WO2023236540A1 - 矿石成分分析设备及方法 - Google Patents

矿石成分分析设备及方法 Download PDF

Info

Publication number
WO2023236540A1
WO2023236540A1 PCT/CN2023/072483 CN2023072483W WO2023236540A1 WO 2023236540 A1 WO2023236540 A1 WO 2023236540A1 CN 2023072483 W CN2023072483 W CN 2023072483W WO 2023236540 A1 WO2023236540 A1 WO 2023236540A1
Authority
WO
WIPO (PCT)
Prior art keywords
rays
ore
sample
content
module
Prior art date
Application number
PCT/CN2023/072483
Other languages
English (en)
French (fr)
Inventor
刘晨
王守宇
Original Assignee
山东大学
山东大学威海工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学, 山东大学威海工业技术研究院 filed Critical 山东大学
Priority to PCT/CN2023/072483 priority Critical patent/WO2023236540A1/zh
Publication of WO2023236540A1 publication Critical patent/WO2023236540A1/zh
Priority to US18/401,182 priority patent/US11953455B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/206Sources of radiation sources operating at different energy levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/303Accessories, mechanical or electrical features calibrating, standardising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/303Accessories, mechanical or electrical features calibrating, standardising
    • G01N2223/3037Accessories, mechanical or electrical features calibrating, standardising standards (constitution)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/304Accessories, mechanical or electrical features electric circuits, signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/309Accessories, mechanical or electrical features support of sample holder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3306Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object rotates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials

