WO2023234502A1 - 초고강도 냉연강판 및 그 제조방법 - Google Patents

초고강도 냉연강판 및 그 제조방법 Download PDF

Info

Publication number
WO2023234502A1
WO2023234502A1 PCT/KR2022/019634 KR2022019634W WO2023234502A1 WO 2023234502 A1 WO2023234502 A1 WO 2023234502A1 KR 2022019634 W KR2022019634 W KR 2022019634W WO 2023234502 A1 WO2023234502 A1 WO 2023234502A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
area
fraction
ultra
Prior art date
Application number
PCT/KR2022/019634
Other languages
English (en)
French (fr)
Inventor
김로사
노현성
맹한솔
엄호용
오규진
이상욱
한성경
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2023234502A1 publication Critical patent/WO2023234502A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the technical idea of the present invention relates to cold-rolled steel sheets, and more specifically, to ultra-high-strength cold-rolled steel sheets that have high strength and elongation by controlling the microstructure, and to a manufacturing method thereof.
  • car structural materials are required to have characteristics of high strength and high formability.
  • Methods for satisfying high strength and formability include dual phase steel, which consists of ferrite and martensite structures, and transformation induced plasticity steel (TRIP), which utilizes the phase transformation effect during deformation of retained austenite. . Since it is disadvantageous to secure strength according to the mixing law in transformation organically calcined steel whose matrix structure is composed of ferrite and bainite, high-strength transformed organically calcined steel whose matrix structure is martensite is attracting attention.
  • As a method of making martensite-based high-strength transformation organic plastic steel martensite or tempered martensite and retained austenite structures can be realized through quenching and reheating (QP) heat treatment.
  • QP quenching and reheating
  • the structure fraction is determined too sensitive to the quenching end point temperature.
  • the structure fraction is determined too sensitive to the quenching end point temperature.
  • even with microscopic compositional deviations that are difficult to avoid, such as casting segregation there are differences in martensite fraction depending on Ms temperature and quenching temperature, making it difficult to achieve a uniform microstructure and retained austenite.
  • martensite or tempered martensite was used as the main microstructure, and elongation was secured through retained austenite or ferrite structure.
  • the characteristic of quenching and reheating heat treatment is that the structural fractions of tempered martensite, martensite, and retained austenite vary depending on the quenching end point temperature.
  • the microstructure fraction is controlled by determining the optimal quenching end point temperature range according to the alloy composition. If the quenching end point temperature is too low, the size of the retained austenite becomes fine but the fraction becomes very small. If the quenching end point temperature is too high, the size of austenite is large and carbon concentration is insufficient, and it is transformed into a martensite structure or is unstable after final cooling, making little contribution to securing elongation.
  • the technical problem to be achieved by the technical idea of the present invention is to provide an ultra-high strength cold rolled steel sheet with high strength and elongation by controlling the microstructure and a manufacturing method thereof.
  • an ultra-high strength cold rolled steel sheet having high strength and elongation by controlling the microstructure and a method for manufacturing the same are provided.
  • the ultra-high-strength cold-rolled steel sheet has, in weight percent, carbon (C): 0.28% to 0.45%, silicon (Si): 1.0% to 2.5%, and manganese (Mn): 1.5% to 1.5%.
  • the ratio (C/A) of the area (C) of martensite-austenite (MA) grains to the area (A) of austenite may be less than 0.5.
  • the average crystal orientation difference in the retained austenite grains is determined through the process of corresponding the average crystal orientation difference between comparison regions adjacent to the region based on an arbitrary region to the region.
  • Kmax maximum value
  • Kmin minimum value
  • Kavg average value appearing in the distribution of the area where the average crystal orientation difference is 0° or more and 3° or less are (Kmax - Kavg)/(Kmax - Kmin) > A relationship of 0.4 can be satisfied.
  • comparison adjacent to the region is performed.
  • the areas include a first comparison area located in contact with the one area, a second comparison area located in contact with the first comparison area and spaced further apart from the first comparison area with respect to the one area, and a second comparison area with respect to the one area.
  • a third comparison area is further spaced apart from the second comparison area and is located in contact with the second comparison area, and includes comparison areas adjacent to the area based on an arbitrary area within the retained austenite crystal grains.
  • the average crystal orientation difference may be the average crystal orientation difference of the third comparison area based on the arbitrary region.
  • the ultra-high strength cold rolled steel sheet may include a mixed structure in which ferrite, tempered martensite, martensite, retained austenite, upper bainite, and lower bainite are mixed.
  • the fraction of ferrite ranges from greater than 0% to 5%
  • the fraction of martensite ranges from greater than 0% to 20%
  • the fraction of retained austenite ranges from 10% to 30%
  • the fraction of upper bainite is in the range of more than 0% to 30%
  • the fraction of the lower bainite is in the range of more than 0% to 30%
  • the fraction of the tempered martensite may be included as the remaining fraction.
  • the minimum value of the sum of the fraction of the upper bainite and the fraction of the lower bainite may be 10%.
  • the ultra-high strength cold rolled steel sheet includes a mixed structure in which tempered martensite, martensite, retained austenite, upper bainite, and lower bainite are mixed, and the fraction of martensite is is in the range of greater than 0% to 20%, the fraction of the retained austenite is in the range of 10% to 30%, the fraction of the upper bainite is in the range of greater than 0% to 30%, and the fraction of the lower bainite is 0%. It ranges from more than 30%, and the fraction of tempered martensite may be included as the remaining fraction.
  • the average diameter of the retained austenite may be 1.0 ⁇ m or less.
  • ultra-high-strength cold-rolled steel sheet is transformation-induced plasticity steel formed through rapid cooling and reheating heat treatment.
  • the ultra-high strength cold rolled steel sheet undergoes heat treatment between hot rolling and cold rolling to properly control carbon distribution, and after cold rolling and heat treatment, the carbon content in austenite is appropriately adjusted to achieve a yield strength of 1180 MPa or more and a high yield strength of 1470 MPa or more. It may have tensile strength, elongation of 15% or more, yield ratio of 75% or more, and bending workability (R/t) of 3.0 or less based on 90 degree bending.
  • the ultra-high-strength cold-rolled steel sheet uses tempered martensite, upper bainite, and lower bainite transformation structures as microstructures to refine and stabilize residual austenite, and can stably provide yield strength and yield ratio.
  • Figure 1 illustrates the concept of calculating the average crystal orientation difference (K), which is the average of the differences in crystal orientation between one area and adjacent comparison areas in the method of manufacturing an ultra-high strength cold-rolled steel sheet according to an embodiment of the present invention. It is a drawing for this purpose, and Figure 2 is a graph showing the distribution pattern of the average crystal orientation difference value (K).
  • Figure 3 is a scanning electron microscope photograph showing the microstructure of steel after the first heat treatment of Example 1 among the experimental examples of the present invention.
  • Figure 4 is a scanning electron microscope photograph showing the microstructure of steel after the first heat treatment of Comparative Example 2 among the experimental examples of the present invention.
  • Figure 5 is a scanning electron microscope photograph showing the final microstructure of the ultra-high-strength cold-rolled steel sheet according to Example 1 among the experimental examples of the present invention.
  • Figure 6 is a scanning electron microscope photograph showing the final microstructure of the ultra-high strength cold-rolled steel sheet according to Comparative Example 1 among the experimental examples of the present invention.
  • Figure 7 is a scanning electron microscope photograph showing the final microstructure of the ultra-high strength cold-rolled steel sheet according to Comparative Example 2 among the experimental examples of the present invention.
  • Figure 8 is a scanning electron microscope photograph showing the final microstructure of the ultra-high strength cold-rolled steel sheet according to Comparative Example 3 among the experimental examples of the present invention.
  • Figure 9 is a diagram showing the shape and distribution of retained austenite through EBSD in the final microstructure of the ultra-high-strength cold-rolled steel sheet according to Example 1 of the experimental examples of the present invention.
  • Figure 10 is a diagram showing the shape and distribution of retained austenite through EBSD in the final microstructure of the ultra-high strength cold-rolled steel sheet according to Comparative Example 1 among the experimental examples of the present invention.
  • Figure 11 is a diagram showing the shape and distribution of retained austenite through EBSD in the final microstructure of the ultra-high strength cold-rolled steel sheet according to Comparative Example 2 among the experimental examples of the present invention.
  • the technical idea of the present invention is to have a yield strength of 1180 MPa or more, a tensile strength of 1470 MPa or more, an elongation of 15% or more, a yield ratio (yield strength/tensile strength) of 75% or more, and 90-degree bending workability of 3.0 R/t.
  • the following ultra-high strength cold rolled steel sheet and its manufacturing method are provided.
  • the ultra-high strength cold-rolled steel sheet according to an embodiment of the present invention has, in weight percent, carbon (C): 0.28% to 0.45%, silicon (Si): 1.0% to 2.5%, manganese (Mn): 1.5% to 3.0%.
  • the role and content of each component included in the ultra-high-strength cold-rolled steel sheet according to the present invention will be described as follows.
  • the content of the component elements all refers to weight percent based on the entire steel sheet.
  • Carbon is added to secure the strength of steel, and especially increases the strength of the martensite structure.
  • a sufficient carbon content is required because it can be differentiated to stabilize austenite and secure elongation through the transformation induced plasticity (TRIP) effect. If the carbon content is less than 0.28%, it may be difficult to obtain the target strength and elongation at the same time. If the carbon content exceeds 0.45%, weldability may decrease and hydrogen embrittlement may occur. Therefore, it is preferable to add carbon in an amount of 0.28% to 0.45% of the total weight of the steel sheet.
  • TRIP transformation induced plasticity
  • Silicon is a ferrite stabilizing element that delays the formation of carbides in ferrite and martensite and has a solid solution strengthening effect. In particular, it is essential to separate carbon into austenite by delaying the formation of carbides in martensite. If the silicon content is less than 1.0%, the effect of suppressing carbide formation is small, and it may be difficult to sufficiently secure the stability of retained austenite. If the silicon content exceeds 2.5%, oxides such as Mn 2 SiO 4 may be formed during the manufacturing process, which may impair plating properties and increase carbon equivalent, thereby reducing weldability. Therefore, it is desirable to add silicon in an amount of 1.0% to 2.5% of the total weight of the steel sheet.
  • Manganese has a solid solution strengthening effect and increases hardenability, delaying the formation of ferrite and bainite during cooling. If the manganese content is less than 1.5%, the effect of adding manganese may not be sufficient, making it difficult to secure hardenability. If the manganese content exceeds 3.0%, the transformation of bainite may be excessively delayed, workability may be reduced due to the formation or segregation of inclusions such as MnS, and the carbon equivalent may be increased to reduce weldability. Therefore, it is desirable to add manganese in an amount of 1.5% to 3.0% of the total weight of the steel sheet.
  • Aluminum is used as a deoxidizer and, similar to silicon, can help suppress carbide formation. If the aluminum content is less than 0.01%, the deoxidation effect may be insufficient. If the aluminum content exceeds 0.05%, AlN may be formed during slab manufacturing, causing cracks during casting or hot rolling. Therefore, it is desirable to add aluminum in an amount of 0.01% to 0.05% of the total weight of the steel sheet.
  • Chromium has a solid solution strengthening effect and contributes to strength improvement by increasing hardenability, and works together with C and Mn to refine martensite and bainite structures and contribute to stabilizing retained austenite. If the chromium content exceeds 1.0%, the transformation of bainite may be excessively delayed and the manufacturing cost of steel may increase. Therefore, it is desirable to add chromium in an amount exceeding 0% to 1.0% of the total weight of the steel sheet.
  • Molybdenum has a solid solution strengthening effect and increases hardenability, contributing to strength improvement. It works together with C and Mn to refine martensite and bainite structures and contribute to stabilizing retained austenite. If the molybdenum content exceeds 0.5%, the transformation of bainite may be excessively delayed and the manufacturing cost of steel may increase. Therefore, it is desirable to add molybdenum in an amount exceeding 0% to 0.5% of the total weight of the steel sheet.
  • Niobium, titanium, and vanadium are precipitate-forming elements that can increase strength through the precipitation strengthening effect and also provide a grain refinement effect. If the total amount of niobium, titanium, and vanadium is added in excess of 0.1% each, the manufacturing cost of the steel may increase significantly, the rolling load may greatly increase due to large precipitation during rolling, and the elongation may decrease. . Therefore, it is desirable to add the total of niobium, titanium, and vanadium in an amount exceeding 0% to 0.1% of the total weight of the steel sheet.
  • niobium, titanium, and vanadium in an amount of 0.1% or less of the total weight of the steel sheet.
  • niobium, titanium, and vanadium can each be added in amounts greater than 0% to 0.05%.
  • Phosphorus is an impurity included in the steel manufacturing process. Although it can help improve strength through solid solution strengthening, it can cause low-temperature brittleness when contained in large amounts. Therefore, it is desirable to limit the phosphorus content to more than 0% to 0.03% of the total weight of the steel sheet.
  • Sulfur is an impurity included in the steel manufacturing process and can form non-metallic inclusions such as FeS, MnS, etc., reducing bendability, toughness, and weldability. Therefore, it is desirable to limit the sulfur content to more than 0% to 0.03% of the total weight of the steel sheet.
  • Nitrogen is an element inevitably contained in the production of steel, and can help stabilize austenite, but it can react with Al to form AlN, causing cracks during playing. Therefore, it is desirable to limit the nitrogen content to more than 0% to 0.01% of the total weight of the steel sheet.
  • the ultra-high-strength cold-rolled steel sheet according to a modified embodiment of the present invention may additionally include at least one or more of the elements having the following composition ranges in addition to the alloy elements described above.
  • Nickel can also help stabilize austenite and increase the hardenability of steel. If the nickel content exceeds 0.5%, it is undesirable because it increases the manufacturing cost of steel. Therefore, it is desirable to add nickel in an amount exceeding 0% to 0.5% of the total weight of the steel sheet.
  • Copper can also help stabilize austenite and increase the hardenability of steel. If the copper content exceeds 0.5%, it is undesirable because it increases the manufacturing cost of steel. Therefore, it is desirable to add copper in an amount exceeding 0% to 0.5% of the total weight of the steel sheet.
  • the total amount of nickel and copper be added in an amount exceeding 0% to 1.0%.
