WO2023234593A1 - 배터리 진단 장치 및 방법 - Google Patents

배터리 진단 장치 및 방법 Download PDF

Info

Publication number
WO2023234593A1
WO2023234593A1 PCT/KR2023/006561 KR2023006561W WO2023234593A1 WO 2023234593 A1 WO2023234593 A1 WO 2023234593A1 KR 2023006561 W KR2023006561 W KR 2023006561W WO 2023234593 A1 WO2023234593 A1 WO 2023234593A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
negative electrode
graphite
behavior
charging
Prior art date
Application number
PCT/KR2023/006561
Other languages
English (en)
French (fr)
Inventor
김대수
김영덕
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2023234593A1 publication Critical patent/WO2023234593A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery diagnostic device and method, and more specifically, to a battery diagnostic device and method that can diagnose whether an internal tab is disconnected.
  • lithium batteries have almost no memory effect compared to nickel-based batteries, so they can be freely charged and discharged, and have a very high self-discharge rate. It is attracting attention due to its low and high energy density.
  • a battery has a structure in which a positive electrode material, a separator, and a negative electrode material are stacked in parallel.
  • a positive electrode tab is connected to each of the plurality of positive electrode materials, and the plurality of positive electrode tabs may be electrically connected to each other through the positive electrode lead.
  • a negative electrode tab is connected to each of the plurality of negative electrode materials, and the plurality of negative electrode tabs may be electrically connected to each other through a negative electrode lead.
  • the positive and negative tabs like the positive and negative plates, are made of a very thin metal film, so when an impact is applied to the secondary battery, there is a high probability that they will be disconnected before other components.
  • the present invention was developed to solve the above problems, and its purpose is to provide a battery diagnostic device and method that can accurately diagnose whether an internal tab of a battery is disconnected.
  • a battery diagnostic device includes a discharge unit electrically connected to a battery and configured to discharge the battery; an X-ray diffraction analysis unit configured to output X-rays toward a plurality of negative electrode tabs included in the battery and generate a graphite profile for each of the plurality of negative electrode tabs based on the output X-rays; and a control unit configured to determine charging and discharging behavior of each of the plurality of negative electrode tabs based on the plurality of generated graphite profiles and to diagnose the state of the battery based on the plurality of determined charging and discharging behaviors.
  • the control unit may be configured to determine the charging/discharging behavior of each of the plurality of negative electrode tabs as charging behavior or discharging behavior by checking the integrated intensity of graphite in each of the plurality of negative electrode tabs based on the plurality of graphite profiles. You can.
  • the control unit may be configured to determine the charge/discharge behavior of the negative electrode tab whose integrated intensity decreases as the discharge behavior, and determine the charge/discharge behavior of the negative electrode tab whose integrated intensity increases as the charging behavior.
  • the control unit may be configured to diagnose the state of the battery as normal when the discharge behavior is confirmed in the plurality of negative electrode tabs.
  • the control unit may be configured to diagnose the state of the battery as abnormal when the charging behavior is confirmed in at least one of the plurality of negative electrode tabs.
  • the control unit may be configured to diagnose the state of the negative electrode tab whose charging behavior is confirmed as a disconnection state.
  • the X-ray diffraction analyzer may be configured to output the X-rays in a direction through which the plurality of cathode tabs penetrate.
  • the X-ray diffraction analyzer may be configured to output the X-rays in a stacking direction of the plurality of cathode tabs.
  • the X-ray diffraction analyzer determines the integrated intensity of graphite for each of the plurality of cathode tabs based on the diffraction information of the X-ray each time the X-ray is output, and determines the time and It may be configured to generate the graphite profile to indicate a correspondence between integrated intensities.
  • a battery testing device may include a battery diagnosis device according to an aspect of the present invention.
  • a battery diagnosis method includes a discharging step of discharging the battery; An X-ray output step of outputting X-rays toward a plurality of negative electrode tabs included in the battery; A graphite profile generating step of generating a graphite profile for each of the plurality of cathode tabs based on output X-rays; A charge/discharge behavior determination step of determining charge/discharge behavior of each of the plurality of negative electrode tabs based on the plurality of graphite profiles generated in the graphite profile generation step; and a battery state diagnosis step of diagnosing the state of the battery based on a plurality of determined charging and discharging behaviors.
  • the state of a battery can be non-destructively diagnosed based on a graphite profile generated through X-ray diffraction analysis.
  • FIG. 1 is a diagram schematically showing a battery diagnosis device according to an embodiment of the present invention.
  • Figure 2 is a diagram schematically showing a battery according to an embodiment of the present invention.
  • 3 and 4 are diagrams schematically showing the internal structure of a battery according to an embodiment of the present invention.
  • Figures 5 and 6 are diagrams schematically showing an example of X-rays being irradiated to a battery according to an embodiment of the present invention.
  • Figure 7 is a diagram schematically showing a first graphite profile according to an embodiment of the present invention.
  • Figure 8 is a diagram schematically showing a second graphite profile according to an embodiment of the present invention.
  • Figure 9 is a diagram schematically showing the internal structure of a battery with a disconnected negative electrode tab according to an embodiment of the present invention.
  • Figure 10 is a diagram schematically showing a battery diagnosis method according to another embodiment of the present invention.
  • Figure 1 is a diagram schematically showing a battery diagnosis device 100 according to an embodiment of the present invention.
  • the battery diagnosis device 100 may include a discharge unit 110, an X-ray diffraction analysis unit 120, and a control unit 130.
  • the battery has a negative terminal and a positive terminal and refers to an independent cell that is physically separable.
  • a lithium ion battery or a lithium polymer battery may be considered a battery.
  • Figure 2 is a diagram schematically showing a battery 10 according to an embodiment of the present invention.
  • 3 and 4 are diagrams schematically showing the internal structure of the battery 10 according to an embodiment of the present invention.
  • the battery 10 may include a cell assembly in which a negative electrode material 31, a separator 33, and a positive electrode material 32 are stacked. Additionally, a negative electrode tab 21 may be connected to the negative electrode material 31, and a positive electrode tab may be connected to the positive electrode material 32. A plurality of negative electrode tabs 21 may be connected to the negative electrode lead 11, and a plurality of positive electrode materials 32 may be connected to the positive electrode lead 12. 2 shows an embodiment in which the negative lead 11 and the positive lead 12 are located in the same direction, but depending on the embodiment, the negative lead 11 and the positive lead 12 may be located in different directions.
  • the discharge unit 110 may be configured to be electrically connected to the battery 10 .
  • the discharge unit 110 may be connected to the negative lead 11 and the positive lead 12 of the battery 10, respectively.
  • the discharge unit 110 may be connected to the negative lead 11 and the positive lead 12.
  • the discharge unit 110 may be configured to discharge the battery 10.
  • the discharge unit 110 may receive a discharge start signal and information about the discharge C-rate from the control unit 130. And, the discharge unit 110 may discharge the battery 10 at a discharge C-rate corresponding to the received discharge C-rate information.
  • the X-ray diffraction analyzer 120 may be configured to output X-rays toward a plurality of cathode tabs 21 included in the battery 10.
  • the X-ray diffraction analyzer 120 may be configured to radiate X-rays to the battery 10 and diagnose the state of the battery 10 using the diffraction lines.
  • the X-ray diffraction analysis unit 120 may be configured to perform X-ray diffraction (XRD) analysis.