Definitions

  • the present application belongs to the field of composition analysis technology and relates to ore composition analysis technology. Specifically, it relates to an ore composition analysis equipment and method.
  • Mining is a pillar industry of the national economy.
  • new technologies such as 5G network, big data, artificial intelligence, and cloud computing, intelligence, as a disruptive innovative technology, has become the core driving force for the transformation of basic industrial industries around the world.
  • intelligent high-tech to drive the transformation and upgrading of traditional mining can essentially enhance the core competitiveness of mining companies.
  • Mining intelligence involves all aspects of mine geology, surveying, mining, mineral processing, and safety. Among them, the intelligence of ore screening and processing is an important link in mining intelligence and a key node in mining intelligence. As we all know, the determination of ore rock composition is crucial to mine production planning, mining, and ore blending.
  • Component analysis technology is mainly used to analyze unknown substances and unknown components of minerals. Through component analysis technology, various constituent elements in the target sample can be quickly determined, and the sample can be quickly qualitatively and quantitatively analyzed.
  • X-ray fluorescence analysis technology has achieved rapid development.
  • energy dispersive X-ray fluorescence (EDXRF) analysis technology has developed into a comprehensive technology integrating many cutting-edge technologies in accordance with the law, including electronic technology, data analysis, nuclear physics and computer technology. Since EDXRF entered the analytical instrument industry, it has been increasingly widely used in mineral detection, aerospace, geological exploration, petrochemical and other fields due to its advantages such as no damage to samples, high accuracy of analysis results, and reliable analysis data.
  • the European Union began to implement the RoHS directive, and the market demand for EDXRF analyzers has increased sharply. Therefore, the development of EDXRF spectrometer has important scientific significance and market value.
  • the existing XRF analyzers currently on the market are basically used for laboratory data analysis, and cannot intuitively give the proportion of each element in the sample during the mining and production processing processes.
  • the maintenance is complicated and the operation process is complex. It is cumbersome, and the process of "sampling - sample delivery - laboratory testing - result feedback to the production line" takes about 2 weeks, which greatly wastes manpower and time costs.
  • the existing XRF analyzer is too specialized and cannot directly act on the product. Lines are not conducive to the large-scale and intelligent application of industrial production.
  • This application provides an ore composition analysis equipment and method in view of at least one of the above deficiencies of existing composition analysis equipment.
  • this application provides an ore composition analysis equipment, including:
  • Sample holding device used to hold ore samples to be tested
  • An excitation unit located above the sample holding device, is used to output X-rays with continuously adjustable energy, so that the X-rays interact with the ore sample to be tested, and are excited to generate secondary X-rays;
  • a detector located above the sample holding device for detecting the secondary X-rays
  • a signal processing unit connected to the detector, is used to amplify, shape and classify the secondary X-rays detected by the detector to obtain the count and energy of the secondary X-rays;
  • a data processing device connected to the signal processing unit and used to analyze and calculate the data processed by the signal processing unit, wherein the data processing device includes a processor and a memory, and the processor is used to perform storage
  • a storage module used to store known elements and their corresponding X-ray energy and X-ray occurrence probability
  • a matching module for matching the secondary X-ray energy with the X-ray energy corresponding to the known elements stored in the storage module to determine the corresponding element and obtain the secondary X-ray occurrence probability
  • a count correction module used to correct the count of the secondary X-rays according to the attenuation efficiency of the secondary X-rays in the air, and obtain a corrected secondary X-ray energy spectrum
  • a peak-finding module searches for peaks on the corrected secondary X-ray energy spectrum and obtains the peak area of each peak;
  • the calculation module calculates the content of each element in the ore sample based on the peak area and the secondary X-ray occurrence probability, where the content Pi of element i is expressed as:
  • I i is the intensity of element i
  • a i is the peak area of element i
  • ⁇ i is the occurrence probability of secondary X-ray of element i
  • ⁇ j is the intrinsic detection of secondary X-ray of element i by the detector efficiency
  • the content correction module is used to perform matrix effect correction on the content of each element calculated by the calculation module using the measurement results of the standard ore sample to obtain the final content of each element in the ore sample.
  • the included angle formed by the excitation unit, the sample holding device and the detector is 45° to 135°.
  • the processor is also used to execute a display module and an Internet of Things module stored in the memory, and the display module and the Internet of Things module are respectively connected to the content correction module,
  • the display module is used to display the final content of elements, and the Internet of Things module is used to connect to an external data monitoring platform.
  • the sample holding device includes:
  • a rotating member, the excitation unit and the detector are located above the rotating member;
  • a sample container is placed in the rotating member and used to hold the ore sample to be tested;
  • the driving member has an output shaft, the output shaft is axially connected with the bottom of the rotating member and can drive the rotating member to rotate.
  • the processor is also used to execute a control module stored in the memory.
  • the control module is connected to the driving member and is used to control the driving member every set time. T drives the rotating member to rotate at a set angle ⁇ so that the detector can perform multi-point detection on the ore sample to be tested and obtain an average value.
  • the excitation unit includes:
  • High-voltage power supply used to output high voltages of different voltages
  • a controllable X-ray excitation source electrically connected to the high-voltage power supply, is used to continuously adjust X-rays according to different high-voltage output energies output by the high-voltage power supply, so that the X-rays interact with the ore sample to be tested. function to excite and produce the secondary X-rays.
  • the signal processing unit includes:
  • a signal amplifier connected to the detector for detecting the secondary The rays are magnified and reshaped;
  • a multi-channel pulse amplitude analyzer connected to the signal amplifier, is used to perform analog-to-digital conversion on the amplified secondary X-rays and classify them to obtain the count and energy of the secondary X-rays.
  • the specific method for the count correction module to correct the count of secondary X-rays is: assuming that the energy of the secondary X-rays is E, the corrected count of secondary X-rays is expressed as:
  • y represents the corrected count of secondary X-rays
  • x represents the count of secondary X-rays with energy E
  • ⁇ 1 represents the attenuation efficiency of secondary X-rays with energy E in 1cm of air, measured experimentally.
  • the specific steps for the content correction module to correct the matrix effect are: assuming that the content of element i in the standard ore sample is A, the calculation module calculates the content of element i in the standard ore sample. The content is B, then the final content P ALi of element i in the ore sample to be tested is:
  • a second aspect of the embodiment of the present application provides a method for analyzing mineral components, which is analyzed using the mineral component analysis equipment described in any one of the above items.
  • the analytical method includes the following steps:
  • I i is the intensity of element i
  • a i is the peak area of element i
  • ⁇ i is the occurrence probability of secondary X-rays of element i
  • ⁇ j is the intrinsic characteristic of the device that detects Detection efficiency
  • an excitation unit and a detector are provided above the ore sample to be tested, X-rays are output through the excitation unit and secondary X-rays are detected through the detector, and the excitation unit,
  • the included angle formed by the sample containing device and the detector ranges from 45° to 135°.
  • step S4 the specific method of correcting the count of secondary X-rays is: assuming that the energy of the secondary X-rays is E, the corrected count of the secondary X-rays is expressed as :
  • y represents the corrected count of secondary X-rays
  • x represents the count of secondary X-rays with energy E
  • ⁇ 1 represents the attenuation efficiency of secondary X-rays with energy E in 1cm of air, which is measured experimentally. have to.
  • step S6 the specific steps for matrix effect correction are: assuming that the content of element i in the standard ore sample is A, the content of element i in the standard ore sample calculated by formula (1) is B, then the final content of element i in the ore sample to be tested:
  • step S1 multi-angle measurement of the ore sample is achieved by changing the angle of the ore sample to be measured.
  • step S7 is also included: displaying each element and the content of each element in the ore sample and uploading it to an external software monitoring platform.
  • the ore composition analysis equipment provided by at least one embodiment of the present application is provided with a count correction module to correct the count of secondary X-rays according to the attenuation efficiency of X-rays in the air.
  • a content correction module Using the measurement results of standard ore samples to correct the matrix effect on the calculated element content, the analysis equipment can be separated from the control of the vacuum pump and can be used directly in the air, so that it can be directly applied to the production line to obtain mineral composition and content information of each element. , simplifying the ore composition analysis operation process.
  • the ore composition analysis equipment provided by at least one embodiment of the present application limits the relative positions of the X-ray excitation source - the ore sample - the detector, and the X-ray excitation source and the detector are set at an angle of 45° to 135°, It can ensure that the ore sample to be tested is effectively excited by X-rays, so that the secondary X-rays generated by the excitation can be fully absorbed by the detector.
  • the sample holding device adopts an independent design and includes a rotating part, a sample container placed in the rotating part, and a driving part connected to the rotating part.
  • the driving part drives the rotation.
  • the sample container can be rotated at a certain angle at certain intervals, and the ore sample to be tested can be measured at multiple points and averaged to solve the measurement deviation caused by the uneven distribution of various elements inside the sample, making the measurement results more accurate.
  • the ore composition analysis equipment provided in at least one embodiment of the present application is also equipped with a display module and an Internet of Things module.
  • the display module can display each element and the content value of each element in the analyzed ore.
  • Through the Internet of Things module can transmit the analyzed elements and content values of each element in the ore to external data monitoring platforms (such as the unit's cloud platform, third-party platforms, etc.), and realize the control of ore classification/desliming and other operations based on the composition analysis results. , change the current production methods of the ore processing industry and improve production efficiency.
  • the ore composition analysis method provided by at least one embodiment of the present application corrects the count of secondary X-rays according to the attenuation efficiency of X-rays in the air.
  • the calculated element content is calculated using the measurement results of standard ore samples.
  • the matrix effect correction enables ore composition analysis to be separated from the control of the vacuum pump and can be used directly in the air, so that it can be directly applied to the production line and simplify the ore composition analysis operation process.
  • Figure 1 is a structural block diagram of the ore composition analysis equipment provided by the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the sample holding device provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of known elements and their corresponding X-ray energies
  • Figure 4 is a flow chart of the ore component analysis method provided by the embodiment of the present application.
  • the embodiments of this application provide an ore composition analysis equipment and method, which corrects the count of secondary X-rays according to the attenuation efficiency of X-rays in the air, and uses the measurement results of standard ore samples to correct the calculated element content for matrix effects.
  • the analysis of ore components is separated from the control of the vacuum pump and can be directly used in the production line for non-destructive measurement of ores.
  • the first aspect of the embodiment of the present application provides an ore composition analysis device, as shown in Figure 1.
  • the device includes:
  • Sample holding device 1 used to place the ore sample to be tested
  • the excitation unit 2 is located above the sample holding device 1 and is used to output X-rays with continuously adjustable energy, so that the X-rays interact with the ore sample to be tested and are excited to generate secondary X-rays;
  • Detector 3 is located above the sample holding device 1 and is used to detect secondary X-rays;
  • Signal processing unit 4 which is connected to the detector 3 and is used to detect the secondary X-rays detected by the detector 3.
  • the lines are amplified, reshaped and classified to obtain the count and energy of secondary X-rays;
  • Data processing device 5 which is connected to the signal processing unit 4, and is used to analyze and calculate the data processed by the signal processing unit 4 (specifically, the count and energy of secondary X-rays), wherein the data processing device 5 includes a processor 501 and memory 502, the processor 502 is used to execute the following program modules stored in the memory 502:
  • the storage module 51 is used to store the known elements in the ore and the X-ray energy corresponding to the element (for example: see Figure 3, which shows the X-ray energy corresponding to some elements) and the X-ray occurrence probability;
  • the matching module 52 is used to match the secondary X-ray energy output by the signal processing unit 4 with the X-ray energy corresponding to the known elements stored in the storage module 51 to determine the corresponding element and obtain the secondary X-ray occurrence probability;
  • the count correction module 53 is used to correct the count of secondary X-rays according to the attenuation efficiency of the secondary X-rays in the air to obtain the corrected secondary X-ray energy spectrum; here, the corrected secondary X-ray energy spectrum
  • the abscissa is the energy of secondary X-rays, and the ordinate is the number of corrected secondary X-rays;
  • the peak search module 54 searches for peaks on the corrected secondary X-ray energy spectrum and obtains the peak area of each peak;
  • the calculation module 55 calculates the content of each element in the ore sample based on the peak area and the probability of secondary X-ray occurrence, where the content Pi of element i is expressed as:
  • I i is the intensity of element i
  • a i is the peak area of element i
  • ⁇ i is the occurrence probability of secondary X-rays of element i
  • ⁇ j is the intrinsic detection efficiency of the detector for secondary X-rays of element i
  • the unit of Pi is %; here, I i can be understood as the number of element i.
  • the content Pi of element i is obtained by dividing the number of element i by the number of all elements.