  • Boron can improve hardenability like Mn, Cr, Mo, etc. If the boron content exceeds 0.005%, it may concentrate on the surface and cause quality deterioration such as plating adhesion. Therefore, it is desirable to add boron in an amount exceeding 0% to 0.005% of the total weight of the steel sheet.
  • the remaining component of the ultra-high strength cold rolled steel sheet is iron (Fe).
  • Fe iron
  • unintended impurities from raw materials or the surrounding environment may inevitably be mixed, so this cannot be ruled out. Since these impurities are known to anyone skilled in the normal manufacturing process, all of them are not specifically mentioned in this specification.
  • the ultra-high strength cold rolled steel sheet according to an embodiment of the present invention may include a mixed structure in which ferrite, tempered martensite, martensite, retained austenite, upper bainite, and lower bainite are mixed.
  • the fraction of ferrite is in the range of 0% to 5% (including 0%)
  • the fraction of martensite is in the range of more than 0% to 20%
  • the fraction of retained austenite is in the range of 10% to 30%
  • the fraction of bainite ranges from more than 0% to 30%
  • the fraction of the lower bainite ranges from more than 0% to 30%
  • the fraction of tempered martensite may be included as the remaining fraction.
  • the minimum value of the sum of the fraction of the upper bainite and the fraction of the lower bainite may be 10%.
  • the fraction refers to the area ratio derived from a microstructure photograph through an image analyzer.
  • the ferrite may include polygonal ferrite. Additionally, the average diameter of the retained austenite may be, for example, 1.0 ⁇ m or less, for example, in the range of 0.1 ⁇ m to 1.0 ⁇ m.
  • Retained austenite is finely distributed in the lath and grain boundaries of the tempered martensite and bainite, and thus the retained austenite is stabilized, and strength and elongation can be stably secured.
  • the ultra-high strength cold rolled steel sheet may not contain ferrite.
  • the ultra-high strength cold rolled steel sheet includes a mixed structure in which tempered martensite, martensite, retained austenite, upper bainite, and lower bainite are mixed, and the fraction of martensite is greater than 0% to 20%. % range, the fraction of the retained austenite is in the range of 10% to 30%, the fraction of the upper bainite is in the range of more than 0% to 30%, and the fraction of the lower bainite is in the range of more than 0% to 30%. , the fraction of tempered martensite may be included as the remaining fraction. Additionally, the sum of the fraction of the upper bainite and the fraction of the lower bainite may be 10% to 60%. The minimum value of the sum of the fraction of the upper bainite and the fraction of the lower bainite may be 10%.
  • the ultra-high-strength cold-rolled steel sheet contains austenite when observing an area of 100 ⁇ m 2 or more in the width direction (TD) of the steel sheet in the area (t/4 thickness) between the surface and the center of the cold-rolled steel sheet.
  • the ratio (B/A) of the area (B) of grains with a carbon content of 0.5% or less in austenite to the area (A) is less than 0.1.
  • the ratio (B/A) can be understood as a measure of the compositional stability of retained austenite (RA) generated in the steel sheet. If the ratio (B/A) is 0.1 or more, the composition stability of austenite is not sufficient and the elongation improvement effect due to retained austenite cannot be obtained.
  • the ultra-high-strength cold-rolled steel sheet according to the technical idea of the present invention is the ultra-high-strength cold-rolled steel sheet according to the technical idea of the present invention in the width direction (TD) of the steel sheet in the area (t/4 thickness) between the surface portion and the center of the cold-rolled steel sheet.
  • the ratio (C/A) of the area (C) of martensite-austenite grains to the area (A) of austenite is less than 0.5.
  • the ratio (C/A) can be understood as a measure of the stability of retained austenite (RA) generated in the steel sheet at each location. If the ratio (C/A) is more than 0.5, martensite-austenite grains that do not participate in strain-induced martensite transformation become excessive, so sufficient elongation and work hardening ability cannot be obtained.
  • Ultra-high-strength cold-rolled steel according to the technical idea of the present invention is obtained by backscattering electron diffraction (EBSD) analysis in the width direction (TD) of the steel sheet in the area (t/4 thickness) between the surface and the center of the cold-rolled steel sheet.
  • EBSD backscattering electron diffraction
  • Kavg satisfies the relationship (Kmax - Kavg)/(Kmax - Kmin) > 0.4. Meanwhile, the maximum value of (Kmax - Kavg)/(Kmax - Kmin) is 1.
  • Figure 1 illustrates the concept of calculating the average crystal orientation difference (K), which is the average of the difference in crystal orientation between one area and adjacent comparison areas in the method of manufacturing an ultra-high strength cold-rolled steel sheet according to an embodiment of the present invention. It is a drawing for this purpose, and Figure 2 is a graph showing the distribution pattern of the average crystal orientation difference value (K).
  • the comparison areas are a first comparison area (A 1 to A 6 ) located in contact with the area (A 0 ), and are larger than the first comparison areas (A 1 to A 6 ) based on the area (A 0 ).
  • a second comparison area (A 7 to A 18 ) that is further spaced apart but in contact with the first comparison area (A 1 to A 6 ), and a second comparison area (A 7 ) based on the one area (A 0 ).
  • the average crystal orientation difference (K) which is the average of the difference in crystal orientation between comparison areas adjacent to one area (A 0 ) based on any area (A 0 ) in the retained austenite grain, is It may be an average crystal orientation difference value (K) obtained by averaging the difference in crystal orientation between an arbitrary area (A 0 ) and the third comparison area (A 19 to A 36 ).
  • Equation 1 the average crystal orientation difference (K) obtained by averaging the difference in crystal orientation between the arbitrary region (A 0 ) and the third comparison region (A 19 to A 36 ) is expressed in Equation 1 below: It can be expressed as Here, (MA) i represents the difference in crystal orientation between one region (A 0 ) and any one of the third comparison regions (A 19 to A 36 ), n is 19, and m is 36. It can have a value.
  • the distribution of the average crystal orientation difference value (K) appears from 0° to 5°, and among these, the maximum value (Kmax) and minimum value appearing in the distribution of the area where the average crystal orientation difference value is 0° or more and 3° or less are (Kmin) and average value (Kavg) can be calculated.
  • Ultra-high-strength cold-rolled steel sheets that control the specific components and their content ranges in the above-described alloy composition and satisfy the above-mentioned conditions are, for example, yield strength (YP): 1180 MPa or more and 1330 MPa or less, tensile strength (TS): 1470 MPa or more and 1770 MPa or less, elongation (El): 15% or more, yield ratio (YR): 75% or more, and bendability (R/t): 3.0 or less.
  • the semi-finished product subject to the hot rolling process may be, for example, a slab.
  • Slabs in a semi-finished state can be obtained through a continuous casting process after obtaining molten steel of a predetermined composition through a steelmaking process.
  • a method of manufacturing an ultra-high-strength cold-rolled steel sheet according to an embodiment of the present invention includes manufacturing a hot-rolled steel sheet using a steel material of the above composition; Manufacturing a cold rolled steel sheet by cold rolling the hot rolled steel sheet; Annealing and heat treating the cold rolled steel sheet; Cooling the cold rolled steel sheet in multiple stages; and partitioning heat treatment on the cold rolled steel sheet.
  • the cold-rolled steel sheet is heated above Ac3 temperature and maintained for a certain period of time, and two stages of slow cooling and rapid cooling are performed until the rapid cooling end temperature. Subsequently, after maintaining the quenching end temperature for a certain period of time, the temperature is raised above the Ms temperature for partitioning heat treatment, and after being kept constant for the partitioning heat treatment time, it is finally cooled below the Mf temperature.
  • a steel slab having the above alloy composition is prepared, and the steel slab is reheated, for example, at a reheating temperature (Slab Reheating Temperature, SRT) in the range of 1,150°C to 1,250°C.
  • SRT Heating Temperature
  • the components segregated during casting are re-dissolved and the precipitates are re-dissolved, thereby homogenizing the material and making it possible for hot rolling.
  • the reheating temperature is less than 1,150°C, re-employment of the segregation may be insufficient and the hot rolling load may increase.
  • the reheating temperature exceeds 1,250°C, the size of austenite grains may increase, and process costs may increase due to an increase in temperature.
  • the reheating time may be, for example, 1 hour to 4 hours. If the reheating time is less than 1 hour, homogenization of the segregation may be insufficient. If the reheating time exceeds 4 hours, the size of austenite grains may increase, and the process cost may increase due to an increase in temperature.
  • hot rolling is performed using a conventional method.
  • a hot rolled steel sheet can be manufactured by performing hot finishing rolling at a finish delivery temperature (FDT) in the range of 850°C to 970°C.
  • FDT finish delivery temperature
  • the finish rolling temperature is lower than 850°C, ferrite or pearlite may be generated. If the finish rolling temperature exceeds 970°C, scale generation increases, the crystal grain size becomes coarse, and it may be difficult to finely homogenize the structure.
  • the hot-rolled steel sheet is cooled to a coiling temperature in the range of, for example, 400°C to 700°C.
  • the cooling can be done by either air cooling or water cooling, for example, cooling can be done at a cooling rate of 10°C/sec to 30°C/sec. The faster the cooling rate, the more advantageous it is to reduce the average grain size.
  • the cooling is preferably carried out to the coiling temperature.
  • the hot-rolled steel sheet is wound at a coiling temperature (CT) ranging from, for example, 400°C to 700°C.
  • CT coiling temperature
  • the range of the above winding temperature can be selected from the viewpoint of cold rolling properties and surface properties. If the coiling temperature is less than 400°C, hard phases such as martensite are excessively generated, and the material of the hot rolled steel sheet increases excessively, which may significantly increase the rolling load during cold rolling. If the coiling temperature exceeds 700°C, it may cause non-uniformity in the microstructure of the final product.
  • primary heat treatment can be performed at a temperature of 500 °C to 680 °C for 10 seconds to 12 hours after coiling the hot rolling and before cold rolling.
  • the first heat treatment may be a batch annealing process or a continuous heat treatment process.
  • the microstructure of the steel sheet has no more than two carbides with a grain size of 500 nm or more within an area of 100 ⁇ m 2 and the pearlite ratio is less than 5%. If the first heat treatment process is not performed or the temperature is lower than 500°C, there is a disadvantage in that the cold rolling load increases and the difficulty of the process increases.
  • the hot-rolled steel sheet is subjected to pickling treatment by washing it with acid to remove the surface scale layer.
  • the hot-rolled steel sheet is cold-rolled at an average reduction ratio of, for example, 40% to 70% to form a cold-rolled steel sheet.
  • the higher the average reduction ratio the higher the formability due to the tissue refinement effect. If the average reduction ratio is less than 40%, it is difficult to obtain a uniform microstructure.
  • the average reduction ratio exceeds 70%, the roll force increases and the process load increases. It may have the thickness of the steel sheet finally produced by the cold rolling.
  • the structure of the cold rolled steel sheet may have a structure in which the structure of the hot rolled steel sheet is stretched.
  • the cold-rolled steel sheet is annealed and heat-treated in a continuous annealing furnace with a normal slow cooling section.
  • the annealing heat treatment is performed to form an austenite single phase structure.
  • Annealing heat treatment temperature and time affect the austenite grain size and, therefore, can have a significant impact on the strength of cold rolled steel sheets.
  • the annealing heat treatment is performed at a temperature increase rate of, for example, 2°C/sec or more, for example, in the range of 2°C/sec to 10°C/sec. If the temperature increase rate is less than 2°C/sec, it takes a long time to reach the target annealing heat treatment temperature, which may reduce production efficiency and increase the size of the crystal grains.
  • the annealing heat treatment is, for example, at a temperature of Ac3 or higher, for example, at a temperature in the range of 830 ° C. to 930 ° C., for example, at a temperature in the range of 830 ° C. to 900 ° C., for example, in the range of 30 seconds to 120 seconds. It can be performed by maintaining it for a period of time. In these temperature raising and annealing heat treatment steps, the cold rolled structure is reverse transformed into austenite. If the annealing heat treatment temperature is less than 830°C, an austenite single phase cannot be formed to create tempered martensite, which is the final structure. For reference, in order to form an austenite single phase, annealing heat treatment must be performed at A3 temperature or higher. If the annealing heat treatment temperature exceeds 900°C, austenite grains may become coarse and strength may decrease.
  • the annealing heat treatment time increases, like the annealing heat treatment temperature, it affects coarsening due to austenite grain growth, but the annealing heat treatment time has a smaller effect than the annealing heat treatment temperature.
  • the annealing heat treatment time exceeds 120 seconds. Heat treatment efficiency may be reduced. If the annealing heat treatment time is less than 30 seconds, the annealing heat treatment effect may be insufficient.
  • the cold-rolled steel sheet subjected to the annealing heat treatment is cooled in multiple stages.
  • the cooling step can be performed in the following two steps.
  • the annealed heat-treated cold-rolled steel sheet is suppressed from ferrite transformation at a cooling rate in the range of, for example, 1°C/sec to 15°C/sec, for example, in the range of 3°C/sec to 10°C/sec.
  • the first cooling is done slowly to the temperature range, for example, the first cooling end temperature ranges from 650°C to 800°C. If the first cooling end temperature of the slow cooling is less than 650°C, ferrite transformation may occur in an undesirable amount, and thus the strength may decrease. It is preferable that the fraction of ferrite produced by the ferrite transformation is limited to less than 0% to 5%.
  • the cold-rolled steel sheet subjected to primary cooling is cooled, for example, at a cooling rate of 20°C/sec or more, for example, at a cooling rate in the range of 20°C/sec to 100°C/sec, for example, below Ms temperature.
  • secondary cooling is performed at a temperature in the range of Ms-140 °C to Ms-30 °C, for example, with a secondary cooling end temperature in the range of 180 °C to 300 °C.
  • the secondary cooling is a quenching step and may be performed sequentially as a 2-1 quenching step and a 2-2 quenching step.
  • the cooling rate in the 2-1 quenching step may be, for example, 20°C/sec or more, and quenching may be performed to a temperature of Ms-30°C or lower. During cooling, a portion of austenite is transformed into martensite, and the amount is It is about 20 to 80%.
  • the cooling rate in the 2-2 quenching step may be, for example, 30°C/sec or more, and martensite transformation occurs by cooling to the quenching end point temperature (Ms-140°C to Ms-30°C).
  • a portion of austenite may be transformed into martensite by the secondary cooling (quenching).
