angle corresponding to the seismic data occurrence after the well trajectory is extended and the inclination angle of the last occurrence domain segment of the first occurrence domain of the target formation is greater than the preset value, then the well The dip angle corresponding to the occurrence of the seismic data after the trajectory extension is inconsistent with the dip angle of the last occurrence domain segment of the first occurrence domain of the target formation.
  • the preset value is set based on actual experience and is not limited by the embodiment of the present invention.
  • the first step is to obtain the well trajectory of the target formation through the movement trajectory of the S6 well. Project the motion trajectory of the S6 well into a three-dimensional space with geodetic coordinates to establish the well trajectory in the three-dimensional space.
  • the depth of Well S6 is more than 8301 meters.
  • Each point in the depth of the well (taken according to the sampling point interval) has a coordinate value (x, y, z).
  • x and y are the values of the geodetic coordinates, and the sampling point is projected to The coordinate value of the earth's surface, the z value is the well depth value.
  • the well trajectory in the three-dimensional space is shown in Figure 7.
  • E, S, and N represent the east, south, and north directions in sequence, indicating the geodetic coordinate system.
  • the black curved lines in Figure 7 are the actual well trajectories in the established three-dimensional space.
  • the well trajectory of the target formation can be obtained based on the depth range of the target formation.
  • the depth range of the target formation of Well S6 is 7853.21 ⁇ 8301.19 meters, that is, there is an oil-bearing reservoir in the formation section with a depth range of 7853.21 ⁇ 8301.19 meters.
  • the second step is to obtain the first occurrence domain of the target formation with a depth range of 7853.21 to 8301.19 meters through the logging inclination data of Well S6.
  • Table 1 is the measured occurrence table of Well S6, which records the formation occurrence data of the target formation in the depth range of 7853.21 to 8301.19 meters.
  • the sample points of each well depth have two values, inclination and inclination angle.
  • Intersection diagrams of inclination and inclination angles corresponding to well depth are made respectively.
  • the obtained intersection diagram of inclination and well depth is shown in Figure 3.
  • the obtained inclination angle and well depth The intersection diagram is shown in Figure 4.
  • the shallower inclinations above 8100 well depths are mainly located in the inclination range of 0 to 80°, and there are three abnormal points that need to be eliminated; the deep inclinations above 8100 well depths are mainly located in the inclination ranges of 110 to 180°.
  • the well depth of 8100 meters is used as the dividing line and is divided into two dip angle domains.
  • the shallower dip angle is less than 18° above 8100 meters, and the deep dip angle is greater than 18° above 8100 meters. Therefore, the deflection section of Well S6 is bounded by the well depth of 8100 meters and can be divided into two occurrence domain sections.
  • Table 2 is the occurrence partition table of Well S6.
  • the well depth of 8100 meters is averaged by the inclination angle of the shallower occurrence domain section one. The value is 9°, and the average inclination angle of section 2 of the occurrence domain deeper than 8100 meters is 22°.
  • the third step is to construct a wellside structural model based on the occurrence domain section 1 and occurrence domain section 2 of the target formation ranging from 7853.21 to 8301.19 meters, as well as the well trajectory of the target formation.
  • the established structural model near the well is shown in Figure 8.
  • the structural model near the well includes occurrence domain segment 1 and occurrence domain segment 2.
  • the occurrence domain segment 1 is from an inclination depth of 7853 to 8060 m, and the inclination angle of the occurrence domain segment 1 is 9 °
  • the occurrence domain section 2 is from an oblique depth of 8100 to 8300m
  • the occurrence domain section 1 has an inclination angle of 22°.
  • the fourth step is to obtain the second occurrence domain of the target formation through the pre-stack depth domain seismic data of Well S6, the above-mentioned wellside structural model and the well trajectory of Well S6.
  • the well trajectory of Well S6 is projected into the pre-stack depth domain seismic data according to the same geodetic coordinate system, and the pre-stack depth domain seismic reflection profile is cut along the extension direction of the well trajectory, as shown in Figure 9.
  • Section 1 corresponds to the production domain section 1 divided by the well trajectory
  • section 2 corresponds to the production domain section 2 divided by the well trajectory.
  • the x, y, and z ratios of the pre-Triassic depth domain seismic data are consistent, and are all measured in meters. There is no relative tension or compression.
  • the dip angle of layer 2 in section 1 can be directly measured to be 8.1°, and 2
  • the inclination angle of horizon 2 of the section is 19.7°.
  • the inclination angle matching rules are: the inclination angle of occurrence domain segment 1 and the inclination angle of segment 1 corresponding to occurrence domain segment 1 belong to 0 to 20°, and the inclination angle error is less than 20%; the inclination angle of occurrence domain segment 2 is the same as the inclination angle of occurrence domain segment 2.
  • the inclination angle of the corresponding section 2 is between 20° and 40°, and the inclination angle error is less than 15%.
  • the inclination angle of segment 2 is 19.7° and the inclination angle of occurrence domain segment 2 is 22.
  • the fifth step is to determine whether to adjust the tendency of the well trajectory. Since the pre-stack depth domain seismic data is accurate, the next drilling trajectory of the well trajectory can be determined through the depth domain seismic data. Based on the 2 section and the target layer, the 3 section is divided on the pre-stack depth domain seismic reflection profile. As shown in Figure 10, the measured dip angle of layer 2 in section 3 is 23.2 degrees, which is 22 degrees in the measured occurrence domain section 2. The inclination angles are basically the same, ensuring that the extension of the well trajectory can be drilled into the reservoir, and the next step of drilling can continue along the original well trajectory without adjusting the inclination of the well trajectory.
  • FIG 11 is a schematic structural diagram of a horizontal well modeling device provided by an eleventh embodiment of the present invention.
  • the horizontal well modeling device provided by this embodiment of the present invention includes a first establishment module 1101, a first acquisition module Module 1102, second establishment module 1103, second acquisition module 1104 and judgment module 1105, wherein:
  • the first establishing module 1101 is used to establish the well trajectory of the target formation based on the movement trajectory of the actual drilling well; the first obtaining module 1102 is used to obtain the formation occurrence data based on the logging inclination data of the actual drilling well, and perform analysis on the target formation within the target formation.
  • the formation occurrence data is divided into occurrence domains to obtain the first occurrence domain of the target formation; the second establishment module 1103 is used to generate the occurrence domain according to the well trajectory of the target formation and the first occurrence domain of the target formation.
  • the second acquisition module 1104 is used to obtain the second occurrence domain of the target formation based on the wellbore structural model, the well trajectory of the target formation, and pre-stack depth domain seismic data; the judgment module 1105 is used to confirm that the pre-stack depth domain seismic data is accurate after determining that the first occurrence domain of the target formation matches the second occurrence domain of the target formation.
  • actual drilling will produce a motion trajectory during the drilling process.
  • Each point in the motion trajectory is located on the earth.
  • the coordinate values in the coordinate system and their corresponding depth values are used to represent the vertical depth and horizontal offset of the drilling well.
  • the target formation is the interval containing the reservoir to be drilled, with a depth range.
  • the first establishment module 1101 obtains the portion of the movement trajectory of the actual drilled well within the target formation as the well trajectory of the target formation.
  • the coordinates corresponding to each point of the well trajectory can be expressed as (x, y, z), where x and y represent the coordinate values of the point in the geodetic coordinate system, and z represents the depth value of the point.
  • the first acquisition module 1102 can obtain a series of formation tendency data and dip angle data during drilling through the formation through the logging inclination data of the actual drilling well, and then samples the formation tendency data and inclination angle data in the depth direction.
  • the stratigraphic occurrence data can be obtained.
  • the formation occurrence data within the depth range of the target formation is used as the formation occurrence data within the target formation.
  • the third layer of the target formation can be obtained.
  • the first occurrence domain of the target formation includes at least one occurrence domain segment.
  • the inclination and inclination angle of each occurrence domain segment are within a corresponding range, and the inclinations and inclination angles of different occurrence domain segments are significantly different.
  • the second establishment module 1103 projects the logging inclination data and logging stratification data corresponding to the first occurrence domain of the target formation onto the well trajectory of the target formation, that is, the first occurrence region of the target formation.
  • the logging inclination data and logging layer data corresponding to the domain are mapped to the well trajectory of the target formation along the well depth value, thereby establishing a wellside structural model.
  • the second acquisition module 1104 can project the well trajectory of the target formation into the pre-stack depth domain seismic data and cut along the well trajectory of the target formation. Separate the pre-stack depth domain seismic data to obtain a pre-stack depth domain seismic reflection profile, and then project the wellside structural model onto the pre-stack depth domain seismic reflection profile to obtain the second occurrence of the target formation. area.
  • the judgment module 1105 compares the first occurrence domain of the target formation with the second occurrence domain of the target formation. If the first occurrence domain of the target formation is compared with the second occurrence domain of the target formation, Matching means that the error of the pre-stack depth domain seismic data is within an acceptable range, then it is confirmed that the pre-stack depth domain seismic data is accurate. If the first occurrence domain does not match the second occurrence domain, it means that the pre-stack depth domain seismic data is inaccurate, and it can be prompted that the pre-stack depth domain seismic data does not meet the requirements.
  • the horizontal well modeling device establishes the well trajectory of the target formation based on the motion trajectory of the actual drilling well, obtains the formation occurrence data based on the logging inclination data of the actual drilling well, and analyzes the formation production within the target formation.
  • the occurrence domain is divided based on the occurrence data to obtain the first occurrence domain of the target formation.
  • a wellside structural model is established according to the well trajectory of the target formation and the first occurrence domain of the target formation.
  • the trajectory and pre-stack depth domain seismic data are used to obtain the second occurrence domain of the target formation.