  • the X-ray diffraction analyzer 120 may periodically output X-rays toward the battery 10. That is, in the process of discharging the battery 10, the X-ray diffraction analyzer 120 may periodically output X-rays toward the battery 10.
  • Figures 5 and 6 are diagrams schematically showing an example in which X-rays are irradiated to the battery 10 according to an embodiment of the present invention.
  • the X-ray diffraction analyzer 120 may output X-rays toward the battery 10.
  • the X-ray diffraction analyzer 120 may output X-rays toward the plurality of cathode tabs 21 included in the battery 10.
  • the X-ray diffraction analyzer 120 may be configured to generate a graphite profile for each of the plurality of cathode tabs 21 based on the output X-rays.
  • the X-ray diffraction analyzer 120 may be configured to determine the integrated intensity of graphite for each of the plurality of cathode tabs 21 based on the diffraction information of the X-rays each time X-rays are output.
  • the integrated intensity is a value that can be obtained using X-ray diffraction analysis.
  • the integrated intensity can be determined each time an X-ray is output. For example, assuming that X-rays are output 10 times, the determined integrated intensity of graphite may be 10.
  • the X-ray diffraction analyzer 120 may determine the integrated intensity of graphite in each of the plurality of cathode tabs 21 of the battery 10 when the battery 10 is being discharged.
  • the X-ray diffraction analyzer 120 may determine the integrated intensity of graphite for each of the plurality of cathode tabs 21. This is because X-rays can penetrate the cathode tabs 21, so the integrated intensity of graphite for each of the plurality of cathode tabs 21 can be determined.
  • the X-ray diffraction analyzer 120 may be configured to generate a graphite profile to indicate a correspondence between time and integrated intensity for each of the plurality of cathode tabs 21.
  • the X-ray diffraction analyzer 120 may generate a graphite profile indicating a change in integrated intensity over time.
  • the X-ray diffraction analyzer 120 may generate a graphite profile representing a plurality of determined integrated intensities over time (according to the order of the X-ray irradiation period).
  • Figure 7 is a diagram schematically showing the first graphite profile GP1 according to an embodiment of the present invention.
  • Figure 8 is a diagram schematically showing a second graphite profile (GP2) according to an embodiment of the present invention.
  • the integrated intensity of graphite may decrease in a time period of less than 50 minutes, but in the second graphite profile GP2, the integrated intensity of graphite may increase in a time period of less than 50 minutes. That is, in the embodiments of FIGS. 7 and 8, the charging and discharging behavior of the negative electrode tab 21 in a time period of less than 50 minutes may be different from each other.
  • the negative electrode tab 21 may be discharged in a time period of less than 50 minutes and may be in a resting state in a time period of 50 minutes or more.
  • the first graphite profile (GP1) may be a graphite profile for the negative electrode tab 21 that is discharged in a time period of 0 to 50 minutes.
  • the negative electrode tab 21 may be charged in a time period of less than 50 minutes and in a resting state for a time period of 50 minutes or more.
  • the second graphite profile GP2 may be a graphite profile for the cathode tab 21 that is charged in a time period of 0 to 50 minutes.
  • the control unit 130 may be configured to determine the charging and discharging behavior of each of the plurality of negative electrode tabs 21 based on the plurality of generated graphite profiles.
  • control unit 130 may check the integrated intensity of graphite in each of the plurality of cathode tabs 21 based on the plurality of graphite profiles.
  • control unit 130 may be configured to determine the charging and discharging behavior of each of the plurality of negative electrode tabs 21 as charging behavior or discharging behavior.
  • control unit 130 may check the increase or decrease in the integrated intensity of graphite over time in the graphite profile. In addition, the control unit 130 may determine the charging and discharging behavior of the corresponding negative electrode tab 21 according to the increase or decrease in the confirmed integrated intensity.
  • control unit 130 may be configured to determine the charge/discharge behavior of the cathode tab 21 whose integrated intensity decreases as the discharge behavior. Conversely, the control unit 130 may be configured to determine the charging and discharging behavior of the negative electrode tab 21, in which the integrated intensity increases, as charging behavior.
  • control unit 130 may determine the charging and discharging behavior of the negative electrode tab 21 corresponding to the embodiment of FIG. 7 as the discharging behavior.
  • control unit 130 may determine the charging and discharging behavior of the negative electrode tab 21 corresponding to the embodiment of FIG. 8 as charging behavior.
  • the control unit 130 may be configured to diagnose the state of the battery 10 based on a plurality of determined charging and discharging behaviors.
  • control unit 130 may determine charging and discharging behavior for each of the plurality of negative electrode tabs 21. In addition, the control unit 130 can diagnose the state of the battery 10 depending on whether the charging and discharging behavior of the plurality of negative electrode tabs 21 match.
  • the plurality of negative electrode tabs 21 included in the battery 10 should have the same charging and discharging behavior. That is, if the charging and discharging behavior of some of the plurality of negative electrode tabs 21 included in the battery 10 are different, the state of the battery 10 may be abnormal. Accordingly, the control unit 130 can diagnose the state of the battery 10 as a normal state or an abnormal state by considering the charging and discharging behavior of the plurality of negative electrode tabs 21.
  • the first graphite profile (GP1) according to the embodiment of FIG. 7 and the second graphite profile (GP2) according to the embodiment of FIG. 8 are attached to each of the two negative electrode tabs 21 included in one battery 10. Assume that this is a profile for Since the charging and discharging behavior of the two negative electrode tabs 21 included in the battery 10 are different from each other, the control unit 130 may diagnose the state of the battery 10 as abnormal.
  • the battery 10 diagnosed as being in an abnormal state by the control unit 130 may be disused to prevent accidents such as fire or explosion.
  • the battery diagnosis device 100 can check the charging and discharging behavior of the plurality of negative electrode tabs 21 inside the battery using X-ray diffraction analysis. Furthermore, the battery diagnosis device 100 can diagnose the state of the battery 10 by considering the charging and discharging behavior of the plurality of negative electrode tabs 21. Accordingly, the battery diagnosis device 100 has the advantage of being able to accurately diagnose the state of the battery 10 in a non-destructive manner.
  • control unit 130 provided in the battery diagnosis device 100 uses a processor, an application-specific integrated circuit (ASIC), other chipsets, logic circuits, and registers known in the art to execute various control logics performed in the present invention. , communication modem, data processing device, etc. may be optionally included. Additionally, when the control logic is implemented as software, the control unit 130 may be implemented as a set of program modules. At this time, the program module is stored in memory and can be executed by the control unit 130. The memory may be inside or outside the control unit 130, and may be connected to the control unit 130 through various well-known means.
  • ASIC application-specific integrated circuit
  • the battery diagnosis device 100 may further include a storage unit 140.
  • the storage unit 140 may store data or programs necessary for each component of the battery diagnosis device 100 to perform operations and functions, or data generated in the process of performing operations and functions.
  • information storage means may include RAM, flash memory, ROM, EEPROM, registers, etc.
  • the storage unit 140 may store program codes in which processes executable by the control unit 130 are defined.
  • control unit 130 diagnoses the state of the battery 10 while the battery 10 is being discharged will be described in more detail.
  • the control unit 130 may be configured to diagnose the state of the battery 10 as normal when discharge behavior is confirmed in the plurality of negative electrode tabs 21. Conversely, the control unit 130 may be configured to diagnose the state of the battery 10 as abnormal when charging behavior is confirmed in at least one of the plurality of negative electrode tabs 21.
  • the plurality of negative electrode tabs 21 included in the battery 10 should be in a discharging behavior.