  • the fraction of the generated martensite may be 20% to 80%.
  • the 2-1 quenching step and the 2-2 quenching step may be cooled without distinction.
  • the secondary cooling (quick cooling) cold-rolled steel sheet is maintained at the secondary cooling end temperature for a time ranging from 5 seconds to 90 seconds, for example.
  • temperature homogenization of the steel may initially proceed.
  • some of the retained austenite may be transformed into lower bainite, etc.
  • the multi-stage cooled cold rolled steel sheet is reheated at a temperature increase rate in the range of, for example, 3°C/sec to 20°C/sec, for example, at a temperature in the range of 360°C to 500°C, for example in the range of 360°C to 460°C.
  • Partitioning heat treatment is performed at a temperature of, for example, maintained for a time ranging from 30 seconds to 500 seconds, for example, for a time ranging from 30 seconds to 500 seconds.
  • partitioning heat treatment temperature is less than 360°C, the partitioning effect may be insufficient. If the partitioning heat treatment temperature exceeds 500°C, the size of the carbide may become coarse and strength may decrease.
  • the partitioning heat treatment maintenance time has a small effect compared to the partitioning temperature. If the partitioning heat treatment maintenance time is less than 30 seconds, it may be difficult to obtain a stable partitioning effect. If the partitioning heat treatment maintenance time exceeds 500 seconds, heat treatment efficiency may decrease and the size of carbide may increase, resulting in a decrease in strength.
  • the partitioning heat treatment step may be performed immediately after performing the multi-stage cooling, or may be performed after maintaining the temperature at room temperature for several minutes or more.
  • the partitioning heat treatment step After the partitioning heat treatment step is completed, it is cooled to room temperature, for example, to a temperature in the range of 0°C to 40°C.
  • the microstructure of the cold rolled steel sheet is reverse transformed into austenite.
  • the fraction of ferrite generated by ferrite transformation is limited to less than 5%, and ferrite may not be generated. If more than 5% of ferrite is generated, the strength may decrease and the target strength may not be achieved.
  • the martensite fraction generated by martensite transformation may be limited to 20% to 80%. If the fraction of martensite generated during the secondary cooling exceeds 80%, it may be difficult to secure an appropriate fraction of retained austenite. If it is less than 20%, the fraction of retained austenite after cooling is too high, making it difficult to ensure the stability of the retained austenite, and even if the bainite transformation structure is increased, the martensite fraction may decrease and a decrease in strength may occur. In addition, some martensite structures can increase internal stress and increase the rate of bainite nucleation, allowing bainite transformation to proceed rapidly even at low temperatures below Ms.
  • the secondary cooling of the multi-stage cooling step while maintaining the secondary cooling end temperature after rapid cooling, a portion of the austenite is transformed into bainite, which may be mainly lower bainite. Additionally, fine precipitates may be formed within the martensite generated in the previous step.
  • the time maintained at the secondary cooling end temperature may be in the range of 5 seconds to 90 seconds. If the holding time is less than 5 seconds, lower bainite transformation may not sufficiently occur. If the holding time exceeds 90 seconds, process costs may increase due to excessively long heat treatment time.
  • the partitioning heat treatment step carbon diffuses and concentrates into the retained austenite, thereby stabilizing the retained austenite. Additionally, some of the retained austenite may undergo bainite transformation.
  • the bainite transformation can refine the shape of the retained austenite after rapid cooling, thereby contributing to stabilization of the retained austenite. For this function, the sum of the fraction of the upper bainite and the fraction of the lower bainite may be 10% or more.
  • some unstable austenite may transform into martensite.
  • the final fraction of retained austenite may decrease, which may adversely affect formability, so it is desirable to control the generated martensite to less than 20%.
  • the retention time at the secondary cooling end temperature and the secondary cooling end temperature and the partitioning heat treatment step are heat treated without problems to refine and stabilize the retained austenite. It is desirable to let it proceed.
  • the final microstructure is tempered martensite (20% to 80%), retained austenite (10% to 30%), and lower bainite (0% to 30%). It may contain upper bainite (0% to 30%), some ferrite (0% to 5%), or martensite (0% to 20%). The sum of the fraction of the upper bainite and the fraction of the lower bainite may be 10% or more. The average diameter of the retained austenite may be 1.0 ⁇ m or less.
  • steel grades A to D satisfy the composition range of the present invention, specifically, in weight percent, carbon (C): 0.28% to 0.45%, silicon (Si): 1.0% to 2.5%, manganese. (Mn): 1.5% ⁇ 3.0%, Aluminum (Al): 0.01% ⁇ 0.05%, Chromium (Cr): > 0% ⁇ 1.0%, Molybdenum (Mo): > 0% ⁇ 0.5%, Niobium (Nb), Total of titanium (Ti) and vanadium (V): greater than 0% to 0.1%, phosphorus (P): greater than 0% to 0.03%, sulfur (S): greater than 0% to 0.03%, nitrogen (N): 0% Exceeding ⁇ 0.01%, and the balance satisfies the composition range of iron (Fe).
  • steel grade E is outside the composition range of the present invention, and specifically, is not satisfied as it falls below the range of carbon (C): 0.28% to 0.45%.
  • Table 2 shows the Ac3 temperature, Ms temperature, and Ms for the steel grade. -140°C temperature, Ms-30°C temperature. The unit is °C.
  • the Ac3 temperature was calculated using Thermo-Calc and TCFE9 database.
  • the slab of the above-mentioned steel type was reheated at 1200°C and held for 3 hours, hot rolled to a thickness of 2.4 mm at a finish rolling temperature of 950°C, and then coiled at 600°C.
  • the coiled hot-rolled steel sheet was pickled to remove surface scale, and cold-rolled to produce a cold-rolled steel sheet with a thickness of 1.2 mm.
  • Table 3 shows heat treatment process condition values for manufacturing cold rolled steel sheets of comparative examples and examples.
  • 'primary heat treatment' refers to heat treatment performed after hot rolling and before cold rolling.
  • Examples 1 to 4 satisfy the process scope of the present invention.
  • Comparative Example 1 adopted steel grade E, which is outside the composition range of the present invention, and Comparative Example 2 was not satisfied as it exceeded the temperature range of 500°C to 680°C, which is the temperature range of the first heat treatment, and fell below the annealing temperature range of 830°C to 930°C.
  • Comparative Example 3 satisfies the annealing temperature range, but is not satisfied because it exceeds the annealing holding time of 30 to 120 seconds, and the secondary cooling end temperature (180°C to 300°C) after secondary cooling (quick cooling). It is not satisfactory as it falls below the rapid cooling maintenance time range of 5 to 90 seconds.
  • Table 4 shows item values representing the microstructure of cold rolled steel sheets of comparative examples and examples.
  • the first item value (B/A) is the austenite relative to the austenite area (A) when observing an area of 100 ⁇ m 2 or more in the width direction of the steel sheet in the area between the surface and the center of the cold rolled steel sheet. It means the ratio (B/A) of the area (B) of grains with an internal carbon content of 0.5% or less, and the second item value (C/A) is the area between the surface and the center of the cold rolled steel sheet in the width direction of the steel sheet.
  • Examples 1 to 4 have the first item value (B/A) ⁇ 0.1, the second item value (C/A) ⁇ 0.5, and the third item value ((Kmax-Kavg)/( The range of Kmax-Kmin))>0.4 is satisfied.
  • the first item value (B/A) is greater than 0.1 and the third item value ((Kmax-Kavg)/(Kmax-Kmin)) is less than 0.4.
  • Comparative Example 2 it can be confirmed that the first item value (B/A) is greater than 0.1 and the second item value (C/A) is not less than 0.5.
  • Comparative Example 3 confirms that the second item value (C/A) is not less than 0.5.
  • Table 5 shows the physical and mechanical properties of the hot rolled steel sheet and steel pipe manufactured above, including yield strength (YS) and tensile strength. (TS), and elongation (EL), yield ratio (YR), and 90 degree bendability (R/t).
  • the examples met the target ranges for yield strength (YS), tensile strength (TS), and elongation (EL), yield ratio (YR), and 90 degree bendability (R/t).
  • the TSxT.El value which is the product of tensile strength and elongation, may be 20000 or more, preferably 21000 or more, and more preferably 22000 or more.
  • Comparative Example 1 had an elongation (EL): below the range of 15% or more. It is not satisfied, and the product of tensile strength and elongation is not satisfied as it falls below the range of 20,000 or more.
  • Comparative Example 2 is not satisfied as it falls below the range of elongation (EL): 15% or more and yield ratio (YR): falls below the range of 75% or more. It is not satisfactory as it falls below the range of 90 degree bendability (R/t): 3.0 or less and is not satisfactory, the product of tensile strength and elongation is not satisfactory as it falls below the range of 20000 or more, and in Comparative Example 3, the yield strength (YP ): Not satisfied as it falls below the range of 1180 MPa or more
  • Comparative Example 1 was characterized by a low carbon content and was unable to secure both a tensile strength of 1470 MPa and an elongation of more than 15%.
  • Comparative Example 2 was characterized by a high primary heat treatment temperature and a low annealing temperature, and sufficient elongation was not secured. When the primary heat treatment temperature is high and the annealing temperature is low, a coarse martensite-austenite composite structure is formed excessively compared to the retained austenite, and it is judged that this does not show the TRIP effect and is not helpful in securing elongation.
  • Figure 3 is a scanning electron microscope photograph showing the microstructure of the steel after the first heat treatment of Example 1 among the experimental examples of the present invention
  • Figure 4 is the microstructure of the steel after the first heat treatment of Comparative Example 2 among the experimental examples of the present invention. This is a scanning electron microscope photo showing .
  • Example 1 in the microstructure of the steel sheet after the primary heat treatment, no more than two carbides with a grain size of 500 nm or more are distributed within an area of 100 ⁇ m 2 , and the pearlite ratio is 5% or less.
  • Comparative Example 2 when the heat treatment process temperature exceeds 680°C, coarse carbides such as spherical cementite with a diameter of 500 nm or more are formed. This can deepen carbon atom heterogeneity and create residual austenite in which carbon is overly solidified in the final microstructure after cold rolling. In the case of austenite with a carbon content of about 1.1% or more, as the ratio increases, the TRIP effect decreases and the strength It was necessary.
  • Figure 5 is a scanning electron microscope photograph showing the final microstructure of the ultra-high strength cold-rolled steel sheet according to Example 1 among the experimental examples of the present invention
  • Figure 6 is a final microstructure of the ultra-high strength cold-rolled steel sheet according to Comparative Example 1 among the experimental examples of the present invention.
  • It is a scanning electron microscope photograph showing the microstructure
  • Figure 7 is a scanning electron microscope photograph showing the final microstructure of the ultra-high strength cold rolled steel sheet according to Comparative Example 2 among the experimental examples of the present invention
  • Figure 8 is a comparative example among the experimental examples of the present invention.
  • This is a scanning electron microscope photo showing the final microstructure of the ultra-high strength cold rolled steel sheet according to Example 3.
  • Figure 9 is a diagram showing the shape and distribution of retained austenite through EBSD in the final microstructure of the ultra-high strength cold-rolled steel sheet according to Example 1 among the experimental examples of the present invention
  • Figure 10 is Comparative Example 1 among the experimental examples of the present invention.
  • It is a diagram showing the shape and distribution of retained austenite through EBSD in the final microstructure of the ultra-high-strength cold-rolled steel sheet by EBSD
  • Figure 11 is the EBSD in the final microstructure of the ultra-high-strength cold-rolled steel sheet by Comparative Example 2 among the experimental examples of the present invention.
  • This is a diagram showing the shape and distribution of retained austenite.
  • the final microstructure of the ultra-high strength cold rolled steel sheet according to Example 1 is a mixed structure of ferrite, tempered martensite, martensite, retained austenite, upper bainite, and lower bainite. It may include, and specifically, the main microstructure is composed of tempered martensite and upper/lower bainite, and it can be confirmed that residual austenite is distributed between the martensite and bainite laths and at the grain boundaries.
  • the phases labeled LB and T.MS represent lower bainite and tempered martensite, respectively.
  • the fraction of ferrite is in the range of 0% to 5%
  • the fraction of martensite is in the range of more than 0% to 20%
  • the fraction of retained austenite is in the range of 10% to 30%
  • the fraction of the upper bainite is It can be confirmed that the fraction is in the range from 0% to 30%
  • the fraction of the lower bainite is in the range from 0% to 30%
  • the fraction of tempered martensite can be included as the remaining fraction.
  • the average diameter of the retained austenite is 1.0 ⁇ m or less.
  • the final microstructure of the ultra-high-strength cold-rolled steel sheet according to Comparative Example 1 mainly consists of tempered martensite, and the fraction of retained austenite is less than 10%. There is a difference.
  • an example of the tempered martensite region is indicated as T.MS.
  • the final microstructure of the ultra-high strength cold rolled steel sheet according to Comparative Example 2 is ferrite, tempered martensite, martensite, martensite-austenite composite structure, retained austenite, and upper bainite. , and may include a mixed structure in which lower bainite is mixed.
  • the martensite-austenite composite structure is indicated as MA in FIG. 7.
  • the final microstructure of the ultra-high strength cold rolled steel sheet according to Comparative Example 3 mainly consists of tempered martensite and martensite-austenite composite structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은, 미세조직을 제어하여 높은 강도와 연신율을 가지는 초고강도 냉연강판 및 그 제조방법을 제공한다. 본 발명의 일 실시예에 의하면, 상기 초고강도 냉연강판은, 중량%로, 탄소(C): 0.28% ~ 0.45%, 실리콘(Si): 1.0% ~ 2.5%, 망간(Mn): 1.5% ~ 3.0%, 알루미늄(Al): 0.01% ~ 0.05%, 크롬(Cr): 0% 초과 ~ 1.0%, 몰리브덴(Mo): 0% 초과 ~ 0.5%, 니오븀(Nb), 티타늄(Ti) 및 바나듐(V)의 총합: 0% 초과 ~ 0.1%, 인(P): 0% 초과 ~ 0.03%, 황(S): 0% 초과 ~ 0.03%, 질소(N): 0% 초과 ~ 0.01%, 및 잔부는 철(Fe)과 기타 불가피한 불순물을 포함하는 초고강도 냉연강판이며, 항복강도(YP): 1180 MPa 이상, 인장강도(TS): 1470 MPa 이상, 및 연신율(El): 15% 이상, 항복비(YR): 75% 이상, 및 굽힘성(R/t): 3.0 이하를 만족한다.