  • the pre-stack depth domain seismic data is accurate. , able to verify prestack depth domain seismic data The reliability of the system improves the reservoir drilling rate of a single well.
  • Figure 12 is a schematic structural diagram of a horizontal well modeling device provided by the twelfth embodiment of the present invention. As shown in Figure 12, on the basis of the above embodiments, further, the horizontal well modeling device provided by the embodiment of the present invention
  • the mold device also includes an output module 1106, wherein:
  • the output module 1106 is configured to output prompt information that the pre-stack depth domain seismic data does not meet the requirements after determining that the first occurrence domain of the target formation does not match the second occurrence domain of the target formation.
  • Figure 13 is a schematic structural diagram of a horizontal well modeling device provided by the thirteenth embodiment of the present invention. As shown in Figure 13, based on the above embodiments, further, the first acquisition module 1102 includes a drawing unit 11021 and The first acquisition unit is 11022, where:
  • the drawing unit 11021 is used to draw an intersection diagram of the tendency of the target formation and the well depth and an intersection diagram of the inclination angle and the well depth of the target formation based on the formation occurrence data in the target formation; wherein the formation occurrence data includes tendency data and inclination angle data. ;
  • the first obtaining unit 11022 is used to obtain the first occurrence domain of the target formation based on the inclination data in the target formation and a preset number of division thresholds; wherein the preset number of division thresholds are based on the The intersection diagram of the inclination of the target formation and the well depth and the intersection diagram of the dip angle and the well depth are set up;
  • Figure 14 is a schematic structural diagram of a horizontal well modeling device provided by the fourteenth embodiment of the present invention. As shown in Figure 14, based on the above embodiments, further, the second acquisition module 1104 includes a second acquisition unit 11041 and third acquisition unit 11042, where:
  • the second obtaining unit 11041 is used to obtain the pre-stack depth domain seismic reflection profile of the target formation based on the well trajectory and pre-stack depth domain seismic data of the target formation; the third obtaining unit 11042 is used to obtain the wellside structure The model is projected onto the pre-stack depth domain seismic reflection profile of the target formation to obtain the second occurrence domain of the target formation.
  • the judgment module 1105 is specifically used to:
  • the first occurrence domain segment of the target formation The occurrence domain matches the second occurrence domain of the target formation; wherein the first occurrence domain and the second occurrence domain include the same number of occurrence domain segments and correspond one to one.
  • the inclination matching rules include:
  • the inclination angle of each occurrence domain segment in the first occurrence domain and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain belong to the corresponding threshold range, and each occurrence domain segment in the first occurrence domain belongs to the corresponding threshold range.
  • the absolute value of the error between the inclination angle of each occurrence domain segment and the inclination angle of the corresponding occurrence domain segment in the second occurrence domain is less than the corresponding set value.
  • the first establishment module 1101 is specifically used to:
  • Figure 15 is a schematic structural diagram of a horizontal well modeling device provided by the fifteenth embodiment of the present invention. As shown in Figure 15, on the basis of the above embodiments, further, the horizontal well modeling device provided by the embodiment of the present invention
  • the mold device also includes a third obtaining module 1107 and a determining module 1108, wherein:
  • the third obtaining module 1107 is used to obtain the seismic data occurrence after the well trajectory extension according to the second occurrence domain and the target layer of the target formation; the determination module 1108 is used to obtain the next section of drilling trajectory according to the target formation.
  • the corresponding inclination angle and the inclination angle of the last occurrence domain segment in the second occurrence domain of the target formation determine whether to adjust the inclination of the well trajectory.
  • the device embodiments provided by the embodiments of the present invention can be specifically used to execute the processing procedures of each of the above method embodiments. Its functions will not be described in detail here, and reference can be made to the detailed description of the above method embodiments.
  • Figure 16 is a schematic diagram of the physical structure of an electronic device provided by the nineteenth embodiment of the present invention.
  • the electronic device 600 may include: a processor 100 and a memory 140.
  • Memory 140 is coupled to processor 100 .
  • the processor 100 can call logical instructions in the memory 140 to perform the following methods: establish the well trajectory of the target formation according to the motion trajectory of the actual drilling; obtain the formation occurrence data based on the logging inclination data of the actual drilling, and compare the The formation occurrence data in the target formation are divided into occurrence domains to obtain the first occurrence domain of the target formation; based on the well trajectory of the target formation and the first occurrence domain of the target formation, a wellside structure is established Model; according to the wellside structural model, the well trajectory of the target formation and the pre-stack depth domain seismic data, obtain the second occurrence domain of the target formation; if it is determined that the first occurrence domain of the target formation is obtained If it matches the second occurrence domain of the target formation, it is confirmed that the pre-stack depth
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions.
  • the program instructions When the program instructions are executed by a computer, the computer
  • the methods provided by the above method embodiments can be executed, for example, including: establishing the well trajectory of the target formation based on the motion trajectory of the actual drilling; obtaining the formation occurrence data based on the logging inclination data of the actual drilling, and analyzing the target formation
  • the formation occurrence data in the target formation are divided into occurrence domains to obtain the first occurrence domain of the target formation; based on the well trajectory of the target formation and the first occurrence domain of the target formation, a wellside structural model is established; According to the wellside structural model, the well trajectory of the target formation and the pre-stack depth domain seismic data, the second occurrence domain of the target formation is obtained; if it is determined that the first occurrence domain of the target formation and the If the second occurrence domain of the target formation matches, it is confirmed that the pre-
  • This embodiment provides a computer-readable storage medium that stores a computer program.
  • the computer program causes the computer to execute the methods provided by the above method embodiments, for example, including: establishing the well trajectory of the target formation based on the movement trajectory of the actual drilling; and obtaining the formation production based on the logging inclination data of the actual drilling.
  • the formation data in the target formation are divided into occurrence domains to obtain the first occurrence domain of the target formation; according to the well trajectory of the target formation and the first production yield of the target formation region, establish a wellside structural model; according to the wellbore structural model, the well trajectory of the target formation and the pre-stack depth domain seismic data, obtain the second occurrence region of the target formation; if it is determined that the target If the first occurrence domain of the formation matches the second occurrence domain of the target formation, it is confirmed that the pre-stack depth domain seismic data is accurate.
  • the electronic device 600 may also include: a communication module 110 , an input unit 120 , an audio processing unit 130 , a display 160 , and a power supply 170 . It is worth noting that the electronic device 600 does not necessarily include all components shown in FIG. 16 ; in addition, the electronic device 600 may also include components not shown in FIG. 16 , and reference may be made to the existing technology. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the processor 100 is sometimes referred to as a controller or operating control and may include a microprocessor or other processor device and/or a logic device.
  • the processor 100 receives input and controls the operation of various components of the electronic device 600 .
  • the memory 140 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • the above-mentioned information related to the failure can be stored, and the program that executes the related information can also be stored.
  • the processor 100 can execute the program stored in the memory 140 to implement information storage or processing, etc.
  • Input unit 120 provides input to processor 100 .
  • the input unit 120 is, for example, a key or a touch input device.
  • the power supply 170 is used to provide power to the electronic device 600 .
  • the display 160 is used to display display objects such as images and text.
  • the display 160 may be, for example, an LCD display, but is not limited thereto.
  • the memory 140 may be a solid-state memory, such as a read-only memory (ROM), a random-access memory (RAM), a SIM card, etc. There may also be memory that retains information even when powered off, that can be selectively erased and provided with more data, examples of memory 140 are sometimes referred to as EPROMs, etc. Memory 140 may also be some other type of device. Memory 140 includes buffer 141 (sometimes referred to as buffer memory). The memory 140 may include an application/function storage part 142 for storing application programs and function programs or a flow for performing operations of the electronic device 600 through the processor 100 .
  • the memory 140 may also include a data storage 143 for storing data such as contacts, digital data, pictures, sounds, and/or any other data used by the electronic device.
  • the program storage 144 may include various drivers of the electronic device for communication functions and/or for performing other functions of the electronic device (such as messaging applications, address book applications, etc.).
  • Communication module 110 includes a transmitter/receiver that sends and receives signals via antenna 111 .
  • the communication module 110 is coupled to the processor 100 to provide input signals and receive output signals, which may be the same as in conventional mobile communication terminals.
  • multiple communication modules 110 may be provided in the same electronic device, such as a cellular network module, a Bluetooth module, and/or a wireless LAN module, etc.
  • the communication module 110 is also coupled to the speaker 131 and the microphone 132 via the audio processor 130 to provide audio output via the speaker 131 and receive audio input from the microphone 132 to implement general telecommunications functions.
  • Audio processor 130 may include any suitable buffers, decoders, amplifiers, etc.
  • the audio processor 130 is also coupled to the processor 100, thereby enabling recording on the local machine through the microphone 132, and enabling sound stored on the local machine to be played through the speaker 131.
  • embodiments of the present invention may be provided as methods, systems, or computer program products.
  • the invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions are provided for implementing a process or processes in a flowchart and/or a block diagram The steps for a function specified in a box or boxes.

