WO2023236343A1 - 图传设备 - Google Patents

图传设备 Download PDF

Info

Publication number
WO2023236343A1
WO2023236343A1 PCT/CN2022/110923 CN2022110923W WO2023236343A1 WO 2023236343 A1 WO2023236343 A1 WO 2023236343A1 CN 2022110923 W CN2022110923 W CN 2022110923W WO 2023236343 A1 WO2023236343 A1 WO 2023236343A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
transmission device
signal
image transmission
chip
Prior art date
Application number
PCT/CN2022/110923
Other languages
English (en)
French (fr)
Inventor
刘德志
彭文彬
Original Assignee
深圳市昊一源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市昊一源科技有限公司 filed Critical 深圳市昊一源科技有限公司
Publication of WO2023236343A1 publication Critical patent/WO2023236343A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • This specification relates to the field of communication technology, and in particular to an image transmission device.
  • Wireless image transmission equipment is usually used in film and television shooting, short video shooting, live broadcast and other fields.
  • the camera is usually connected to a wireless image transmission transmitting device, and the video collected by the camera is sent to a wireless image transmission receiving device through the wireless image transmission transmitting device.
  • the wireless image transmission receiving device can be connected to the director's monitor or The video production side monitor will then receive the video and display it through the monitor.
  • the wireless image transmission transmitting device can only be used for video sending scenarios, and the wireless image transmission receiving device can only be used for video receiving scenarios.
  • the wireless image transmission transmitting device can only be used for video sending scenarios, and the wireless image transmission receiving device can only be used for video receiving scenarios.
  • users need to separately Purchasing wireless image transmission transmitting equipment and wireless image transmission receiving equipment is not flexible enough and the cost is high.
  • this specification provides an image transmission device.
  • a video transmission device including a wireless communication unit and a video transceiver unit connected to each other:
  • the wireless communication unit is configured to wirelessly connect with a first external device when the image transmission device is in a sending mode, and send a video signal to be sent to the first external device; when the image transmission device is in a sending mode In the case of receiving mode, wirelessly connect with the second external device, receive the first video source signal from the second external device, and send it to the video transceiver unit;
  • a video transceiver unit configured to configure itself into decoding mode when receiving a switching instruction to switch the image transmission device to receiving mode, and decode the first video source signal to process it into a signal to be displayed. After receiving the switching instruction to switch the image transmission device to the sending mode, it configures itself into the encoding mode, encodes the second video source signal into the video signal to be sent, and sends it to the video signal to be sent.
  • the wireless communication unit configured to configure itself into decoding mode when receiving a switching instruction to switch the image transmission device to receiving mode, and decode the first video source signal to process it into a signal to be displayed. After receiving the switching instruction to switch the image transmission device to the sending mode, it configures itself into the encoding mode, encodes the second video source signal into the video signal to be sent, and sends it to the video signal to be sent.
  • the video transceiver unit of the image transmission device has both the functions of encoding and decoding video
  • the wireless communication unit can realize the transceiver of video data through wireless means, and can realize the video transceiver unit through software configuration.
  • Function switching with the wireless communication unit allows the image transmission device to be used as both a wireless image transmission transmitting device and a wireless image transmission receiving device. It can be used for multiple purposes in one machine and is suitable for different scenarios. It can save costs and can be used through Software configuration enables switching of the working mode of the image transmission equipment, making it more flexible.
  • Figure 1 is a schematic diagram of a film and television shooting scene according to an embodiment of this specification.
  • Figure 2(a) is a schematic structural diagram of a video transmission device according to an embodiment of this specification.
  • Figure 2(b) is a schematic structural diagram of a video transmission device according to an embodiment of this specification.
  • Figure 2(c) is a schematic diagram of a video transmission device implementing video loop-out according to an embodiment of this specification.
  • Figure 3(a) is a schematic data flow diagram of a video transmission device in receiving mode according to an embodiment of this specification.
  • Figure 3(b) is a schematic data flow diagram of a video transmission device in a sending mode according to an embodiment of this specification.
  • Figure 4 is a schematic structural diagram of a video transmission device according to an embodiment of this specification.
  • Figure 5 is a schematic diagram of a video transmission device outputting a first video source signal or a second video source signal to a cable video receiving device according to an embodiment of this specification.
  • Figure 6(a) and Figure 6(b) are schematic diagrams of the data flow of a video transmission device in sending mode and receiving mode respectively according to the embodiment of this specification.
  • Figure 7 is a schematic structural diagram of a video transmission device according to an embodiment of this specification.
  • 8(a) and 8(b) are schematic diagrams of the data flow of a video transmission device in sending mode and receiving mode respectively according to the embodiment of this specification.
  • first, second, third, etc. may be used in this specification to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • Wireless image transmission equipment and various monitors are usually used in film and television shooting, short video shooting, live broadcast and other fields.
  • Figure 1 is a schematic diagram of a film and television shooting scene
  • the camera 10 can be connected to the wireless image transmission transmitting device 11, and the video stream collected by the camera 10 is sent to the wireless image transmission receiving device 12 through the wireless image transmission transmitting device 11.
  • the image transmission receiving device 12 is generally installed elevated in the director's working area, and can be connected to the director's monitor or the monitor 13 at the video production end, and then displays the received video through the monitor 13 .
  • a monitor 14 usually needs to be connected to the camera 10 for the photographer to view the captured video in real time. It can be seen that in a general shooting scene, a wireless image transmission transmitting device and a monitor are usually required at the video sending end, and a wireless image transmission receiving device and monitor are required at the video receiving end.
  • wireless image transmission transmitting equipment and wireless image transmission receiving equipment are two independent devices. That is, the wireless image transmission transmitting equipment can only be used as a video sender, and its function is only designed based on the needs of the video sender. The transmission and reception equipment can only be used as a video receiver, and its functions are only designed based on the needs of the video receiver, which is not flexible enough. If the wireless image transmission device needs to be used in two application scenarios, the video transmitter and the video receiver, the user needs to purchase two sets of equipment respectively, which is costly.
  • an image transmission device that has the functions of both a video transmitter and a video receiver. Users can flexibly configure the working mode of the image transmission device according to their needs, that is, the sending mode and the receiving mode.
  • the image transmission device can be used as a wireless image transmission transmitting device or a wireless image transmission receiving device to meet the usage requirements of different application scenarios.
  • the image transmission device 20 includes a wireless communication unit 21 and a video transceiver unit 22 connected in sequence.
  • the image transmission device 20 includes two working modes: a sending mode and a receiving mode.
  • the sending mode the image transmission device can be used as a wireless image transmission transmitting device, that is, it can send video to the video receiving end through wireless transmission.
  • receiving mode the image transmission device can be used as a wireless image transmission receiving device, that is, it can receive video from the video sending end through wireless transmission.
  • the image transmission device 20 includes a human-computer interaction component, through which a user-triggered switching instruction for switching the working mode of the image transmission device 20 can be obtained to implement the work of the image transmission device 20 Mode switches between transmit mode and receive mode.
  • the human-computer interaction component may be a physical button set in the image transmission device 20 or a functional control set in the display screen of the image transmission device 20. The user can switch between the above two working modes by triggering the physical button or functional control.
  • the image transmission device 20 can also integrate a voice control function, and the user can switch between the above two working modes through voice control.
  • the working mode switching method can be set based on actual needs, and there is no restriction on the implementation of this application.
  • the embodiment of the present application can configure the image transmission device 20 into the sending mode or the receiving mode through software configuration, so that the working mode switching of the image transmission device 20 is more flexible.
  • each functional component of the image transmission device 20 can be configured into the functional mode required in the receiving mode through a software program, such as switching the video transceiver unit 22 to the decoding mode, and selecting Video transmission path in pass reception mode, etc.
  • a software program such as switching the video transceiver unit 22 to the decoding mode, and selecting Video transmission path in pass reception mode, etc.
  • the image transmission device 20 is in the sending mode, so that the image transmission device 20 can work in the above two working modes.
  • the solid arrow in FIG. 2(a) shows a schematic diagram of the data processing flow when the image transmission device 20 is in the sending mode.
  • the video transceiver unit 22 receives a user-triggered switching instruction to switch the image transmission device 20 to the sending mode, it can configure its own working mode to the encoding mode.
  • the video transceiver unit 22 After the video transceiver unit 22 is configured in the encoding mode, it can encode the second video source signal, process the second video source signal into a video signal to be sent, and output it to the wireless communication unit 21 .
  • the video transceiver unit 22 when the video transceiver unit 22 is configured in the encoding mode, it can also perform some other processing on the second video source signal that is required when the image transmission device 20 is in the sending mode. It is not limited to encoding processing. The specific processing method can be Set based on actual needs.