  • the content correction module 56 is used to perform matrix effect correction on the content of each element calculated by the calculation module 55 using the measurement results of the standard ore sample to obtain the final content of each element in the ore sample.
  • the intrinsic detection efficiency of the detector 3 is a known parameter of the detector 3 .
  • the included angle formed by the excitation unit 2, the sample holding device 1 and the detector 3 is 45° to 135°.
  • the excitation unit 2, the sample holding device 1 and the detector 3 are formed by The angle formed is specifically the angle formed by the connection line between the X-ray output port of the excitation unit 2 and the center of the sample holding device 1 and the connection line between the detector 3 and the center of the sample holding device 1.
  • the included angle is The angle can be selected according to actual needs, for example, it can be 45°, 135°, 60°, 90°, 120°, etc., by changing the position of the detector 3 and the X-ray output of the excitation unit 2 mouth to adjust.
  • the detector 3 and the excitation unit 2 are arranged at the above angle, which on the one hand ensures that the ore sample to be tested can be effectively excited by X-rays, and on the other hand enables the secondary X-rays generated by the excitation to be fully absorbed by the detector 3.
  • the specific method for the count correction module 53 to correct the count of secondary X-rays is: assuming that the energy of the secondary X-rays is E, the corrected count of secondary X-rays is expressed as:
  • y represents the corrected count of secondary X-rays
  • x represents the count of secondary X-rays with energy E
  • ⁇ 1 represents the attenuation efficiency of secondary X-rays with energy E in 1cm of air, measured experimentally.
  • integration is used to obtain the peak area of each peak. Since calculating the peak area on the energy spectrum through integration is an existing known technology, the specific process of calculating the peak area through integration will not be described in detail here.
  • the specific steps for the matrix effect correction by the content correction module 56 are: assuming that the content of element i in the standard ore sample is A, and the content of element i in the standard ore sample calculated by the calculation module is B, then the ore to be tested The final content of element i in the sample P ALi :
  • the concentration of element potassium in the standard ore sample is 10%
  • the concentration of element potassium in the standard ore sample calculated by the calculation module is 15%, which is 1.5 times the true concentration.
  • the calculated content P K Divide by 1.5 is obtained the final content of elemental potassium in the non-standard sample.
  • the concentration of elemental calcium in the standard ore sample is 10%.
  • the concentration of elemental calcium in the standard ore sample calculated by the calculation module is 13%, which is 1.3 times the true concentration.
  • the calculated content P Ga is divided by 1.3 Obtain the final content of elemental calcium in the non-standard sample.
  • the processor 502 is also configured to execute the display model stored in the memory 502.
  • the block 57 and the Internet of Things module 58, the display module 57 and the Internet of Things module 58 are respectively connected with the content correction module 56.
  • the display module 57 is used to display the final content of the element, and the Internet of Things module 58 is used to connect with the external data monitoring platform 6.
  • the display module 57 can display the analyzed elements and the content values of each element in the ore, and the Internet of Things module 58 can transmit the analyzed elements and the content values of each element in the ore to an external data monitoring platform (for example: The unit's cloud platform, third-party platform, etc.) can realize the control of ore classification/desliming and other operations based on the composition analysis results, realize automatic control in the ore processing process, change the current production method of the ore processing industry, and improve production efficiency.
  • an external data monitoring platform for example: The unit's cloud platform, third-party platform, etc.
  • the data processing device 5 specifically adopts a host computer.
  • the host computer is configured with the above processor 501 and a memory 502.
  • the memory 502 stores the above storage module 51, matching module 52, counting correction module 53, and peak finding module. 54.
  • the sample holding device 1 is a sample cup or sample tray.
  • the sample holding device 1 includes: a rotating member 101, the excitation unit 2 and the detector 3 are located above the rotating member 101; a sample container 102 is placed in the rotating member 101; a driving member 103, which It has an output shaft, which is axially connected with the bottom of the rotating member 101 and can drive the rotating member to rotate.
  • the sample container 102 is a sample cup or sample plate
  • the rotating member 101 is a lead box
  • the driving member 103 is a motor.
  • the driving member 103 drives the rotating member 101 to rotate, so that the sample in the sample container 102 rotates accordingly, so that the sample can be measured at multiple points and averaged, and the distribution of each element inside the sample can be solved.
  • the measurement deviation caused by unevenness makes the measurement results more accurate.
  • the rotating member 101 uses a lead box. During the measurement time, the lead box keeps rotating, which can cause the ore samples in the lead box to be evenly excited, and finally obtain the average value of the entire batch of sample content, reducing errors.
  • the processor 501 is also used to execute the control module 59 stored in the memory 502.
  • the control module 59 is connected to the driving member 103 of the sample holding device 1 and is used to control the driving member 103 to drive every set time T.
  • the rotating member 101 rotates to a set angle ⁇ so that the detector 3 is to be measured
  • the ore samples were detected at multiple points and the average value was obtained.
  • the sample container 102 adopts a sample plate
  • the control module 59 controls the driving part 103 to drive the sample plate to rotate 180° every set time 60s according to the set time T, to achieve Automatic multi-point measurement control of samples.
  • the set time T and the set angle ⁇ can be set according to actual needs, and are not limited to the set time T being 60 seconds and the set angle ⁇ being 180°.
  • the excitation unit 2 includes:
  • High-voltage power supply 201 is used to output high voltages of different voltages
  • the controllable X-ray excitation source 202 is electrically connected to the high-voltage power supply 201 and is used to continuously adjust the X-rays according to the different high-voltage output energies output by the high-voltage power supply 201, so that the X-rays interact with the ore sample to be tested and excite the generated Secondary X-rays.
  • the high-voltage power supply 201 adopts a power supply with an adjustable voltage in the range of 0 to 50 kV;
  • the controllable X-ray excitation source 202 adopts an X-ray excitation source with adjustable input voltage and current;
  • the source 202 adopts a high-voltage power supply and a controllable X-ray excitation source known on the market.
  • the controllable X-ray excitation source outputs X-rays with continuously adjustable energy, which can excite the constituent elements in the ore sample to achieve the task of multi-element determination.
  • the detector 3 uses a semiconductor detector with high energy resolution to detect the ore sample to be tested.
  • the high energy resolution mentioned here refers to a resolution of no less than 150eV at 5.9keV. Since the semiconductor detector has good energy resolution, with a half-maximum width of 140eV (at 59keV), it has a wide energy linear range; electric refrigeration is used to obtain low-temperature conditions. Compared with traditional liquid nitrogen refrigeration detectors, Easy. It should be noted that the semiconductor detector used in this embodiment is a semiconductor detector known on the market.
  • the signal processing unit 4 includes:
  • Signal amplifier 401 which is connected to the detector 3 and is used to amplify and shape the secondary X-rays detected by the detector 3;
  • the multi-channel pulse amplitude analyzer 402 is connected to the signal amplifier 401 and is used for analog-to-digital conversion of the amplified secondary X-rays and classification to obtain the count and energy of the secondary X-rays.
  • the signal amplifier and multi-channel pulse amplitude analyzer use existing commercially known signals. Amplifiers and multi-channel pulse amplitude analyzers.
  • the high-voltage power supply 201 outputs high voltages of different voltages, thereby causing the controllable X-ray excitation source 202 to output X-rays with continuously adjustable energy to the ore sample to be tested.
  • X-rays of different energies interact with the ore sample to be tested, and are excited to produce different energy Secondary X-rays.
  • the detector 3 detects secondary X-rays and sends them to the signal amplifier 401. After the detected secondary X-rays are amplified and shaped by the signal amplifier 401, the multi-channel pulse amplitude analyzer 402 performs analog-to-digital conversion and classification to obtain different Count and energy of energy secondary X-rays.
  • the matching module 52 matches the secondary X-ray energy with the X-ray energy corresponding to the known element stored in the storage module 51, and obtains the secondary X-ray occurrence probability and its corresponding element based on the matched X-ray energy.
  • the count correction module 53 corrects the count of secondary X-rays according to the attenuation efficiency of the secondary X-rays in the air, uses the peak-finding module 54 to find peaks on the corrected secondary X-ray energy spectrum, and obtains the peak of each peak. area.
  • the calculation module 55 calculates the element content Pi in the ore sample based on the peak area and the occurrence probability of secondary X-rays of the element.
  • the content correction module 56 uses the measurement results of the standard ore sample to perform matrix effect correction on the calculated element content to obtain the final element content of each element in the ore sample.
  • Each element in the ore and the content value of each element are displayed through the display module 57, and the analyzed elements and the content value of each element in the ore are transmitted to an external data monitoring platform (for example: the unit's cloud platform) through the Internet of Things module 58 , third-party platforms, etc.), realize the control of ore classification/desliming and other operations based on the composition analysis results, change the current production method of the ore processing industry, and improve production efficiency.
  • an external data monitoring platform for example: the unit's cloud platform
  • the Internet of Things module 58 for example: the unit's cloud platform
  • third-party platforms etc.
  • the above-mentioned ore composition analysis equipment in this embodiment is provided with a count correction module 53 to correct the count of secondary X-rays according to the attenuation efficiency of X-rays in the air.
  • a content correction module 53 to use the measurement results of standard ore samples. The calculated element content is corrected for the matrix effect, so that the analysis equipment is separated from the control of the vacuum pump and can be used directly in the air, so that it can be directly applied to the production line, simplifying the ore composition analysis operation process, saving manpower and time costs, and greatly improving to achieve production efficiency.
  • a second aspect of the embodiments of the present application provides a method for analyzing mineral components, which includes the following steps:
  • I i is the intensity of element i
  • a i is the peak area of element i
  • ⁇ i is the occurrence probability of secondary X-rays of element i
  • ⁇ j is the intrinsic characteristic of the device that detects Detection efficiency; calculate the content of each element according to the above formula; it should be noted that the intrinsic detection efficiency of the detector is a known parameter of the detector;
  • An excitation unit 2 (such as a controllable X-ray excitation source, etc.) and a detector 3 (such as a semiconductor detector, etc.) are provided above the ore sample to be tested.
  • the excitation unit 2 outputs X-rays and the detector 3 detects secondary X-rays.
  • the angle formed by the excitation unit 2, the sample holding device 1 and the detector 3 is 45° to 135°, which on the one hand can ensure that the ore sample to be tested can be effectively excited by X-rays, on the other hand
  • the secondary X-rays generated by excitation can be fully absorbed by the detector 3 .
  • the above included angle can be selected according to actual needs, for example, it can be 45°, 135°, 60°, 90°, 120°, etc.
  • a specific method for correcting the count of secondary X-rays is: assuming that the secondary The energy of the line is E, and the corrected count of secondary X-rays is expressed as:
  • y represents the corrected count of secondary X-rays
  • x represents the count of secondary X-rays with energy E
  • ⁇ 1 represents the attenuation efficiency of secondary X-rays with energy E in 1cm of air, measured experimentally.
  • integration is used to obtain the peak area of each peak. Since calculating the peak area on the energy spectrum through integration is an existing known technology, the specific process of calculating the peak area through integration will not be described in detail here.
  • the specific steps for matrix effect correction are: assuming that the content of element i in the standard ore sample is A, and the content of element i in the standard ore sample calculated by formula (1) is B, then the ore sample to be tested The final content of element i in P ALi :
  • the concentration of element potassium in the standard ore sample is 10%
  • the concentration of element potassium calculated by the calculation module is 15%, which is 1.5 times the true concentration.
  • the calculated concentration P K is divided by 1.5 to get Final content of elemental potassium.
  • the concentration of elemental calcium in the standard ore sample is 10%.
  • the concentration of elemental calcium calculated by the calculation module is 13%, which is 1.3 times the true concentration.
  • the calculated concentration P Ga is divided by 1.3 to obtain elemental calcium. final content.
  • multi-angle measurement of the ore sample can also be achieved by changing the angle of the ore sample to be measured. Specifically, by rotating the sample container 102 holding the ore sample to be measured, the ore sample rotates with the sample container 102, thereby achieving multi-point measurement and averaging of the ore sample, and solving the measurement deviation caused by uneven distribution of various elements within the sample. , making the measurement results more accurate.
  • the rotation of the sample container 102 can be automatically controlled by driving the sample container 102 to rotate at a set angle ⁇ every set time T, thereby saving labor costs.
  • the setting time T and the setting angle ⁇ can be set according to actual needs, and are not limited to the setting time being 60 seconds and the setting angle being 180°.
  • step S7 is also included: displaying each element and the content of each element in the ore sample and uploading it to an external software monitoring platform (for example: the unit's cloud platform, a third-party platform, etc.), according to
  • an external software monitoring platform for example: the unit's cloud platform, a third-party platform, etc.
  • the above-described ore composition analysis method in this embodiment corrects the count of secondary X-rays according to the attenuation efficiency of
  • the control of the vacuum pump enables direct use in the air, so that it can be directly applied to the production line, simplifying the ore composition analysis operation process, saving manpower and time costs, and greatly improving the production efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Geophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种矿石成分分析设备及方法,分析设备包括:样品容纳装置(1),盛放待测矿石样品;激发单元(2),输出能量连续可调的X射线;探测器(3),探测次级X射线;信号处理单元(4),对次级X射线进行放大整形、分类得到其计数及能量;数据处理装置(5),包括处理器(501),且处理器(501)用于执行存储在存储器(502)中的存储模块(51)、匹配模块(52)、计数修正模块(53)、寻峰模块(54)、计算模块(55)和含量修正模块(56),从而获得待测矿石样品中各元素以及各元素的含量。设备和方法能够直接用于产线矿石成分的在线定性和定量分析。