Description

초고강도 냉연강판 및 그 제조방법
본 발명의 기술적 사상은 냉연강판에 관한 것으로서, 보다 상세하게는 미세조직을 제어하여 높은 강도와 연신율을 가지는 초고강도 냉연강판 및 그 제조방법에 관한 것이다.
자동차의 충돌 안전성과 차체 경량화를 목적으로 자동차의 구조부 소재는 고강도 및 고성형성의 특성이 요구된다. 높은 강도와 성형성을 만족하기 위한 방법으로 페라이트와 마르텐사이트 조직으로 구성된 이상강(Dual phase steel), 잔류 오스테나이트의 변형 중 상변태 효과를 이용한 변태유기소성강(TRIP, Transformation induced plasticity steel)이 있다. 기지 조직을 페라이트와 베이나이트로 구성하는 변태유기소성강은 혼합 법칙에 따라 강도를 확보하기 불리하기 때문에, 기지 조직을 마르텐사이트로 하는 고강도 변태유기소성강이 주목받고 있다. 마르텐사이트 기반의 고강도 변태유기소성강을 만드는 방법으로 급냉 및 재가열 (Quenching and Partitioning, QP) 열처리를 통해 마르텐사이트 또는 템퍼드 마르텐사이트와 잔류오스테나이트 조직을 구현할 수 있다.
1.2GPa 이상 급, 특히 1.5GPa이상 급의 고강도 및 고성형성 강재는 인장강도뿐만 아니라 높은 항복강도 또한 요구되며, 동시에 연신율 확보를 위한 적정 분율의 잔류 오스테나이트 조직과, 잔류 오스테나이트의 안정도가 필요하다. 종래의 기술에서는 1470 MPa 이상의 인장강도와 15% 이상의 연신율을 동시에 확보하기에는 부족한 한계가 있다.
또한 미세조직을 마르텐사이트와 잔류 오스테나이트로만 구성한 경우에는, 급냉 종점 온도에 너무 민감하게 조직분율이 결정된다. 특히, 주조 편석과 같이 피하기 어려운 미세 성분편차에도 Ms 온도와 급냉 온도에 따른 마르텐사이트 분율에 차이가 발생하여 균일한 미세조직, 잔류 오스테나이트를 균일하게 만들기 어렵다. 또한, 종래에는 높은 강도와 성형성을 확보하기 위해 마르텐사이트 또는 템퍼드 마르텐사이트를 주 미세조직으로 하고, 잔류 오스테나이트 또는 페라이트 조직을 통하여 연신율을 확보하였다. 급냉 및 재가열 열처리의 특징은 급냉 종점온도에 따라 템퍼트 마르텐사이트, 마르텐사이트, 잔류오스테나이트의 조직분율이 달라지게 된다. 목표 물성을 확보하기 위하여 합금 성분에 따라 최적의 급냉 종점온도 구간을 정하여 미세조직 분율을 제어하게 되는데, 급냉 종점온도가 너무 낮으면, 잔류오스테나이트의 크기는 미세해지나 그 분율이 매우 작아지고, 급냉 종점온도가 너무 높으면 오스테나이트의 크기가 크고, 탄소 농축이 부족하여, 최종 냉각 후 마르텐사이트 조직으로 변태하거나 불안정하여 연신율 확보에 기여가 적다.
따라서, 성형성을 확보하기 위해서는 적절한 잔류오스테나이트의 분율과 미세한 형상, 탄소 농축을 통한 안정도가 확보되어야 한다. 한편, 1470 MPa이상의 고강도강에서 페라이트를 통한 연신율 확보는 항복강도 또는 인장강도의 하락으로 이어질 수 있기 때문에 페라이트는 제한적이어야 한다.
관련선행문헌으로 한국특허출원번호 제10-2018-0047388호가 있다.
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는 미세조직을 제어하여 높은 강도와 연신율을 가지는 초고강도 냉연강판 및 그 제조방법을 제공하는 것이다
그러나 이러한 과제는 예시적인 것으로, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
본 발명의 일 관점에 의하면, 미세조직을 제어하여 높은 강도와 연신율을 가지는 초고강도 냉연강판 및 그 제조방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 초고강도 냉연강판은, 중량%로, 탄소(C): 0.28% ~ 0.45%, 실리콘(Si): 1.0% ~ 2.5%, 망간(Mn): 1.5% ~ 3.0%, 알루미늄(Al): 0.01% ~ 0.05%, 크롬(Cr): 0% 초과 ~ 1.0%, 몰리브덴(Mo): 0% 초과 ~ 0.5%, 니오븀(Nb), 티타늄(Ti) 및 바나듐(V)의 총합: 0% 초과 ~ 0.1%, 인(P): 0% 초과 ~ 0.03%, 황(S): 0% 초과 ~ 0.03%, 질소(N): 0% 초과 ~ 0.01%, 및 잔부는 철(Fe)과 기타 불가피한 불순물을 포함하는 초고강도 냉연강판이며, 상기 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 100㎛2 이상의 면적을 관찰할 때, 오스테나이트의 면적(A)에 대한 오스테나이트 내 탄소 함량이 0.5% 이하인 결정립의 면적(B)의 비(B/A)는 0.1보다 작고, 항복강도(YP): 1180 MPa 이상, 인장강도(TS): 1470 MPa 이상, 및 연신율(El): 15% 이상, 항복비(YR): 75% 이상, 및 굽힘성(R/t): 3.0 이하를 만족한다.
본 발명의 일 실시예에 의하면, 오스테나이트의 면적(A)에 대한 마르텐사이트-오스테나이트(martensite-austenite, MA) 결정립의 면적(C)의 비(C/A)는 0.5보다 작을 수 있다.
본 발명의 일 실시예에 의하면, 상기 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 후방산란전자 회절(EBSD) 분석법으로 잔류오스테나이트 결정립을 관찰할 때, 상기 잔류오스테나이트 결정립 내 임의의 일 영역을 기준으로 상기 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값을 상기 일 영역에 대응시키는 과정을 통하여 상기 잔류오스테나이트 결정립 내 상기 결정방위차 평균값의 분포를 산출하는 경우, 상기 결정방위차 평균값이 0˚ 이상 3˚ 이하인 영역의 분포에서 나타나는 최대값(Kmax), 최소값(Kmin), 평균값(Kavg)은 (Kmax ― Kavg)/(Kmax ― Kmin) > 0.4의 관계를 만족할 수 있다.
본 발명의 일 실시예에 의하면, 상기 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 후방산란전자 회절(EBSD) 분석법으로 잔류오스테나이트 결정립을 관찰할 때, 상기 일 영역에 인접한 비교 영역들은 상기 일 영역과 맞닿아 위치하는 제 1 비교 영역, 상기 일 영역을 기준으로 상기 제 1 비교 영역보다 더 이격되되 상기 제 1 비교 영역과 맞닿아 위치하는 제 2 비교 영역, 상기 일 영역을 기준으로 상기 제 2 비교 영역보다 더 이격되되 상기 제 2 비교 영역과 맞닿아 위치하는 제 3 비교 영역을 포함하되, 상기 잔류오스테나이트 결정립 내 임의의 일 영역을 기준으로 상기 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값은 상기 임의의 일 영역을 기준으로 상기 제 3 비교 영역과의 결정방위의 차이를 평균한 결정방위차 평균값일 수 있다.
본 발명의 일 실시예에 의하면, 상기 초고강도 냉연강판은, 페라이트, 템퍼드 마르텐사이트, 마르텐사이트, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함할 수 있다. 상기 페라이트의 분율은 0% 초과 ~ 5% 범위이고, 상기 마르텐사이트의 분율은 0% 초과 ~ 20% 범위이고, 상기 잔류 오스테나이트의 분율은 10% ~ 30% 범위이고, 상기 상부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 하부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 템퍼드 마르텐사이트의 분율은 나머지 분율로서 포함될 수 있다. 상기 상부 베이나이트의 분율과 상기 하부 베이나이트의 분율의 합의 최소값은 10%일 수 있다.
본 발명의 일 실시예에 의하면, 상기 초고강도 냉연강판은, 템퍼드 마르텐사이트, 마르텐사이트, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함하고, 상기 마르텐사이트의 분율은 0% 초과 ~ 20% 범위이고, 상기 잔류 오스테나이트의 분율은 10% ~ 30% 범위이고, 상기 상부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 하부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 템퍼드 마르텐사이트의 분율은 나머지 분율로서 포함될 수 있다.
본 발명의 일 실시예에 의하면, 상기 잔류 오스테나이트의 평균 직경은 1.0 μm 이하일 수 있다.
본 발명의 기술적 사상에 의할 경우, 초고강도 냉연강판은 급냉 및 재가열 열처리를 통하여 형성한 변태유기소성강이다. 상기 초고강도 냉연강판은 열간압연 권취와 냉간압연 사이에 열처리를 수행하여 탄소 분포를 적절히 조절하고, 냉간압연 및 열처리 후 오스테나이트 내 탄소 함량이 적절하게 조절되어 1180 MPa 이상의 항복강도, 1470 MPa 이상의 높은 인장강도, 15% 이상의 연신율, 75% 이상의 항복비, 및 90도 굽힘 기준 3.0 이하의 굽힘 가공성(R/t)을 가질 수 있다. 상기 초고강도 냉연강판은 미세조직으로 템퍼드 마르텐사이트와 상부 베이나이트와 하부 베이나이트 변태조직을 이용하여 잔류 오스테나이트를 미세화하여 안정화하고, 항복강도 및 항복비를 안정적으로 제공할 수 있다.
특히, 급냉(2차냉각), 급냉 유지, 재가열, 파티션 과정에서 마르텐사이트 변태(1차), 하부 베이나이트 변태(2차), 상부 베이나이트 변태(3차)의 여러 단계의 상변태를 유도하여, 강재 내에 불가피하게 존재하는 주조 편석 등 인한 조직 불균일 문제를 제어하는데도 도움을 줄 수 있으며 잔류 오스테나이트를 미세화하고 안정화할 수 있다. 단순히 마르텐사이트와 잔류 오스테나이트의 조직으로 구성할 경우 조직 내에 주조 편석 등의 성분 불균일에 따라 Ms 점이 달라지고, 같은 급냉 온도에서 다른 마르텐사이트와 잔류 오스테나이트 분율을 가지는 반면, 본 발명에 기술적 사상에 따른 상기 초고강도 냉연강판에서는 이러한 문제점을 해결할 수 있다.
상술한 본 발명의 효과들은 예시적으로 기재되었고, 이러한 효과들에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 초고강도 냉연강판의 제조방법에서 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값(K)을 산출하는 방식의 개념을 설명하기 위한 도면이고, 도 2는 결정방위차 평균값(K)의 분포 양상을 나타낸 그래프이다.
도 3은 본 발명의 실험예 중 실시예1의 1차 열처리 후의 강재의 미세조직을 나타내는 주사전자현미경 사진이다.
도 4는 본 발명의 실험예 중 비교예2의 1차 열처리 후의 강재의 미세조직을 나타내는 주사전자현미경 사진이다.
도 5는 본 발명의 실험예 중 실시예1에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이다.
도 6은 본 발명의 실험예 중 비교예1에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이다.
도 7은 본 발명의 실험예 중 비교예2에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이다.
도 8은 본 발명의 실험예 중 비교예3에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이다.
도 9는 본 발명의 실험예 중 실시예1에 의한 초고강도 냉연강판의 최종 미세조직에서 EBSD를 통한 잔류오스테나이트의 형상과 분포를 나타내는 도면이다.
도 10은 본 발명의 실험예 중 비교예1에 의한 초고강도 냉연강판의 최종 미세조직에서 EBSD를 통한 잔류오스테나이트의 형상과 분포를 나타내는 도면이다.
도 11은 본 발명의 실험예 중 비교예2에 의한 초고강도 냉연강판의 최종 미세조직에서 EBSD를 통한 잔류오스테나이트의 형상과 분포를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술적 사상의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다. 본 명세서에서 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명의 기술적 사상은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되지 않는다.
본 발명의 기술적 사상은, 1180 MPa 이상의 항복강도와 1470 MPa 이상의 인장강도, 15% 이상의 연신율을 가지며, 항복비(항복강도/인장강도)가 75% 이상이고, 90도 굽힘 가공성이 3.0 R/t 이하인 초고강도 냉연강판과 그 제조방법을 제공한다.
이하에서는 본 발명의 기술적 사상에 따른 초고강도 냉연강판에 대하여 상세하게 설명하기로 한다.
본 발명의 일실시예에 따른 초고강도 냉연강판은, 중량%로, 탄소(C): 0.28% ~ 0.45%, 실리콘(Si): 1.0% ~ 2.5%, 망간(Mn): 1.5% ~ 3.0%, 알루미늄(Al): 0.01% ~ 0.05%, 크롬(Cr): 0% 초과 ~ 1.0%, 몰리브덴(Mo): 0% 초과 ~ 0.5%, 니오븀(Nb), 티타늄(Ti) 및 바나듐(V)의 총합: 0% 초과 ~ 0.1%, 인(P): 0% 초과 ~ 0.03%, 황(S): 0% 초과 ~ 0.03%, 질소(N): 0% 초과 ~ 0.01%, 및 잔부는 철(Fe)과 기타 불가피한 불순물을 포함한다.
이하, 본 발명에 따른 초고강도 냉연강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다. 이때, 성분 원소의 함유량은 모두 강판 전체에 대한 중량%를 의미한다.
탄소(C): 0.28% ~ 0.45%
탄소는 강의 강도를 확보하기 위하여 첨가하며, 특히 마르텐사이트 조직의 강도를 증가시킨다. 또한 구분화되어 오스테나이트를 안정화 시켜 변태유기소성(TRIP) 효과를 통한 연신율을 확보할 수 있기 때문에 충분한 탄소함량이 요구된다. 상기 탄소의 함량이 0.28% 미만인 경우에는, 목표 강도와 연신율을 동시에 얻기 어려울 수 있다. 상기 탄소의 함량이 0.45%를 초과하는 경우에는, 용접성이 저하될 수 있고 수소취성이 발생할 수 있다. 따라서, 탄소의 함량을 강판 전체 중량의 0.28% ~ 0.45%로 첨가하는 것이 바람직하다.