  • the wireless communication unit 21 can be wirelessly connected to the first external device 30 as the video receiving end, and then send the video signal to be sent to the first external device 30 through wireless transmission.
  • the second video source signal may be a video signal received by the image transmission device 20 from an external device in a wired or wireless manner, such as a signal received from a camera, or the second video source signal may also be a video signal received by the image transmission device 20
  • the embodiment of this application does not limit the locally stored video signals.
  • the dotted arrow in FIG. 2(a) shows a schematic diagram of the data processing flow when the image transmission device 20 is in the receiving mode.
  • the video transceiver unit 22 receives a user-triggered switching instruction to switch the image transmission device 20 to the receiving mode, it can configure its own working mode to the decoding mode.
  • the wireless communication unit 21 can be wirelessly connected to the second external device 40 as the video sending end, receive the first video source signal from the second external device 40 and output it to the video transceiver unit 22 .
  • the video transceiver unit 22 may have a decoding function at this time, decode the received first video source signal, process the first video source signal into a video signal to be displayed, and output it.
  • the video transceiver unit 22 when the video transceiver unit 22 is in the decoding mode, in addition to decoding the first video source signal, it can also perform some other processing based on actual needs, such as format conversion, image quality processing, etc.
  • the wireless image transmission transmitting equipment, the monitor at the video sending end, the wireless image transmission receiving equipment, and the monitor at the video receiving end are mostly four independent devices with independent functions.
  • a complete set of the above video transmission system is set up at the shooting scene. It will be more cumbersome, and during the shooting process, the director usually needs to move around the shooting site and schedule work.
  • the current video receiving end equipment cannot meet the director's need to flexibly monitor the video.
  • the image transmission equipment In order to allow the image transmission equipment to be used as both a video sender and a video receiver, it can also function as a monitor to meet the video monitoring needs of the video sender or video receiver.
  • the image transmission device 20 further includes a display unit 23.
  • the solid arrow in FIG. 2(b) shows a data processing flow chart when the image transmission device 20 is in the sending mode. Since the video sending end usually also has the need to display the video signal to be sent to the user for viewing by the user, for example, during the video shooting process, the photographer also needs to view the video captured by the camera in real time. Therefore, in the sending mode, the video transceiver unit 22 is also used to process the second video source signal into a video signal to be displayed for display by the display unit 23 . For example, the video transceiver unit 22 can perform format conversion, image quality processing and other related processing on the second video source signal, and then output it to the display unit 23 for display. Of course, the specific processing method can be set based on actual needs.
  • the dotted arrow in FIG. 2(b) shows a schematic diagram of the data processing flow when the image transmission device 20 is in the receiving mode.
  • the video transceiver unit 22 may decode the received first video source signal, process the first video source signal into a video signal to be displayed, and output it to the display unit 23 .
  • the video receiving end usually also needs to display the received video signal to the user so that the user can view the received video. Taking a shooting scene as an example, the director usually needs to move around the scene and schedule work on the scene based on the collected video.
  • 23 users can carry the image transmission device 20 around and receive and view videos in real time, meeting the need for flexible video monitoring.
  • the image transmission device 20 when the image transmission device 20 is in the sending mode and the receiving mode, whether it has the function of displaying video can be set based on actual needs. For example, in some scenarios, it can only have the function of displaying video in the receiving mode. In some scenarios, it can only have the function of displaying the video in the sending mode. In some scenes, it can have the function of displaying the video in both the sending mode and the receiving mode. Function.
  • the wireless communication unit 21 and the first external device 30 or the second external device 40 can be connected through various wireless communication methods, such as wifi, Bluetooth or some customized wireless communication protocols, which are not limited by the embodiments of this application.
  • the wireless communication unit 21 may be a functional module with wireless transceiver function, or it may be an independent chip.
  • the wireless communication unit 21 may be a wifi module or the like.
  • the video transceiver unit 22 can be a functional module with video encoding and decoding functions, video transmission functions, and video analysis and processing functions, or it can be an independent chip, or it can also be obtained by a combination of multiple chips, for example, a video transceiver unit 22 can be a SOC chip that integrates the above functions, or the video transceiver unit 22 can also be obtained by combining multiple chips, each chip undertakes part of the above functions, etc.
  • the display unit 23 may be a display with a display function, such as an LCD display screen, an LED display screen, etc.
  • the video transceiver unit 22 of the image transmission device 20 in the embodiment of the present application has both the functions of receiving and transmitting video, and the wireless communication unit 21 can realize the sending and receiving of video data in a wireless manner, so that the image transmission device can be used for multiple purposes. It can be used as a wireless image transmission transmitting device and a wireless image transmission receiving device, suitable for different scenarios.
  • the image transmission device 20 is also integrated with a display unit 23. Regardless of whether the image transmission device 20 is used as a transmitting device or a receiving device, it can have the function of a monitor, which can facilitate the user to monitor the video or video sent by the image transmission device 20 anytime and anywhere. The video received is very flexible and convenient.
  • the wireless communication unit 21 may be a wifi communication unit.
  • the wifi communication unit includes two modes, AP (Access Point: Wireless Access Point) mode and Station mode. Therefore, the video transceiver unit 22 is also used to configure the mode of the wireless communication unit 21. For example, when the video transmission device 20 is in the sending mode, the video transceiver unit 22 can configure the wireless communication unit 21 into AP mode or Station mode according to the actual needs of the product. Similarly, when the image transmission device 20 is in the receiving mode, the wireless communication unit 21 can also be configured in AP mode or Station mode according to needs.
  • the image transmission device 20 is in the sending mode, that is, when used as a wireless image transmission transmitting device, since the video receiving end may be a mobile phone or other device that is fixedly in the Station mode, the image transmission device 20 needs to be used as an interface for the wireless network. entry point, therefore, the video transceiver unit 22 can switch the wireless communication unit 21 to the AP mode. When the video transmission device 20 is in the receiving mode, the video transceiver unit 22 can switch the wireless communication unit 21 to the station mode.
  • the video transceiver unit 22 is also used to connect with a wired video source, and the second video source signal includes a wired video source signal received from the wired video source.
  • the video transceiver unit 22 may include a video input interface, such as an HDMI interface, an SDI interface, a DP interface, etc., and is connected to a wired video source (such as a camera, etc.) through the video input interface, and then receives the third video signal from the wired video source. Two video source signals and sent to the video receiving end.
  • the video transceiver unit 22 is also used to generate an OSD signal.
  • the video signal to be displayed includes a first video source signal or a second video source signal each superimposed on the generated OSD signal.
  • the video transceiver unit 22 receives the first video source signal from the second external device 40 through the wireless communication unit 21, it can generate a corresponding OSD signal, and then superimpose the OSD signal and the first video source signal to obtain the video to be displayed. The signal is then sent to the display unit 23 for display.
  • the video transceiver unit 22 can also generate a corresponding OSD signal, and then superimpose it on the second video source signal to obtain a video signal to be displayed, and then send it to the display unit 23 for display.
  • the image transmission device 20 when the image transmission device 20 is in the receiving mode, after the image transmission device 20 receives the first video source signal from the second external device 40, it can also output it to other devices.
  • the image transmission device 20 when the image transmission device 20 is used as a wireless image transmission receiving device, after it receives the video collected by the camera, in addition to displaying it to the director through the monitor, it may also need to send it to the video production end for post-production. video production.
  • the video transceiver unit 22 may also include a video output interface, such as an HDMI interface, an SDI interface, a DP interface, etc., and then be connected to a wired video receiving device (such as a video production end device) through the video output interface, and receive the The first video source signal is sent to the cable video receiving device.
  • a video output interface such as an HDMI interface, an SDI interface, a DP interface, etc.
  • the image transmission device 20 can also send it to other video receiving terminals, such as mobile phones, through wireless transmission, so as to facilitate sending the received video to different users. Multiple people can view the received video at the same time.
  • the image transmission device 20 when the image transmission device 20 is in the sending mode, after acquiring the second video source signal, the image transmission device 20 can also send it to the wired video receiving end through the video output interface to realize the video loop-out function.
  • the video transceiver unit 22 in a film and television shooting scene, after the image transmission device 20 obtains the video collected by the camera, in addition to sending the video to the first external device 30 through wireless transmission, it may also need to output it to Other devices located on the photographer's side, therefore, the video transceiver unit 22 can output the acquired video to the wired video receiving device 70 through the video output interface.
  • the video transceiver unit 22 includes a main control chip 221 and a video transmission chip 222 connected to each other.
  • the video transmission chip 222 may include two video input interfaces. , namely the first video input interface 222a and the second video input interface 222b, and two video output interfaces, namely the first video output interface 222c and the second video output interface 222d.