Description

矿石成分分析设备及方法 技术领域
本申请属于成分分析技术领域,涉及矿石成分分析技术,具体地说,涉及一种矿石成分分析设备及方法。
背景技术
矿业是国民经济的支柱产业,随着5G网络、大数据、人工智能、云计算等新技术兴起,智能化作为颠覆性的创新技术,已经成为世界范围内基础工业产业变革的核心驱动力。采用智能化高新技术来带动传统矿业的转型和升级,可从本质上提升矿山企业的核心竞争力。矿业智能化涉及矿山地质、测量、采矿、选矿、安全等各环节,其中矿石筛选加工环节的智能化是矿业智能化的一个重要环节,是矿业智能化的关键节点。众所周知,矿岩成分测定对矿山生产规划和采矿、配矿等工作至关重要。传统的现场采样、室内化验的矿岩测定方法,由于其周期长、效率低等原因,已成为智能矿山建设的瓶颈,如何研发新的矿岩成分分析设备,以适应新时代背景下矿业发展的需要,是亟待解决的问题,也是智能矿山建设的关键。
成分分析技术主要用于对未知物、矿物的未知成分等进行分析,通过成分分析技术可以快速确定目标样品中的各种组成元素,并对样品进行快速的定性定量分析。近年来,作为成分分析技术的重要分支,X射线荧光分析技术取得了迅猛的发展。现如今,能量色散的X射线荧光(简称:EDXRF)分析技术依法发展为诸多前沿科技于一身的综合技术,包括电子技术、数据分析、核物理与计算机技术。自从EDXRF进入分析仪器行业以来,凭借其对样品无破坏、分析结果精度高、分析数据可靠等优点,在矿物探测、航空航天、地质勘探、石油化工等领域获得了越来越广泛的应用。特别从2016年7月,欧盟开始实施RoHS指令,市场的EDXRF分析仪的需求急剧增加。因此,EDXRF光谱仪的研制具有重要的科学意义和市场价值。
然而,目前市场上现有的XRF分析仪基本用于实验室数据分析,无法在采掘和生产加工过程中直观地给出样品中各元素比例,维护复杂,操作流程 繁琐,其“采样-送样-实验室化验-结果反馈产线”的过程约2周,极大浪费人力及时间成本,而且现有的XRF分析仪专业化程度过强,不能直接作用于产线,不利于工业生产规模化和智能化应用。
发明内容
本申请针对现有成分分析设备存在以上至少一个不足之处,提供了一种矿石成分分析设备及方法。
本申请一方面提供一种矿石成分分析设备,包括:
样品容纳装置,用于盛放待测矿石样品;
激发单元,设于所述样品容纳装置上方,用于输出能量连续可调的X射线,以使所述X射线与所述待测矿石样品发生相互作用,激发产生次级X射线;
探测器,设于所述样品容纳装置上方用于探测所述次级X射线;
信号处理单元,其与所述探测器连接,用于对所述探测器探测的所述次级X射线进行放大整形后并进行分类,得到所述次级X射线的计数及能量;
数据处理装置,其与所述信号处理单元连接,用于对经所述信号处理单元处理后的数据进行分析计算,其中,所述数据处理装置包括处理器以及存储器,所述处理器用于执行存储在存储器中的以下程序模块:
存储模块,用于存储已知元素及元素对应X射线能量和X射线发生概率;
匹配模块,用于将所述次级X射线能量与所述存储模块内所存储的已知元素对应的X射线能量进行匹配,以确定对应元素并得到所述次级X射线发生概率;
计数修正模块,用于根据所述次级X射线在空气中的衰减效率修正所述次级X射线的计数,得到修正后的次级X射线能量谱;
寻峰模块,在所述修正后的次级X射线能量谱上寻峰,并求取每个峰的峰面积;
计算模块,根据所述峰面积和所述次级X射线发生概率计算矿石样品中各元素含量,其中,元素i的含量Pi表示为:
式中,Ii为元素i的强度,Ai为元素i的峰面积,εi为元素i次级X射线发生概率,εj为所述探测器对元素i次级X射线的本征探测效率;
含量修正模块,用于利用标准矿石样品测量结果对所述计算模块计算的各元素含量进行基体效应修正得到矿石样品中各元素的最终含量。
在本申请的一些实施例中,所述激发单元、所述样品容纳装置以及所述探测器三者所形成的夹角为45°~135°。
在本申请的一些实施例中,所述处理器还用于执行存储在所述存储器内的显示模块和物联网模块,所述显示模块和所述物联网模块分别与所述含量修正模块连接,所述显示模块用于显示元素最终含量,所述物联网模块用于与外部数据监测平台连接。
在本申请的一些实施例中,所述样品容纳装置包括:
旋转件,所述激发单元与所述探测器位于所述旋转件上方;
样品容器,放置于所述旋转件内,用于盛放所述待测矿石样品;
驱动件,其具有一输出轴,所述输出轴与所述旋转件的底部轴接并可驱动所述旋转件旋转。
在本申请的一些实施例中,所述处理器还用于执行存储在所述存储器内的控制模块,所述控制模块与所述驱动件连接且用于控制所述驱动件每隔设定时间T驱动所述旋转件旋转设定角度α,以便所述探测器对所述待测矿石样品进行多点探测取平均值。
在本申请的一些实施例中,所述激发单元包括:
高压电源,用于输出不同电压的高压;
可控X射线激发源,与所述高压电源电连接,用于根据所述高压电源输出的不同高压输出能量连续可调的X射线,以使所述X射线与所述待测矿石样品发生相互作用,激发产生所述次级X射线。
在本申请的一些实施例中,所述信号处理单元包括:
信号放大器,其与所述探测器连接,用于对所述探测器探测的所述次级X 射线进行放大整形;
多道脉冲幅度分析器,其与所述信号放大器连接,用于将放大后的所述次级X射线进行模数转换,并进行分类,得到所述次级X射线的计数及能量。
在本申请的一些实施例中,所述计数修正模块修正次级X射线的计数的具体方法为:假设所述次级X射线的能量为E,修正后的次级X射线的计数表示为:
y=x/ε1      (2),
其中,y表示修正后的次级X射线的计数,x表示能量为E的次级X射线的计数,ε1表示能量为E的次级X射线在1cm空气中的衰减效率,由实验测得。
在本申请的一些实施例中,所述含量修正模块进行基体效应修正的具体步骤为:假定标准矿石样品中元素i的含量为A,所述计算模块计算的所述标准矿石样品中元素i的含量为B,则所述待测矿石样品中元素i的最终含量PALi为:
本申请实施例的第二方面提供一种矿石成分分析方法,其利用如上任一项所述的矿石成分分析设备进行分析,该分析方法包括以下步骤:
S1、发射能量连续可调的X射线至待测矿石样品,不同能量的X射线与所述待测矿石样品发生相互作用,激发产生不同能量的次级X射线;
S2、探测所述次级X射线,对所述次级X射线进行放大整形后并进行分类,得到不同能量所述次级X射线的计数及能量;
S3、将所述次级X射线的能量与已知元素对应的X射线能量进行匹配,确定对应元素并得到所述次级X射线发生概率;
S4、根据所述次级X射线在空气中的衰减效率修正所述次级X射线的计数,得到修正后的次级X射线能量谱,在所述修正后的次级X射线能量谱上寻峰,并求取每个峰的峰面积;
S5、根据所述峰面积和所述次级X射线发生概率计算矿石样品中各元素 含量,其中,元素i的含量Pi表示为:
式中,Ii为元素i的强度,Ai为元素i的峰面积,εi为元素i次级X射线发生概率,εj为探测X射线的器件对元素i次级X射线的本征探测效率;根据上述公式计算各元素含量;
S6、利用标准矿石样品测量结果对计算的各元素含量进行基体效应修正得到矿石样品中各元素的最终含量。
在本申请的一些实施例中,在所述待测矿石样品上方设置有激发单元和探测器,通过所述激发单元输出X射线并通过所述探测器探测次级X射线,所述激发单元、所述样品容纳装置以及所述探测器三者所形成的夹角为45°~135°。
在本申请的一些实施例中,步骤S4中,修正次级X射线的计数的具体方法为:假设所述次级X射线的能量为E,修正后的所述次级X射线的计数表示为:
y=x/ε1      (2),
其中,y表示修正后的所述次级X射线的计数,x表示能量为E的次级X射线的计数,ε1表示能量为E的次级X射线在1cm空气中的衰减效率,由实验测得。
在本申请的一些实施例中,步骤S6中,进行基体效应修正的具体步骤为:假定标准矿石样品中元素i的含量为A,通过公式(1)计算的标准矿石样品中元素i的含量为B,则待测矿石样品中元素i的最终含量:
在本申请的一些实施例中,在步骤S1中,通过改变待测矿石样品的角度实现对矿石样品的多角度测量。
在本申请的一些实施例中,在步骤S6后还包括步骤S7:将矿石样品中各元素以及各元素的含量进行显示并上传至外部软件监测平台。
与现有技术相比,本申请的优点和积极效果在于:
(1)本申请至少一个实施例所提供的矿石成分分析设备,设有计数修正模块,根据X射线在空气中的衰减效率对次级X射线的计数进行修正,同时,设有含量修正模块,利用标准矿石样品测量结果对计算的元素含量进行基体效应修正,使分析设备脱离真空泵的控制,实现在空气中的直接使用,从而能够直接应用于产线,获取矿物成分组成及各元素的含量信息,简化矿石成分分析操作流程。