실리콘(Si): 1.0% ~ 2.5%
실리콘은 페라이트 안정화 원소로서 페라이트, 마르텐사이트 내 탄화물의 형성을 지연시키며, 고용강화 효과가 있다. 특히, 마르텐사이트 내에 탄화물 생성을 지연시켜 오스테나이트로 탄소를 구분화시키는데 필수적이다. 상기 실리콘의 함량이 1.0% 미만인 경우에는, 탄화물 생성 억제효과가 적어 잔류 오스테나이트의 안정도를 충분히 확보하기 어려울 수 있다. 상기 실리콘의 함량이 2.5%를 초과하는 경우에는, 제조과정에서 Mn2SiO4 등 산화물을 형성하여 도금성이 저해되고, 탄소당량을 높여 용접성을 저하시킬 수 있다. 따라서, 실리콘의 함량을 강판 전체 중량의 1.0% ~ 2.5%로 첨가하는 것이 바람직하다.
망간(Mn): 1.5% ~ 3.0%
망간은 고용강화 효과가 있고 소입성을 증대시켜 냉각 중 페라이트와 베이나이트 생성 지연 효과가 있다. 상기 망간의 함량이 1.5% 미만인 경우에는, 망간 첨가 효과가 충분하지 않아 소입성 확보가 어려울 수 있다. 상기 망간의 함량이 3.0%를 초과하는 경우에는, 베이나이트의 변태가 지나치게 지연될 수 있고, MnS등 개재물의 형성이나 편석으로 인한 가공성 저하가 발생하고 탄소당량을 높여 용접성을 저하시킬 수 있다. 따라서, 망간의 함량을 강판 전체 중량의 1.5% ~ 3.0%로 첨가하는 것이 바람직하다.
알루미늄(Al): 0.01% ~ 0.05%
알루미늄은 탈산제로 사용되고, 실리콘과 유사하게 탄화물 생성 억제에 도움이 될 수 있다. 상기 알루미늄의 함량이 0.01% 미만인 경우에는, 탈산 효과가 부족할 수 있다. 상기 알루미늄의 함량이 0.05% 를 초과하는 경우에는, 슬라브 제조 시 AlN을 형성하여 주조 또는 열연 중 크랙을 유발할 수 있다. 따라서, 알루미늄의 함량을 강판 전체 중량의 0.01% ~ 0.05%로 첨가하는 것이 바람직하다.
크롬(Cr): 0% 초과 ~ 1.0%
크롬은 고용강화 효과가 있고 소입성을 증대시켜 강도향상에 기여하고, C, Mn과 같이 작용하여 마르텐사이트, 베이나이트 조직을 미세화하고 잔류 오스테나이트를 안정화에 기여한다. 상기 크롬의 함량이 1.0%를 초과하는 경우에는, 베이나이트의 변태가 지나치게 지연될 수 있고, 강의 제조 원가를 증가시킬 수 있다. 따라서, 크롬은 강판 전체 중량의 0% 초과 ~ 1.0%로 첨가하는 것이 바람직하다.
몰리브덴(Mo): 0% 초과 ~ 0.5%
몰리브덴은 고용강화 효과가 있고 소입성을 증대시켜 강도향상에 기여하고, C, Mn과 같이 작용하여 마르텐사이트, 베이나이트 조직을 미세화하고 잔류 오스테나이트를 안정화에 기여한다. 상기 몰리브덴의 함량이 0.5%를 초과하는 경우에는, 베이나이트의 변태가 지나치게 지연될 수 있고, 강의 제조 원가를 증가시킬 수 있다. 따라서, 몰리브덴은 강판 전체 중량의 0% 초과 ~ 0.5%로 첨가하는 것이 바람직하다.
니오븀(Nb), 티타늄(Ti) 및 바나듐(V)의 총합: 0% 초과 ~ 0.1%
본 발명에서는 니오븀, 티타늄, 및 바나듐 중 적어도 어느 하나 이상을 함유할 수 있다. 니오븀, 티타늄, 및 바나듐은 석출물 형성 원소로, 석출강화 효과로 강도를 증가시킬 수 있으며, 결정립 미세화 효과도 얻을 수 있다. 상기 니오븀, 티타늄, 및 바나듐의 총합이 각각 0.1%를 초과하여 첨가되는 경우에는, 강의 제조원가가 크게 증가할 수 있으며 압연 시 많은 석출로 인하여 압연부하가 크게 증가할 수 있고, 연신율이 저하될 수 있다. 따라서, 니오븀, 티타늄, 및 바나듐의 총합은 각각 강판 전체 중량의 0% 초과 ~ 0.1%로 첨가하는 것이 바람직하다. 또한, 니오븀, 티타늄, 및 바나듐 각각은 강판 전체 중량의 0.1% 이하로 첨가하는 것이 바람직하다. 예를 들어 니오븀, 티타늄, 및 바나듐 각각은 0% 초과 ~ 0.05%로 첨가할 수 있다.
인(P): 0% 초과 ~ 0.03%
인은 강의 제조 과정에서 포함되는 불순물로서, 고용강화에 의해 강도의 향상에 도움을 줄 수는 있지만, 다량 함유 시 저온취성이 발생시킬 수 있다. 따라서, 인의 함량을 강판 전체 중량의 0% 초과 ~ 0.03%로 제한하는 것이 바람직하다.
황(S): 0% 초과 ~ 0.03%
황은 강의 제조 과정에서 포함되는 불순물로서, FeS, MnS 등과 같은 비금속 개재물을 형성하여 굽힘성, 인성, 및 용접성을 저하시킬 수 있다. 따라서, 황의 함량을 강판 전체 중량의 0% 초과 ~ 0.03%로 제한하는 것이 바람직하다.
질소(N): 0% 초과 ~ 0.01%
질소는 강의 제조 시 불가피하게 함유되는 원소로서, 오스테나이트를 안정화에 도움을 줄 수 있지만, Al과 반응하여 AlN을 형성하여 연주 중 크랙을 유발할 수 있다. 따라서, 질소의 함량을 강판 전체 중량의 0% 초과 ~ 0.01%로 제한하는 것이 바람직하다.
한편, 본 발명의 변형된 실시예에 따른 초고강도 냉연강판은 상술한 합금원소 외에 다음과 같은 조성범위를 가지는 원소들 중 적어도 어느 하나 이상을 추가적으로 더 포함할 수도 있다.
니켈(Ni): 0% 초과 ~ 0.5%
니켈은 오스테나이트를 안정화시키며 강의 소입성을 증가시키는데도 도움을 줄 수 있다. 상기 니켈의 함량이 0.5%를 초과하는 경우에는, 강의 제조 원가를 증가시켜 바람직하지 않다. 따라서, 니켈은 강판 전체 중량의 0% 초과 ~ 0.5%로 첨가하는 것이 바람직하다.
구리(Cu): 0% 초과 ~ 0.5%
구리는 오스테나이트를 안정화시키며 강의 소입성을 증가시키는데도 도움을 줄 수 있다. 상기 구리의 함량이 0.5%를 초과하는 경우에는, 강의 제조 원가를 증가시켜 바람직하지 않다. 따라서, 구리는 강판 전체 중량의 0% 초과 ~ 0.5%로 첨가하는 것이 바람직하다.
또한, 니켈 및 구리의 총합은 0% 초과 ~ 1.0%로 첨가하는 것이 바람직하다.
보론(B): 0% 초과 ~ 0.005%
보론은 Mn, Cr, Mo 등 과 같이 소입성을 향상시킬 수 있다. 상기 보론의 함량이 0.005%를 초과하는 경우에는, 표면에 농화되어 도금 밀착성 등의 품질 열화가 발생할 수 있다. 따라서, 보론은 강판 전체 중량의 0% 초과 ~ 0.005%로 첨가하는 것이 바람직하다.
상기 초고강도 냉연강판의 나머지 성분은 철(Fe)이다. 다만, 통상의 제강 과정에서는 원료 또는 주위 환경으로부터 의도되지 않은 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다.
본 발명의 일 실시예에 따른 초고강도 냉연강판은 페라이트, 템퍼드 마르텐사이트, 마르텐사이트, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함할 수 있다. 상기 페라이트의 분율은 0% ~ 5% 범위이고(0% 포함), 상기 마르텐사이트의 분율은 0% 초과 ~ 20% 범위이고, 상기 잔류 오스테나이트의 분율은 10% ~ 30% 범위이고, 상기 상부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 하부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 템퍼드 마르텐사이트의 분율은 나머지 분율로서 포함될 수 있다. 상기 상부 베이나이트의 분율과 상기 하부 베이나이트의 분율의 합의 최소값은 10%일 수 있다. 상기 분율은 미세조직 사진을 이미지 분석기를 통하여 도출한 면적비율을 의미한다. 상기 페라이트는 폴리고날 페라이트를 포함할 수 있다. 또한, 상기 잔류 오스테나이트의 평균 직경은, 예를 들어 1.0 μm 이하일 수 있고, 예를 들어 0.1 μm ~ 1.0 μm 범위일 수 있다.
상기 템퍼드 마르텐사이트와 상기 베이나이트의 래스 및 결정립계에 잔류 오스테나이트가 미세하게 분포되어 있고, 이에 따라 상기 잔류 오스테나이트가 안정화되고, 강도와 연신율을 안정적으로 확보할 수 있다.
또한, 상기 초고강도 냉연강판은 페라이트를 포함하지 않을 수 있다. 이러한 경우에는, 상기 초고강도 냉연강판은 템퍼드 마르텐사이트, 마르텐사이트, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함하고, 상기 마르텐사이트의 분율은 0% 초과 ~ 20% 범위이고, 상기 잔류 오스테나이트의 분율은 10% ~ 30% 범위이고, 상기 상부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 하부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 템퍼드 마르텐사이트의 분율은 나머지 분율로서 포함될 수 있다. 또한, 상기 상부 베이나이트의 분율과 상기 하부 베이나이트의 분율의 합은 10% ~ 60% 일 수 있다. 상기 상부 베이나이트의 분율과 상기 하부 베이나이트의 분율의 합의 최소값은 10% 일 수 있다.
본 발명의 기술적 사상에 의한 초고강도 냉연강판은 상기 냉연강판의 표면부와 중심부 사이의 영역(t/4 두께)에서 강판의 폭방향(TD)으로 100㎛2 이상의 면적을 관찰할 때, 오스테나이트의 면적(A)에 대한 오스테나이트 내 탄소 함량이 0.5% 이하인 결정립의 면적(B)의 비(B/A)는 0.1보다 작다. 상기 비율(B/A)은 강판 내 생성한 잔류 오스테나이트(RA)의 조성 안정도에 관한 척도로 이해될 수 있다. 상기 비율(B/A)이 0.1 이상인 경우, 오스테나이트의 조성 안정성이 충분하지 않아 잔류 오스테나이트 에 의한 연신율 향상 효과가 얻어질 수 없다. 개별 결정립 내 탄소 함량 측정을 위해서는 투과전자현미경(TEM) 관찰을 통한 격자 면간거리를 측정 하였고, Cγ = (αγ ― 3.592)/0.033 의 관계식을 통하여 탄소 함량을 도출하였다. αγ는 투과전자현미경으로 측정한 오스테나이트 격자 상수이다.
본 발명의 기술적 사상에 의한 초고강도 냉연강판은 본 발명의 기술적 사상에 의한 초고강도 냉연강판은 상기 냉연강판의 표면부와 중심부 사이의 영역(t/4 두께)에서 강판의 폭방향(TD)으로 100㎛2 이상의 면적을 관찰할 때, 오스테나이트의 면적(A)에 대한 마르텐사이트-오스테나이트(martensite-austenite) 결정립의 면적(C)의 비(C/A)는 0.5보다 작다. 상기 비율(C/A)은 강판 내 생성한 잔류 오스테나이트(RA)의 위치별 안정도에 관한 척도로 이해될 수 있다. 상기 비율(C/A)이 0.5 이상인 경우, 변형유기마르텐사이트 변태에 참여하지 않는 마르텐사이트-오스테나이트 결정립이 과다해지므로 충분한 연신율 및 가공경화능을 얻을 수 없다
본 발명의 기술적 사상에 의한 초고강도 냉연강판은 상기 냉연강판의 표면부와 중심부 사이의 영역(t/4 두께)에서 강판의 폭방향(TD)으로 후방산란전자 회절(EBSD) 분석법으로 잔류오스테나이트 결정립을 관찰할 때, 상기 잔류오스테나이트 결정립 내 임의의 일 영역을 기준으로 상기 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값(K)을 상기 일 영역에 대응시키는 과정을 통하여 상기 잔류오스테나이트 결정립 내 상기 결정방위차 평균값의 분포를 산출하는 경우, 상기 결정방위차 평균값이 0˚ 이상 3˚ 이하인 영역의 분포에서 나타나는 최대값(Kmax), 최소값(Kmin), 평균값(Kavg)은 (Kmax ― Kavg)/(Kmax ― Kmin) > 0.4의 관계를 만족한다. 한편, (Kmax ― Kavg)/(Kmax ― Kmin)의 최대값은 1이다.
도 1는 본 발명의 일 실시예에 따른 초고강도 냉연강판의 제조방법에서 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값(K)을 산출하는 방식의 개념을 설명하기 위한 도면이고, 도 2는 결정방위차 평균값(K)의 분포 양상을 나타낸 그래프이다.
도 1을 참조하면, 상기 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 후방산란전자 회절(EBSD) 분석법으로 잔류 오스테나이트 결정립을 관찰할 때, 상기 일 영역(A0)에 인접한 비교 영역들은 상기 일 영역(A0)과 맞닿아 위치하는 제 1 비교 영역(A1 ~ A6), 상기 일 영역(A0)을 기준으로 상기 제 1 비교 영역(A1 ~ A6)보다 더 이격되되 상기 제 1 비교 영역(A1 ~ A6)과 맞닿아 위치하는 제 2 비교 영역(A7 ~ A18), 상기 일 영역(A0)을 기준으로 상기 제 2 비교 영역(A7 ~ A18)보다 더 이격되되 상기 제 2 비교 영역(A7 ~ A18)과 맞닿아 위치하는 제 3 비교 영역(A19 ~ A36)을 포함할 수 있다. 이 경우, 상기 잔류오스테나이트 결정립 내 임의의 일 영역(A0)을 기준으로 상기 일 영역(A0)에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값(K)은 상기 임의의 일 영역(A0)을 기준으로 상기 제 3 비교 영역(A19 ~ A36)과의 결정방위의 차이를 평균한 결정방위차 평균값(K)일 수 있다.