  • at least one of the plurality of negative electrode tabs 21 may show charging behavior even if the battery 10 is discharging.
  • control unit 130 may be configured to diagnose the state of the negative electrode tab 21 for which charging behavior has been confirmed as a disconnection state.
  • FIG. 9 is a diagram schematically showing the internal structure of a battery 10 in which the negative electrode tab 21 is disconnected according to an embodiment of the present invention.
  • the first negative electrode tab 21a may be connected to the first negative electrode material 31a
  • the second negative electrode tab 21b may be connected to the second negative electrode material 31b
  • the third negative electrode tab 21c may be connected to the third negative electrode material 31c
  • the fourth negative electrode tab 21d may be connected to the fourth negative electrode material 31d.
  • the charge/discharge behavior of the first negative electrode tab 21a may be a charging behavior even if the battery 10 is discharged. That is, the graphite profile of the first cathode tab 21a corresponds to the second graphite profile GP2 in FIG. 8, and the second cathode tab 21b, third cathode tab 21c, and fourth cathode tab 21d The graphite profile may correspond to the first graphite profile (GP1) of FIG. 7 .
  • the second negative electrode material 31b, third negative electrode material 31c, and fourth negative electrode material 31d in which the negative electrode tab 21 is not disconnected may be electrically connected to the negative electrode lead 11. there is. That is, when the battery 10 is discharged, lithium ions may be desorbed from the second anode material 31b, the third anode material 31c, and the fourth anode material 31d. Specifically, lithium ions may be desorbed from the graphite layers of the second negative electrode material 31b, third negative electrode material 31c, and fourth negative electrode material 31d due to discharge.
  • the first negative electrode tab 21a is disconnected, lithium ions are not desorbed from the graphite layer of the first negative electrode material 31a.
  • lithium ions desorbed from the graphite layers of the second negative electrode material 31b, third negative electrode material 31c, and fourth negative electrode material 31d move through the electrolyte to form the graphite layer of the first negative electrode material 31a. It can be inserted as . Therefore, even when the battery 10 is discharging, the depth of charge of the graphite can increase in the disconnected first cathode tab 21a. In addition, the increase in the depth of charge of the first cathode tab 21a can be confirmed from the increase in the integrated intensity of graphite of the first cathode tab 21a.
  • the battery diagnosis device 100 has the advantage of being able to accurately diagnose whether the negative electrode tab 21 of the battery 10 is disconnected using X-ray diffraction analysis.
  • the battery diagnosis device 100 has the advantage of not only being able to diagnose the state of the battery 10, but also specifically diagnosing the cause of a defect in the battery 10.
  • the X-ray diffraction analyzer 120 may be configured to output X-rays in a direction through which the plurality of cathode tabs 21 penetrate.
  • X-rays output from the X-ray diffraction analyzer 120 may pass through a plurality of cathode tabs 21. Additionally, the X-ray diffraction analysis unit 120 must generate a graphite profile for each of the plurality of cathode tabs 21. Therefore, the X-ray diffraction analyzer 120 can output there is.
  • direction D may be a direction in which a plurality of cathode tabs 21 pass through. Accordingly, the X-ray diffraction analyzer 120 may output X-rays toward the plurality of cathode tabs 21 in the D direction.
  • the X-ray diffraction analyzer 120 may be configured to output X-rays in the stacking direction of the plurality of cathode tabs 21.
  • the ends of the plurality of negative electrode tabs 21 may be stacked so as to contact each other.
  • the stacking direction of the plurality of negative electrode tabs 21 may be the same as the D direction, which is the direction in which the plurality of negative electrode tabs 21 penetrate. Accordingly, the X-ray diffraction analyzer 120 may output X-rays toward the plurality of cathode tabs 21 in the D direction.
  • the battery diagnosis device 100 may determine the integrated intensity of graphite for a plurality of negative electrode tabs 21 at the same time and generate a plurality of graphite profiles based on the determined integrated intensity. . Accordingly, the accuracy and reliability of the battery status diagnosis result by the battery diagnosis device 100 can be improved.
  • a battery testing device may include a battery diagnosis device 100 according to an embodiment of the present invention.
  • the battery test device may further include a fixture configured to secure the battery 10.
  • the discharge unit 110 When the battery 10 is fixed to the fixing unit, the discharge unit 110 may be connected to the negative lead 11 and the positive lead 12 of the battery 10.
  • the discharge unit 110 receives a discharge start signal and information about the discharge C-rate from the control unit 130, it can discharge the battery 10 at the corresponding C-rate.
  • the X-ray diffraction analyzer 120 may output X-rays to the battery 10 and generate a graphite profile for each of the plurality of cathode tabs 21.
  • the control unit 130 may determine the charging and discharging behavior of each of the plurality of negative electrode tabs 21 by considering the plurality of graphite profiles. If the charging/discharging behavior of at least one negative electrode tab 21 is confirmed to be charging behavior, the control unit 130 may diagnose the state of the battery 10 as abnormal. In this case, the battery 10 diagnosed as being in an abnormal state may be disused.
  • Figure 10 is a diagram schematically showing a battery diagnosis method according to another embodiment of the present invention.
  • each step of the battery diagnosis method can be performed by the battery diagnosis device 100.
  • the battery diagnosis device 100 Preferably, each step of the battery diagnosis method can be performed by the battery diagnosis device 100.
  • content that overlaps with the content described above will be omitted or briefly described.
  • the battery diagnosis method may include a discharging step (S100), an
  • the discharging step (S100) is a step of discharging the battery 10 and may be performed by the discharging unit 110.
  • the X-ray output step (S200) is a step of outputting X-rays toward the plurality of cathode tabs 21 included in the battery 10, and may be performed by the X-ray diffraction analysis unit 120.
  • the X-ray diffraction analyzer 120 may irradiate X-rays in a direction penetrating the plurality of cathode tabs 21 included in the battery 10 (the direction in which the plurality of cathode tabs 21 are stacked).
  • the graphite profile generating step (S300) is a step of generating a graphite profile for each of the plurality of cathode tabs 21 based on the output X-rays, and may be performed by the X-ray diffraction analysis unit 120.
  • the X-ray diffraction analysis unit 120 may generate a graphite profile representing the integrated intensity of graphite over time for each of the plurality of cathode tabs 21.
  • the charge/discharge behavior determination step (S400) is a step of determining the charge/discharge behavior of each of the plurality of negative electrode tabs 21 based on the plurality of graphite profiles generated in the graphite profile generation step (S300), and is performed by the control unit 130. It can be done.
  • control unit 130 may determine the charging and discharging behavior of each of the plurality of negative electrode tabs 21 based on the increase or decrease in the integrated intensity of graphite shown in the graphite profile.
  • control unit 130 may determine the charging and discharging behavior of the negative electrode tab 21, in which the integrated intensity of graphite increases over time, as the charging behavior. Conversely, the control unit 130 may determine the charge/discharge behavior of the cathode tab 21, in which the integrated intensity of graphite decreases over time, as the discharge behavior.
  • the battery state diagnosis step (S500) is a step of diagnosing the state of the battery 10 based on a plurality of determined charging and discharging behaviors, and may be performed by the control unit 130.
  • control unit 130 may diagnose the state of the battery 10 as abnormal when the charging/discharging behavior of at least one of the plurality of negative electrode tabs 21 is charging behavior. More specifically, the control unit 130 may diagnose that the negative electrode tab 21 whose charging/discharging behavior is a charging behavior is disconnected.
  • control unit 130 control unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리 진단 장치는 배터리에 전기적으로 연결되고, 상기 배터리를 방전시키도록 구성된 방전부; 상기 배터리에 포함된 복수의 음극 탭을 향해 X선을 출력하고, 출력된 X선에 기반하여 상기 복수의 음극 탭 각각에 대한 흑연 프로파일을 생성하도록 구성된 X선 회절 분석부; 및 생성된 복수의 흑연 프로파일에 기반하여 상기 복수의 음극 탭 각각의 충방전 거동을 결정하고, 결정된 복수의 충방전 거동에 기반하여 상기 배터리의 상태를 진단하도록 구성된 제어부를 포함한다.