(2)本申请至少一个实施例所提供的矿石成分分析设备,对X射线激发源-矿石样品-探测器的相对位置进行限定,X射线激发源与探测器呈角度45°~135°设置,能够确保待测矿石样品被X射线有效激发,使激发产生的次级X射线能够被探测器充分吸收。
(3)本申请至少一个实施例所提供的矿石成分分析设备,样品容纳装置采用自主设计,包括旋转件、放置于旋转件内的样品容器以及与旋转件连接的驱动件,通过驱动件驱动旋转件转动,可实现样品容器每隔一定时间旋转一定角度,对待测矿石样品进行多点测量取平均值,解决样品内部各个元素分布不均匀导致的测量偏差,使得测量结果更加准确。
(4)本申请至少一个实施例所提供的矿石成分分析设备,还设有显示模块和物联网模块,通过显示模块能够显示分析得到的矿石中各元素及各元素的含量值,通过物联网模块,能够将分析得到的矿石中各元素及各元素的含量值传输至外部数据监测平台(例如:本单位云平台、第三方平台等),根据成分分析结果实现矿石分级/脱泥等作业的控制,改变矿石加工产业目前的生产方式,提高生产效率。
(5)本申请至少一个实施例所提供的矿石成分分析方法,根据X射线在空气中的衰减效率对次级X射线的计数进行修正,同时,利用标准矿石样品测量结果对计算的元素含量进行基体效应修正,使矿石成分分析脱离真空泵的控制,实现在空气中的直接使用,从而能够直接应用于产线,简化矿石成分分析操作流程。
附图说明
图1为本申请实施例所提供的矿石成分分析设备的结构框图;
图2为本申请实施例所提供的样品容纳装置的结构简图;
图3为已知元素及元素对应X射线能量示意图;
图4为本申请实施例所提供的矿石成分分析方法的流程图。
图中,1、样品容纳装置,101、旋转件,102、样品容器,103、驱动件,2、激发单元,201、高压电源,202、可控X射线激发源,3、探测器,4、信号处理单元,401、信号放大器,402、多道脉冲幅度分析器,5、数据处理装置,501、处理器;502、存储器;51、存储模块;52、匹配模块,53、计数修正模块,54、寻峰模块,55、计算模块,56、含量修正模块,57、显示模块,58、物联网模块,59、控制模块,6、外部数据监测平台。
具体实施方式
下面,通过示例性的实施方式对本申请进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
本申请实施例提供了一种矿石成分分析设备及方法,根据X射线在空气中的衰减效率对次级X射线的计数进行修正,利用标准矿石样品测量结果对计算的元素含量进行基体效应修正,使矿石成分分析脱离真空泵的控制,可直接用于产线,对矿石进行无损测量。以下结合具体实施例对上述矿石成分分析设备及方法进行详细说明。在以下的描述中,需要说明的是,元素i并不指代任何特定元素,仅用于表示待测矿石样品内的某一种元素。
本申请实施例的第一方面提供一种矿石成分分析设备,如图1所示,该设备包括:
样品容纳装置1,用于放置待测矿石样品;
激发单元2,设于样品容纳装置1上方,用于输出能量连续可调的X射线,以使X射线与待测矿石样品发生相互作用,激发产生次级X射线;
探测器3,设于样品容纳装置1上方,用于探测次级X射线;
信号处理单元4,其与探测器3连接,用于对探测器3探测的次级X射 线进行放大整形后并进行分类,得到次级X射线的计数及能量;
数据处理装置5,其与信号处理单元4连接,用于对经信号处理单元4处理后的数据(具体为次级X射线的计数及能量)进行分析计算,其中,数据处理装置5包括处理器501以及存储器502,处理器502用于执行存储在存储器502中的以下程序模块:
存储模块51,用于存储矿石中的已知元素及元素对应X射线能量(例如:参见图3,图3中给出了部分元素对应的X射线能量)和X射线发生概率;
匹配模块52,用于将信号处理单元4输出的次级X射线能量与存储模块51内所存储的已知元素对应的X射线能量进行匹配,以确定对应元素并得到次级X射线发生概率;
计数修正模块53,用于根据次级X射线在空气中的衰减效率修正次级X射线的计数,得到修正后的次级X射线能量谱;此处,修正后的次级X射线能量谱的横坐标为次级X射线的能量,纵坐标为修正后的次级X射线的计数;
寻峰模块54,在修正后的次级X射线能量谱上寻峰,并求取每个峰的峰面积;
计算模块55,根据峰面积和次级X射线发生概率计算矿石样品中各元素含量,其中,元素i的含量Pi表示为:
式中,Ii为元素i的强度,Ai为元素i的峰面积,εi为元素i次级X射线发生概率,εj为探测器对元素i次级X射线的本征探测效率;Pi的单位为%;此处,Ii可以理解为元素i的个数,在以上式(1)中元素i的含量Pi通过元素i的个数除以所有元素的个数得到。
含量修正模块56,用于利用标准矿石样品测量结果对计算模块55计算的各元素含量进行基体效应修正得到矿石样品中各元素的最终含量。
需要说明的是,探测器3的本征探测效率为探测器3已知的参数。
在一些实施例中,激发单元2、样品容纳装置1以及探测器3三者所形成的夹角为45°~135°。激发单元2、样品容纳装置1以及探测器3三者所形 成的夹角具体为激发单元2的X射线输出口与样品容纳装置1的中心之间的连线以及探测器3与样品容纳装置1的中心之间的连线所形成的夹角,该夹角可以根据实际需求进行选择,例如,可以是45°,也可以是135°,还可以是60°、90°、120°等,可通过改变探测器3的位置以及激发单元2的X射线输出口进行调整。探测器3与激发单元2呈以上角度设置,一方面能够确保待测矿石样品能够被X射线有效激发,另一方面能够使激发产生的次级X射线能够被探测器3充分吸收。
在一些实施例中,计数修正模块53修正次级X射线的计数的具体方法为:假设次级X射线的能量为E,修正后的次级X射线的计数表示为:
y=x/ε1        (2),
其中,y表示修正后的次级X射线的计数,x表示能量为E的次级X射线的计数,ε1表示能量为E的次级X射线在1cm空气中的衰减效率,由实验测得。
在一些实施例中,在修正后的次级X射线能量谱上寻峰后,采用积分求取每个峰的峰面积。由于通过积分求取能量谱上峰面积为现有已知技术,此处不再对积分求取峰面积的具体过程进行赘述。
在一些实施例中,含量修正模块56进行基体效应修正的具体步骤为:假定标准矿石样品中元素i的含量为A,计算模块计算的标准矿石样品中元素i的含量为B,则待测矿石样品中元素i的最终含量PALi
例如:标准矿石样品中元素钾的浓度为10%,计算模块计算的标准矿石样品中元素钾的浓度为15%,是真实浓度的1.5倍,那么在测量非标准样品时,计算的含量PK除以1.5得非标准样品中元素钾的最终含量。标准矿石样品中元素钙的浓度为10%,计算模块计算的标准矿石样品中元素钙的浓度为13%,是真实浓度的1.3倍,那么在测量非标准样品时,计算的含量PGa除以1.3得非标准样品中元素钙的最终含量。
在一些实施例中,处理器502还用于执行存储在存储器502内的显示模 块57和物联网模块58,显示模块57和物联网模块58分别与含量修正模块56连接,显示模块57用于显示元素最终含量,物联网模块58用于与外部数据监测平台6连接。通过显示模块57能够显示分析得到的矿石中各元素及各元素的含量值,通过物联网模块58,能够将分析得到的矿石中各元素及各元素的含量值传输至外部数据监测平台(例如:本单位云平台、第三方平台等),根据成分分析结果实现矿石分级/脱泥等作业的控制,实现矿石加工过程中的自动化控制,改变矿石加工产业目前的生产方式,提高生产效率。
在一些实施例中,数据处理装置5具体采用上位机,上位机内配置有以上处理器501以及存储器502,存储器502内存储有以上存储模块51、匹配模块52、计数修正模块53、寻峰模块54、计算模块55、含量修正模块56、显示模块57和物联网模块58。
在一些实施例中,所述样品容纳装置1为样本杯或样品盘。
在另一些实施例中,所述样品容纳装置1包括:旋转件101,所述激发单元2与探测器3位于旋转件101上方;样品容器102,放置于旋转件101内;驱动件103,其具有一输出轴,该输出轴与旋转件101的底部轴接并可驱动旋转件旋转。可选地,样品容器102采用样品杯或样品盘,旋转件101为铅盒,驱动件103为电机。
采用以上实施例所提供的样品容纳装置,通过驱动件103驱动旋转件101转动,使样品容器102中的样品随之旋转,能够实现对样品进行多点测量取平均值,解决样品内部各个元素分布不均匀导致的测量偏差,使得测量结果更加准确。