Abstract

一种水平井的建模方法及装置和电子设备及计算机可读存储介质,该方法包括:根据实钻井的运动轨迹,建立目标地层的井轨迹;根据实钻井的测井倾角数据,获得地层产状数据,并对目标地层内的地层产状数据进行产状域划分,获得目标地层的第一产状域;根据目标地层的井轨迹和目标地层的第一产状域,建立井旁构造模型;根据井旁构造模型、目标地层的井轨迹和叠前深度域地震数据,获得目标地层的第二产状域;若判断获知目标地层的第一产状域和目标地层的第二产状域匹配,则确认叠前深度域地震数据准确。该建模装置用于执行该建模方法。该水平井的建模方法及装置,提高了单井储层钻遇率。

Description

一种水平井的建模方法及装置 技术领域
本发明涉及石油开采技术领域,具体涉及一种水平井的建模方法及装置。
背景技术
随着石油工业的发展,为降低勘探和开发成本,提高油气藏产量和采收率,水平井、大斜度井的钻探技术得到广泛推广。
现有技术中,为提高水平井或大斜度井构造模型的准确性和可靠性,分别从三维可视化地层对比和地震解释深度域断层模型出发来构建地质模型,但由于对地震数据的约束不够精确,导致存在井轨迹出靶、不能钻遇储层的风险。
因此,如何提出一种水平井的建模方法,以确定钻井过程中叠前深度域地震数据的可靠性成为本领域需要解决的重要课题。
发明内容
针对现有技术中的问题,本发明实施例提供一种水平井的建模方法及装置,至少能够部分地解决现有技术中存在的问题。
一方面,本发明提出一种水平井的建模方法,包括:
根据实钻井的运动轨迹,建立目标地层的井轨迹;
根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;
根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;
根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;
若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配,则确认所述叠前深度域地震数据准确。
另一方面,本发明提供一种水平井的建模装置,包括:
第一建立模块,用于根据实钻井的运动轨迹,建立目标地层的井轨迹;
第一获得模块,用于根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;
第二建立模块,用于根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;
第二获得模块,用于根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;
判断模块,用于在判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配之后,确认所述叠前深度域地震数据准确。
再一方面,本发明提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述任一实施例所述的水平井的建模方法。
又一方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述任一实施例所述的水平井的建模方法。
本发明实施例提供的水平井的建模方法及装置,根据实钻井的运动轨迹,建立目标地层的井轨迹,根据实钻井的测井倾角数据,获得地层产状数据,并对目标地层内的地层产状数据进行产状域划分,获得目标地层的第一产状域,根据目标地层的井轨迹和目标地层的第一产状域,建立井旁构造模型,根据井旁构造模型、目标地层的井轨迹和叠前深度域地震数据,获得目标地层的第二产状域,若判断获知目标地层的第一产状域和目标地层的第二产状域匹配,则确认叠前深度域地震数据准确,能够验证叠前深度域地震数据的可靠性,提高了单井储层钻遇率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的水平井的建模方法的流程示意图。
图2是本发明第二实施例提供的水平井的建模方法的流程示意图。
图3是本发明第三实施例提供的倾向与井深的交汇图。
图4是本发明第四实施例提供的倾角与井深的交汇图。
图5是本发明第五实施例提供的水平井的建模方法的流程示意图。
图6是本发明第六实施例提供的水平井的建模方法的流程示意图。
图7是本发明第七实施例提供的三维空间的井轨迹的示意图。
图8是本发明第八实施例提供的井旁构造模型的示意图。
图9是本发明第九实施例提供的井旁构造模型与叠前深度域地震数据匹配示意图。
图10为本发明第十实施例提供的预测的下一产状域段的示意图。
图11是本发明第十一实施例提供的水平井的建模装置的结构示意图。
图12是本发明第十二实施例提供的水平井的建模装置的结构示意图。
图13是本发明第十三实施例提供的水平井的建模装置的结构示意图。
图14是本发明第十四实施例提供的水平井的建模装置的结构示意图。
图15是本发明第十五实施例提供的水平井的建模装置的结构示意图。
图16是本发明第十六实施例提供的电子设备的实体结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供的水平井的建模方法的执行主体包括但不限于计算机。
为了便于理解本申请提供的技术方案,下面先对本申请技术方案的相关内容进行说明。
在本发明实施例中水平井是指最大井斜角达到或接近90°,并在目的层中维持一定长度的水平井段的特殊井。水平井的最大井斜角一般不小于86°。大斜度井是指钻井斜长与垂深之比大于2,井斜角在55°至86°之间的定向井。
为准确建立大斜度井或水平井,需要在实钻井过程中核对叠前深度域地震数据的准确性,如果叠前深度域地震数据不准确,将会导致大斜度井或水平井没有准确钻到油气目的层,造成脱靶,导致开发失利。所以,在叠前深度域地震数据不准确时,需要重新做地震数据工作。在叠前深度域地震数据准确可靠的情况下,可以将叠前深度域地震数据用于确定井轨迹下一步的钻探轨迹,以提高单井储层钻遇率和单井产量。
因此,本发明提供一种水平井的建模方法,通过建立水平井或大斜度井的井旁构造模型,然后将井旁构造模型投影到叠前深度域地震剖面上,与叠前深度域地震数据进行匹配,以验证叠前深度域地震数据的准确性和可靠性。在叠前深度域地震数据准确的情 况下,利用叠前深度域地震数据指导水平井或大斜度井的随钻跟踪及靶体方位调整,能够提高单井储层钻遇率和单井产量。
图1是本发明第一实施例提供的水平井的建模方法的流程示意图,如图1所示,本发明实施例提供的水平井的建模方法,包括:
S101、根据实钻井的运动轨迹,建立目标地层的井轨迹;
具体地,实钻井在钻井的过程中会产生运动轨迹,运动轨迹中的每个点由位于大地坐标系中的坐标值及其对应的深度值表示,用于表示钻井的垂直深度和水平偏移量。目标地层是包含要钻探的储层的层段,具有深度范围。获取所述实钻井的运动轨迹在所述目标地层内的部分,作为所述目标地层的井轨迹。井轨迹的每个点对应的坐标可以表示为(x、y、z),其中,x、y代表该点在大地坐标系统中的坐标值,z代表该点的深度值。
例如,目标地层的深度范围为7000至8000m,那么实钻井的运动轨迹在7000至8000m的部分构成了目标地层的井轨迹。
S102、根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;
具体地,通过实钻井的测井倾角数据可以获得在钻井钻穿地层过程中,一系列的地层的倾向数据和倾角数据,再对地层的倾向数据和倾角数据在深度方向上进行采样,即可获得地层产状数据。在所述目标地层深度范围内的地层产状数据作为所述目标地层内的地层产状数据,对所述目标地层内的地层产状数据进行产状域划分,可以获得所述目标地层的第一产状域。所述目标地层的第一产状域包括至少一个产状域段,每个产状域段的倾向和倾角在对应的范围内,不同的产状域段的倾向和倾角具有明显差别。
例如,通过测井仪器可以测量获得实钻井时井内的原始数据,再通过相关软件对井内的原始数据进行分析计算,可以获得实钻井的测井倾角数据和测井分层数据。所述测井分层数据为地层分层的井深值,需要指出的是,该井深值不是垂直深度,而是井轨迹本身的相对深度。
通过实钻井的测井倾角数据,获得一系列地层的倾向数据和倾角数据,然后以4m或者10m的深度为一个间隔获取样本点,能够获得各个样本点地层的倾向数据和倾角数据,各个样本点地层的倾向数据和倾角数据构成地层产状数据。
S103、根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;
具体地,将所述目标地层的第一产状域对应的测井倾角数据和测井分层数据,投影到所述目标地层的井轨迹上,即将所述目标地层的第一产状域对应的测井倾角数据和测井分层数据沿井深值对应到所述目标地层的井轨迹,从而建立井旁构造模型。
S104、根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;
具体地,基于所述目标地层的井轨迹和叠前深度域地震数据,可以将所述目标地层的井轨迹投影到叠前深度域地震数据中,并沿所述目标地层的井轨迹切分所述叠前深度域地震数据,获得叠前深度域地震反射剖面,再将所述井旁构造模型投影到所述叠前深度域地震反射剖面上,获得所述目标地层的第二产状域。
例如,将三维地震数据输入到相关专业软件中,可以输出叠前深度域地震数据,叠前深度域地震数据中的数据可以以(x、y、Z),Z为海拔值。将井轨迹和叠前深度域地震数据输入到相关专业软件中,可以获得叠前深度域地震数据和井轨迹在空间域的同比例和同深度的数据。由于叠前深度域地震数据可以沿任意方向切出垂向的二维地震剖面,因此,对叠前深度域地震数据沿井轨迹方向切出二维地震剖面,得到叠前深度域地震反射剖面,即实现井轨迹与叠前深度域地震数据的匹配。再将所述井旁构造模型投影到叠前深度域地震反射剖面上,即可获得所述目标地层的第二产状域。
S105、若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配,则确认所述叠前深度域地震数据准确。
具体地,将所述目标地层的第一产状域与所述目标地层的第二产状域进行比较,如果所述目标地层的第一产状域与所述目标地层的第二产状域匹配,说明叠前深度域地震数据的误差在能够接受的范围内,那么确认所述叠前深度域地震数据准确。如果所述第一产状域与所述第二产状域不匹配,说明叠前深度域地震数据不准确,可以提示所述叠前深度域地震数据不符合要求。
例如,将第一产状域和第二产状域对应的产状域段的倾角进行比较,如果倾角的误差在对应的预设范围内,那么第一产状域和第二产状域匹配,如果倾角的误差超出对应的预设范围,那么第一产状域和第二产状域不匹配。
本发明实施例提供的水平井的建模方法,根据实钻井的运动轨迹,建立目标地层的井轨迹,根据实钻井的测井倾角数据,获得地层产状数据,并对目标地层内的地层产状数据进行产状域划分,获得目标地层的第一产状域,根据目标地层的井轨迹和目标地层的第一产状域,建立井旁构造模型,根据井旁构造模型、目标地层的井轨迹和叠前深度 域地震数据,获得目标地层的第二产状域,若判断获知目标地层的第一产状域和目标地层的第二产状域匹配,则确认叠前深度域地震数据准确,能够验证叠前深度域地震数据的可靠性,提高了单井储层钻遇率。
在上述各实施例的基础上,进一步地,本发明实施例提供的水平井的建模方法还包括:
若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域不匹配,则输出所述叠前深度域地震数据不符合要求的提示信息。
具体地,将所述目标地层的第一产状域与所述目标地层的第二产状域进行比较,如果所述第一产状域与所述第二产状域不匹配,说明叠前深度域地震数据不够准确,输出所述叠前深度域地震数据不符合要求的提示信息,以便获取准确的叠前深度域地震数据进行钻井。
图2是本发明第二实施例提供的水平井的建模方法的流程示意图,如图2所示,在上述各实施例的基础上,进一步地,所述对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域包括:
S201、基于所述目标地层内的地层产状数据绘制所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图;其中,所述地层产状数据包括倾向数据和倾角数据;
具体地,所述地层产状数据包括倾向数据和倾角数据,基于所述目标地层内的倾向数据能够绘制出所述目标地层的倾向与井深的交汇图,基于所述目标地层内的倾角数据可以绘制出所述目标地层的倾角与井深的交汇图。
例如,表1是目标地层段内的地层产状数据,基于表1中的地层产状数据绘制出图3所示的倾向与井深的交汇图和图4所示的倾角与井深的交汇图。在如图3中,横坐标表示倾向,纵坐标表示深度。在图4中,横坐标表示倾角,纵坐标表示深度。
表1目标地层段内的地层产状数据