  • the first video input interface 222a is used to connect to an external video source so as to receive video signals from the external video source.
  • the video transmission chip 222 can be connected to a first wired video source (such as a camera, etc.) through the first video input interface 222a, and receive a first wired video source signal from the first wired video source.
  • the second video input interface 222b is used to connect with the main control chip 221 to receive video from the main control chip 221 .
  • the first video output interface 222c is used to connect with the main control chip 221 so as to output video to the main control chip.
  • the second video output interface 222d is used to connect with the display unit 23 so as to output the video signal to be displayed to the display unit 23.
  • FIG. 3(a) it is a schematic diagram of the data flow when the image transmission device 20 is in the receiving mode.
  • the main control chip 221 After the main control chip 221 receives the switching instruction to switch the image transmission device 20 to the receiving mode, the main control chip 221 can Its own working mode is configured as decoding mode, and the wireless communication unit 21 is configured as Station mode. After the main control chip 221 completes the mode configuration, the strobe status of the input/output interface in the video transmission chip 222 will also change with the mode. And change accordingly.
  • the main control chip 221 can decode the first video source signal received from the second external device 40 through the wireless communication unit 21, and then transmit the first video source signal through the second video input interface 222b. The signal is sent to the video transmission chip 222.
  • the video transmission chip 222 is used to output the first video source signal through the second video output interface 222d, so as to display the first video source signal through the display unit 23.
  • the video transmission chip 222 can directly output the first video source signal to the display unit 23, or it can also output the first video source signal to other functional units first, and then perform related processing on the first video source signal through other functional units. After processing, it is processed into a video signal to be displayed that can be displayed by the display unit 23 , and then transmitted to the display unit 23 .
  • FIG. 3(b) it is a schematic diagram of the data flow when the image transmission device 20 is in the sending mode.
  • the main control chip 221 receives the switching instruction to switch the image transmission device 20 to the sending mode, it can configure itself to encode mode, and configure the wireless communication unit 21 into the Ap mode.
  • the gating status of the input/output interface in the video transmission chip 222 will also change accordingly with the mode change.
  • the video transmission chip 222 can receive the first wired video source signal from the first wired video source 50 (such as a camera, etc.) through the first video input interface 222a, and then output the first wired video source signal through the first video output interface 222c.
  • the main control chip 222 can perform relevant processing on the first wired video source signal based on actual usage requirements to obtain the above-mentioned second video source signal, and encode and process the second video source signal into a video signal to be sent, Sent to the first external device 30 through the first wireless unit 21 .
  • the main control chip 222 can output the second video source signal to the video transmission chip 222 through the second video input interface 222b, and the video transmission chip 222 outputs the second video source signal through the second video output interface 222d for the display unit. 23 displayed.
  • the video transmission chip 222 can directly output the second video source signal to the display unit 23, or it can also output the second video source signal to other functional units first, and then perform related processing on the second video source signal through other functional units. After processing, it is processed into a signal to be displayed that can be displayed by the display unit 23 , and then transmitted to the display unit 23 .
  • the main control chip 221 can perform some preprocessing on the video to be displayed before displaying it. Therefore, the first video source signal or the second video source signal may be a signal preprocessed by the main control chip 221 , and the video signal to be displayed is preprocessed by the main control chip 221 so that any of the following can be implemented on the display unit 23 .
  • One function mask mark, picture zoom, partial magnification, picture movement, picture freezing, vertical left and right flip, nine-square grid, etc.
  • the main control chip 221 can perform some preprocessing on the video before displaying it to realize the auxiliary function of the display. Therefore, after the video transmission chip 222 obtains the first wired video source signal from the first wired video source 50, it can first send the first wired video source signal to the main control chip 221, and wait for the main control chip 221 to respond to the first wired video source signal. The signal is preprocessed to obtain the second video source signal, and then the second video source signal is transmitted to the video transmission chip 222 through the second video input interface 222b, and then the video transmission chip 222 outputs it through the second video output interface 222d. for display by the display unit 23.
  • the video transmission chip 222 also includes a third video input interface 222e
  • the video transceiver unit 22 also includes a video format conversion unit 23
  • the video format conversion unit 222e is used to receive the second wired video source signal from the second wired video source 60, convert it into a format supported by the third video input interface 222e, and then convert the format-converted second wired video source signal through The third video input interface 222e is sent to the video transmission chip 222.
  • the video transmission chip 222 can send the format-converted second wired video source signal to the main control chip 221 through the first video output interface 222c, so that the main control chip 221 generates the second wired video source signal based on the format-converted second wired video source signal.
  • the two video source signals are then sent through the wireless communication unit 21 and displayed through the display unit 23 .
  • the image transmission device 20 also needs to send the video to be sent or the received video to other devices to display or process the video on other devices.
  • the video transmission chip 222 also includes a third video output interface 222f, which is used to transmit the first video source signal (the data flow direction indicated by the solid arrow in the figure) or the second video source signal (such as The data flow direction indicated by the dotted arrow in the figure) is output to the cable video receiving device 70.
  • the first video input interface 222a, the second video input interface 222b, and the third video input interface 222e may be HDMI interfaces
  • the first video output interface 222c, the second video output interface 222d, and the third video input interface 222e may be HDMI interfaces.
  • the output interface 222f may also be an HDMI interface. Since there are multiple input/output interfaces in the video transmission chip 222, and when the image transmission device 20 is in different working modes, different input/output interfaces need to be in working state, that is, different input/output interfaces are gated. In order to manage the working status of these multiple input/output interfaces, the video transmission chip 222 can be equipped with a gating matrix.
  • the gating matrix is used to configure the video output interface corresponding to each video input interface.
  • the strobe status of each input/output interface in the video transmission chip 222 can automatically change based on the switching of the working mode of the main control chip 221 .
  • the main control chip 221 receives a switching instruction to switch the video transmission device 20 to the receiving mode, the main control chip 221 can configure itself to the decoding mode.
  • the second video input interface 222b, 222b, and 222b can be automatically selected.
  • the second video output interface 222d and the third video output interface 222f corresponding to the input interface realize the functions of the image transmission device 20 receiving video, displaying the received video to the user through the display unit 23, and outputting the received video to the user. Functionality of other devices.
  • the main control chip 221 can configure itself to connect to the encoding mode.
  • the first video input interface 222a can be automatically selected.
  • the third video input interface 222e, the first video output interface 222c corresponding to the above two input interfaces, as well as the second video input interface 222b and the third video output interface 222f realize the video transmission device 20 to send video, and through the display unit 23.
  • the video transmission chip 221 may be an HDMI matrix chip.
  • the first video input interface 222a, the second video input interface 222b, and the third video input interface 222e may be HDMI interfaces
  • the first video output interface 222c, the second video output interface 222d, and the third video input interface 222e may be HDMI interfaces.
  • the output interface 222f may also be an HDMI interface.
  • the first wired video source 50 is an HDMI wired video source
  • the second wired video source 60 is an SDI wired video source.
  • the format conversion unit 223 is used to convert the second wired video source signal into HDMI. format signal.
  • the video to be sent or received by the video transmission device 20 when the video to be sent or received by the video transmission device 20 is displayed through the display unit 23 , the video can be processed through a specialized video processing chip into a video that can be displayed by the display unit 23 .
  • the video format that the display unit 23 can display is the MIPI format. Therefore, the video can be converted into a video format supported by the display unit 23 through the video processing chip, and other video analysis and processing work can be performed.
  • Figures 6(a) and 6(b) respectively show a schematic diagram of the data processing flow when the image transmission device 20 is in the sending mode or the receiving mode.
  • the video transceiver unit 22 may also include a video processing chip 224 .
  • the main control chip 221 can also be used to generate OSD signals.
  • the video processing chip 224 can be connected to the main control chip 221 for receiving the OSD signal from the main control chip 221 .
  • the video processing chip 224 can be connected to the video transmission chip 222 and the display unit 23 respectively, receive the first video source signal or the second video source signal from the video transmission chip 222, and then transmit the first video source signal or the second video source signal to the video processing chip 222.
  • the video signal and the OSD signal are superimposed to generate a video signal to be displayed, and are sent to the display unit 23 .
  • the main control chip 221 may include at least one video input interface for connecting to the first video output interface 222c of the video transmission chip 222 or the output interface of the wireless communication unit 21 . It may also include at least one video output interface for connecting to the second video input interface 222b of the video transmission chip 222 or to the input interface of the wireless communication unit 21 . It may also include at least one OSD signal interface for connecting to the input interface of the video processing chip 224 and outputting the generated OSD signal to the video processing chip 224 .