예를 들어, 상기 임의의 일 영역(A0)을 기준으로 상기 제 3 비교 영역(A19 ~ A36)과의 결정방위의 차이를 평균한 결정방위차 평균값(K)은 하기의 수학식 1로 나타낼 수 있다. 여기에서, (MA)i는 일 영역(A0)을 기준으로 제 3 비교 영역(A19 ~ A36) 중 어느 하나의 영역과의 결정방위 차이를 나타내며, n은 19이며, m은 36의 값을 가질 수 있다.
Figure PCTKR2022019634-appb-img-000001
도 2를 참조하면, 결정방위차 평균값(K)의 분포는 0˚ 에서 5˚ 까지 나타나며, 이 중에서 상기 결정방위차 평균값이 0˚ 이상 3˚ 이하인 영역의 분포에서 나타나는 최대값(Kmax), 최소값(Kmin), 평균값(Kavg)을 산출할 수 있다.
본 발명의 기술적 사상에 따른 초고강도 냉연강판의 제조방법에서 상기 결정방위차 평균값(K)이 0˚ 이상 3˚ 이하인 영역의 분포에서 나타나는 최대값(Kmax), 최소값(Kmin), 평균값(Kavg)은 (Kmax ― Kavg)/(Kmax ― Kmin) > 0.4의 관계를 만족한다.
FCC 구조를 가지는 오스테나이트의 변형유기 마르텐사이트 상변태 반응에서 전위나 적측결함과 같이 결정립 내부 결함이 마르텐사이트 핵생성 사이트로 작용한다. 따라서 결정립 내 결함 분포를 나타내는 값인 상기 결정방위차 평균값이 너무 작을 경우 TRIP(Transformation induced plasticity) 핵생성이 충분하지 않아 변형유기 마르텐사이트 상변태에 의한 연성×인장강도의 증가 효과를 얻을 수 없다. 반면에 상기 결정방위차 평균값이 너무 높을 경우, 변형 유기 마르텐사이트 상변태에 인장 변형 초기에 집중하여 발생하기 때문에, 마찬가지로 원하는 연성 증가 효과를 얻을 수 없다.
전술한 합금 조성의 구체적인 성분 및 이들의 함량 범위를 제어하고, 상술한 조건을 만족하는 초고강도 냉연강판은, 예를 들어 항복강도(YP): 1180 MPa 이상 1330 MPa 이하, 인장강도(TS): 1470 MPa 이상 1770 MPa 이하, 및 연신율(El): 15% 이상, 항복비(YR): 75% 이상, 및 굽힘성(R/t): 3.0 이하를 만족할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 초고강도 냉연강판의 제조방법에 관하여 설명한다.
초고강도 냉연강판의 제조방법
본 발명에 따른 제조방법에서 열연공정의 대상이 되는 반제품은 예시적으로 슬라브(slab)일 수 있다. 반제품 상태의 슬라브는 제강공정을 통해 소정의 조성의 용강을 얻은 다음에 연속주조공정을 통해 확보할 수 있다.
본 발명의 실시예에 따른 초고강도 냉연강판의 제조방법은, 상기 조성의 강재를 이용하여 열연강판을 제조하는 단계; 상기 열연강판을 냉간 압연하여 냉연강판을 제조하는 단계; 상기 냉연강판을 소둔 열처리하는 단계; 상기 냉연강판을 다단 냉각하는 단계; 및 상기 냉연강판을 파티셔닝 열처리하는 단계;를 포함한다.
특히, 냉연강판을 소둔 열처리를 위하여 Ac3 온도 이상으로 승온시켜 일정 시간 유지하고, 서냉과 급랭의 두 단계의 다단 냉각을 급냉종료온도까지 수행한다. 이어서, 상기 급냉종료온도에서 일정 시간 유지한 후, 파티셔닝 열처리를 위하여 Ms 온도 이상으로 승온시킨 후, 파티셔닝 열처리 시간 동안 일정하게 유지한 후에 Mf 온도 이하로 최종 냉각한다.
열연강판 제조단계
상기 합금 조성을 갖는 강 슬라브를 준비하고, 상기 강 슬라브를, 예를 들어 1,150℃ ~ 1,250℃ 범위의 재가열 온도(Slab Reheating Temperature, SRT)에서 재가열한다. 이러한 재가열을 통해, 주조 시 편석된 성분의 재고용 및 석출물의 재고용이 발생하여 균질화하고, 열간 압연이 가능한 상태로 만들 수 있다. 상기 재가열 온도가 1,150℃ 미만인 경우에는, 편석의 재고용이 불충분할 수 있고, 열간압연 부하가 증가될 수 있다. 상기 재가열 온도가 1,250℃를 초과하는 경우에는, 오스테나이트 결정립의 크기가 증가될 수 있고, 온도 상승에 따른 공정비용이 상승할 수 있다. 상기 재가열 시간은, 예를 들어 1 시간 ~ 4 시간 동안 수행될 수 있다. 상기 재가열 시간이 1 시간 미만인 경우에는, 편석의 균질화가 불충분할 수 있다. 상기 재가열 시간이 4 시간을 초과하는 경우에는, 오스테나이트 결정립의 크기가 증가될 수 있고, 온도 상승에 따른 공정비용이 상승할 수 있다.
상기 재가열 후 통상의 방법으로 열간압연을 행하고, 예를 들어 850℃ ~ 970℃ 범위의 마무리압연 종료온도(finish delivery temperature, FDT)에서 열간 마무리 압연을 수행하여 열연강판을 제조할 수 있다. 상기 마무리 압연 종료온도가 850℃ 미만인 경우에는, 페라이트 또는 펄라이트가 생성될 수 있다. 상기 마무리 압연 종료온도가 970℃를 초과할 경우에는, 스케일 생성의 증가되고, 결정 입경이 조대화되어, 조직의 미세 균일화가 어려울 수 있다.
이어서, 상기 열연강판을, 예를 들어 400℃ ~ 700℃ 범위의 권취온도까지 냉각한다. 상기 냉각은 공냉 또는 수냉 모두 가능하며, 예를 들어 10℃/초 ~ 30℃/초의 냉각속도로 냉각할 수 있다. 냉각 속도가 빠를수록 평균 결정립도 감소에 유리하다. 상기 냉각은 권취 온도까지 냉각하는 것이 바람직하다.
이어서, 상기 열연강판을, 예를 들어 400℃ ~ 700℃ 범위의 권취온도(coiling temperature, CT)에서 권취한다. 상기 귄취온도의 범위는 냉간 압연성, 표면 성상의 관점에서 선택할 수 있다. 상기 권취온도가 400℃ 미만인 경우에는, 마르텐사이트 등의 경질상이 과도하게 생성되어 열연강판의 재질이 과도하게 증가하여 냉간압연 시 압연 부하가 현저하게 증가 할 수 있다. 상기 권취 온도가 700℃를 초과할 경우에는, 최종 제품의 미세조직의 불균일성을 초래할 수 있다.
한편, 본 발명의 기술적 사상에 따른 초고강도 냉연강판의 제조방법에서는 상기 열간압연 권취 후 냉간 압연 전, 10 초 내지 12 시간의 시간 동안 500℃ ~ 680℃ 의 온도에서 1차 열처리를 수행할 수 있다. 이 때 상기 1차 열처리는 배치 어닐링 또는 연속 열처리 공정 등을 선택할 수 있다. 상기 1차 열처리 후 강판 미세조직에서 100 μm2 면적 내 결정립도 500nm 이상의 탄화물이 2개 이하로 분포하도록 하고, 5% 이하의 펄라이트 비율을 가진다. 상기 1차 열처리 공정을 하지 않거나 온도가 500℃ 보다 낮을 경우, 냉간 압연 부하가 상승하여 공정 난이도가 높아지는 단점이 있다. 열처리 공정 온도가 680℃를 초과하거나 시간이 12시간을 초과할 경우, 500nm 이상의 지름을 가지는 구상 시멘타이트 등의 조대한 탄화물이 형성된다. 이는 탄소 원자 불균질을 심화하여 냉간 압연 후 최종 미세조직 내 탄소가 과고용된 잔류 오스테나이트를 만들 수 있다. 약 1.1% 이상의 탄소 함량을 가지는 오스테나이트의 경우 그 비율이 늘어남에 따라 TRIP 효과가 감소하여 강도×연신율 특성이 저하될 것으로 예상되므로 1차 열처리 수행 후 미세조직을 적절히 조절하여 잔류 오스테나이트의 안정도를 조정하고자 하였다.
냉연강판 제조단계
상기 열연강판을 표면 스케일 층을 제거하기 위하여 산으로 세정하는 산세 처리를 수행한다. 이어서, 상기 열연강판을, 예를 들어 40% ~ 70%의 평균 압하율로 냉간압연을 실시하여 냉연강판을 형성한다. 상기 평균 압하율이 높을수록, 조직 미세화 효과로 인한 성형성이 상승되는 효과가 있다. 상기 평균 압하율 40% 미만인 경우에는, 균일한 미세조직을 얻기 어렵다. 상기 평균 압하율이 70%를 초과하는 경우에는, 롤 힘이 증가되어 공정부하가 증가된다. 상기 냉간압연에 의하여 최종 생산되는 강판의 두께를 가질 수 있다. 냉연강판의 조직은 열연강판의 조직이 연신된 형상의 조직을 가질 수 있다.
소둔 열처리 단계
상기 냉연강판을 통상의 서냉각 구간이 있는 연속 소둔로에서 소둔 열처리한다. 상기 소둔 열처리는 오스테나이트 단상 조직을 형성하기 위하여 수행된다. 소둔 열처리 온도와 시간은 오스테나이트 결정립 크기에 영향을 주며, 따라서, 냉연강판의 강도에 큰 영향을 끼칠 수 있다.
상기 소둔 열처리는, 예를 들어 2℃/초 이상의 승온속도로, 예를 들어 2℃/초 ~ 10℃/초 범위의 승온속도로 가열한다. 상기 승온속도가 2℃/초 미만인 경우에는, 목표하는 소둔 열처리 온도까지 도달하기에 장시간이 소요되어, 생산 효율성이 저하되며 결정립의 크기가 커질 수 있다.
상기 소둔 열처리는, 예를 들어 Ac3 이상의 온도에서, 예를 들어 830℃ ~ 930℃의 범위의 온도에서, 예를 들어 830℃ ~ 900℃의 범위의 온도에서, 예를 들어 30초 ~ 120초 범위의 시간 동안 유지하여 수행될 수 있다. 이러한 승온 및 소둔 열처리 단계에서 냉간 압연 조직은 오스테나이트로 역변태된다. 상기 소둔 열처리 온도가 830℃ 미만인 경우에는, 최종 조직인 템퍼드 마르텐사이트를 만들기 위해 오스테나이트 단상을 형성할 수 없다. 참고로, 오스테나이트 단상을 형성하기 위하여는 A3 온도 이상으로 소둔 열처리를 수행하여야 한다. 상기 소둔 열처리 온도가 900℃를 초과하는 경우에는, 오스테나이트 결정립이 조대하게 되어 강도가 저하될 수 있다.
상기 소둔 열처리 시간이 증가할수록 소둔 열처리 온도와 마찬가지로 오스테나이트 결정립 성장에 따른 조대화에 영향을 미치지만, 상기 소둔 열처리 시간은 소둔 열처리 온도에 비하여 그 영향이 적다. 상기 소둔 열처리 시간이 120초를 초과하는 경우에는. 열처리 효율이 감소될 수 있다. 상기 소둔 열처리 시간이 30초 미만인 경우에는, 상기 소둔 열처리 효과가 불충분할 수 있다.
다단 냉각 단계
상기 소둔 열처리한 냉연강판을 다단 냉각한다. 상기 냉각하는 단계는 하기의 두 단계로 수행될 수 있다.
먼저, 상기 소둔 열처리한 냉연강판을, 예를 들어 1℃/초 ~ 15℃/초 범위의 냉각속도로, 예를 들어 3℃/초 ~ 10℃/초 범위의 냉각속도로, 페라이트 변태를 억제하는 온도 구간까지, 예를 들어 650℃ ~ 800℃ 범위의 1차 냉각종료온도로 서냉으로 1차 냉각한다. 상기 서냉의 1차 냉각종료온도가 650℃ 미만인 경우에는, 페라이트 변태가 원하지 않는 양으로 발생할 수 있고, 이에 따라 강도가 저하될 수 있다. 상기 페라이트 변태에 의하여 생성된 페라이트의 분율은 0% ~ 5% 미만으로 제한되는 것이 바람직하다.
이어서, 상기 1차 냉각(서냉)한 냉연강판을, 예를 들어 20℃/초 이상의 냉각속도로, 예를 들어 20℃/초 ~ 100℃/초 범위의 냉각속도로, 예를 들어 Ms 온도 이하에서, 예를 들어 Ms-140 ℃ ~ Ms-30℃ 범위의 온도, 예를 들어 180℃ ~ 300℃ 범위의 2차 냉각종료온도로 급랭으로 2차 냉각(급랭)한다. 상기 2차 냉각은 급랭 단계로서 제2-1 급랭 단계와 제2-2 급랭 단계로 순차로 수행될 수도 있다. 상기 제2-1 급랭 단계의 냉각속도는 예를 들어, 20℃/초 이상일 수 있으며, Ms-30℃ 이하 온도까지 급냉할 수 있는 바, 냉각 중 오스테나이트의 일부가 마르텐사이트로 변태하며 그 양은 20 ~ 80% 정도이다. 상기 제2-2 급랭 단계의 냉각속도는 예를 들어, 30℃/초 이상일 수 있으며, 급랭종점온도(Ms-140℃ ~ Ms-30℃)까지 냉각하여 마르텐사이트 변태를 일으킨다.
상기 2차 냉각(급랭)에 의하여 오스테나이트의 일부가 마르텐사이트로 변태할 수 있다. 상기 생성된 마르텐사이트의 분율은 20% ~ 80% 일 수 있다.