S202、基于所述目标地层内的倾角数据和预设数量的划分阈值,获得所述目标地层的第一产状域;其中,所述预设数量的划分阈值是基于所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图设置的;
具体地,可以从所述目标地层的起始深度开始,计算所述目标地层内的倾角数据中相邻两个倾角的差值的绝对值,然后将上述相邻两个倾角的差值的绝对值与划分阈值进行比较,如果差值的绝对值大于划分阈值,说明发生了产状突变,取上述相邻两个倾角对应的深度值之间的深度值作为两个产状域段的分界,上述相邻两个倾角中对应深度值较小的倾角以及深度值小于该倾角对应的深度值且相邻两个倾角的差值的绝对值小于等于划分阈值的倾角对应的地层产状数据构成一个产状域段。所述目标地层的第一产状域包括的产状域段的数量等于预设数量加1,如果只有一个划分阈值,那么在获得上述产状域段之后,剩余的所述目标地层内的地层产状数据构成另一个产状域段。
如果有多个划分阈值,那么从上述相邻两个倾角对应的较大深度值开始,继续计算所述目标地层内的倾角数据中相邻两个倾角的差值的绝对值,然后将上述相邻两个倾角的差值的绝对值与下一个划分阈值进行比较,以确定是否发生了产状突变,直到所有的划分阈值都使用过,并获得预设数量加1个产状域段。其中,在进行产状突变的判断时,通过划分阈值确定出一个产状域段之后,该划分阈值不再使用,继续使用下一个划分阈值。
可理解的是,在利用所述目标地层内的地层产状数据之前,可以对所述目标地层内的地层产状数据进行数据清洗,以去除所述目标地层内的地层产状数据中的异常数据。比如可以设置异常倾向阈值和异常倾角阈值,如果地层产状数据包括的倾向大于异常倾向阈值,则将大于异常倾向阈值的倾向对应的数据从地层产状数据中剔除;如果地层产状数据包括的倾角大于异常倾角阈值,则将大于异常倾角阈值的倾角对应的数据从地层产状数据中剔除。
例如,基于图3和图4可以设置一个划分阈值10,图3中明显出现三个异常倾向, 设置倾向阈值为200,将三个异常倾向对应的倾角目标地层内的倾角数据中去除。从深度7853.21开始,依次计算相邻两个倾角之间的差值的绝对值,并将差值的绝对值与划分阈值10进行比较,深度8063.97对应的倾角9.65与8128.48对应的倾角26.4之间的差值的绝对值为16.75,大于10,那么深度7853.21至深度8063.97之间去除异常数据后的目标地层内的地层产状数据构成目标地层的第一产状域中的第一个产状域段,目标地层内的剩余的地层产状数据构成目标地层的第一产状域中的第二个产状域段。计算深度8063.97与深度8128.48的平均值为8096.23,取整为8100,作为第一个产状域段和第二个产状域段的分界。可以计算出第一个产状域段内各个倾角的平均值9作为第一个产状域段的倾角,可以计算出第二个产状域段内各个倾角的平均值22作为第二个产状域段的倾角。
图5是本发明第五实施例提供的水平井的建模方法的流程示意图,如图5所示,所述根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域包括:
S501、根据所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的叠前深度域地震反射剖面;
具体地,将所述目标地层的井轨迹和叠前深度域地震数据输入到相关专业软件中,可以获得叠前深度域地震数据和井轨迹在空间域的同比例和同深度的数据。由于叠前深度域地震数据可以沿任意方向切出垂向的二维地震剖面,因此,对叠前深度域地震数据能够沿井轨迹方向切出二维地震剖面,得到叠前深度域地震反射剖面。叠前深度域地震反射剖面实现了井轨迹与叠前深度域地震数据的匹配。
S502、将所述井旁构造模型投影到所述目标地层的叠前深度域地震反射剖面上,获得所述目标地层的第二产状域。
具体地,由于井旁构造模型是根据所述目标地层的井轨迹和所述目标地层的第一产状域获得的,包括所述目标地层的井轨迹的数据和第一产状域的数据,将井旁构造模型沿井轨迹投影到所述目标地层的叠前深度域地震反射剖面上,第一产状域的数据也会投影到所述目标地层的叠前深度域地震反射剖面上,构成所述目标地层的第二产状域。
在上述各实施例的基础上,进一步地,所述若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配包括:
若判断获知所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角满足倾角匹配规则,则所述目标地层的第一产状域和所述目标地层的第二 产状域匹配;其中,所述第一产状域和所述第二产状域包括相同数量的产状域段并且一一对应。
具体地,所述目标地层的第一产状域和所述目标地层的第二产状域具有相同数量的产状域段,并且产状域段一一对应。可以根据每个产状域段的各个倾角,计算出每个产状域段的各个倾角的平均值作为每个产状域段的倾角。计算所述第一产状域中每个产状域段的倾角与在第二产状域中对应的产状域段的倾角的误差的绝对值,然后判断所述第一产状域中每个产状域段的倾角与在第二产状域中对应的产状域段的倾角,以及计算获得的每个误差的绝对值是否满足倾角匹配规则,如果满足倾角匹配规则,那么所述目标地层的第一产状域和所述目标地层的第二产状域匹配,如果不满足倾角匹配规则,那么目标地层的第一产状域和所述目标地层的第二产状域不匹配。其中,所述倾角匹配规则是预设的。
在上述各实施例的基础上,进一步地,所述倾角匹配规则包括:
所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角属于对应的阈值范围,且所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角的误差的绝对值小于对应的设定值。
具体地,计算出所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角的误差的绝对值,并判断所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角是否属于对应的预设范围,如果属于对应的预设范围,那么将上述误差的绝对值对应的设定值进行比较,上述误差的绝对值小于对应的设定值,那么所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角满足倾角匹配规则。其中,预设范围和设定值根据实际需要进行设置,本发明实施例不做限定。
例如,所述目标地层的第一产状域包括两个产状域段,所述目标地层的第二产状域也会包括两个产状域段。对应的倾角匹配规则为:
所述第一产状域中的第一个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角属于第一阈值范围,且所述第一产状域中的第一个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角的误差的绝对值小于第一设定值;
所述第一产状域中的第二个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角属于第二阈值范围,且所述第一产状域中的第二个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角的误差的绝对值小于第二设定值。
例如,目标地层的第一产状域包括产状域段A和产状域段B,目标地层的第二产状域包括产状域段a和产状域段b,产状域段A与产状域段a对应,产状域段B与产状域段b对应。设置第一阈值范围为(p1,p2],第一阈值范围对应第一设定值k1;第二阈值范围为(p3,p4],第二阈值范围对应第二设定值k2。计算产状域段A内的各个倾角的平均值,作为产状域段A的倾角,同理计算出产状域段B的倾角。产状域段a的倾角和产状域段b的倾角可以通过测量获得。计算产状域段A的倾角与产状域段a的倾角的误差的绝对值,获得第一数值,并计算产状域段B的倾角与产状域段b的倾角的误差的绝对值,获得第二数值。判断产状域段A的倾角和产状域段a的倾角是否大于p1且小于等于p2,如果产状域段A的倾角和产状域段a的倾角大于p1且小于等于p2,那么产状域段A的倾角和产状域段a的倾角属于第一阈值范围,再判断第一数值是否小于k1。判断产状域段B的倾角和产状域段b的倾角是否大于p3且小于等于p4,如果产状域段B的倾角和产状域段b的倾角大于p3且小于等于p4,那么产状域段B的倾角和产状域段b的倾角属于第二阈值范围,再判断第二数值是否小于k2。如果第一数值小于k1,第二数值小于k2,那么目标地层的第一产状域中产状域段A和产状域段B的倾角与在第二产状域中对应的产状域段a和产状域段b的倾角满足倾角匹配规则。