  • the video processing chip 224 Since after transmitting the first video source signal or the second video source signal to the video processing chip 224, the video processing chip 224 needs to analyze and process the above video source signal, if the main control chip 221 first combines the above video source signal with the OSD After the signals are superimposed and then sent to the video processing chip 224, the video processing chip 224 needs to separate the first video source signal or the second video source signal from the superimposed signal before analyzing, which is very cumbersome.
  • the first video source signal or the second video source signal and the OSD signal can be sent to the video processing chip in two ways. 224, thereby facilitating the video processing chip 224 to analyze and process the first video source signal or the second video source signal, and then perform subsequent superposition processing.
  • the video transceiver unit 22 Since the video transceiver unit 22 needs to implement multiple functions such as video encoding and decoding and video processing, it has many processing tasks. Therefore, another microcontroller can be added to the image transmission device as a co-processor, and the microcontroller can be used to perform some tasks that require high timeliness or manage peripheral devices, such as the function of the power button and initialization of the video transceiver unit 22 Configuration etc. Therefore, in some embodiments, as shown in FIG. 7 , the video transmission device 20 may also include a microcontroller 24 , through which the video transceiver unit 22 is initialized and configured.
  • the microcontroller 24 can also implement the power button function of the image transmission device.
  • the power button can be set to standby function. For example, long pressing the power button can turn on the image transmission device 20, and short pressing the power button can make the image transmission device 20 enter the standby state. After entering the standby state, the video transceiver unit 22 stops working. Enter hibernation state. In order to prevent the user from accidentally touching the power button during the switching of the working mode of the image transmission device 20, the image transmission device 20 enters a standby state, that is, the video transceiver unit 22 stops working, resulting in failure to switch the working mode.
  • the video transceiver unit 22 can first control the function of the power button of the microcontroller to be in a disabled state, so that during the working mode switching process, even if the user accidentally touches the power button, the working mode will not be affected. Switching has an impact. After the working mode switch is completed, the function of the power button can be restored.
  • the wireless image transmission transmitting equipment can only be used to send videos, and the wireless image transmission receiving equipment can only be used to receive videos. They are not flexible enough and can be used regardless of the video sending scenario or the video receiving scenario. There is a need to monitor videos, and current wireless image transmission equipment cannot meet the needs in various application scenarios.
  • FIG. 8(a) and 8(b) it is a schematic structural diagram of the image transmission device 30 provided by the embodiment of the present application.
  • the image transmission device 30 includes a wifi module 31.
  • the wifi module 31 has a video transceiver function and is used to receive videos from external devices or send videos to external devices.
  • the image transmission device 30 also includes a SOC chip 32 connected to the wifi module 31.
  • the SOC chip 32 has a video encoding and decoding function and can be used to preprocess the video and generate OSD signals.
  • the image transmission device 30 also includes an HDMI matrix chip 33 connected to the SOC chip 32.
  • the HDMI matrix chip 33 includes 3 HDMI input interfaces (HDMI input interface 1, HDMI input interface 2, HDMI input interface 3) and 3 HDMI output interfaces ( HDMI output interface 1, HDMI output interface 2, HDMI output interface 3).
  • the HDMI matrix chip 33 also includes a strobe matrix for managing the working status of the above-mentioned HDMI input and output interfaces and configuring the image transmission device 30 to be in different states.
  • the HDMI output interface corresponding to each HDMI input interface in working mode.
  • the image transmission device 30 also includes a format conversion FPGA chip 34 connected to the HDMI matrix chip 33 for converting the received SDI format video into HDMI format video and then inputting it to the HDMI matrix chip 33 .
  • the image transmission device 30 also includes a video processing PFGA chip 35 connected to the SOC chip 32 and the HDMI matrix chip 33 respectively.
  • the video processing PFGA chip 35 is used to receive OSD signals from the SOC chip 33 and to receive signals to be sent from the HDMI matrix chip 33.
  • the video signal or the received video signal is superposed and processed by the two signals and then output to the display screen 37 for display.
  • the image transmission device 30 also includes a microcontroller 36 connected to the SOC chip 32.
  • the microcontroller 36 is used to implement the power key function of the image transmission device, and to initialize the SOC chip 32, HDMI matrix chip 33, video processing FPGA chip 35, etc.
  • the user can control the power on and off of the image transmission device through the microcontroller 36. At the same time, the user can switch the working mode through the human-computer interaction component on the image transmission device 30 to switch the image transmission device 30 into the sending mode or the receiving mode.
  • Figure 8(a) is a schematic diagram of the data flow when the video transmission device 30 is in the receiving mode.
  • the SOC chip 32 can configure itself into the decoding mode, configure the wifi module 31 into the station mode, and transmit data from the second external device through the wifi module 31 40 receives the video signal A, and then preprocesses the video signal A to obtain the video signal B.
  • the purpose of preprocessing is to enable the display screen 37 to implement functions such as mask marking, picture scaling, partial magnification, picture movement, picture freezing, vertical left and right flipping, and nine-square grid.
  • the SOC chip 32 can transmit the video signal B to the HDMI matrix chip 33 through the HDMI input interface 2 in the video transmission chip 33 , and the HDMI matrix chip 33 outputs the video signal B to the video processing FPGA chip 35 through the HDMI output interface 2 .
  • the SOC chip 32 can generate an OSD signal, and then output the OSD signal to the video processing FPGA chip 35 .
  • the video processing FPGA chip 35 can superimpose the two signals and convert them into MIPI format video signals to be displayed, and then output them to the display screen 37 for display through the display screen 37 .
  • the HDMI matrix chip 33 can also output the video signal B to other wired video receiving devices 70 through the HDMI interface 3, so that the wired video receiving device 70 can display or process the received video.
  • Figure 8(b) is a schematic diagram of the data flow when the image transmission device 30 is in the sending mode.
  • the SOC chip 32 When the SOC chip 32 receives that the image transmission device 30 is in the transmitting mode, the SOC chip 32 can configure itself into the encoding mode and configure the wifi module 31 into the AP mode.
  • the HDMI matrix chip 33 can receive the video signal C in HDMI format from the HDMI wired video source 80 through the HDMI input interface 1, and then transmit the video signal C to the SOC chip 32 through the HDMI output interface 1, and the SOC chip 32 can Preprocess the video signal C to obtain the video signal E.
  • the purpose of preprocessing is the same as above.
  • the HDMI matrix chip can receive the SDI format video signal D from the SDI wired video source 90 through the format conversion FPGA chip 34, convert it into an HDMI format video signal D through the format conversion FPGA chip 34, and then input it through HDMI Interface 3 transmits to the HDMI matrix chip, and the HDMI matrix chip transmits to the SOC chip 32 through the HDMI output interface 1.
  • the SOC chip 32 can preprocess the video signal D to obtain the video signal E.
  • the SOC chip 32 preprocesses the video signal C or the video signal D. After the video signal E is obtained, the obtained video signal E can be transmitted to the HDMI matrix chip through the HDMI input interface 2, and the video signal E can be transmitted to the HDMI matrix chip through the HDMI output interface 2. Video processing FPGA chip 35. At the same time, the SOC chip 32 can generate an OSD signal, and then output the OSD signal to the video processing FPGA chip 35 . After receiving the video signal E and the OSD signal, the video processing FPGA chip 35 can superimpose the two signals and convert them into MIPI format video signals to be displayed, and then output them to the display screen 37 for display through the display screen 37.
  • the SOC chip 32 can also encode the video signal E to obtain a video signal to be sent, and then send the video signal to be sent to the first external device 30 through the wifi module 31 .
  • the HDMI matrix chip can also output the video signal C or D to other wired video receiving devices 70 through the HDMI interface 3, so that the wired video receiving device 70 can display or process the received video.
  • the image transmission device can not only switch between the two working modes, but also display the OSD menu on the display screen of the image transmission device, and the display screen can provide auxiliary functions so that the user can zoom and move the display screen. and a series of processes to meet the needs of users of image transmission equipment in different application scenarios.
  • the applicant conducted a large amount of analysis and selection work on the characteristics and functions of existing chips on the market. By screening and combining existing chips, the applicant solved the problems encountered in the functional design process of image transmission equipment. various issues.
  • a specialized video transmission chip HDMI matrix chip
  • multiple inputs and outputs can be achieved, and then a programmable SOC chip can be used to realize the video sending and receiving function through software configuration, so that the image transmission device can be used on both sides. Switching between different working modes, at the same time, the SOC chip can pre-process the video and generate OSD signals.
  • certain analysis and processing are required before display.
  • a SOC chip with at least one video output interface and an OSD signal output interface is selected, and the preprocessed video and OSD signals are output to the video processing FPGA chip in two ways, so that the video processing FPGA can be realized
  • the chip can first analyze and process the pre-processing chip, then superimpose it with the OSD signal, and then output it to the display screen. This can avoid the video processing FPGA chip that directly outputs the video signal of the superimposed OSD signal.
  • the FPGA chip analyzes the superimposed signal, it must first separate the video signal and then analyze it, resulting in poor processing results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本说明书实施例提供一种图传设备。图传设备的视频收发单元兼备接收和发送视频的两种功能,且无线通信单元可以通过无线的方式实现视频数据的收发,使得图传设备可以一机多用,既可以作为无线图传发射设备使用,又可以作为无线图传接收设备使用,适用不同的场景。另外,图传设备上还可以集成有显示单元,无论图传设备作为发射设备还是接收设备使用,均可以具备监视器的功能,可方便用户随时随地监看图传设备发送的视频或者接收到的视频,非常灵活和便捷。