还需要说明的是,旋转件101采用铅盒,在测量时间内,铅盒保持旋转,可以使得铅盒内矿石样品均匀被激发,最终获得整批样品含量的平均值,减小误差。
在一些实施例中,处理器501还用于执行存储在存储器502内的控制模块59,控制模块59与样品容纳装置1的驱动件103连接且用于控制驱动件103每隔设定时间T驱动旋转件101旋转设定角度α,以便探测器3对待测 矿石样品进行多点探测取平均值。例如:设定时间T=60s,设定角度α=180°,样品容器102采用样品盘,控制模块59根据设定时间T控制驱动件103每隔设定时间60s驱动样品盘旋转180°,实现对样品的自动多点测量控制。需要说明的是,设定时间T和设定角度α可以根据实际需求进行设定,不限于设定时间T为60s、设定角度α为180°。
在一些实施例中,如图11所示,激发单元2包括:
高压电源201,用于输出不同电压的高压;
可控X射线激发源202,其与高压电源201电连接,用于根据高压电源201输出的不同高压输出能量连续可调的X射线,以使X射线与待测矿石样品发生相互作用,激发产生次级X射线。
以上实施例中,高压电源201采用电压在0~50kV范围内可调的电源;可控X射线激发源202采用输入电压和电流可调的X射线激发源;高压电源201和可控X射线激发源202采用现有市面上已知的高压电源和可控X射线激发源。通过调节高压,使可控X射线激发源输出能量连续可调的X射线,可激发矿石样品中的组成元素,以实现多元素测定的任务。
在一些实施例中,探测器3采用高能量分辨率的半导体探测器,实现对待测矿石样品的探测。此处所述高能量分辨率是指的在5.9keV处的分辨率不低于150eV。由于半导体探测器具有良好的能量分辨率,半高宽140eV(59keV处),此处具有较宽的能量线性范围;采用电制冷方式获得低温条件,与传统的液氮制冷探测器相比,使用简便。需要说明的是,本实施例中采用的半导体探测器为市面上已知的半导体探测器。
在一些实施例中,参见图1,信号处理单元4包括:
信号放大器401,其与探测器3连接,用于对探测器3探测的次级X射线进行放大整形;
多道脉冲幅度分析器402,其与信号放大器401连接,用于将放大后的次级X射线进行模数转换,并进行分类,得到次级X射线的计数及能量。
具体地,信号放大器和多道脉冲幅度分析器采用现有市面上已知的信号 放大器和多道脉冲幅度分析器。
本实施例上述矿石成分分析设备进行矿石成分分析时,其具体工作原理如下:
高压电源201输出不同电压的高压进而使可控X射线激发源202输出能量连续可调的X射线至待测矿石样品,不同能量的X射线与待测矿石样品发生相互作用,激发产生不同能量的次级X射线。探测器3探测次级X射线,并发送至信号放大器401,通过信号放大器401对探测的次级X射线进行放大整形后,由多道脉冲幅度分析器402进行模数转换并进行分类,得到不同能量次级X射线的计数及能量。匹配模块52将次级X射线能量与存储模块51中存储的已知元素对应的X射线能量进行匹配,根据匹配的X射线能量得到次级X射线发生概率及其对应元素。计数修正模块53根据次级X射线在空气中的衰减效率修正次级X射线的计数,利用寻峰模块54在修正后的次级X射线能量谱上寻峰,并求取每个峰的峰面积。计算模块55根据峰面积和元素次级X射线发生概率计算矿石样品中元素含量Pi。含量修正模块56利用标准矿石样品测量结果对计算的元素含量进行基体效应修正得到矿石样品中各元素的最终元素含量。矿石中各元素及各元素的含量值通过显示模块57进行显示,并通过物联网模块58将分析得到的矿石中各元素及各元素的含量值传输至外部数据监测平台(例如:本单位云平台、第三方平台等),根据成分分析结果实现矿石分级/脱泥等作业的控制,改变矿石加工产业目前的生产方式,提高生产效率。
本实施例上述矿石成分分析设备,设有计数修正模块53,根据X射线在空气中的衰减效率对次级X射线的计数进行修正,同时,设有含量修正模块53,利用标准矿石样品测量结果对计算的元素含量进行基体效应修正,使分析设备脱离真空泵的控制,实现在空气中的直接使用,从而能够直接应用于产线,简化矿石成分分析操作流程,节约了人力及时间成本,大大提高了生成效率。
本申请实施例的第二方面提供一种矿石成分分析方法,其包括以下步骤:
S1、发射能量连续可调的X射线至待测矿石样品,不同能量的X射线与待测矿石样品发生相互作用,激发产生不同能量的次级X射线;
S2、探测次级X射线,对次级X射线进行放大整形后并进行分类,得到不同能量次级X射线的计数及能量;
S3、将次级X射线能量与已知元素对应的X射线能量(例如:参见图3,图3中给出了部分元素对应的X射线能量)进行匹配,确定对应元素并得到次级X射线发生概率;
S4、根据次级X射线在空气中的衰减效率修正次级X射线的计数,得到修正后的次级X射线能量谱,在修正后的次级X射线能量谱上寻峰,并求取每个峰的峰面积;
S5、根据峰面积和次级X射线发生概率计算矿石样品中各元素含量,其中,元素i的含量Pi表示为:
式中,Ii为元素i的强度,Ai为元素i的峰面积,εi为元素i次级X射线发生概率,εj为探测X射线的器件对元素i次级X射线的本征探测效率;根据上述公式计算各元素含量;需要说明的是,探测器的本征探测效率为探测器已知的参数;
S6、利用标准矿石样品测量结果对计算的各元素含量进行基体效应修正得到矿石样品中各元素的最终含量。
在待测矿石样品上方设置有激发单元2(如:可控X射线激发源等)和探测器3(例如:半导体探测器等),通过激发单元2输出X射线并通过探测器3探测次级X射线。在一些实施例中,激发单元2、样品容纳装置1以及探测器3三者所形成的夹角为45°~135°,一方面能够确保待测矿石样品能够被X射线有效激发,另一方面能够使激发产生的次级X射线能够被探测器3充分吸收。需要说明的是,以上夹角可以根据实际需求进行选择,例如,可以是45°,也可以是135°,还可以是60°、90°、120°等。
在一些实施例中,修正次级X射线的计数的具体方法为:假设次级X射 线的能量为E,修正后的次级X射线的计数表示为:
y=x/ε1      (2),
其中,y表示修正后的次级X射线的计数,x表示能量为E的次级X射线的计数,ε1表示能量为E的次级X射线在1cm空气中的衰减效率,由实验测得。
在一些实施例中,在修正后的次级X射线能量谱上寻峰后,采用积分求取每个峰的峰面积。由于通过积分求取能量谱上峰面积为现有已知技术,此处不再对积分求取峰面积的具体过程进行赘述。
在一些实施例中,进行基体效应修正的具体步骤为:假定标准矿石样品中元素i的含量为A,通过公式(1)计算的标准矿石样品中元素i的含量为B,则待测矿石样品中元素i的最终含量PALi
例如:标准矿石样品中元素钾的浓度为10%,计算模块计算的元素钾的浓度为15%,是真实浓度的1.5倍,那么在测量非标准样品时,计算的浓度PK除以1.5得元素钾的最终含量。标准矿石样品中元素钙的浓度为10%,计算模块计算的元素钙的浓度为13%,是真实浓度的1.3倍,那么在测量非标准样品时,计算的浓度PGa除以1.3得元素钙的最终含量。
在一些实施例中,还可以通过改变待测矿石样品的角度实现对矿石样品的多角度测量(即多点测量)。具体地,通过旋转盛放待测矿石样品的样品容器102,使矿石样品随着样品容器102旋转,实现对矿石样品进行多点测量取平均值,解决样品内部各个元素分布不均匀导致的测量偏差,使得测量结果更加准确。对样品容器102旋转时,可以通过每隔设定时间T驱动样品容器102旋转设定角度α的方式实现对样品容器102旋转的自动控制,节省人力成本。例如:设定时间T=60s,设定角度α=180°,根据设定时间60s驱动样品容器102旋转180°,实现对样品的自动多点测量控制。需要说明的是,设定时间T和设定角度α可以根据实际需求进行设定,不限于设定时间为60s、设定角度为180°。
在一些实施例中,在步骤S6后还包括步骤S7:将矿石样品中各元素以及各元素的含量进行显示并上传至外部软件监测平台(例如:本单位云平台、第三方平台等),根据成分分析结果实现矿石分级/脱泥等作业的控制,改变矿石加工产业目前的生产方式,提高生产效率。
本实施例上述矿石成分分析方法,根据X射线在空气中的衰减效率对次级X射线的计数进行修正,同时,利用标准矿石样品测量结果对计算的元素含量进行基体效应修正,使分析设备脱离真空泵的控制,实现在空气中的直接使用,从而能够直接应用于产线,简化矿石成分分析操作流程,节约了人力及时间成本,大大提高了生成效率。
上述实施例用来解释本申请,而不是对本申请进行限制,在本申请的精神和权利要求的保护范围内,对本申请做出的任何修改和改变,都落入本申请的保护范围。