在上述各实施例的基础上,进一步地,所述根据实钻井的运动轨迹,建立目标地层的井轨迹包括:
以纵横比1:1建立所述目标地层的井轨迹。
具体地,在建立所述目标地层的井轨迹时,以纵横比1:1建立所述目标地层的井轨迹,以保持井轨迹在垂向上的深度与横向上的偏移量在同一个比例,从而使后续建立的井旁构造模型不会由于拉伸或者压缩而产生畸变,有利于保证测量的倾角的真实可靠。
图6是本发明第六实施例提供的水平井的建模方法的流程示意图,如图6所示,在上述各实施例的基础上,进一步地,本发明实施例提供的水平井的建模方法还包括:
S601、根据所述目标地层的第二产状域和目标层层位,获得井轨迹延拓后地震数据产状;
具体地,在确认所述叠前深度域地震数据准确之后,需要确认下一步井轨迹是否需要修正。通过所述目标地层的第二产状域和目标层层位,可以测量获得井轨迹延拓后地震数据产状,所述井轨迹延拓后地震数据产状包括倾角。其中,目标层层位是预先获得的,能够钻到石油储层的层位。
S602、根据所述井轨迹延拓后地震数据产状对应的倾角和所述目标地层的第一产状 域的最后一个产状域段的倾角,确定是否调整井轨迹的倾向。
具体地,将所述井轨迹延拓后地震数据产状对应的倾角与所述目标地层的第一产状与的最后一个产状域段的倾角进行比较,如果所述井轨迹延拓后地震数据产状对应的倾角与所述目标地层的第一产状域的最后一个产状域段的倾角一致,说明井轨迹延拓可以钻到目标地层内的储层,那么不需要调整井轨迹的倾向。如果所述井轨迹延拓后地震数据产状对应的倾角与所述目标地层的第一产状域的最后一个产状域段的倾角不一致,说明井轨迹直接延拓钻不到目标地层内的储层,那延拓的井轨迹是无效的,会带来经济损失,那么需要调整井轨迹的倾向。其中,所述井轨迹延拓后地震数据产状对应的倾角是计算所述井轨迹延拓后地震数据产状中各个倾角的平均值获得的。
例如,所述井轨迹延拓后地震数据产状对应的倾角与所述目标地层的第一产状域的最后一个产状域段的倾角的差值的绝对值小于等于预设值,那么所述井轨迹延拓后地震数据产状对应的倾角与所述目标地层的第一产状域的最后一个产状域段的倾角一致。如果所述井轨迹延拓后地震数据产状对应的倾角与所述目标地层的第一产状域的最后一个产状域段的倾角的差值的绝对值大于预设值,那么所述井轨迹延拓后地震数据产状对应的倾角与所述目标地层的第一产状域的最后一个产状域段的倾角不一致。其中,预设值根据实际经验进行设置,本发明实施例不做限定。
下面本发明实施例提供的水平井的建模方法在大斜度井S6井上的应用为例,说明本发明实施例提供的水平井的建模方法的具体实现过程。
第一步、通过S6井的运动轨迹,获得目标地层的井轨迹。将S6井的运动轨迹投影到带大地坐标的三维空间中,建立三维空间的井轨迹。S6井的井深8301多米,井深的每个点(按照采样点间隔取点)都有一个坐标值(x、y、z),其中,x和y是大地坐标的值,为该采样点投影到地表的坐标值,z值为井深值。三维空间的井轨迹如图7所示,图7中E、S、N依次代表东、南、北方向,指示大地坐标系,图7中黑色曲线线条即为建立的三维空间实际的井轨迹。基于目标地层的深度范围可以获得目标地层的井轨迹,S6井的目标地层的深度范围为7853.21~8301.19米,即在深度范围为7853.21~8301.19米的地层段存在含油储层。
第二步、通过S6井的测井倾角数据,获得深度范围为7853.21~8301.19米的目标地层的第一产状域。表1为S6井的产状实测表,记录了深度范围为7853.21~8301.19米的目标地层的地层产状数据。每个井深的样本点有两个值,倾向和倾角,分别对倾向和倾角对应井深深度做交汇图,获得的倾向与井深的交汇图如图3所示,获得的倾角与井深 的交汇图如图4所示。如图3所示,井深8100以浅倾向主要位于0~80°的倾向域区间内,另外有三个畸样点需要剔除;井深8100以深倾向主要位于110~180°的倾向域区间内。同样,如图4所示,8100米井深作为分界线,分为两个倾角域,8100米以浅倾角小于18°,8100米以深倾角大于18°。因此,S6井的造斜段以8100米的井深为界,可分为两个产状域段,表2为S6井的产状分区表,8100米井深以浅的产状域段一的倾角平均值为9°,8100米井深以深的产状域段二的倾角平均值为22°。
表2 S6井产状分区表
第三步、以7853.21~8301.19米的目标地层的产状域段一和产状域段二,以及目标地层的井轨迹,构建井旁构造模型。建立的井旁构造模型如图8所示,井旁构造模型包括产状域段一和产状域段二,产状域段一从斜深7853~8060m,产状域段一的倾角为9°,产状域段二从斜深8100~8300m,产状域段一的倾角为22°。
第四步、通过S6井的叠前深度域地震数据,上述井旁构造模型以及S6井的井轨迹,获得目标地层的第二产状域。将S6井的井轨迹按照同样的大地坐标系统投影到叠前深度域地震数据中,沿井轨迹延伸方向切出叠前深度域地震反射剖面,如图9所示。将井旁构造模型投影到叠前深度域地震反射剖面上,将井轨迹沿井深7853m及8100米 分段,分为①和②两段,其中①段对应井轨迹划分的产状域段一,②段对应井轨迹划分的产状域段二。三叠前深度域地震数据的x、y、z比例一致,都是“米”为单位,没有相对拉伸、压缩的情况,可以直接量取①段的层位2的倾角为8.1°,②段的层位2的倾角为19.7°。倾角匹配规则为:产状域段一的倾角和产状域段一对应的①段的倾角属于0~20°,且倾角误差小于20%;产状域段二的倾角和产状域段二对应的②段的倾角属于20°~40°,且倾角误差小于15%。
计算获得①段的倾角与产状域段一的倾角的误差为10%,即(9-8.1)/9=10%,并计算获得②段的倾角19.7°和产状域段二的倾角22°的误差为10.4%,即(22-19.7)/22=10.4%。可以判断出产状域段一的倾角和①段的倾角属于0~20°,且倾角误差10%小于20%;产状域段二的倾角和②段的倾角属于20°~40°,倾角误差10.4%小于15%。因此,第一产状域和所述目标地层的第二产状域匹配,叠前深度域地震数据准确。
第五步、确定是否调整井轨迹的倾向。由于叠前深度域地震数据准确,可以通过深度域地震数据确定井轨迹下一步的钻探轨迹。基于②段和目标层层位在叠前深度域地震反射剖面上划分③段,如图10所示,测量③段层位2的倾角为23.2度,与实测的产状域段二的22°倾角基本一致,保证井轨迹延拓可以钻到储层上,下一步钻井可以沿原井轨迹继续钻进,不需要调整井轨迹的倾向。如果③段层位2的倾角与实测的产状域段二的倾角不一致,那么井轨迹直接延拓钻不到储层,那延拓的井轨迹是无效的,会带来经济损失,需要进行修正。
图11是本发明第十一实施例提供的水平井的建模装置的结构示意图,如图11所示,本发明实施例提供的水平井的建模装置包括第一建立模块1101、第一获得模块1102、第二建立模块1103、第二获得模块1104和判断模块1105,其中:
第一建立模块1101用于根据实钻井的运动轨迹,建立目标地层的井轨迹;第一获得模块1102用于根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;第二建立模块1103用于根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;第二获得模块1104用于根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;判断模块1105用于在判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配之后,确认所述叠前深度域地震数据准确。
具体地,实钻井在钻井的过程中会产生运动轨迹,运动轨迹中的每个点由位于大地 坐标系中的坐标值及其对应的深度值表示,用于表示钻井的垂直深度和水平偏移量。目标地层是包含要钻探的储层的层段,具有深度范围。第一建立模块1101获取所述实钻井的运动轨迹在所述目标地层内的部分,作为所述目标地层的井轨迹。井轨迹的每个点对应的坐标可以表示为(x、y、z),其中,x、y代表该点在大地坐标系统中的坐标值,z代表该点的深度值。
第一获得模块1102通过实钻井的测井倾角数据可以获得在钻井钻穿地层过程中,一系列的地层的倾向数据和倾角数据,再对地层的倾向数据和倾角数据在深度方向上进行采样,即可获得地层产状数据。在所述目标地层深度范围内的地层产状数据作为所述目标地层内的地层产状数据,对所述目标地层内的地层产状数据进行产状域划分,可以获得所述目标地层的第一产状域。所述目标地层的第一产状域包括至少一个产状域段,每个产状域段的倾向和倾角在对应的范围内,不同的产状域段的倾向和倾角具有明显差别。