Description

图传设备 技术领域
本说明书涉及通信技术领域,尤其涉及一种图传设备。
背景技术
在影视拍摄、短视频拍摄、直播等领域通常要用到无线图传设备。比如,在视频拍摄的过程中,通常摄像机会连接无线图传发射设备,通过无线图传发射设备将摄像机采集的视频发送给无线图传接收设备,无线图传接收设备可以连接导演的监视器或视频制作端的监视器,然后将接收到视频通过监视器显示。
而目前的无线图传产品,无线图传发射设备仅能用于视频发送的场景,无线图传接收设备仅能用于视频接收的场景,针对视频发送和视频接收两个使用场景,用户需分别购买无线图传发射设备和无线图传接收设备,不够灵活,且成本较高。
发明内容
基于此,本说明书实施提供了一种图传设备。
根据本说明书实施例的第一方面,提供一种图传设备,包括互相连接的无线通信单元和视频收发单元:
所述无线通信单元,用于在所述图传设备处于发送模式的情况下,与第一外部设备无线连接,将待发送视频信号发送给所述第一外部设备;在所述图传设备处于接收模式的情况下,与第二外部设备无线连接,从所述第二外部设备接收第一视频源信号,并发送给所述视频收发单元;
视频收发单元,用于在接收到将所述图传设备切换至接收模式的切换指令的情况下,将自身配置成解码模式,并对所述第一视频源信号进行解 码,以处理成待显示视频信号后输出;在接收到将所述图传设备切换至发送模式的切换指令的情况下,将自身配置成编码模式,将第二视频源信号编码成所述待发送视频信号,发送给所述无线通信单元。
应用本说明书实施例方案,图传设备的视频收发单元兼备编码和解码视频的两种功能,且无线通信单元可以通过无线的方式实现视频数据的收发,并且可以通过软件配置的方式实现视频收发单元和无线通信单元的功能切换,使得图传设备既可以作为无线图传发射设备使用,又可以作为无线图传接收设备使用,实现可以一机多用,适用不同的场景,可以节约成本,且可以通过软件配置实现图传设备工作模式的切换,更加灵活。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本说明书的实施例,并与说明书一起用于解释本说明书的原理。
图1是本说明书实施例的一种影视拍摄场景的示意图。
图2(a)是本说明书实施例的一种图传设备结构示意图。
图2(b)是本说明书实施例的一种图传设备的结构示意图。
图2(c)是本说明书实施例的一种图传设备实现视频环出的示意图。
图3(a)是本说明书实施例的一种图传设备处于接收模式下的数据流程示意图。
图3(b)是本说明书实施例的一种图传设备处于发送模式下的数据流程示意图。
图4是本说明书实施例的一种图传设备的结构示意图。
图5是本说明书实施例的一种图传设备将第一视频源信号或第二视频源信号输出给有线视频接收设备的示意图。
图6(a)和图6(b)是本说明书实施例的一种图传设备分别在发送模式和接收模式下的数据流向示意图。
图7是本说明书实施例的一种图传设备的结构示意图。
图8(a)和图8(b)是本说明书实施例的一种图传设备分别在发送模式和接收模式下的数据流向示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本说明书相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本说明书的一些方面相一致的装置和方法的例子。
在本说明书使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本说明书。在本说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本说明书可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本说明书范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在影视拍摄、短视频拍摄、直播等领域通常要用到无线图传设备和各种监视器。如图1所示,为一种影视拍摄场景的示意图,摄像机10可以连接无线图传发射设备11,通过无线图传发射设备11将摄像机10采集的视频流发送给无线图传接收设备12,无线图传接收设备12一般架高安装于导演工作区域,可以连接导演的监视器或视频制作端的监视器13,然后将接收到视频通过监视器13显示。同时,由于摄影师也需要现场实时查看摄 像机10采集的视频,因而,在摄像机10通常还需连接一个监视器14,供摄影师实时查看采集的视频。由此可见,在一般的拍摄场景中,通常在视频发送端需要一个无线图传发射设备和监视器,在视频接收端需要一个无线图传接收设备和监视器。
目前,无线图传发射设备和无线图传接收设备是相互独立的两个设备,即无线图传发射设备仅能作为视频发送端使用,其功能也仅是依据视频发送端的需求设计,而无线图传接收设备仅能作为视频接收端使用,其功能也仅是依据视频接收端的需求设计,不够灵活。如果需要将无线图传设备用到视频发送端和视频接收端两种应用场景时,用户需分别购买两套设备,成本较高。
基于此,本申请实施例提供了一种图传设备,该图传设备同时具备视频发送端和视频接收端的功能,用户可以根据需求灵活配置图传设备的工作模式,即发送模式和接收模式,以使图传设备作为无线图传发射设备或无线图传接收设备使用,满足不同应用场景的使用需求。
如图2(a)所示,为本申请实施例的图传设备的结构示意图。该图传设备20包括依次连接的无线通信单元21、视频收发单元22。图传设备20包括发送模式和接收模式两种工作模式,在发送模式下,图传设备可作为无线图传发射设备使用,即可以通过无线传输的方式向视频接收端发送视频。在接收模式下,图传设备可作为无线图传接收设备使用,即可以通过无线传输的方式从视频发送端接收视频。
在一些实施例中,图传设备20中包括人机交互组件,可以通过该人机交互组件获取用户触发的用于切换图传设备20的工作模式的切换指令,以实现图传设备20的工作模式在发送模式和接收模式之间切换。其中,人机交互组件可以是图传设备20中设置的物理按键或在图传设备20显示屏中设置的功能控件,用户可以通过触发该物理按键或功能控件实现上述两种工作模式的切换。当然,在一些场景,为了方便用户操作,图传设备20也可以集成语音控制功能,用户可以通过语音控制实现上述两种工作模式的切换。当然,实 际产品中,工作模式的切换方式可以基于实际需求设置,本申请实施不做限制。
其中,本申请实施例可以通过软件配置的方式将图传设备20配置成发送模式或接收模式,使得图传设备20的工作模式切换更加灵活。比如,在图传设备20处于接收模式时,可以通过软件程序将图传设备20的各个功能部件配置成接收模式下所需的功能模式,比如,将视频收发单元22切换成解码模式、以及选通接收模式下的视频传输通路等。在图传设备20处于发送模式下也是类似,以实现图传设备20可以工作于上述两种工作模式。
图2(a)中的实线箭头示出了图传设备20处于发送模式时的数据处理流程示意图。当当视频收发单元22接收到用户触发的将图传设备20切换至发送模式的切换指令后,可以将自身的工作模式配置成编码模式。
视频收发单元22被配置成编码模式后,可以对第二视频源信号进行编码处理,将第二视频源信号处理成待发送视频信号,并输出给无线通信单元21。当然,视频收发单元22被配置成编码模式时,也可以对第二视频源信号进行图传设备20处于发送模式下所需的一些其他的处理,并不局限于编码处理,具体的处理方式可以基于实际需求设置。
在图传设备20处于发送模式时,无线通信单元21可以与作为视频接收端的第一外部设备30无线连接,然后通过无线传输的方式将待发送视频信号发送给第一外部设备30。
其中,第二视频源信号可以是图传设备20通过有线或无线的方式从外部设备接收到的视频信号,比如,从摄像机接收到的信号,或者第二视频源信号也可以是图传设备20本地存储的视频信号,本申请实施例不做限制。
图2(a)中的虚线箭头示出了图传设备20处于接收模式时的数据处理流程示意图。当视频收发单元22接收到用户触发的将图传设备20切换至接收模式的切换指令后,可以将自身的工作模式配置成解码模式。此时,无线通信单元21可以与作为视频发送端的第二外部设备40无线连接,从第二外部设备40接收第一视频源信号并输出给视频收发单元22。视频收发单元22此 时可以具备解码功能,对接收到的第一视频源信号进行解码处理,将第一视频源信号处理成待显示视频信号并输出。当然,视频收发单元22处于解码模式下,除了对第一视频源信号进行解码处理,也可以基于实际需求进行一些其他的处理,比如,格式转换、画质处理等。
此外,目前的拍摄场景中,无线图传发射设备、视频发送端的监视器、无线图传接收设备、视频接收端的监视器大多是四个功能独立的设备,在拍摄现场架设一整套上述视频传输系统会比较繁琐,且在拍摄过程中,导演通常需要在拍摄现场走动,调度工作,目前视频接收端的设备也无法满足导演需要灵活监看视频的需求。为了让图传设备既可以作为视频发送端和视频接收端使用,同时,还可以兼具监视器的功能,以满足视频发送端或视频接收端对视频监看的需求。在一些实施例中,如图2(b)所示,该图传设备20还包括显示单元23。图2(b)中的实线箭头示出了图传设备20处于发送模式下的数据处理流程图。由于视频发送端通常也具有将待发送视频信号显示给用户,以便用户查看的需求,比如,在视频拍摄过程中,摄影师也需要实时查看摄像机采集的视频。因而,在发送模式下,视频收发单元22还用于将第二视频源信号处理成待显示视频信号,以供显示单元23显示。比如,视频收发单元22可以对第二视频源信号进行格式转换、画质处理等相关的处理,然后再输出给显示单元23显示。当然,具体的处理方式可以基于实际需求设置。
图2(b)中的虚线箭头示出了图传设备20处于接收模式时的数据处理流程示意图。在接收模式下,视频收发单元22可以对接收到的第一视频源信号进行解码处理,将第一视频源信号处理成待显示视频信号,并输出给显示单元23。由于视频接收端也通常需要将接收到的视频信号显示给用户,以便用户查看接收到的视频。以拍摄场景为例,导演通常需在现场四处走动,并基于采集的视频对现场进行工作调度。通过在图传设备20集成显示单元,23用户可以携带图传设备20四处走动,并实时接收视频并查看,实现灵活监看视频的需求。
当然,图传设备20在发送模式和接收模式时,其是否具备显示视频的功 能可以基于实际需求设置。比如,在一些场景,可以仅在接收模式下具备显示视频的功能,在一些场景,可以仅在发送模式下具备显示视频的功能,在一些场景,可以在发送模式和接收模式均具备显示视频的功能。
其中,无线通信单元21与第一外部设备30或第二外部设备40之间可以通过各种无线通信方式连接,比如,wifi、蓝牙或者一些自定义的无线通信协议,本申请实施例不做限制。无线通信单元21可以是具备无线收发功能的功能模块,或者也可以是一个独立的芯片,比如,无线通信单元21可以是wifi模组等。
视频收发单元22可以是一个具备视频编解码功能、视频传输功能、以及视频分析处理等功能的功能模块、也可以是一个独立的芯片、或者也可以由多个芯片组合得到,比如,视频收发单元22可以是一个集成了上述功能SOC芯片,或者视频收发单元22也可以由多个芯片组合得到,每个芯片承担上述一部分功能等。
显示单元23可以是具备显示功能的显示器,比如,可以是LCD显示屏、LED显示屏等。