Description

배터리 진단 장치 및 방법
본 출원은 2022년 05월 31일 자로 출원된 한국 특허 출원번호 제10-2022-0066560에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 진단 장치 및 방법에 관한 것으로서, 보다 상세하게는, 내부 탭의 단선 여부를 진단할 수 있는 배터리 진단 장치 및 방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
일반적으로, 배터리는 양극재, 분리막 및 음극재가 병렬로 적층된 구조를 갖는다. 여기서, 복수의 양극재 각각에는 양극 탭이 연결되며, 복수의 양극 탭은 양극 리드를 통해서 서로 전기적으로 연결될 수 있다. 마찬가지로, 복수의 음극재 각각에는 음극 탭이 연결되며, 복수의 음극 탭은 음극 리드를 통해서 서로 전기적으로 연결될 수 있다.
일 예로, 배터리의 전극 탭(양극 탭 및 음극 탭)에서 단선이 발생될 가능성이 높다. 양극 탭 및 음극 탭은 양극판 및 음극판과 마찬가지로 매우 얇은 금속 박막으로 이루어져 있으므로 이차 전지에 충격이 가해질 경우 다른 구성품보다 먼저 단선될 확률이 높다.
만약, 적어도 하나의 양극 탭 또는 적어도 하나의 음극 탭이 손상되어 단선된 경우, 배터리의 성능이 저하되고, 화재 또는 폭발과 같은 사고가 발생될 수 있다. 따라서, 배터리의 내부 탭의 단선 여부를 정확하게 진단할 수 있는 기술의 개발이 필요하다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배터리의 내부 탭의 단선 여부를 정확하게 진단할 수 있는 배터리 진단 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 진단 장치는 배터리에 전기적으로 연결되고, 상기 배터리를 방전시키도록 구성된 방전부; 상기 배터리에 포함된 복수의 음극 탭을 향해 X선을 출력하고, 출력된 X선에 기반하여 상기 복수의 음극 탭 각각에 대한 흑연 프로파일을 생성하도록 구성된 X선 회절 분석부; 및 생성된 복수의 흑연 프로파일에 기반하여 상기 복수의 음극 탭 각각의 충방전 거동을 결정하고, 결정된 복수의 충방전 거동에 기반하여 상기 배터리의 상태를 진단하도록 구성된 제어부를 포함할 수 있다.
상기 제어부는, 상기 복수의 흑연 프로파일에 기반하여 상기 복수의 음극 탭 각각에서의 흑연의 적분 강도를 확인함으로써, 상기 복수의 음극 탭 각각의 상기 충방전 거동을 충전 거동 또는 방전 거동으로 결정하도록 구성될 수 있다.
상기 제어부는, 상기 적분 강도가 감소하는 음극 탭의 충방전 거동을 상기 방전 거동으로 결정하고, 상기 적분 강도가 증가하는 음극 탭의 충방전 거동을 상기 충전 거동으로 결정하도록 구성될 수 있다.
상기 제어부는, 상기 복수의 음극 탭에서 상기 방전 거동이 확인되면, 상기 배터리의 상태를 정상 상태로 진단하도록 구성될 수 있다.
상기 제어부는, 상기 복수의 음극 탭 중 적어도 하나에서 상기 충전 거동이 확인되면, 상기 배터리의 상태를 비정상 상태로 진단하도록 구성될 수 있다.
상기 제어부는, 상기 충전 거동이 확인된 음극 탭의 상태를 단선 상태로 진단하도록 구성될 수 있다.
상기 X선 회절 분석부는, 상기 복수의 음극 탭이 관통되는 방향으로 상기 X선을 출력하도록 구성될 수 있다.
상기 X선 회절 분석부는, 상기 복수의 음극 탭의 적층 방향으로 상기 X선을 출력하도록 구성될 수 있다.
상기 X선 회절 분석부는, 상기 X선을 출력할 때마다 상기 X선의 회절 정보에 기반하여 상기 복수의 음극 탭 각각에 대한 흑연의 적분 강도를 결정하고, 상기 복수의 음극 탭 각각에 대하여 시간과 상기 적분 강도 간의 대응 관계를 나타내도록 상기 흑연 프로파일을 생성하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 테스트 장치는 본 발명의 일 측면에 따른 배터리 진단 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 진단 방법은 배터리를 방전시키는 방전 단계; 상기 배터리에 포함된 복수의 음극 탭을 향해 X선을 출력하는 X선 출력 단계; 출력된 X선에 기반하여 상기 복수의 음극 탭 각각에 대한 흑연 프로파일을 생성하는 흑연 프로파일 생성 단계; 흑연 프로파일 생성 단계에서 생성된 복수의 흑연 프로파일에 기반하여 상기 복수의 음극 탭 각각의 충방전 거동을 결정하는 충방전 거동 결정 단계; 및 결정된 복수의 충방전 거동에 기반하여 상기 배터리의 상태를 진단하는 배터리 상태 진단 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면, X선 회절 분석법을 통해 생성된 흑연 프로파일에 기반하여, 배터리의 상태가 비파괴적으로 진단될 수 있다.
또한, 본 발명의 일 측면에 따르면, 배터리의 음극 탭의 단선 여부가 구체적으로 진단될 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 진단 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리를 개략적으로 도시한 도면이다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 배터리의 내부 구조를 개략적으로 도시한 도면이다.
도 5 및 도 6은 본 발명의 일 실시예에 따라 배터리에 X선이 조사되는 예시를 개략적으로 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 제1 흑연 프로파일을 개략적으로 도시한 도면이다.
도 8은 본 발명의 일 실시예에 따른 제2 흑연 프로파일을 개략적으로 도시한 도면이다.
도 9는 본 발명의 일 실시예에 따른 음극 탭이 단선된 배터리의 내부 구조를 개략적으로 도시한 도면이다.
도 10은 본 발명의 다른 실시예에 따른 배터리 진단 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 진단 장치(100)를 개략적으로 도시한 도면이다.
도 1을 참조하면, 배터리 진단 장치(100)는 방전부(110), X선 회절 분석부(120) 및 제어부(130)를 포함할 수 있다.
여기서, 배터리는 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 리튬 이온 전지 또는 리튬 폴리머 전지가 배터리로 간주될 수 있다.