第二建立模块1103将所述目标地层的第一产状域对应的测井倾角数据和测井分层数据,投影到所述目标地层的井轨迹上,即将所述目标地层的第一产状域对应的测井倾角数据和测井分层数据沿井深值对应到所述目标地层的井轨迹,从而建立井旁构造模型。
第二获得模块1104基于所述目标地层的井轨迹和叠前深度域地震数据,可以将所述目标地层的井轨迹投影到叠前深度域地震数据中,并沿所述目标地层的井轨迹切分所述叠前深度域地震数据,获得叠前深度域地震反射剖面,再将所述井旁构造模型投影到所述叠前深度域地震反射剖面上,获得所述目标地层的第二产状域。
判断模块1105将所述目标地层的第一产状域与所述目标地层的第二产状域进行比较,如果所述目标地层的第一产状域与所述目标地层的第二产状域匹配,说明叠前深度域地震数据的误差在能够接受的范围内,那么确认所述叠前深度域地震数据准确。如果所述第一产状域与所述第二产状域不匹配,说明叠前深度域地震数据不准确,可以提示所述叠前深度域地震数据不符合要求。
本发明实施例提供的水平井的建模装置,根据实钻井的运动轨迹,建立目标地层的井轨迹,根据实钻井的测井倾角数据,获得地层产状数据,并对目标地层内的地层产状数据进行产状域划分,获得目标地层的第一产状域,根据目标地层的井轨迹和目标地层的第一产状域,建立井旁构造模型,根据井旁构造模型、目标地层的井轨迹和叠前深度域地震数据,获得目标地层的第二产状域,若判断获知目标地层的第一产状域和目标地层的第二产状域匹配,则确认叠前深度域地震数据准确,能够验证叠前深度域地震数据 的可靠性,提高了单井储层钻遇率。
图12是本发明第十二实施例提供的水平井的建模装置的结构示意图,如图12所示,在上述各实施例的基础上,进一步地,本发明实施例提供的水平井的建模装置还包括输出模块1106,其中:
输出模块1106用于在判断获知所述目标地层的第一产状域和所述目标地层的第二产状域不匹配之后,输出所述叠前深度域地震数据不符合要求的提示信息。
图13是本发明第十三实施例提供的水平井的建模装置的结构示意图,如图13所示,在上述各实施例的基础上,进一步地,第一获得模块1102包括绘制单元11021和第一获得单元11022,其中:
绘制单元11021用于基于所述目标地层内的地层产状数据绘制所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图;其中,所述地层产状数据包括倾向数据和倾角数据;第一获得单元11022用于基于所述目标地层内的倾角数据和预设数量的划分阈值,获得所述目标地层的第一产状域;其中,所述预设数量的划分阈值是基于所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图设置的;
图14是本发明第十四实施例提供的水平井的建模装置的结构示意图,如图14所示,在上述各实施例的基础上,进一步地,第二获得模块1104包括第二获得单元11041和第三获得单元11042,其中:
第二获得单元11041用于根据所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的叠前深度域地震反射剖面;第三获得单元11042用于将所述井旁构造模型投影到所述目标地层的叠前深度域地震反射剖面上,获得所述目标地层的第二产状域。
在上述各实施例的基础上,进一步地,判断模块1105具体用于:
若判断获知所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角满足倾角匹配规则,则所述目标地层的第一产状域和所述目标地层的第二产状域匹配;其中,所述第一产状域和所述第二产状域包括相同数量的产状域段并且一一对应。
在上述各实施例的基础上,进一步地,所述倾角匹配规则包括:
所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角属于对应的阈值范围,且所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角的误差的绝对值小于对应的设定值。
在上述各实施例的基础上,进一步地,第一建立模块1101具体用于:
以纵横比1:1建立所述目标地层的井轨迹。
图15是本发明第十五实施例提供的水平井的建模装置的结构示意图,如图15所示,在上述各实施例的基础上,进一步地,本发明实施例提供的水平井的建模装置还包括第三获得模块1107和确定模块1108,其中:
第三获得模块1107用于根据所述目标地层的第二产状域和目标层层位,获得井轨迹延拓后地震数据产状;确定模块1108用于根据所述目标地层的下一段钻探轨迹对应的倾角和所述目标地层的第二产状域中最后一个产状域段的倾角,确定是否调整井轨迹的倾向。
本发明实施例提供的装置的实施例具体可以用于执行上述各方法实施例的处理流程,其功能在此不再赘述,可以参照上述方法实施例的详细描述。
图16是本发明第十九实施例提供的电子设备的实体结构示意图,如图16所示,电子设备600可以包括:处理器100和存储器140。存储器140耦合到处理器100。处理器100可以调用存储器140中的逻辑指令,以执行如下方法:根据实钻井的运动轨迹,建立目标地层的井轨迹;根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配,则确认所述叠前深度域地震数据准确。
本实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的方法,例如包括:根据实钻井的运动轨迹,建立目标地层的井轨迹;根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配,则确认所述叠前深度域地震数据准确。
本实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机程 序,所述计算机程序使所述计算机执行上述各方法实施例所提供的方法,例如包括:根据实钻井的运动轨迹,建立目标地层的井轨迹;根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配,则确认所述叠前深度域地震数据准确。
如图16所示,电子设备600还可以包括:通信模块110、输入单元120、音频处理单元130、显示器160、电源170。值得注意的是,电子设备600也并不是必须要包括图16中所示的所有部件;此外,电子设备600还可以包括图16中没有示出的部件,可以参考现有技术。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
如图16所示,处理器100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,处理器100接收输入并控制电子设备600的各个部件的操作。
其中,存储器140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与失败有关的信息,此外还可存储执行有关信息的程序。并且处理器100可执行存储器140存储的该程序,以实现信息存储或处理等。
输入单元120向处理器100提供输入。输入单元120例如为按键或触摸输入装置。电源170用于向电子设备600提供电力。显示器160用于进行图像和文字等显示对象的显示。显示器160例如可为LCD显示器,但并不限于此。
存储器140可以是固态存储器,例如,只读存储器(ROM)、随机存取存储器(RAM)、SIM卡等。还可以是这样的存储器,其即使在断电时也保存信息,可被选择性地擦除且设有更多数据,存储器140的示例有时被称为EPROM等。存储器140还可以是某种其它类型的装置。存储器140包括缓冲器141(有时被称为缓冲存储器)。存储器140可以包括应用/功能存储部142,应用/功能存储部142用于存储应用程序和功能程序或用于通过处理器100执行电子设备600的操作的流程。
存储器140还可以包括数据存储部143,该数据存储部143用于存储数据,例如联系人、数字数据、图片、声音和/或任何其他由电子设备使用的数据。存储器140的驱动 程序存储部144可以包括电子设备的用于通信功能和/或用于执行电子设备的其他功能(如消息传送应用、通讯录应用等)的各种驱动程序。
通信模块110包括经由天线111发送和接收信号的发送机/接收机。通信模块110耦合到处理器100,以提供输入信号和接收输出信号,这可以和常规移动通信终端的情况相同。