本申请实施例的图传设备20的视频收发单元22兼备接收和发送视频的两种功能,且无线通信单元21可以通过无线的方式实现视频数据的收发,使得图传设备可以一机多用,既可以作为无线图传发射设备使用,又可以作为无线图传接收设备使用,适用不同的场景。另外,图传设备20上还集成有显示单元23,无论图传设备20作为发射设备还是接收设备使用,均可以具备监视器的功能,可方便用户随时随地监看图传设备20发送的视频或者接收到的视频,非常灵活和便捷。
在一些实施例中,无线通信单元21可以是wifi通信单元,通常wifi通信单元包括两种模式,AP(Access Point:无线接入点)模式和Station模式。因而,该视频收发单元22还用于对无线通信单元21的模式进行配置。比如,在图传设备20处于发送模式时,视频收发单元22可以根据产品的实际需求将无线通信单元21配置成AP模式或者Station模式。同理,图传设备20处 于接收模式时,也可以根据需求将无线通信单元21配置成AP模式或者Station模式。
在一些实施例中,图传设备20处于发送模式,即作为无线图传发射设备使用时,由于视频接收端可能是手机等固定处于Station模式的设备,即图传设备20需要作为无线网络的接入点,因而,视频收发单元22可以将无线通信单元21切换成AP模式。而在图传设备20处于接收模式的情况下,该视频收发单元22可以将无线通信单元21切换成Station模式。
在一些实施例中,该视频收发单元22还用于与有线视频源连接,该第二视频源信号包括从该有线视频源接收的有线视频源信号。比如,视频收发单元22中可以包括视频输入接口,比如,HDMI接口、SDI接口、DP接口等,通过该视频输入接口与有线视频源(比如,摄像机等)连接,然后从该有线视频源接收第二视频源信号,并发送给视频接收端。
图传设备20通过显示器将需要发送的视频或接收到的视频显示给用户后,为了方便用户对显示器的一些参数进行调整,还可以在屏幕中显示OSD(on-screen display:屏幕菜单式调节方式)菜单,以方便用户对显示器的各项参数(比如、色彩、模式等)进行调整。因而,该视频收发单元22还用于生成OSD信号,该待显示视频信号包括第一视频源信号或第二视频源信号各自与生成的OSD信号叠加处理后的信号。比如,视频收发单元22通过无线通信单元21从第二外部设备40接收到第一视频源信号后,可以生成相应的OSD信号,然后将OSD信号和第一视频源信号叠加处理,得到待显示视频信号,再发送给显示单元23显示。同理,视频收发单元22获取到第二视频源信号后,也可以生成相应的OSD信号,然后叠加到第二视频源信号中,得到待显示视频信号,再发送给显示单元23显示。
在一些实施例中,当图传设备20处于接收模式时,图传设备20从第二外部设备40接收到第一视频源信号后,还可以输出给其他设备。以影视拍摄场景为例,图传设备20作为无线图传接收设备使用时,在其接收到摄像机采集的视频后,除了需要通过显示器显示给导演,可能还需要发送给视频制作 端,以便进行后期的视频制作。所以,视频收发单元22还可以包括视频输出接口,比如,HDMI接口、SDI接口、DP接口等,然后通过视频输出接口与有线视频接收设备(比如,视频制作端的设备)连接,并将接收到的第一视频源信号发送给该有线视频接收设备。
当然,在一些场景,图传设备20在接收到视频后,也可以通过无线传输的方式发送给其他的视频接收端,比如,手机等,以方便将接收到的视频发送给不同的用户,方便多人同时查看接收到的视频。
同理,当图传设备20处于发送模式时,图传设备20在获取到第二视频源信号后,也可以通过该视频输出接口发送给有线视频接收端,实现视频环出的功能。举个例子,如图2(c)所示,在影视拍摄场景,图传设备20获取到摄像机采集的视频后,除了需要将视频通过无线传输发送给第一外部设备30,还可能需要输出给位于摄影师侧的其他设备,因而,视频收发单元22可以通过视频输出接口将获取的视频输出给有线视频接收设备70。
在一些实施例中,如图3(a)或图3(b)所示,视频收发单元22包括相互连接的主控芯片221和视频传输芯片222,视频传输芯片222可以包括两个视频输入接口,即第一视频输入接口222a和第二视频输入接口222b,以及两个视频输出接口,即第一视频输出接口222c和第二视频输出接口222d。其中,第一视频输入接口222a用于与外部的视频源连接,以便从外部的视频源接收视频信号。比如,视频传输芯片222可以通过第一视频输入接口222a与第一有线视频源(比如,摄像机等)连接,从该第一有线视频源接收第一有线视频源信号。第二视频输入接口222b用于与主控芯片221连接,以便从主控芯片221接收视频。第一视频输出接口222c用于与主控芯片221连接,以便将视频输出给主控芯片。第二视频输出接口222d则用于与显示单元23连接,以便将待显示视频信号输出给显示单元23。
如图3(a)所示,为图传设备20处于接收模式时的数据流向示意图,在主控芯片221接收到将图传设备20切换至接收模式的切换指令后,主控芯片221可以将自身的工作模式配置成解码模式,并且将无线通信单元21配置成 Station模式,在主控芯片221完成模式配置后,视频传输芯片222中的输入/输出接口的选通状况也会随着模式变化而相应变化。主控芯片221可以通过无线通信单元21从第二外部设备40接收的第一视频源信号,对第一视频源信号进行解码等处理后,然后通过上述第二视频输入接口222b将第一视频源信号发送给视频传输芯片222。视频传输芯片222用于通过第二视频输出接口222d将该第一视频源信号输出,以通过显示单元23显示该第一视频源信号。其中,视频传输芯片222可以直接将第一视频源信号输出给显示单元23,或者也可以先将第一视频源信号输出给其他的功能单元,通过其他功能单元对第一视频源信号进行相关的处理后,处理成可供显示单元23显示的待显示视频信号,再传输给显示单元23。
如图3(b)所示,为图传设备20处于发送模式时的数据流向示意图,在主控芯片221接收到将图传设备20切换至发送模式的切换指令时,可以将自身配置成编码模式,并将无线通信单元21配置成Ap模式,在主控芯片221完成模式配置后,视频传输芯片222中的输入/输出接口的选通状况也会随着模式变化而相应变化。视频传输芯片222可以通过第一视频输入接口222a从第一有线视频源50(比如,摄像机等)接收第一有线视频源信号,然后通过第一视频输出接口222c将该第一有线视频源信号输出给主控芯片222,主控芯片222可以基于实际使用需求对第一有线视频源信号进行相关的处理,得到上述第二视频源信号,并将第二视频源信号编码处理成待发送视频信号,通过第一无线单元21发送给第一外部设备30。同时,主控芯片222可以通过第二视频输入接口222b将第二视频源信号输出给视频传输芯片222,视频传输芯片222通过第二视频输出接口222d将第二视频源信号输出,以供显示单元23显示。其中,视频传输芯片222可以直接将第二视频源信号输出给显示单元23,或者也可以先将第二视频源信号输出给其他的功能单元,通过其他功能单元对第二视频源信号进行相关的处理后,处理成可供显示单元23显示的待显示信号,再传输给显示单元23。
在通过图传设备20将要发送的视频或接收到的视频通过显示器显示时, 用户通常希望可以通过显示屏对显示的视频进行一些处理,比如,对视频图像进行缩放处理、移动画面等。为了实现图传设备20的这些辅助功能,在一些实施例中,可以通过主控芯片221对要显示的视频进行一些预处理,然后再进行显示。因而,第一视频源信号或第二视频源信号可以是主控芯片221预处理后的信号,通过主控芯片221对要显示的视频信号进行预处理,以便可以在显示单元23上实现以下任一功能:遮幅标记、画面缩放、局部放大、画面移动、画面冻结、垂直左右翻转、九宫格等。
当图传设备20处于发送模式的情况下,由于将要发送的视频通过显示单元23显示之前,可以通过主控芯片221相对视频进行一些预处理后,再进行显示,以实现显示器的辅助功能。所以,视频传输芯片222从第一有线视频源50获取到第一有线视频源信号后,可以先将第一有线视频源信号发送给主控芯片221,待主控芯片221对第一有线视频源信号进行预处理,得到第二视频源信号后,再将第二视频源信号通过第二视频输入接口222b传输给视频传输芯片222,然后再由视频传输芯片222通过第二视频输出接口222d输出,以供显示单元23显示。
在一些实施例中,如图4所示,为了实现图传设备20可以支持不同类型的视频接口,视频传输芯片222还包括第三视频输入接口222e,视频收发单元22还包括视频格式转换单元23,该视频格式转换单元222e用于从第二有线视频源60接收第二有线视频源信号,并转换成第三视频输入接口222e支持的格式,再将格式转换后的第二有线视频源信号通过第三视频输入接口222e发送给视频传输芯片222。视频传输芯片222可以通过第一视频输出接口222c,将格式转换后的第二有线视频源信号发送给主控芯片221,以使主控芯片221基于格式转换后的第二有线视频源信号生成第二视频源信号,再通过无线通信单元21发送,以及通过显示单元23显示。
在一些实施例中,图传设备20还需将要发送的视频或者将接收到的视频发送给其他的设备,以在其他的设备上显示或处理该视频。比如,以图传设备20处于接收模式为例,图传设备20接收到发送端发送的视频后,除了通 过显示单元23显示,还需要发送给其他的设备,以在其他的设备中更显示接收到的视频。所以,如图5所示,该视频传输芯片222还包括第三视频输出接口222f,用于将第一视频源信号(如图中实线箭头指示的数据流向)或第二视频源信号(如图中虚线箭头指示的数据流向)输出给有线视频接收设备70。
在一些实施例中,该第一视频输入接口222a、第二视频输入接口222b、第三视频输入接口222e可以是HDMI接口,该第一视频输出接口222c、第二视频输出接口222d、第三视频输出接口222f也可以是HDMI接口。由于视频传输芯片222中存在多个输入/输出接口,且图传设备20处于不同工作模式时,需让不同的输入/输出接口处于工作状态,即选通不同的输入/输出接口。为了实现对这多个输入/输出接口的工作状态进行管理,该视频传输芯片222中可以带有选通矩阵,该选通矩阵用于配置每个视频输入接口所对应的视频输出接口,当主控芯片221的工作模式切换后,视频传输芯片222中各输入/输出接口的选通状态可以基于主控芯片221的工作模式的切换而自动变化。比如,当主控芯片221接收到将图传设备20切换至接收模式的切换指令后,主控芯片221可以将自身配置成接解码模式,此时,可以自动选通第二视频输入接口222b、该输入接口对应的第二视频输出接口222d、第三视频输出接口222f,实现图传设备20接收视频,并通过显示单元23将接收到的视频显示给用户功能,以及将接收到的视频输出给其他设备的功能。同理,当当主控芯片221接收到将图传设备20切换至发送模式的切换指令后,主控芯片221可以将自身配置成接编码模式,此时,可以自动选通第一视频输入接口222a或第三视频输入接口222e、上述两种输入接口对应的第一视频输出接口222c,以及第二视频输入接口222b和第三视频输出接口222f,实现图传设备20的发送视频,并通过显示单元23将要发送的视频显示给用户的功能,以及将要发送的视频输出给其他设备的功能。在一些场景,视频传输芯片221可以是HDMI矩阵芯片。
在一些实施例中,该第一视频输入接口222a、第二视频输入接口222b、第三视频输入接口222e可以是HDMI接口,该第一视频输出接口222c、 第二视频输出接口222d、第三视频输出接口222f也可以是HDMI接口,第一有线视频源50为HDMI有线视频源,第二有线视频源60为SDI有线视频源,该格式转换单元223用于将第二有线视频源信号转换为HDMI格式的信号。