Claims (15)

  1. 一种矿石成分分析设备,其特征在于,包括:
    样品容纳装置,用于盛放待测矿石样品;
    激发单元,设于所述样品容纳装置上方,用于输出能量连续可调的X射线,以使所述X射线与所述待测矿石样品发生相互作用,激发产生次级X射线;
    探测器,设于所述样品容纳装置上方用于探测所述次级X射线;
    信号处理单元,其与所述探测器连接,用于对所述探测器探测的所述次级X射线进行放大整形后并进行分类,得到所述次级X射线的计数及能量;
    数据处理装置,其与所述信号处理单元连接,用于对经所述信号处理单元处理后的数据进行分析计算,其中,所述数据处理装置包括处理器以及存储器,所述处理器用于执行存储在存储器中的以下程序模块:
    存储模块,用于存储已知元素及元素对应X射线能量和X射线发生概率;
    匹配模块,用于将所述次级X射线能量与所述存储模块内所存储的已知元素对应的X射线能量进行匹配,以确定对应元素并得到所述次级X射线发生概率;
    计数修正模块,用于根据所述次级X射线在空气中的衰减效率修正所述次级X射线的计数,得到修正后的次级X射线能量谱;
    寻峰模块,在所述修正后的次级X射线能量谱上寻峰,并求取每个峰的峰面积;
    计算模块,根据所述峰面积和所述次级X射线发生概率计算矿石样品中各元素含量,其中,元素i的含量Pi表示为:
    式中,Ii为元素i的强度,Ai为元素i的峰面积,εi为元素i次级X射线发生概率,εj为所述探测器对元素i次级X射线的本征探测效率;
    含量修正模块,用于利用标准矿石样品测量结果对所述计算模块计算的各元素含量进行基体效应修正得到矿石样品中各元素的最终含量。
  2. 根据权利要求1所述的矿石成分分析设备,其特征在于,所述激发单元、所述样品容纳装置以及所述探测器三者所形成的夹角为45°~135°。
  3. 根据权利要求1所述的矿石成分分析设备,其特征在于,所述处理器还用于执行存储在所述存储器内的显示模块和物联网模块,所述显示模块和所述物联网模块分别与所述含量修正模块连接,所述显示模块用于显示元素最终含量,所述物联网模块用于与外部数据监测平台连接。
  4. 根据权利要求1所述的矿石成分分析设备,其特征在于,所述样品容纳装置包括:
    旋转件,所述激发单元与所述探测器位于所述旋转件上方;
    样品容器,放置于所述旋转件内,用于盛放所述待测矿石样品;
    驱动件,其具有一输出轴,所述输出轴与所述旋转件的底部轴接并可驱动所述旋转件旋转。
  5. 根据权利要求4所述的矿石成分分析设备,其特征在于,所述处理器还用于执行存储在所述存储器内的控制模块,所述控制模块与所述驱动件连接且用于控制所述驱动件每隔设定时间T驱动所述旋转件旋转设定角度α,以便所述探测器对所述待测矿石样品进行多点探测取平均值。
  6. 根据权利要求1所述的矿石成分分析设备,其特征在于,所述激发单元包括:
    高压电源,用于输出不同电压的高压;
    可控X射线激发源,与所述高压电源电连接,用于根据所述高压电源输出的不同高压输出能量连续可调的X射线,以使所述X射线与所述待测矿石样品发生相互作用,激发产生所述次级X射线。
  7. 根据权利要求1所述的矿石成分分析设备,其特征在于,所述信号处理单元包括:
    信号放大器,其与所述探测器连接,用于对所述探测器探测的所述次级X射线进行放大整形;
    多道脉冲幅度分析器,其与所述信号放大器连接,用于将放大后的所述 次级X射线进行模数转换,并进行分类,得到所述次级X射线的计数及能量。
  8. 根据权利要求1所述的矿石成分分析设备,其特征在于,所述计数修正模块修正次级X射线的计数的具体方法为:假设所述次级X射线的能量为E,修正后的次级X射线的计数表示为:
    y=x/ε1  (2),其中,y表示修正后的次级X射线的计数,x表示能量为E的次级X射线的计数,ε1表示能量为E的次级X射线在1cm空气中的衰减效率,由实验测得。
  9. 根据权利要求1所述的矿石成分分析设备,其特征在于,所述含量修正模块进行基体效应修正的具体步骤为:假定标准矿石样品中元素i的含量为A,所述计算模块计算的所述标准矿石样品中元素i的含量为B,则所述待测矿石样品中元素i的最终含量PALi为:
  10. 一种矿石成分分析方法,其利用如权利要求1所述的矿石成分分析设备进行分析,其特征在于,所述分析方法包括以下步骤:
    S1、发射能量连续可调的X射线至待测矿石样品,不同能量的X射线与所述待测矿石样品发生相互作用,激发产生不同能量的次级X射线;
    S2、探测所述次级X射线,对所述次级X射线进行放大整形后并进行分类,得到不同能量所述次级X射线的计数及能量;
    S3、将所述次级X射线的能量与已知元素对应的X射线能量进行匹配,确定对应元素并得到所述次级X射线发生概率;
    S4、根据所述次级X射线在空气中的衰减效率修正所述次级X射线的计数,得到修正后的次级X射线能量谱,在所述修正后的次级X射线能量谱上寻峰,并求取每个峰的峰面积;
    S5、根据所述峰面积和所述次级X射线发生概率计算矿石样品中各元素含量,其中,元素i的含量Pi表示为:
    式中,Ii为元素i的强度,Ai为元素i的峰面积,εi为元素i次级X射线发生概率,εj为探测X射线的器件对元素i次级X射线的本征探测效率;根据上述公式计算各元素含量;
    S6、利用标准矿石样品测量结果对计算的各元素含量进行基体效应修正得到矿石样品中各元素的最终含量。
  11. 根据权利要求10所述的矿石成分分析方法,其特征在于,在所述待测矿石样品上方设置有激发单元和探测器,通过所述激发单元输出X射线并通过所述探测器探测次级X射线,所述激发单元、所述样品容纳装置以及所述探测器三者所形成的夹角为45°~135°。
  12. 根据权利要求10所述的矿石成分分析方法,其特征在于,步骤S4中,修正次级X射线的计数的具体方法为:假设所述次级X射线的能量为E,修正后的所述次级X射线的计数表示为:
    y=x/ε1  (2),其中,y表示修正后的所述次级X射线的计数,x表示能量为E的次级X射线的计数,ε1表示能量为E的次级X射线在1cm空气中的衰减效率,由实验测得。
  13. 根据权利要求10所述的矿石成分分析方法,其特征在于,步骤S6中,进行基体效应修正的具体步骤为:假定标准矿石样品中元素i的含量为A,通过公式(1)计算的标准矿石样品中元素i的含量为B,则待测矿石样品中元素i的最终含量PALi
  14. 根据权利要求10所述的矿石成分分析方法,其特征在于,在步骤S1中,通过改变待测矿石样品的角度实现对矿石样品的多角度测量。
  15. 根据权利要求10所述的矿石成分分析方法,其特征在于,在步骤S6后还包括步骤S7:将矿石样品中各元素以及各元素的含量进行显示并上传至外部软件监测平台。
PCT/CN2023/072483 2023-01-17 2023-01-17 矿石成分分析设备及方法 WO2023236540A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/072483 WO2023236540A1 (zh) 2023-01-17 2023-01-17 矿石成分分析设备及方法
US18/401,182 US11953455B1 (en) 2023-01-17 2023-12-29 Ore component analysis device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/072483 WO2023236540A1 (zh) 2023-01-17 2023-01-17 矿石成分分析设备及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/401,182 Continuation-In-Part US11953455B1 (en) 2023-01-17 2023-12-29 Ore component analysis device and method