基于不同的通信技术,在同一电子设备中,可以设置有多个通信模块110,如蜂窝网络模块、蓝牙模块和/或无线局域网模块等。通信模块110还经由音频处理器130耦合到扬声器131和麦克风132,以经由扬声器131提供音频输出,并接收来自麦克风132的音频输入,从而实现通常的电信功能。音频处理器130可以包括任何合适的缓冲器、解码器、放大器等。另外,音频处理器130还耦合到处理器100,从而使得可以通过麦克风132能够在本机上录音,且使得可以通过扬声器131来播放本机上存储的声音。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一 个方框或多个方框中指定的功能的步骤。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种水平井的建模方法,其特征在于,包括:
    根据实钻井的运动轨迹,建立目标地层的井轨迹;
    根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;
    根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;
    根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;
    若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配,则确认所述叠前深度域地震数据准确。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域不匹配,则输出所述叠前深度域地震数据不符合要求的提示信息。
  3. 根据权利要求1所述的方法,其特征在于,所述对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域包括:
    基于所述目标地层内的地层产状数据绘制所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图;其中,所述地层产状数据包括倾向数据和倾角数据;
    基于所述目标地层内的倾角数据和预设数量的划分阈值,获得所述目标地层的第一产状域;其中,所述预设数量的划分阈值是基于所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图设置的。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域包括:
    根据所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的叠前深度域地震反射剖面;
    将所述井旁构造模型投影到所述目标地层的叠前深度域地震反射剖面上,获得所述目标地层的第二产状域。
  5. 根据权利要求1所述的方法,其特征在于,所述若判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配包括:
    若判断获知所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角满足倾角匹配规则,则所述目标地层的第一产状域和所述目标地层的第二 产状域匹配;其中,所述第一产状域和所述第二产状域包括相同数量的产状域段并且一一对应。
  6. 根据权利要求5所述的方法,其特征在于,所述倾角匹配规则包括:
    所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角属于对应的阈值范围,且所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角的误差的绝对值小于对应的设定值。
  7. 根据权利要求1所述的方法,其特征在于,所述根据实钻井的运动轨迹,建立目标地层的井轨迹包括:
    以纵横比1:1建立所述目标地层的井轨迹。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,还包括:
    根据所述目标地层的第二产状域和目标层层位,获得井轨迹延拓后地震数据产状;
    根据所述目标地层的下一段钻探轨迹对应的倾角和所述目标地层的第二产状域中最后一个产状域段的倾角,确定是否调整井轨迹的倾向。
  9. 一种水平井的建模装置,其特征在于,包括:
    第一建立模块,用于根据实钻井的运动轨迹,建立目标地层的井轨迹;
    第一获得模块,用于根据实钻井的测井倾角数据,获得地层产状数据,并对所述目标地层内的地层产状数据进行产状域划分,获得所述目标地层的第一产状域;
    第二建立模块,用于根据所述目标地层的井轨迹和所述目标地层的第一产状域,建立井旁构造模型;
    第二获得模块,用于根据所述井旁构造模型、所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的第二产状域;
    判断模块,用于在判断获知所述目标地层的第一产状域和所述目标地层的第二产状域匹配之后,确认所述叠前深度域地震数据准确。
  10. 根据权利要求9所述的装置,其特征在于,还包括:
    输出模块,用于在判断获知所述目标地层的第一产状域和所述目标地层的第二产状域不匹配之后,输出所述叠前深度域地震数据不符合要求的提示信息。
  11. 根据权利要求9所述的装置,其特征在于,所述第一获得模块包括:
    绘制单元,用于基于所述目标地层内的地层产状数据绘制所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图;其中,所述地层产状数据包括倾向数据和倾角数据;
    第一获得单元,用于基于所述目标地层内的倾角数据和预设数量的划分阈值,获得所述目标地层的第一产状域;其中,所述预设数量的划分阈值是基于所述目标地层的倾向与井深的交汇图和倾角与井深的交汇图设置的。
  12. 根据权利要求9所述的装置,其特征在于,所述第二获得模块包括:
    第二获得单元,用于根据所述目标地层的井轨迹和叠前深度域地震数据,获得所述目标地层的叠前深度域地震反射剖面;
    第三获得单元,用于将所述井旁构造模型投影到所述目标地层的叠前深度域地震反射剖面上,获得所述目标地层的第二产状域。
  13. 根据权利要求9所述的装置,其特征在于,所述判断模块具体用于:
    若判断获知所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角满足倾角匹配规则,则所述目标地层的第一产状域和所述目标地层的第二产状域匹配;其中,所述第一产状域和所述第二产状域包括相同数量的产状域段并且一一对应。
  14. 根据权利要求13所述的装置,其特征在于,所述倾角匹配规则包括:
    所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角属于对应的阈值范围,且所述第一产状域中每个产状域段的倾角与在所述第二产状域中对应的产状域段的倾角的误差的绝对值小于对应的设定值。
  15. 根据权利要求9所述的装置,其特征在于,所述第一建立模块具体用于:
    以纵横比1:1建立所述目标地层的井轨迹。
  16. 根据权利要求9至15任一项所述的装置,其特征在于,还包括:
    第三获得模块,用于根据所述目标地层的第二产状域和目标层层位,获得井轨迹延拓后地震数据产状;
    确定模块,用于根据所述目标地层的下一段钻探轨迹对应的倾角和所述目标地层的第二产状域中最后一个产状域段的倾角,确定是否调整井轨迹的倾向。
  17. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至8任一项所述的方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至8任一项所述的方法。
PCT/CN2023/108194 2022-07-19 2023-07-19 一种水平井的建模方法及装置 WO2024017302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210846348.7 2022-07-19
CN202210846348.7A CN117468921A (zh) 2022-07-19 2022-07-19 一种水平井或大斜度井的钻井监测方法及装置