在一些实施例中,在将图传设备20要发送的视频或接收到的视频通过显示单元23显示时,可以通过专门的视频处理芯片将视频处理成显示单元23可以显示的视频。比如,通常显示单元23可以显示的视频格式为MIPI格式,因而,可以通过视频处理芯片将视频转换成显示单元23支持的视频格式,以及做一些其他视频分析和处理工作。如图6(a)和6(b)分别示出了图传设备20处于发送模式或接收模式时的数据处理流向示意图。从图中可知,该视频收发单元22还可以包括视频处理芯片224。为了可以实现用户对显示单元23的参数的调节,主控芯片221还可以用于生成OSD信号。视频处理芯片224可以和主控芯片221连接,用于从主控芯片221接收该OSD信号。同时,视频处理芯片224可以分别和视频传输芯片222以及显示单元23连接,从视频传输芯片222接收第一视频源信号或第二视频源信号,然后再将第一视频源信号或第二视频源信号和OSD信号叠加处理后生成待显示视频信号,并发送给显示单元23。
在一些实施例中,该主控芯片221可以包括至少1路视频输入接口,用于与该视频传输芯片222的第一视频输出接口222c或无线通信单元21的输出接口相连。还可以包括至少一路视频输出接口,用于与该视频传输芯片222的第二视频输入接口222b相连或与无线通信单元21的输入接口相连。还可以包括至少1路OSD信号接口,用于与该视频处理芯片224的输入接口相连,将生成的OSD信号输出给该视频处理芯片224。由于在将第一视频源信号或第二视频源信号传输至视频处理芯片224后,视频处理芯片224需对上述视频源信号进行分析和处理,如果主控芯片221先将上述视频源信号和OSD信号叠加后再发送给视频处理芯片224,则视频处理芯片224需要从叠加信号中分离出第一视频源信号或第二视频源信号后再进行分析,非常繁琐。本申请 实施例中通过选用具备至少一路视频输出接口和至少一路独立的OSD接口的主控芯片221,可以将第一视频源信号或第二视频源信号与OSD信号分两路发送给视频处理芯片224,从而方便视频处理芯片224对第一视频源信号或第二视频源信号进行分析处理,再进行后续的叠加处理。
由于视频收发单元22需要实现对视频的编解码、视频处理等多种功能,其处理任务较多。因此,可以在图传设备中再增加一个单片机作为协处理器,通过单片机来执行一些对时效性要求较高的任务或者外围设备的管理,比如,电源键的功能、对视频收发单元22进行初始化配置等。所以,在一些实施例中,如图7所示,该图传设备20还可以包括单片机24,通过该单片机24对视频收发单元22进行初始化配置。
在一些实施例中,该单片机24也可以实现图传设备的电源键功能。通常电源键可以设置待机功能,比如,长按电源键可以使图传设备20开机,短按电源键即可以让图传设备20进入待机状态,进入待机状态后,视频收发单元22即停止工作,进入休眠状态。为了避免图传设备20在切换工作模式的过程中,用户误触电源键,使得图传设备20进入待机状态,即视频收发单元22停止工作,导致工作模式切换失败。所以,在接收到用户切换工作模式的指令后,视频收发单元22可以先控制单片机电源键的功能处于失效状态,从而在工作模式切换过程中,即便用户误触电源键,也不会对工作模式切换产生影响。待完成工作模式切换后,即可以恢复电源键的功能。
为了进一步解释本申请实施例提供的图传设备,以下结合一个具体的实施例加以解释。
现有的无线图传设备通常需要成套购买,无线图传发射设备仅能用于发送视频,无线图传接收设备仅能用于接收视频,不够灵活,且无论视频发送场景还是视频接收场景,都存在需要对视频进行监视的需求,目前的无线图传设备还无法满足各种应用场景下的需求。
基于此,本申请实施例提供了一种图传设备,既可以作为无线图传发射设备使用,又可以作为无线图传接收设备使用,实现一机多用,且还可以兼 备监视器的功能,以满足不同应用场景下监视视频的需求。如图8(a)和8(b)所示,为本申请实施例提供的图传设备30的结构示意图。图传设备30包括wifi模组31,wifi模组31具备视频收发功能,用于从外部设备接收视频或者将视频发送给外部设备。图传设备30还包括与wifi模组31连接的SOC芯片32,SOC芯片32具备视频编解码功能,且可用于对视频进行预处理,以及生成OSD信号。图传设备30还包括与SOC芯片32连接的HDMI矩阵芯片33,HDMI矩阵芯片33包括3个HDMI输入接口(HDMI输入接口1、HDMI输入接口2、HDMI输入接口3)以及3个HDMI输出接口(HDMI输出接口1、HDMI输出接口2、HDMI输出接口3),同时HDMI矩阵芯片33还包括选通矩阵,用于对上述HDMI输入和输出接口的工作状态进行管理,并配置图传设备30处于不同工作模式下每个HDMI输入接口对应的HDMI输出接口。图传设备30还包括与HDMI矩阵芯片33连接的格式转换FPGA芯片34,用于对接收到的SDI格式的视频进行转换,转换成HDMI格式的视频,再输入至HDMI矩阵芯片33。图传设备30还包括分别与SOC芯片32连接和HDMI矩阵芯片33连接的视频处理PFGA芯片35,视频处理PFGA芯片35用于从SOC芯片33中接收OSD信号,以及从HDMI矩阵芯片33接收要发送的视频信号或接收到的视频信号,将两路信号叠加处理后再输出给显示屏37显示。图传设备30还包括与SOC芯片32连接的单片机36,该单片机36用于实现图传设备的电源键功能,以及对SOC芯片32、HDMI矩阵芯片33、视频处理FPGA芯片35等进行初始化处理。
用户可以通过单片机36对图传设备进行开关机控制,同时,可以通过图传设备30上的人机交互组件进行工作模式的切换,将图传设备30切换成发送模式或接收模式。
如图8(a)为图传设备30处于接收模式时的数据流向示意图。当SOC芯片接收到将图传设备30切换至接收模式的切换指令后,SOC芯片32可以将自身配置成解码模式,将wifi模组31配置成Station模式,通过wifi模组31从第二外部设备40接收视频信号A,然后可以对视频信号A进行预处理, 得到视频信号B。预处理的目的是为了让显示屏37可以实现遮幅标记、画面缩放、局部放大、画面移动、画面冻结、垂直左右翻转、九宫格等功能。然后SOC芯片32可以通过视频传输芯片33中的HDMI输入接口2将视频信号B传输给HDMI矩阵芯片33,HDMI矩阵芯片33通过HDMI输出接口2将视频信号B输出给视频处理FPGA芯片35。同时SOC芯片32可以生成OSD信号,然后将OSD信号输出给视频处理FPGA芯片35。视频处理FPGA芯片35在接收到视频信号B和OSD信号后,可以将两者进行叠加处理,并转化成MIPI格式的待显示视频信号,然后输出给显示屏37,以通过显示屏37显示。同时,HDMI矩阵芯片33还可以通过HDMI接口3将视频信号B输出给其他的有线视频接收设备70,以便有线视频接收设备70可以显示或处理接收到的视频。
如图8(b)为图传设备30处于发送模式时的数据流向示意图。当SOC芯片32接收到将图传设备30处于发送模式时,SOC芯片32可以将自身配置成编码模式,将wifi模组31配置成AP模式。在一些场景,HDMI矩阵芯片33可以通过HDMI输入接口1从HDMI有线视频源80中接收HDMI格式的视频信号C,然后将视频信号C通过HDMI输出接口1出传输给SOC芯片32,SOC芯片32可以对视频信号C进行预处理,得到视频信号E,预处理目的同上。在一些场景,HDMI矩阵芯片可以通格式转换FPGA芯片34从SDI有线视频源90中接收SDI格式的视频信号D,通过格式转换FPGA芯片34将其转换为HDMI格式的视频信号D,然后通过HDMI输入接口3传输给HDMI矩阵芯片,HDMI矩阵芯片通过HDMI输出接口1传输给SOC芯片32,SOC芯片32可以对视频信号D进行预处理,得到视频信号E。
SOC芯片32对视频信号C或视频信号D进行预处理,视频信号E后,可以通过HDMI输入接口2将得到的视频信号E传输给HDMI矩阵芯片,并通过HDMI输出接口2将视频信号E传输给视频处理FPGA芯片35。同时SOC芯片32可以生成OSD信号,然后将OSD信号输出给视频处理FPGA芯片35。视频处理FPGA芯片35在接收到视频信号E和OSD信号后,可以将两者进 行叠加处理,并转化成MIPI格式的待显示视频信号,然后输出给显示屏37,以通过显示屏37显示。
此外,SOC芯片32还可以对视频信号E进行编码处理,得到待发送视频信号,然后将待发送视频信号通过wifi模组31发送给第一外部设备30。同时,HDMI矩阵芯片还可以通过HDMI接口3将视频信号C或D输出给其他的有线视频接收设备70,以便有线视频接收设备70可以显示或处理接收到的视频。
为了实现图传设备既能实现在两种工作模式之间切换,且同时可以在图传设备的显示屏中显示OSD菜单,并且显示屏能够提供辅助功能,以便用户可以对显示画面进行缩放、移动等一系列处理,以满足图传设备在不同应用场景下用户的需求。申请人结合图传设备的功能需求,对市面上已有芯片的特点和功能进行了大量分析和选型工作,通过对已有芯片进行筛选和结合,来解决图传设备在功能设计过程中遇到的各种问题。比如,通过选用专门的视频传输芯片(HDMI矩阵芯片)传输视频,实现多路输入输出,然后选用可编程的SOC芯片,通过软件配置的方式实现视频的收发功能,以使图传设备可以在两种不同的工作模式之间切换,同时,SOC芯片可以对视频进行预处理,以及生成OSD信号,并且,考虑视频输出显示时,需要进行一定的分析和处理,再显示。本申请在选用SOC芯片时,选用带有至少一路视频输出接口和OSD信号输出接口的SOC芯片,将预处理后的视频和OSD信号分两路输出给视频处理FPGA芯片,从而可以实现视频处理FPGA芯片可以先对预处理芯片进行分析处理后,再与OSD信号叠加处理,再输出给显示屏显示。从而可以避免直接将叠加后OSD信号的视频信号输出的视频处理FPGA芯片,致使FPGA芯片在对叠加信号分析时,需先分离视频信号,再分析,处理效果差的问题。通过上述方式,可以制备得到能够满足不同应用场景需求的图传设备。以上实施例中的各种技术特征可以任意进行组合,只要特征之间的组合不存在冲突或矛盾,但是限于篇幅,未进行一一描述,因此上述实施方式中的各种技术特征的任意进行组合也属于本说明书公开的范围。
本领域技术人员在考虑说明书及实践这里公开的说明书后,将容易想到 本说明书实施例的其它实施方案。本说明书实施例旨在涵盖本说明书实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本说明书实施例的一般性原理并包括本说明书实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本说明书实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本说明书实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本说明书实施例的范围仅由所附的权利要求来限制。
以上所述仅为本说明书实施例的较佳实施例而已,并不用以限制本说明书实施例,凡在本说明书实施例的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本说明书实施例保护的范围之内。