도 2는 본 발명의 일 실시예에 따른 배터리(10)를 개략적으로 도시한 도면이다. 도 3 및 도 4는 본 발명의 일 실시예에 따른 배터리(10)의 내부 구조를 개략적으로 도시한 도면이다.
도 2 내지 4를 참조하면, 배터리(10)는 음극재(31), 분리막(33) 및 양극재(32)가 적층된 셀 어셈블리를 포함할 수 있다. 그리고, 음극재(31)에는 음극 탭(21)이 연결되고, 양극재(32)에는 양극 탭이 연결될 수 있다. 복수의 음극 탭(21)은 음극 리드(11)와 연결되고, 복수의 양극재(32)는 양극 리드(12)와 연결될 수 있다. 도 2에서는 음극 리드(11)와 양극 리드(12)가 같은 방향에 위치한 실시예가 도시되었으나, 실시예에 따라서는 음극 리드(11)와 양극 리드(12)가 서로 다른 방향에 위치할 수도 있다.
방전부(110)는 배터리(10)에 전기적으로 연결되도록 구성될 수 있다.
구체적으로, 방전부(110)는 배터리(10)의 음극 리드(11)와 양극 리드(12)에 각각 연결될 수 있다. 예컨대, 도 2의 실시예에서, 방전부(110)는 음극 리드(11)와 양극 리드(12)에 연결될 수 있다.
방전부(110)는 배터리(10)를 방전시키도록 구성될 수 있다.
예컨대, 방전부(110)는 제어부(130)로부터 방전 시작 신호 및 방전 C-rate에 대한 정보를 수신할 수 있다. 그리고, 방전부(110)는 수신한 방전 C-rate 정보에 대응되는 방전 C-rate로 배터리(10)를 방전시킬 수 있다.
X선 회절 분석부(120)는 배터리(10)에 포함된 복수의 음극 탭(21)을 향해 X선을 출력하도록 구성될 수 있다.
구체적으로, X선 회절 분석부(120)는 배터리(10)로 X선을 조사하고, 회절선을 이용하여 배터리(10)의 상태를 진단하기 위한 구성일 수 있다. 예컨대, X선 회절 분석부(120)는 X선 회절(XRD, X-ray diffraction) 분석을 수행할 수 있는 구성일 수 있다.
바람직하게, X선 회절 분석부(120)는 주기적으로 배터리(10)를 향해 X선을 출력할 수 있다. 즉, 배터리(10)가 방전되는 과정에서, X선 회절 분석부(120)는 주기적으로 배터리(10)를 향해 X선을 출력할 수 있다.
도 5 및 도 6은 본 발명의 일 실시예에 따라 배터리(10)에 X선이 조사되는 예시를 개략적으로 도시한 도면이다.
예컨대, 도 5의 실시예에서, X선 회절 분석부(120)는 배터리(10)를 향해 X선을 출력할 수 있다. 구체적으로, 도 6의 실시예에서, X선 회절 분석부(120)는 배터리(10)에 포함된 복수의 음극 탭(21)을 향해 X선을 출력할 수 있다.
X선 회절 분석부(120)는 출력된 X선에 기반하여 복수의 음극 탭(21) 각각에 대한 흑연 프로파일을 생성하도록 구성될 수 있다.
구체적으로, X선 회절 분석부(120)는 X선을 출력할 때마다 X선의 회절 정보에 기반하여 복수의 음극 탭(21) 각각에 대한 흑연의 적분 강도를 결정하도록 구성될 수 있다.
여기서, 적분 강도(integrated intensity)는 X선 회절 분석법을 이용하여 획득될 수 있는 값이다. 적분 강도는 X선이 출력될 때마다 결정될 수 있다. 예컨대, X선이 10번 출력되었다고 가정하면, 결정된 흑연의 적분 강도는 10개일 수 있다.
바람직하게, X선 회절 분석부(120)는 배터리(10)가 방전 중일 때, 배터리(10)의 복수의 음극 탭(21) 각각에서의 흑연의 적분 강도를 결정할 수 있다. 예컨대, 도 3의 실시예에서, X선 회절 분석부(120)는 복수의 음극 탭(21) 각각에 대하여 흑연의 적분 강도를 결정할 수 있다. 이는, X선이 음극 탭(21)을 관통할 수 있기 때문에, 복수의 음극 탭(21) 각각에 대한 흑연의 적분 강도가 결정될 수 있다.
그리고, X선 회절 분석부(120)는 복수의 음극 탭(21) 각각에 대하여 시간과 적분 강도 간의 대응 관계를 나타내도록 흑연 프로파일을 생성하도록 구성될 수 있다.
구체적으로, X선 회절 분석부(120)는 시간에 따른 적분 강도의 변화를 나타내는 흑연 프로파일을 생성할 수 있다. 예컨대, X선 회절 분석부(120)는 결정된 복수의 적분 강도를 시간의 흐름에 따라(X선이 조사된 주기의 순서에 따라) 나타내는 흑연 프로파일을 생성할 수 있다.
도 7은 본 발명의 일 실시예에 따른 제1 흑연 프로파일(GP1)을 개략적으로 도시한 도면이다. 도 8은 본 발명의 일 실시예에 따른 제2 흑연 프로파일(GP2)을 개략적으로 도시한 도면이다.
예컨대, 제1 흑연 프로파일(GP1)에서는 50분 미만의 시간 구간에서 흑연의 적분 강도가 감소하지만, 제2 흑연 프로파일(GP2)에서는 50분 미만의 시간 구간에서 흑연의 적분 강도가 증가될 수 있다. 즉, 도 7과 도 8의 실시예에서, 50분 미만의 시간 구간에서의 음극 탭(21)의 충방전 거동이 서로 상이할 수 있다.
구체적인 예로, 도 7의 실시예에서, 음극 탭(21)은 50분 미만의 시간 구간에서 방전되고, 50분 이상의 시간 구간에서 휴지 상태일 수 있다. 제제1 흑연 프로파일(GP1)은 0분 내지 50분의 시간 구간에서 방전되는 음극 탭(21)에 대한 흑연 프로파일일 수 있다.
반대로, 도 8의 실시예에서, 음극 탭(21)은 50분 미만의 시간 구간에서 충전되고, 50분 이상의 시간 구간에서 휴지 상태일 수 있다. 제2 흑연 프로파일(GP2)은 0분 내지 50분의 시간 구간에서 충전되는 음극 탭(21)에 대한 흑연 프로파일일 수 있다.
제어부(130)는 생성된 복수의 흑연 프로파일에 기반하여 복수의 음극 탭(21) 각각의 충방전 거동을 결정하도록 구성될 수 있다.
구체적으로, 제어부(130)는 복수의 흑연 프로파일에 기반하여 복수의 음극 탭(21) 각각에서의 흑연의 적분 강도를 확인할 수 있다. 그리고, 제어부(130)는 복수의 음극 탭(21) 각각의 충방전 거동을 충전 거동 또는 방전 거동으로 결정하도록 구성될 수 있다.
예컨대, 제어부(130)는 흑연 프로파일에서 시간의 흐름에 따른 흑연의 적분 강도의 증감을 확인할수 있다. 그리고, 제어부(130)는 확인된 적분 강도의 증감에 따라 대응되는 음극 탭(21)의 충방전 거동을 결정할 수 있다.
구체적으로, 제어부(130)는 적분 강도가 감소하는 음극 탭(21)의 충방전 거동을 방전 거동으로 결정하도록 구성될 수 있다. 반대로, 제어부(130)는 적분 강도가 증가하는 음극 탭(21)의 충방전 거동을 충전 거동으로 결정하도록 구성될 수 있다.