이러한 열처리에서 서냉 ~ 급랭 구간의 평균 냉각속도를 70℃/초 보다 빠르게 확보할 수 있는 경우 상기 제2-1 급랭 단계와 상기 제2-2 급랭 단계를 구분없이 냉각하여도 무관하다.
이어서, 상기 2차 냉각(급랭)한 냉연강판을 상기 2차 냉각종료온도에서, 예를 들어 5초 ~ 90초 범위의 시간 동안 유지한다. 이러한 급냉 후 유지 시간에서, 초기에는 강의 온도 균질화가 진행될 수 있다. 이어서, 상기 2차 냉각종료온도에서 등온으로 유지하는 중에 잔류 오스테나이트의 일부는 하부베이나이트 등으로 변태할 수 있다.
파티셔닝 열처리 단계
상기 다단 냉각된 냉연강판을, 예를 들어 3℃/초 ~ 20℃/초 범위의 승온속도로 재가열하고, 예를 들어 360℃ ~ 500℃ 범위의 온도에서, 예를 들어 360℃ ~ 460℃ 범위의 온도에서, 예를 들어 30초 ~ 500초 범위의 시간 동안, 예를 들어 30초 ~ 500초 범위의 시간 동안 유지하여 파티셔닝 열처리를 수행한다.
상기 파티셔닝 열처리 온도가 360℃ 미만인 경우에는, 파티셔닝 효과가 불충분할 수 있다. 상기 파티셔닝 열처리 온도가 500℃를 초과하는 경우에는, 탄화물의 크기가 조대화되어 강도 저하가 발생할 수 있다.
상기 파티셔닝 열처리 유지 시간은 파티셔닝 온도 대비 그 영향이 적다. 상기 파티셔닝 열처리 유지 시간이 30초 미만인 경우에는, 안정적인 파티셔닝 효과를 얻기 어려울 수 있다. 상기 파티셔닝 열처리 유지 시간이 500초를 초과하는 경우에는 열처리 효율이 저하되고, 탄화물 크기가 증가되어 강도 저하가 발생할 수 있다.
파티셔닝 열처리 단계는 상기 다단 냉각을 수행한 직후에 수행하거나, 또는 상온에서 수 분 이상 유지한 후 수행될 수 있다.
파티셔닝 열처리 단계가 종료된 후에, 상온으로, 예를 들어 0℃ ~ 40℃ 범위의 온도로 냉각한다.
미세조직 변화 분석
이하에서는, 본 발명의 기술적 사상에 따른 초고강도 냉연강판의 제조방법을 수행하는 과정에서 초고강도 냉연강판의 미세조직의 변화에 대하여 상세하게 설명하기로 한다.
소둔 열처리 단계에서, 냉연강판의 미세조직은 오스테나이트로 역변태 된다.
다단 냉각 단계의 상기 1차 냉각에서, 페라이트 변태에 의하여 생성된 페라이트의 분율은 5% 미만으로 제한되며, 페라이트가 생성되지 않을 수 있다. 5% 이상의 페라이트가 생성되면, 강도가 저하되어 목표 강도를 구현하지 못할 수 있다.
다단 냉각 단계의 상기 2차 냉각에서, 냉연강판이 빠른 냉각속도로 냉각됨에 따라, 페라이트 변태, 펄라이트 변태 및 베이나이트 변태를 억제하게 되고, 상기 오스테나이트의 일부는 마르텐사이트로 변태한다. 이때 마르텐사이트 변태에 의하여 생성된 마르텐사이트 분율은 20% ~ 80%로 제한될 수 있다. 상기 2차 냉각 중에 생성된 마르텐사이트의 분율이 80%를 초과하는 경우에는, 적정량의 잔류 오스테나이트의 분율을 확보하기 어려울 수 있다. 20% 미만인 경우에는, 냉각 이후 잔류 오스테나이트의 분율이 너무 높아서 상기 잔류 오스테나이트의 안정도를 확보하기 어려우며, 베이나이트 변태조직을 증가시켜도 마르텐사이트 분율이 적게 되어 강도의 저하가 발생할 수 있다. 또한 일부 마르텐사이트 조직은 내부 응력을 증가시켜 베이나이트 핵생성 속도를 증가시켜 Ms 이하의 낮은 온도에서도 베이나이트 변태가 빠르게 진행되도록 작용할 수 있다.
다단 냉각 단계의 상기 2차 냉각에서, 급냉한 후에 상기 2차 냉각종료온도에서 유지하는 동안, 상기 오스테나이트의 일부는 베이나이트로 변태되고, 이는 주로 하부 베이나이트일 수 있다. 또한, 이전 단계에서 생성된 마르텐사이트 내에 미세 석출물이 형성될 수 있다. 이때, 상기 2차 냉각종료온도에서 유지하는 시간은 5초 ~ 90초 범위일 수 있다. 상기 유지 시간이 5초 미만인 경우에는, 하부 베이나이트 변태가 충분히 발생하지 못할 수 있다. 상기 유지 시간이 90초를 초과하는 경우에는, 지나치게 긴 열처리 시간으로 공정 비용이 증가될 수 있다.
파티셔닝 열처리 단계에서, 상기 잔류 오스테나이트의 내부로 탄소가 확산되어 농축되어, 상기 잔류 오스테나이트를 안정화시킬 수 있다. 또한, 상기 잔류 오스테나이트의 일부는 베이나이트 변태가 진행될 수 있다. 상기 베이나이트 변태는 급냉 이후 상기 잔류 오스테나이트의 형상을 미세화 할 수 있고, 이에 따라 상기 잔류 오스테나이트의 안정화에 기여할 수 있다. 이러한 작용을 위하여, 상기 상부 베이나이트의 분율과 상기 하부 베이나이트의 분율의 합은 10% 이상을 가질 수 있다.
파티셔닝 열처리 단계를 수행한 후 상온까지의 최종 냉각에서는, 일부 불안정한 오스테나이트가 마르텐사이트로 변태할 수 있다. 이때 생성되는 마르텐사이트가 많으면 최종적인 상기 잔류 오스테나이트의 분율이 감소하여 성형성에 악영향을 줄 수 있으므로 생성되는 마르텐사이트를 20% 미만으로 제어하는 것이 바람직하다.
상기 최종 냉각에서의 마르텐사이트 변태가 억제되기 위해서는, 상기 2차 냉각종료온도 및 상기 2차 냉각종료온도에서의 유지시간과 상기 파티셔닝 열처리 단계에서 문제없이 열처리가 되도록 하여 잔류 오스테나이트의 미세화하고 안정화가 진행되도록 하는 것이 바람직하다.
상기 Ms점 이하에서는 베이나이트 변태를 고려하지 않는 경우가 있지만, 상기 Ms 점 이하에서도 베이나이트 변태가 가능하다는 연구가 있으며, 상기 Ms점 이하에서는 Ms 직상보다 베이나이트 핵생성이 증가한다는 연구가 있다.
이러한 열처리 과정을 거쳐 최종 미세조직은 템퍼드 마르텐사이트(20% ~ 80%), 잔류 오스테나이트(10% ~ 30%), 하부 베이나이트(0% ~ 30%). 상부 베이나이트(0% ~ 30%), 일부 페라이트(0% ~ 5%) 또는 마르텐사이트(0% ~ 20%)를 포함할 수 있다. 상기 상부 베이나이트의 분율과 상기 하부 베이나이트의 분율의 합은 10% 이상일 수 있다. 상기 잔류 오스테나이트의 평균 직경은 1.0 μm 이하일 수 있다.
실험예
이하, 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
하기 표 1의 조성(단위: 중량%)을 갖는 강을 준비하고, 소정의 열연 및 냉연 공정 및 열처리 공정을 거쳐 실시예들과 비교예들에 따른 냉연강판을 준비하였다. 잔부는 철(Fe)이다.
강종 C Si Mn P S Al Cr Mo Nb N
A 0.35 1.7 2 0.02 0.005 0.03 0.5 0.1 0.01  0.004
B 0.35 1.7 2 0.02 0.005 0.03 0.5 0.1 0.04 0.004
C 0.35 1.7 2.3 0.015 0.002 0.03 0.01 0.01 0.01 0.004
D 0.32 1.7 2 0.015 0.002 0.03 0.3 0.1 0.03 0.004
E 0.25 1.7 2.3 0.02 0.005 0.03 - 0.1 - -
표 1을 참조하면, 강종 A 내지 D는 본 발명의 조성 범위를 만족하며, 구체적으로, 중량%로, 탄소(C): 0.28% ~ 0.45%, 실리콘(Si): 1.0% ~ 2.5%, 망간(Mn): 1.5% ~ 3.0%, 알루미늄(Al): 0.01% ~ 0.05%, 크롬(Cr): 0% 초과 ~ 1.0%, 몰리브덴(Mo): 0% 초과 ~ 0.5%, 니오븀(Nb), 티타늄(Ti) 및 바나듐(V)의 총합: 0% 초과 ~ 0.1%, 인(P): 0% 초과 ~ 0.03%, 황(S): 0% 초과 ~ 0.03%, 질소(N): 0% 초과 ~ 0.01%, 및 잔부는 철(Fe)인 조성 범위를 만족한다. 이에 반하여, 강종 E는 본 발명의 조성 범위를 벗어나며, 구체적으로, 탄소(C): 0.28% ~ 0.45%의 범위를 하회하여 만족하지 못한다.표 2는 상기 강종에 대한 Ac3 온도, Ms 온도, Ms-140℃ 온도, Ms-30℃ 온도를 나타낸다. 단위는 ℃ 이다.
강종 Ac3 Ms Ms-140 Ms-30
A 830 323 183 290
B 830 323 183 290
C 819 321 181 290
D 833 339 199 309
E 845 364 224 334
표 2를 참조하면, 상기 Ac3 온도는 Thermo-Calc 및 TCFE9 database를 이용하여 산출하였다. 상기 Ms 온도는 하기의 실험식을 이용하여 산출하였다. 하기의 실험식에서, 예를 들어 "[C]"는 탄소의 중량%를 나타낸다.Ms(℃) = 539 - 423[C] - 30.4[Mn] - 12.1[Cr] - 17.7[Ni] - 7.5[Mo]
상술한 강종의 슬라브를 1200℃에서 재가열하여 3 시간 유지하였고, 950℃의 마무리 압연 종료온도에서 2.4 mm의 두께로 열간압연한 후에, 600℃에서 권취하였다. 이어서, 권취한 열연강판을 산세하여 표면의 스케일을 제거하고, 냉간압연하여 1.2 mm의 두께의 냉연강판을 제조하였다.
이어서, 표 3의 공정 조건으로 열처리를 수행하였다.
표 3은 비교예들과 실시예들의 냉연강판들을 제조하는 열처리 공정 조건 값들을 나타낸다. 표 3에서 '1차 열처리'는 열간압연 권취 후 냉간 압연 전 수행하는 열처리를 의미한다.
강종 구분 1차
열처리
온도
(℃)
소둔
온도
(℃)
소둔
유지
시간
(초)
1차
서냉
속도
(℃/초)
1차
서냉
온도
(℃)
1차
급냉
속도
(℃/초)
2차
급냉
속도
(℃/초)
2차
급냉
온도
(℃)
급냉
유지
시간
(초)
파티션
온도
(℃)
파티션
유지
시간
(초)
A 실시예1 620 850 60 -1.8 780 -124.8 -124.8 200 19.5 400 240
B 실시예2 620 850 60 -1.8 780 -124.8 -124.8 200 19.5 400 240
C 실시예3 680 870 60 -2.3 780 -120.4 -120.4 220 19.5 400 240
D 실시예4 650 900 120 -2.5 800 -124.3 -124.3 220 19.5 430 240
E 비교예1 620 870 60 -2.3 780 -129.3 -129.3 180 19.5 400 240
A 비교예2 700 800 60 -1.8 780 -120.4 -120.4 220 19.5 400 240
D 비교예3 650 900 180 -5 780 -76 -76 257 0.9 430 240
표 3을 참조하면, 실시예1 내지 실시예4는 본 발명의 공정 범위를 만족한다. 비교예1은 본 발명의 조성 범위를 벗어나는 강종 E를 채택하였으며, 비교예2는 1차 열처리의 온도 범위인 500℃ ~ 680℃를 상회하여 만족하지 못하고 소둔 온도 범위인 830℃ ~ 930℃를 하회하여 만족하지 못하며, 비교예3은 소둔 온도 범위는 만족하지만 소둔 유지 시간인 30초 ~ 120초를 상회하여 만족하지 못하며, 2차 냉각(급냉) 후 2차 냉각종료온도(180℃ ~ 300℃)에서 급냉 유지시간인 5초 ~ 90초 범위를 하회하여 만족하지 못한다.
표 4는 비교예들과 실시예들의 냉연강판들의 미세조직을 나타내는 항목값들을 나타낸다.
표 4에서 제1 항목값(B/A)은 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 100㎛2 이상의 면적을 관찰할 때, 오스테나이트의 면적(A)에 대한 오스테나이트 내 탄소 함량이 0.5% 이하인 결정립의 면적(B)의 비(B/A)를 의미하고, 제2 항목값(C/A)은 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 100㎛2 이상의 면적을 관찰할 때, 오스테나이트의 면적(A)에 대한 마르텐사이트-오스테나이트(martensite-austenite) 결정립의 면적(C)의 비(C/A)를 의미하고, 제3 항목값((Kmax-Kavg)/(Kmax-Kmin))은 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 후방산란전자 회절(EBSD) 분석법으로 잔류오스테나이트 결정립을 관찰할 때, 상기 잔류오스테나이트 결정립 내 임의의 일 영역을 기준으로 상기 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값을 상기 일 영역에 대응시키는 과정을 통하여 상기 잔류오스테나이트 결정립 내 상기 결정방위차 평균값의 분포를 산출하는 경우, 상기 결정방위차 평균값이 0˚ 이상 3˚ 이하인 영역의 분포에서 나타나는 최대값(Kmax), 최소값(Kmin), 평균값(Kavg)의 관계식을 의미한다.