Publications (1)

Publication Number Publication Date
WO2024017302A1 true WO2024017302A1 (zh) 2024-01-25

Family

ID=89617170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108194 WO2024017302A1 (zh) 2022-07-19 2023-07-19 一种水平井的建模方法及装置

Country Status (2)

Country Link
CN (1) CN117468921A (zh)
WO (1) WO2024017302A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120059639A1 (en) * 2010-09-07 2012-03-08 Fung Larry S K Machine, Computer Program Product and Method to Generate Unstructured Grids and Carry Out Parallel Reservoir Simulation
CN103510854A (zh) * 2013-10-17 2014-01-15 中国石油集团渤海钻探工程有限公司 一种水平井目标层随钻动态建模方法
CN105064990A (zh) * 2015-08-18 2015-11-18 西南石油大学 一种依靠水平井三维可视化地层对比的构造建模方法
CN105631753A (zh) * 2015-12-14 2016-06-01 中国石油天然气集团公司 一种基于地层产状的水平井油藏剖面建模方法
US20180230781A1 (en) * 2015-09-03 2018-08-16 Halliburton Energy Services, Inc. Horizontal reservoir description systems
CN113847019A (zh) * 2021-10-18 2021-12-28 中油奥博(成都)科技有限公司 基于光纤传感的地震地质工程一体化数据采集系统及方法
CN114542056A (zh) * 2020-11-24 2022-05-27 中国石油天然气股份有限公司 水平井地层解释模型快速构建方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120059639A1 (en) * 2010-09-07 2012-03-08 Fung Larry S K Machine, Computer Program Product and Method to Generate Unstructured Grids and Carry Out Parallel Reservoir Simulation
CN103510854A (zh) * 2013-10-17 2014-01-15 中国石油集团渤海钻探工程有限公司 一种水平井目标层随钻动态建模方法
CN105064990A (zh) * 2015-08-18 2015-11-18 西南石油大学 一种依靠水平井三维可视化地层对比的构造建模方法
US20180230781A1 (en) * 2015-09-03 2018-08-16 Halliburton Energy Services, Inc. Horizontal reservoir description systems
CN105631753A (zh) * 2015-12-14 2016-06-01 中国石油天然气集团公司 一种基于地层产状的水平井油藏剖面建模方法
CN114542056A (zh) * 2020-11-24 2022-05-27 中国石油天然气股份有限公司 水平井地层解释模型快速构建方法和装置
CN113847019A (zh) * 2021-10-18 2021-12-28 中油奥博(成都)科技有限公司 基于光纤传感的地震地质工程一体化数据采集系统及方法

Also Published As

Publication number Publication date
CN117468921A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN102893283B (zh) 用于水平井关联及地质导向的系统和方法
US20180293789A1 (en) Three-dimensional geomechanical modeling of casing deformation for hydraulic fracturing treatment design
CN105631753B (zh) 一种基于地层产状的水平井油藏剖面建模方法
US9182510B2 (en) Methods and systems of incorporating pseudo-surface pick locations in seismic velocity models
US20210332690A1 (en) Method and system of combined support for a well drilling process
AU2011356685B2 (en) Methods and systems regarding models of underground formations
US11460596B2 (en) Multi-Z horizon visualization from seismic data
CA2842158C (en) Method and system of correlating a measured log to a predicted log
CN104459800A (zh) 一种预测砂体尖灭的方法和装置
WO2024017302A1 (zh) 一种水平井的建模方法及装置
CN111260791B (zh) 一种更新地质导向模型的方法
WO2023236754A1 (zh) 地质导向方法、装置及存储介质
CN111257946B (zh) 一种地球物理指导钻井方法及更新地层地震速度的方法
US11231515B2 (en) Multi-Z horizon interpretation and visualization from seismic data
CN111768104B (zh) 单斜砂泥岩互层型坝基岩性变化程度定量评价方法
CN114329878A (zh) 页岩气井小层划分方法、装置、设备和存储介质
CN111722276A (zh) 岩石钻井的地震导向方法及系统
CN104834005B (zh) 一种确定地质界面的方法
CN111577250B (zh) 水平井地质导向方法及装置
CN112901070B (zh) 水平井随钻跟踪的方法和控制钻头钻进方向的控制方法
CN108132485A (zh) 一种数据处理方法和装置
CN115961884A (zh) 一种利用井轨迹数据计算储层视倾角的方法
CN114595545A (zh) 一种水平井非均质地层解释模型构建方法和装置
CN115423897A (zh) 一种资源勘查钻孔轨迹精准恢复的计算方法
CN117452490A (zh) 基于层拉平地震剖面及剥蚀关系的地层对比剖面编绘方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842364

Country of ref document: EP

Kind code of ref document: A1