도 7의 실시예에서, 50분 미만의 시간 구간을 살펴보면, 시간이 지남에 따라 흑연의 적분 강도는 감소하고 있다. 따라서, 제어부(130)는 도 7의 실시예에 대응되는 음극 탭(21)의 충방전 거동을 방전 거동으로 결정할 수 있다.
반대로, 도 8의 실시예에서, 50분 미만의 시간 구간을 살펴보면, 시간이 지남에 따라 흑연의 적분 강도는 증가하고 있다. 따라서, 제어부(130)는 도 8의 실시예에 대응되는 음극 탭(21)의 충방전 거동을 충전 거동으로 결정할 수 있다.
제어부(130)는 결정된 복수의 충방전 거동에 기반하여 배터리(10)의 상태를 진단하도록 구성될 수 있다.
구체적으로, 제어부(130)는 복수의 음극 탭(21) 각각에 대하여 충방전 거동을 결정할 수 있다. 그리고, 제어부(130)는 복수의 음극 탭(21)의 충방전 거동이 일치하는지 여부에 따라 배터리(10)의 상태를 진단할 수 있다.
바람직하게, 배터리(10)에 포함된 복수의 음극 탭(21)은 충방전 거동이 동일해야 한다. 즉, 배터리(10)에 포함된 복수의 음극 탭(21) 중 일부의 충방전 거동이 상이하다면, 배터리(10)의 상태는 비정상 상태일 수 있다. 따라서, 제어부(130)는 복수의 음극 탭(21)의 충방전 거동을 고려하여, 배터리(10)의 상태를 정상 상태 또는 비정상 상태로 진단할 수 있다.
예컨대, 도 7의 실시예에 따른 제1 흑연 프로파일(GP1)과 도 8의 실시예에 따른 제2 흑연 프로파일(GP2)이 하나의 배터리(10)에 포함된 2개의 음극 탭(21) 각각에 대한 프로파일이라고 가정한다. 제어부(130)는 배터리(10)에 포함된 2개의 음극 탭(21)의 충방전 거동이 서로 다르기 때문에, 배터리(10)의 상태를 비정상 상태로 진단할 수 있다.
바람직하게, 제어부(130)에 의해 비정상 상태로 진단된 배터리(10)는 화재나 폭발 등의 사고를 미연에 방지하기 위하여 불용 처리될 수 있다.
본 발명의 일 실시예에 따른 배터리 진단 장치(100)는 X선 회절 분석법을 이용하여 배터리 내부의 복수의 음극 탭(21)의 충방전 거동을 확인할 수 있다. 나아가, 배터리 진단 장치(100)는 복수의 음극 탭(21)의 충방전 거동을 고려하여 배터리(10)의 상태를 진단할 수 있다. 따라서, 배터리 진단 장치(100)는 비파괴적인 방식으로 배터리(10)의 상태를 정확하게 진단할 수 있는 장점이 있다.
한편, 배터리 진단 장치(100)에 구비된 제어부(130)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 상기 제어부(130)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 제어부(130)에 의해 실행될 수 있다. 상기 메모리는 제어부(130) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 제어부(130)와 연결될 수 있다.
또한, 배터리 진단 장치(100)는 저장부(140)를 더 포함할 수 있다. 저장부(140)는 배터리 진단 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(140)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(140)는 제어부(130)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
이하에서는 배터리(10)가 방전되는 중에 제어부(130)가 배터리(10)의 상태를 진단하는 실시예를 보다 구체적으로 설명한다.
제어부(130)는 복수의 음극 탭(21)에서 방전 거동이 확인되면, 배터리(10)의 상태를 정상 상태로 진단하도록 구성될 수 있다. 반대로, 제어부(130)는 복수의 음극 탭(21) 중 적어도 하나에서 충전 거동이 확인되면, 배터리(10)의 상태를 비정상 상태로 진단하도록 구성될 수 있다.
바람직하게, 배터리(10)가 방전되는 중이라면 배터리(10)에 포함된 복수의 음극 탭(21)은 방전 거동이어야 한다. 다만, 배터리(10)의 내부에서 결함이 발생된 경우라면, 배터리(10)가 방전 중이더라도 복수의 음극 탭(21) 중 적어도 하나는 충전 거동을 보일 수 있다.
구체적으로, 제어부(130)는 충전 거동이 확인된 음극 탭(21)의 상태를 단선 상태로 진단하도록 구성될 수 있다.
도 9는 본 발명의 일 실시예에 따른 음극 탭(21)이 단선된 배터리(10)의 내부 구조를 개략적으로 도시한 도면이다.
도 9를 참조하면, 제1 음극재(31a)에 제1 음극 탭(21a)이 연결되고, 제2 음극재(31b)에 제2 음극 탭(21b)이 연결될 수 있다. 제3 음극재(31c)에 제3 음극 탭(21c)이 연결되고, 제4 음극재(31d)에 제4 음극 탭(21d)이 연결될 수 있다. 바람직한 경우라면, 배터리(10)가 방전될 때 제1 음극 탭(21a), 제2 음극 탭(21b), 제3 음극 탭(21c) 및 제4 음극 탭(21d)의 충방전 거동은 모두 방전 거동이어야 한다. 하지만, 도 9의 실시예에서와 같이, 제1 음극 탭(21a)이 단선된 경우, 배터리(10)가 방전되더라도 제1 음극 탭(21a)의 충방전 거동은 충전 거동일 수 있다. 즉, 제1 음극 탭(21a)의 흑연 프로파일은 도 8의 제2 흑연 프로파일(GP2)에 대응되고, 제2 음극 탭(21b), 제3 음극 탭(21c) 및 제4 음극 탭(21d)의 흑연 프로파일은 도 7의 제1 흑연 프로파일(GP1)에 대응될 수 있다.
도 9의 실시예에서, 음극 탭(21)이 단선되지 않은 제2 음극재(31b), 제3 음극재(31c) 및 제4 음극재(31d)는 음극 리드(11)와 전기적으로 연결될 수 있다. 즉, 배터리(10)가 방전되면 제2 음극재(31b), 제3 음극재(31c) 및 제4 음극재(31d)에서 리튬 이온이 탈리될 수 있다. 구체적으로, 방전에 의해 제2 음극재(31b), 제3 음극재(31c) 및 제4 음극재(31d)의 흑연 층에서 리튬 이온이 탈리될 수 있다. 여기서, 제1 음극 탭(21a)이 단선되었기 때문에, 제1 음극재(31a)의 흑연 층에서는 리튬 이온이 탈리되지 않는다. 오히려, 제2 음극재(31b), 제3 음극재(31c) 및 제4 음극재(31d)의 흑연 층에서 탈리된 리튬 이온이 전해질을 통해 이동하여, 제1 음극재(31a)의 흑연 층으로 삽입될 수 있다. 따라서, 배터리(10)가 방전 중이더라도 단선된 제1 음극 탭(21a)에서는 흑연의 충전 심도(Depth of charge)가 증가될 수 있는 것이다. 그리고, 제1 음극 탭(21a)의 충전 심도의 증가가 증가하는 것은, 제1 음극 탭(21a)의 흑연의 적분 강도가 증가되는 것으로부터 확인할 수 있다.