Publications (1)

Publication Number Publication Date
WO2023236540A1 true WO2023236540A1 (zh) 2023-12-14

Family

ID=89117487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072483 WO2023236540A1 (zh) 2023-01-17 2023-01-17 矿石成分分析设备及方法

Country Status (2)

Country Link
US (1) US11953455B1 (zh)
WO (1) WO2023236540A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130931A (en) * 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
US7796726B1 (en) * 2006-02-14 2010-09-14 University Of Maryland, Baltimore County Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation
CN112213342A (zh) * 2020-09-30 2021-01-12 莆田海关综合技术服务中心 一种矿石中元素含量的便携式分析检测系统
CN113155809A (zh) * 2021-03-12 2021-07-23 北京理工大学 一种矿石分类与实时定量分析的光谱检测新方法
US20210244374A1 (en) * 2018-07-30 2021-08-12 Xenselab Llc Apparatus and methods for x-ray imaging
CN115763616A (zh) * 2023-01-06 2023-03-07 威海栖桐科技发展有限公司 X射线探测器、在线矿石成分分析设备及方法
CN116297602A (zh) * 2023-01-06 2023-06-23 威海栖桐科技发展有限公司 X射线荧光分析修正方法及在线矿石成分分析方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190961A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd 分析データ解析方法及び装置
JP4956701B2 (ja) * 2007-07-28 2012-06-20 エスアイアイ・ナノテクノロジー株式会社 X線管及びx線分析装置
CN103278485A (zh) 2013-05-16 2013-09-04 清华大学 一种固体物料中硫成分的快速检测方法及其检测装置
US10697953B2 (en) * 2014-06-18 2020-06-30 Texas Tech University System Portable apparatus for liquid chemical characterization
US11340207B2 (en) * 2017-08-16 2022-05-24 Schlumberger Technology Corporation Method and installation for determining an improved mineralogical composition of a rock sample
EP3956811A4 (en) * 2019-04-15 2023-01-11 Security Matters Ltd. SAMPLE CLASSIFICATION METHOD AND SYSTEM
JP6944730B2 (ja) * 2020-02-12 2021-10-06 株式会社リガク 定量分析方法、定量分析プログラム及び蛍光x線分析装置
WO2022076515A1 (en) * 2020-10-06 2022-04-14 Baker Hughes Oilfield Operations Llc Data-driven solution for inverse elemental modeling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130931A (en) * 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
US7796726B1 (en) * 2006-02-14 2010-09-14 University Of Maryland, Baltimore County Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation
US20210244374A1 (en) * 2018-07-30 2021-08-12 Xenselab Llc Apparatus and methods for x-ray imaging
CN112213342A (zh) * 2020-09-30 2021-01-12 莆田海关综合技术服务中心 一种矿石中元素含量的便携式分析检测系统
CN113155809A (zh) * 2021-03-12 2021-07-23 北京理工大学 一种矿石分类与实时定量分析的光谱检测新方法
CN115763616A (zh) * 2023-01-06 2023-03-07 威海栖桐科技发展有限公司 X射线探测器、在线矿石成分分析设备及方法
CN116297602A (zh) * 2023-01-06 2023-06-23 威海栖桐科技发展有限公司 X射线荧光分析修正方法及在线矿石成分分析方法

Also Published As

Publication number Publication date
US11953455B1 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
CN101949852B (zh) 一种基于光谱标准化的煤质在线检测方法
CN103837558B (zh) 一种基于pgnaa技术的水溶液中多元素成分及含量检测装置及检测方法
CN108693204B (zh) 一种钾盐成分在线检测装置
CN101788508A (zh) 矿浆品位在线测量装置
CN105651801B (zh) 一种矿浆矿物在线分析方法
CN102095744A (zh) 一种三能煤炭灰分在线监测装置
CN108680592B (zh) 一种钾盐成分在线检测方法
WO2023236540A1 (zh) 矿石成分分析设备及方法
CN104614283A (zh) 一种金属材料热处理加工过程中的所对应物相变化的分析方法
CN103196935B (zh) 台架实验1ap中铀钚在线测量装置
CN103954691B (zh) 一种材料成分分数无损检测方法
CN103293175A (zh) 测定液体水玻璃化学成分的方法
CN111272686A (zh) 铁矿石选矿粉铁品位的高光谱检测方法
CN201233392Y (zh) 废水中多种重金属元素的实时在线检测装置
CN114636687A (zh) 基于深度迁移学习的小样本煤质特性分析系统及方法
CN115763616B (zh) X射线探测器、在线矿石成分分析设备及方法
CN109632854B (zh) 一种双探测结构的块状铀矿多元素在线x荧光分析仪
CN110927193B (zh) 一种基于深度学习的煤质在线检测分析系统及方法
CN116297602A (zh) X射线荧光分析修正方法及在线矿石成分分析方法
CN204008454U (zh) 用于检测贮藏稻谷中霉菌指标的便携式近红外光谱分析仪
CN116500017A (zh) 一种激光诱导击穿光谱免标样定量方法及系统
CN216646229U (zh) 一种顺序式多通道盐湖卤水成分在线检测装置
CN103837559B (zh) 多靶扫描式快速测硫仪
CN212255134U (zh) Mz-1型中子在线煤质分析仪
CN208366879U (zh) 一种钾盐成分在线检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818708

Country of ref document: EP

Kind code of ref document: A1