Claims (16)

  1. 一种图传设备,其特征在于,包括互相连接的无线通信单元和视频收发单元:
    所述无线通信单元,用于在所述图传设备处于发送模式的情况下,与第一外部设备无线连接,将待发送视频信号发送给所述第一外部设备;在所述图传设备处于接收模式的情况下,与第二外部设备无线连接,从所述第二外部设备接收第一视频源信号,并发送给所述视频收发单元;
    视频收发单元,用于在接收到将所述图传设备切换至接收模式的切换指令的情况下,将自身配置成解码模式,并对所述第一视频源信号进行解码,以处理成待显示视频信号后输出;在接收到将所述图传设备切换至发送模式的切换指令的情况下,将自身配置成编码模式,将第二视频源信号编码成所述待发送视频信号,发送给所述无线通信单元。
  2. 根据权利要求1所述的图传设备,其特征在于,所述图传设备还包括与所述视频收发单元连接的显示单元,
    所述视频收发单元还用于将所述第一视频源信号处理成待显示视频信号后输出给所述显示单元;和/或用于将所述第二视频源信号处理成所述待显示视频信号后输出给所述显示单元;
    所述显示单元用于显示所述待显示视频信号。
  3. 根据权利要求1所述的图传设备,其特征在于,所述视频收发单元还用于在接收到将所述图传设备切换至接收模式的切换指令的情况下,将所述无线通信单元配置为Station模式;以及用于在接收到将所述图传设备切换至发送模式的切换指令的情况下,将所述无线通信单元配置为AP模式。
  4. 根据权利要求1-3任一项所述的图传设备,其特征在于,所述图传设备包括人机交互组件,所述切换指令通过所述人机交互组件触发。
  5. 根据权利要求1-4任一项所述的图传设备,其特征在于,所述视频收发单元还用于与有线视频源连接,所述第二视频源信号包括从所述有线视频源接收的有线视频源信号。
  6. 根据权利要求1-5任一项所述的图传设备,其特征在于,所述视频收发单元还用于生成OSD信号,所述待显示视频信号包括所述第一视频源信号和所述OSD信号叠加处理后的信号,或所述第二视频源信号和所述OSD信号叠加处理后的信号。
  7. 根据权利要求1-6任一项所述的图传设备,其特征在于,所述视频收发单元还用于将所述第一视频源信号或所述第二视频源信号输出给有线视频接收设备。
  8. 根据权利要求1-7任一项所述的图传设备,其特征在于,所述视频收发单元包括相互连接的主控芯片和视频传输芯片,
    所述主控芯片,用于在接收到将所述图传设备切换成接收模式的切换指令的情况下,将自身配置为解码模式,且将所述无线通信单元配置成Station模式,将所述第一视频源信号解码后发送给所述视频传输芯片;以及,在接收到将所述图传设备切换至发送模式的切换指令的情况下,将自身配置为编码模式,且将所述无线通信单元配置成AP模式,将第二视频源信号编码成所述待发送的视频信号,发送给所述无线通信单元,以及将所述第二视频源信号发送给所述视频传输芯片;
    所述视频传输芯片包括:第一视频输入接口,用于从第一有线视频源接收第一有线视频源信号,第二视频输入接口,用于从所述主控芯片接收所述第一视频源信号和所述第二视频源信号;第一视频输出接口,用于将所述第一有线视频源信号发送给所述主控芯片,以使所述主控芯片基于所述第一有线视频源生成所述第二视频源信号,第二视频输出接口,用于将所述第一视频源信号和所述第二视频源信号传输给所述显示单元。
  9. 根据权利要求8所述的图传设备,其特征在于,所述视频传输芯片还包括第三视频输入接口,所述视频收发单元还包括视频格式转换单元, 所述视频格式转换单元用于从第二有线视频源接收第二有线视频源信号,并转换成所述第三视频输入接口支持的格式后通过所述第三视频输入接口发送给所述视频传输芯片;所述视频传输芯片还用于通过所述第一视频输出接口,将所述第二有线视频源信号发送给所述主控芯片,以使所述主控芯片基于所述第二有线视频源生成所述第二视频源信号。
  10. 根据权利要求8或9所述的图传设备,其特征在于,所述视频传输芯片还包括第三视频输出接口,用于将所述第一视频源信号或所述第二视频源信号输出给有线视频接收设备。
  11. 根据权利要求10所述的图传设备,其特征在于,所述第一/第二/第三视频输入接口为HDMI接口,所述第一/第二/第三视频输出接口为HDMI接口,所述视频传输芯片带有选通矩阵,所述选通矩阵用于配置每个视频输入接口所对应的视频输出接口。
  12. 根据权利要求10所述的图传设备,其特征在于,所述第一/第二/第三视频输入接口为HDMI接口,所述第一/第二/第三视频输出接口为HDMI接口,所述第一有线视频源为HDMI有线视频源,所述第二有线视频源为SDI有线视频源,所述格式转换单元用于将所述第二有线视频源信号转换为HDMI格式的信号。
  13. 根据权利要求8-12任一项所述的图传设备,其特征在于,所述视频收发单元还包括视频处理芯片,所述主控芯片还用于生成OSD信号,并发送给所述视频处理芯片;所述视频传输芯片用于将所述第一视频源信号或所述第二视频源信号通过所述第二视频输出接口传输给所述视频处理芯片,所述视频处理芯片用于将所述第一视频源信号或所述第二视频源信号和所述OSD信号叠加处理后生成待显示视频信号,并发送给所述显示单元。
  14. 根据权利要求13所述的图传设备,其特征在于,所述主控芯片包括:
    至少1路视频输入接口,用于与所述视频传输芯片的第一视频输出接 口或所述无线通信单元的输出接口相连;
    至少1路OSD信号接口,用于与所述视频处理芯片的输入接口相连;
    至少1路视频输出接口,用于与所述视频传输芯片的第二视频输入接口相连或与所述无线通信单元的输入接口相连。
  15. 根据权利要求8-14任一项所述的图传设备,其特征在于,所述第一视频源信号或所述第二视频源信号为所述主控芯片预处理后信号,所述预处理包括在所述显示单元上实现以下任一功能:遮幅标记、画面缩放、局部放大、画面移动、画面冻结、垂直左右翻转、九宫格。
  16. 根据权利要求1-15任一项所述的图传设备,其特征在于,所述图传设备还包括单片机,所述单片机用于对所述视频收发单元进行初始化配置;和/或
    所述单片机用于实现所述图传设备的电源键功能,所述视频收发单元还用于在接收所述切换指令后,控制所述电源键的功能处于失效状态。
PCT/CN2022/110923 2022-06-10 2022-08-08 图传设备 WO2023236343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221463656.3 2022-06-10
CN202221463656 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023236343A1 true WO2023236343A1 (zh) 2023-12-14

Family

ID=86010997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110923 WO2023236343A1 (zh) 2022-06-10 2022-08-08 图传设备

Country Status (2)

Country Link
CN (1) CN218918246U (zh)
WO (1) WO2023236343A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020118886A1 (en) * 2000-12-13 2002-08-29 Hoon Hwang Video transmission and receiving method and apparatus using radio communication instrument
CN101600117A (zh) * 2008-06-03 2009-12-09 姚国略 多媒体无线传输系统
CN102307199A (zh) * 2011-09-01 2012-01-04 上海星尘电子科技有限公司 多媒体传输与处理装置
CN205847319U (zh) * 2016-06-22 2016-12-28 北京山桐科技有限公司 多媒体传输系统
CN113992998A (zh) * 2020-07-10 2022-01-28 罗技欧洲公司 无线多媒体软件狗及系统、计算机软件狗及操作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020118886A1 (en) * 2000-12-13 2002-08-29 Hoon Hwang Video transmission and receiving method and apparatus using radio communication instrument
CN101600117A (zh) * 2008-06-03 2009-12-09 姚国略 多媒体无线传输系统
CN102307199A (zh) * 2011-09-01 2012-01-04 上海星尘电子科技有限公司 多媒体传输与处理装置
CN205847319U (zh) * 2016-06-22 2016-12-28 北京山桐科技有限公司 多媒体传输系统
CN113992998A (zh) * 2020-07-10 2022-01-28 罗技欧洲公司 无线多媒体软件狗及系统、计算机软件狗及操作方法

Also Published As

Publication number Publication date
CN218918246U (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US11477316B2 (en) Information processing system, wireless terminal, and information processing method
WO2007057373A1 (en) Remote control of an image captioning device
CN108600663A (zh) 一种电子设备之间的通信方法以及电视接收机
US20060023081A1 (en) Video camera apparatus
EP3253066A1 (en) Information processing device
CN109587536A (zh) 一种远程遥控方法、设备、服务器和系统
KR20040047524A (ko) 영상 신호 기록 및 송신 장치
JP4605028B2 (ja) 遠隔制御システム、遠隔制御通信装置、及び被制御側通信装置
WO2023236343A1 (zh) 图传设备
US11509810B2 (en) Image capture apparatus, operation apparatus and control methods
JP2723111B2 (ja) テレビ電話付きテレビ受像機
KR101217101B1 (ko) 다중 디스플레이 제어 기능을 갖는 디지털 비디오 레코더 및 그 디지털 비디오 레코더에서의 다중 디스플레이 제어 방법
JP2014016507A (ja) 表示制御装置
KR101045502B1 (ko) 집합형 영상 선택 장치
CN215182411U (zh) 一种基于mesh的无人设备遥控器
WO2022070435A1 (ja) 映像共有システム、携帯端末、映像通信アダプタ、管理サーバ、及び映像共有方法
JP2011130193A (ja) 再生装置及びシステム
CN101783922B (zh) 视频会议装置及其方法
CN115426476A (zh) 一种基于飞腾的卫星通讯音视频一体机及通讯方法
KR100451456B1 (ko) 케이블 모뎀을 이용한 감시시스템
JP2661564B2 (ja) 遠隔応接装置
CN108989727A (zh) 可调式视频转换方法
US20150110456A1 (en) System for providing video for visually impaired person
JPH03136487A (ja) コードレステレビ電話装置
US20120086816A1 (en) Speed dome camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945477

Country of ref document: EP

Kind code of ref document: A1