본 발명의 일 실시예에 따른 배터리 진단 장치(100)는 X선 회절 분석법을 이용하여 배터리(10)의 음극 탭(21)의 단선 여부를 정확하게 진단할 수 있는 장점이 있다. 즉, 배터리 진단 장치(100)는 배터리(10)의 상태를 진단할 수 있을 뿐만 아니라, 배터리(10)의 결함 원인까지 구체적으로 진단할 수 있는 장점이 있다.
한편, X선 회절 분석부(120)는 복수의 음극 탭(21)이 관통되는 방향으로 X선을 출력하도록 구성될 수 있다.
X선의 특성을 고려하면, X선 회절 분석부(120)에서 출력된 X선은 복수의 음극 탭(21)을 통과할 수 있다. 그리고, X선 회절 분석부(120)는 복수의 음극 탭(21) 각각에 대한 흑연 프로파일을 생성해야 한다. 따라서, X선 회절 분석부(120)는 동일 시점에서 측정된 흑연의 적분 강도를 반영하여 복수의 흑연 프로파일을 생성하기 위하여, 복수의 음극 탭(21)이 관통되는 방향으로 X선을 출력할 수 있다.
예컨대, 도 6의 실시예에서, D 방향은 복수의 음극 탭(21)이 관통되는 방향일 수 있다. 따라서, X선 회절 분석부(120)는 D 방향으로 복수의 음극 탭(21)을 향해 X선을 출력할 수 있다.
다른 말로 설명하면, X선 회절 분석부(120)는 복수의 음극 탭(21)의 적층 방향으로 X선을 출력하도록 구성될 수 있다. 도 6의 실시예에서, 복수의 음극 탭(21)은 하나의 음극 리드(11)와 전기적으로 연결되어야 하기 때문에, 복수의 음극 탭(21)의 끝단은 서로 접촉되도록 적층될 수 있다. 여기서, 복수의 음극 탭(21)의 적층 방향은 복수의 음극 탭(21)이 관통되는 방향인 D 방향과 동일할 수 있다. 따라서, X선 회절 분석부(120)는 D 방향으로 복수의 음극 탭(21)을 향해 X선을 출력할 수 있다.
본 발명의 일 실시예에 따른 배터리 진단 장치(100)는 동일 시점에서 복수의 음극 탭(21)에 대한 흑연의 적분 강도를 결정하고, 결정된 적분 강도에 기반하여 복수의 흑연 프로파일을 생성할 수 있다. 따라서, 배터리 진단 장치(100)에 의한 배터리 상태 진단 결과의 정확도 및 신뢰도가 향상될 수 있다.
본 발명의 다른 실시예에 따른 배터리 테스트 장치는 본 발명의 일 실시예에 따른 배터리 진단 장치(100)를 포함할 수 있다.
예컨대, 배터리 테스트 장치는 배터리(10)를 고정하도록 구성된 고정부를 더 포함할 수 있다. 고정부에 배터리(10)가 고정되면, 방전부(110)는 배터리(10)의 음극 리드(11)와 양극 리드(12)와 연결될 수 있다. 방전부(110)는 제어부(130)로부터 방전 시작 신호 및 방전 C-rate에 대한 정보를 수신하면, 배터리(10)를 해당 C-rate로 방전시킬 수 있다. 방전 과정에서, X선 회절 분석부(120)는 배터리(10)에 X선을 출력하고, 복수의 음극 탭(21) 각각에 대한 흑연 프로파일을 생성할 수 있다. 제어부(130)는 복수의 흑연 프로파일을 고려하여, 복수의 음극 탭(21) 각각의 충방전 거동을 결정할 수 있다. 만약, 적어도 하나의 음극 탭(21)에 대한 충방전 거동이 충전 거동으로 확인된 경우, 제어부(130)는 배터리(10)의 상태를 비정상 상태로 진단할 수 있다. 이 경우, 비정상 상태로 진단된 배터리(10)는 불용 처리될 수 있다.
도 10은 본 발명의 다른 실시예에 따른 배터리 진단 방법을 개략적으로 도시한 도면이다.
바람직하게, 배터리 진단 방법의 각 단계는 배터리 진단 장치(100)에 의해 수행될 수 있다. 이하에서는, 설명의 편의를 위해, 앞서 설명한 내용과 중복되는 내용은 생략하거나 간략히 설명한다.
배터리 진단 방법은 방전 단계(S100), X선 출력 단계(S200), 흑연 프로파일 생성 단계(S300), 충방전 거동 결정 단계(S400) 및 배터리 상태 진단 단계(S500)를 포함할 수 있다.
방전 단계(S100)는 배터리(10)를 방전시키는 단계로서, 방전부(110)에 의해 수행될 수 있다.
X선 출력 단계(S200)는 배터리(10)에 포함된 복수의 음극 탭(21)을 향해 X선을 출력하는 단계로서, X선 회절 분석부(120)에 의해 수행될 수 있다.
예컨대, X선 회절 분석부(120)는 배터리(10)에 포함된 복수의 음극 탭(21)을 관통하는 방향(복수의 음극 탭(21)의 적층 방향)으로 X선을 조사할 수 있다.
흑연 프로파일 생성 단계(S300)는 출력된 X선에 기반하여 복수의 음극 탭(21) 각각에 대한 흑연 프로파일을 생성하는 단계로서, X선 회절 분석부(120)에 의해 수행될 수 있다.
X선 회절 분석부(120)는 복수의 음극 탭(21) 각각에 대하여, 시간에 따른 흑연의 적분 강도를 나타내는 흑연 프로파일을 생성할 수 있다.
충방전 거동 결정 단계(S400)는 흑연 프로파일 생성 단계(S300)에서 생성된 복수의 흑연 프로파일에 기반하여 복수의 음극 탭(21) 각각의 충방전 거동을 결정하는 단계로서, 제어부(130)에 의해 수행될 수 있다.
구체적으로, 제어부(130)는 흑연 프로파일에 나타나는 흑연의 적분 강도의 증감에 기반하여 복수의 음극 탭(21) 각각의 충방전 거동을 결정할 수 있다.
예컨대, 제어부(130)는 시간이 지남에 따라 흑연의 적분 강도가 증가하는 음극 탭(21)의 충방전 거동을 충전 거동으로 결정할 수 있다. 반대로, 제어부(130)는 시간이 지남에 따라 흑연의 적분 강도가 감소하는 음극 탭(21)의 충방전 거동을 방전 거동으로 결정할 수 있다.
배터리 상태 진단 단계(S500)는 결정된 복수의 충방전 거동에 기반하여 배터리(10)의 상태를 진단하는 단계로서, 제어부(130)에 의해 수행될 수 있다.
구체적으로, 제어부(130)는 복수의 음극 탭(21) 중 적어도 하나의 충방전 거동이 충전 거동인 경우, 배터리(10)의 상태를 비정상 상태로 진단할 수 있다. 보다 구체적으로, 제어부(130)는 충방전 거동이 충전 거동인 음극 탭(21)이 단선된 것으로 진단할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
10: 배터리
11: 음극 리드
12: 양극 리드
21: 음극 탭
22: 양극 탭
31: 음극재
32: 양극재
33: 분리막
100: 배터리 진단 장치
110: 방전부
120: X선 회절 분석부
130: 제어부
140: 저장부

Claims (10)

  1. 배터리에 전기적으로 연결되고, 상기 배터리를 방전시키도록 구성된 방전부;
    상기 배터리에 포함된 복수의 음극 탭을 향해 X선을 출력하고, 출력된 X선에 기반하여 상기 복수의 음극 탭 각각에 대한 흑연 프로파일을 생성하도록 구성된 X선 회절 분석부; 및
    생성된 복수의 흑연 프로파일에 기반하여 상기 복수의 음극 탭 각각의 충방전 거동을 결정하고, 결정된 복수의 충방전 거동에 기반하여 상기 배터리의 상태를 진단하도록 구성된 제어부를 포함하는 것을 특징으로 하는 배터리 진단 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 복수의 흑연 프로파일에 기반하여 상기 복수의 음극 탭 각각에서의 흑연의 적분 강도를 확인함으로써, 상기 복수의 음극 탭 각각의 상기 충방전 거동을 충전 거동 또는 방전 거동으로 결정하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 적분 강도가 감소하는 음극 탭의 충방전 거동을 상기 방전 거동으로 결정하고, 상기 적분 강도가 증가하는 음극 탭의 충방전 거동을 상기 충전 거동으로 결정하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  4. 제2항에 있어서,
    상기 제어부는,
    상기 복수의 음극 탭에서 상기 방전 거동이 확인되면, 상기 배터리의 상태를 정상 상태로 진단하고,
    상기 복수의 음극 탭 중 적어도 하나에서 상기 충전 거동이 확인되면, 상기 배터리의 상태를 비정상 상태로 진단하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 충전 거동이 확인된 음극 탭의 상태를 단선 상태로 진단하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  6. 제1항에 있어서,
    상기 X선 회절 분석부는,
    상기 복수의 음극 탭이 관통되는 방향으로 상기 X선을 출력하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  7. 제1항에 있어서,
    상기 X선 회절 분석부는,
    상기 복수의 음극 탭의 적층 방향으로 상기 X선을 출력하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  8. 제1항에 있어서,
    상기 X선 회절 분석부는,
    상기 X선을 출력할 때마다 상기 X선의 회절 정보에 기반하여 상기 복수의 음극 탭 각각에 대한 흑연의 적분 강도를 결정하고, 상기 복수의 음극 탭 각각에 대하여 시간과 상기 적분 강도 간의 대응 관계를 나타내도록 상기 흑연 프로파일을 생성하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 진단 장치를 포함하는 배터리 테스트 장치.
  10. 배터리를 방전시키는 방전 단계;
    상기 배터리에 포함된 복수의 음극 탭을 향해 X선을 출력하는 X선 출력 단계;
    출력된 X선에 기반하여 상기 복수의 음극 탭 각각에 대한 흑연 프로파일을 생성하는 흑연 프로파일 생성 단계;
    흑연 프로파일 생성 단계에서 생성된 복수의 흑연 프로파일에 기반하여 상기 복수의 음극 탭 각각의 충방전 거동을 결정하는 충방전 거동 결정 단계; 및
    결정된 복수의 충방전 거동에 기반하여 상기 배터리의 상태를 진단하는 배터리 상태 진단 단계를 포함하는 것을 특징으로 하는 배터리 진단 방법.
PCT/KR2023/006561 2022-05-31 2023-05-15 배터리 진단 장치 및 방법 WO2023234593A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220066560A KR20230166506A (ko) 2022-05-31 2022-05-31 배터리 진단 장치 및 방법
KR10-2022-0066560 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234593A1 true WO2023234593A1 (ko) 2023-12-07

Family

ID=89025290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006561 WO2023234593A1 (ko) 2022-05-31 2023-05-15 배터리 진단 장치 및 방법

Country Status (2)

Country Link
KR (1) KR20230166506A (ko)
WO (1) WO2023234593A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072530A (ja) * 2015-10-09 2017-04-13 ソニー株式会社 分析用セル及び分析用セル組立体
JP2017147161A (ja) * 2016-02-18 2017-08-24 積水化学工業株式会社 リチウムイオン二次電池及びリチウムイオン二次電池の検査方法
KR102032507B1 (ko) * 2016-02-25 2019-10-15 주식회사 엘지화학 이차 전지용 파우치 및 이를 포함하는 이차 전지
KR20210146521A (ko) * 2020-05-27 2021-12-06 주식회사 엘지에너지솔루션 리튬 이차전지의 퇴화 원인 진단 방법
KR20220036067A (ko) * 2020-09-15 2022-03-22 주식회사 엘지에너지솔루션 인-시튜 X-ray 분석이 가능한 3전극 전지셀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072530A (ja) * 2015-10-09 2017-04-13 ソニー株式会社 分析用セル及び分析用セル組立体
JP2017147161A (ja) * 2016-02-18 2017-08-24 積水化学工業株式会社 リチウムイオン二次電池及びリチウムイオン二次電池の検査方法
KR102032507B1 (ko) * 2016-02-25 2019-10-15 주식회사 엘지화학 이차 전지용 파우치 및 이를 포함하는 이차 전지
KR20210146521A (ko) * 2020-05-27 2021-12-06 주식회사 엘지에너지솔루션 리튬 이차전지의 퇴화 원인 진단 방법
KR20220036067A (ko) * 2020-09-15 2022-03-22 주식회사 엘지에너지솔루션 인-시튜 X-ray 분석이 가능한 3전극 전지셀

Also Published As

Publication number Publication date
KR20230166506A (ko) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2013151355A1 (ko) 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 자가 진단 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2019212148A1 (ko) 이차 전지 테스트 장치 및 방법
WO2019146928A1 (ko) Soh 분석 장치 및 방법
WO2022103213A1 (ko) 배터리 진단 장치 및 방법
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2023234593A1 (ko) 배터리 진단 장치 및 방법
WO2019172655A1 (ko) 배터리 팩의 균열을 진단하기 위한 장치와, 그것을 포함하는 배터리 팩 및 자동차
WO2022250390A1 (ko) 배터리 모니터링 장치 및 방법
WO2022124773A1 (ko) 배터리 진단 장치 및 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2019156403A1 (ko) 이차 전지 상태 추정 장치 및 방법
WO2023033480A1 (ko) 배터리 진단 시스템 및 방법
WO2022075706A1 (ko) 배터리 관리 장치 및 방법
WO2023287180A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
WO2023249285A1 (ko) 배터리 관리 장치 및 방법
WO2024096585A1 (ko) 배터리 진단 장치 및 방법
WO2023234600A1 (ko) 배터리 진단 장치 및 방법
WO2022080746A1 (ko) 배터리 상태 진단 장치 및 방법
WO2024096583A1 (ko) 배터리 진단 장치 및 방법
WO2024091041A1 (ko) 배터리 진단 장치 및 방법
WO2024005510A1 (ko) 배터리 진단 장치 및 방법
WO2022203367A1 (ko) 배터리 진단 장치 및 방법
WO2022154545A1 (ko) 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816256

Country of ref document: EP

Kind code of ref document: A1