강종 구분 B/A C/A (Kmax-Kavg)/(Kmax-Kmin)
A 실시예1 0 0.05 0.61
B 실시예2 0 0.02 0.62
C 실시예3 0 0.05 0.51
D 실시예4 0 0.03 0.63
E 비교예1 0.2 0.01 0.38
A 비교예2 0.3 0.52 0.61
D 비교예3 0 0.89 0.53
표 4를 참조하면, 실시예1 내지 실시예4는 제1 항목값(B/A)<0.1, 제2 항목값(C/A)<0.5, 제3 항목값((Kmax-Kavg)/(Kmax-Kmin))>0.4인 범위를 모두 만족한다. 이에 반하여, 비교예1은 제1 항목값(B/A)이 0.1보다 크고 제3 항목값((Kmax-Kavg)/(Kmax-Kmin))는 0.4보다 작다. 비교예2는 제1 항목값(B/A)이 0.1보다 크고 제2 항목값(C/A)이 0.5보다 작지 않음을 확인할 수 있다. 비교예3은 제2 항목값(C/A)이 0.5보다 작지 않음을 확인할 수 있다.표 5는 상기 제조된 열연강판 및 강관에 대하여, 물리적 및 기계적 물성으로서, 항복강도(YS), 인장강도(TS), 및 연신율(EL), 항복비(YR), 및 90도 굽힘성(R/t)를 나타낸다.
강종 구분 YS
(MPa)
TS
(MPa)
EL
(%)
YR
(%)
TS×T.EL
(MPa %)
90도 굽힘
R/t
A 실시예1 1327 1585 15.6 82.1 24726 2.5
B 실시예2 1,328 1,629 17 81.5 27693 2.8
C 실시예3 1267 1479 15.2 85.7 22481 1.8
D 실시예4 1305 1477 15.8 88.4 23337 2
E 비교예1 1,364 1,482 7 92 10374 2.7
A 비교예2 1,180 1,535 10.2 69.6 15657 4
D 비교예3 985 1437 11.4 68.6 16396 3.5
표 5를 참조하면, 실시예들은 항복강도(YS), 인장강도(TS), 및 연신율(EL), 항복비(YR), 및 90도 굽힘성(R/t)에 대하여 목표 범위를 만족하였다. 나아가, 인장강도와 연신율의 곱인 TSxT.El 값은 20000 이상, 바람직하게는 21000 이상, 더욱 바람직하게는 22000 이상일 수 있다.이에 반하여, 비교예1은 연신율(EL): 15% 이상인 범위를 하회하여 만족하지 못하며, 인장강도와 연신율의 곱은 20000 이상인 범위를 하회하여 만족하지 못하고, 비교예2는 연신율(EL): 15% 이상인 범위를 하회하여 만족하지 못하고 항복비(YR): 75% 이상인 범위를 하회하여 만족하지 못하며, 90도 굽힘성(R/t): 3.0 이하인 범위를 상회하여 만족하지 못하며, 인장강도와 연신율의 곱은 20000 이상인 범위를 하회하여 만족하지 못하고, 비교예3은 항복강도(YP): 1180 MPa 이상인 범위를 하회하여 만족하지 못하고 인장강도(TS): 1470 MPa 이상인 범위를 하회하여 만족하지 못하고 연신율(EL): 15% 이상인 범위를 하회하여 만족하지 못하고 항복비(YR): 75% 이상인 범위를 하회하여 만족하지 못하며 90도 굽힘성(R/t): 3.0 이하인 범위를 상회하여 만족하지 못하며 인장강도와 연신율의 곱은 20000 이상인 범위를 하회하여 만족하지 못한다.
목표 물성을 만족하지 못하는 비교예를 살펴보면, 비교예1의 경우 탄소의 함량이 낮은 것이 특징이며 1470MPa의 인장강도와 15% 이상의 연신율을 동시에 확보하지 못하였다. 비교예2의 경우 1차 열처리 온도가 높고, 소둔 온도가 낮은 것이 특징이며 연신율을 충분하게 확보하지 못하였다. 1차 열처리 온도가 높은 경우 소둔 온도가 낮을 경우 잔류 오스테나이트에 비해 조대한 마르텐사이트-오스테나이트 복합조직이 지나치게 형성되며 이들은 TRIP 효과를 나타내지 않아 연신율 확보에 도움이 되지 않은 것으로 판단된다. 비교예3의 경우 2차 냉각 후 급냉 유지시간이 너무 짧으며, 항복강도와 연신율 및 항복비가 낮게 나타났다. 2차 냉각 후 유지 중 하부 베이나이트 변태나 마르텐사이트 내 미세석출이 생겨 항복강도를 증가시키는데, 이 경우는 그 시간이 부족한 것으로 판단된다. 또한 오스테나이트상이 하부 베이나이트로 변태하지 않고 일부가 마르텐사이트-오스테나이트 복합조직을 형성하며 그 결과 TRIP 효과를 나타내지 않는 마르텐사이트-오스테나이트상이 지나치게 형성되어 연신율 확보에 도움이 되지 않은 것으로 판단된다.
도 3는 본 발명의 실험예 중 실시예1의 1차 열처리 후의 강재의 미세조직을 나타내는 주사전자현미경 사진이고, 도 4는 본 발명의 실험예 중 비교예2의 1차 열처리 후의 강재의 미세조직을 나타내는 주사전자현미경 사진이다.
도 3 및 도 4를 참조하면, 같은 조성의 실시예1과 비교예2의 1차 열처리 후 미세조직을 관찰한 결과로 비교예2의 경우 결정립도 500nm 이상의 조대한 시멘타이트가 다량 형성되었다. 그 결과 다량의 잔류 오스테나이트를 확보하였음에도 15% 이상의 연신율을 달성하지 못하였다.
구체적으로, 실시예1에 의하면, 상기 1차 열처리 후 강판 미세조직에서 100 μm2 면적 내 결정립도 500nm 이상의 탄화물이 2개 이하로 분포하도록 하고, 5% 이하의 펄라이트 비율을 가진다. 비교예2에 의하면, 열처리 공정 온도가 680℃를 초과하는 경우, 500nm 이상의 지름을 가지는 구상 시멘타이트 등의 조대한 탄화물이 형성된다. 이는 탄소 원자 불균질을 심화하여 냉간 압연 후 최종 미세조직 내 탄소가 과고용된 잔류 오스테나이트를 만들 수 있다. 약 1.1% 이상의 탄소 함량을 가지는 오스테나이트의 경우 그 비율이 늘어남에 따라 TRIP 효과가 감소하여 강도×연신율 특성이 저하되므로 1차 열처리 수행 후 미세조직을 적절히 조절하여 잔류 오스테나이트의 안정도를 조정하는 것이 필요하였다.
도 5는 본 발명의 실험예 중 실시예1에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이고, 도 6은 본 발명의 실험예 중 비교예1에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이고, 도 7은 본 발명의 실험예 중 비교예2에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이고, 도 8은 본 발명의 실험예 중 비교예3에 의한 초고강도 냉연강판의 최종 미세조직을 나타내는 주사전자현미경 사진이다. 도 9는 본 발명의 실험예 중 실시예1에 의한 초고강도 냉연강판의 최종 미세조직에서 EBSD를 통한 잔류오스테나이트의 형상과 분포를 나타내는 도면이고, 도 10은 본 발명의 실험예 중 비교예1에 의한 초고강도 냉연강판의 최종 미세조직에서 EBSD를 통한 잔류오스테나이트의 형상과 분포를 나타내는 도면이고, 도 11은 본 발명의 실험예 중 비교예2에 의한 초고강도 냉연강판의 최종 미세조직에서 EBSD를 통한 잔류오스테나이트의 형상과 분포를 나타내는 도면이다.
도 5 및 도 9를 참조하면, 실시예1에 의한 초고강도 냉연강판의 최종 미세조직은 페라이트, 템퍼드 마르텐사이트, 마르텐사이트, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함할 수 있으며, 구체적으로, 주 미세조직은 템퍼드 마르텐사이트와 상/하부 베이나이트로 구성되어있고, 마르텐사이트 및 베이나이트 래스 사이, 결정립계에 잔류 오스테나이트가 분포하고 있는 것을 확인할 수 있다. 도면에서 LB, T.MS로 표기된 상은 각각 하부 베이나이트와 템퍼드 마르텐사이트를 나타낸다. 나아가, 상기 페라이트의 분율은 0% ~ 5% 범위이고, 상기 마르텐사이트의 분율은 0% 초과 ~ 20% 범위이고, 상기 잔류 오스테나이트의 분율은 10% ~ 30% 범위이고, 상기 상부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 하부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고, 상기 템퍼드 마르텐사이트의 분율은 나머지 분율로서 포함될 수 있음을 확인할 수 있다. 또한, 상기 잔류 오스테나이트의 평균 직경은, 1.0 μm 이하임을 확인할 수 있다.
이에 반하여, 도 6 및 도 10을 참조하면, 비교예1에 의한 초고강도 냉연강판의 최종 미세조직은 주로 템퍼드 마르텐사이트로 이루어져 있으며, 잔류 오스테나이트의 분율이 10% 미만이라는 점에서 도 5와 차이가 있다. 도 6에 템퍼드 마르텐사이트 영역 예시를 T.MS로 표기하였다. 또한, 도 7 및 도 11을 참조하면, 비교예2에 의한 초고강도 냉연강판의 최종 미세조직은 페라이트, 템퍼드 마르텐사이트, 마르텐사이트, 마르텐사이트-오스테나이트 복합조직, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함할 수 있다. 상기 마르텐사이트-오스테나이트 복합조직을 도 7에 MA로 표기하였다. 또한, 도 8을 참조하면, 비교예3에 의한 초고강도 냉연강판의 최종 미세조직은 주로 템퍼드 마르텐사이트와 마르텐사이트-오스테나이트 복합조직으로 이루어져 있다.
이상에서 설명한 본 발명의 기술적 사상이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명의 기술적 사상이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (9)

  1. 중량%로, 탄소(C): 0.28% ~ 0.45%, 실리콘(Si): 1.0% ~ 2.5%, 망간(Mn): 1.5% ~ 3.0%, 알루미늄(Al): 0.01% ~ 0.05%, 크롬(Cr): 0% 초과 ~ 1.0%, 몰리브덴(Mo): 0% 초과 ~ 0.5%, 니오븀(Nb), 티타늄(Ti) 및 바나듐(V)의 총합: 0% 초과 ~ 0.1%, 인(P): 0% 초과 ~ 0.03%, 황(S): 0% 초과 ~ 0.03%, 질소(N): 0% 초과 ~ 0.01%, 및 잔부는 철(Fe)과 기타 불가피한 불순물을 포함하는 초고강도 냉연강판이며,
    상기 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 100㎛2 이상의 면적을 관찰할 때, 오스테나이트의 면적(A)에 대한 오스테나이트 내 탄소 함량이 0.5% 이하인 결정립의 면적(B)의 비(B/A)는 0.1보다 작으며,
    항복강도(YP): 1180 MPa 이상, 인장강도(TS): 1470 MPa 이상, 및 연신율(El): 15% 이상, 항복비(YR): 75% 이상, 및 굽힘성(R/t): 3.0 이하를 만족하는,
    초고강도 냉연강판.
  2. 제 1 항에 있어서,
    오스테나이트의 면적(A)에 대한 마르텐사이트-오스테나이트(martensite-austenite) 결정립의 면적(C)의 비(C/A)는 0.5보다 작은,
    초고강도 냉연강판.
  3. 제 1 항에 있어서,
    상기 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 후방산란전자 회절(EBSD) 분석법으로 잔류오스테나이트 결정립을 관찰할 때, 상기 잔류오스테나이트 결정립 내 임의의 일 영역을 기준으로 상기 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값을 상기 일 영역에 대응시키는 과정을 통하여 상기 잔류오스테나이트 결정립 내 상기 결정방위차 평균값의 분포를 산출하는 경우, 상기 결정방위차 평균값이 0˚ 이상 3˚ 이하인 영역의 분포에서 나타나는 최대값(Kmax), 최소값(Kmin), 평균값(Kavg)은 (Kmax ― Kavg)/(Kmax ― Kmin) > 0.4의 관계를 만족하는,
    초고강도 냉연강판.
  4. 제 3 항에 있어서,
    상기 냉연강판의 표면부와 중심부 사이의 영역에서 강판의 폭방향으로 후방산란전자 회절(EBSD) 분석법으로 잔류오스테나이트 결정립을 관찰할 때, 상기 일 영역에 인접한 비교 영역들은 상기 일 영역과 맞닿아 위치하는 제 1 비교 영역, 상기 일 영역을 기준으로 상기 제 1 비교 영역보다 더 이격되되 상기 제 1 비교 영역과 맞닿아 위치하는 제 2 비교 영역, 상기 일 영역을 기준으로 상기 제 2 비교 영역보다 더 이격되되 상기 제 2 비교 영역과 맞닿아 위치하는 제 3 비교 영역을 포함하되,
    상기 잔류오스테나이트 결정립 내 임의의 일 영역을 기준으로 상기 일 영역에 인접한 비교 영역들과의 결정방위의 차이를 평균한 결정방위차 평균값은 상기 임의의 일 영역을 기준으로 상기 제 3 비교 영역과의 결정방위의 차이를 평균한 결정방위차 평균값인 것을 특징으로 하는,
    초고강도 냉연강판.
  5. 제 1 항에 있어서,
    상기 초고강도 냉연강판은,
    페라이트, 템퍼드 마르텐사이트, 마르텐사이트, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함하는,
    초고강도 냉연강판.
  6. 제 5 항에 있어서,
    상기 페라이트의 분율은 0% 초과 ~ 5% 범위이고,
    상기 마르텐사이트의 분율은 0% 초과 ~ 20% 범위이고,
    상기 잔류 오스테나이트의 분율은 10% ~ 30% 범위이고,
    상기 상부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고,
    상기 하부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고,
    상기 템퍼드 마르텐사이트의 분율은 나머지 분율로서 포함되는,
    초고강도 냉연강판.
  7. 제 6 항에 있어서,
    상기 상부 베이나이트의 분율과 상기 하부 베이나이트의 분율의 합의 최소값은 10%인,
    초고강도 냉연강판.
  8. 제 1 항에 있어서,
    상기 초고강도 냉연강판은,
    템퍼드 마르텐사이트, 마르텐사이트, 잔류 오스테나이트, 상부 베이나이트, 및 하부 베이나이트가 혼합된 혼합 조직을 포함하고,
    상기 마르텐사이트의 분율은 0% 초과 ~ 20% 범위이고,
    상기 잔류 오스테나이트의 분율은 10% ~ 30% 범위이고,
    상기 상부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고,
    상기 하부 베이나이트의 분율은 0% 초과 ~ 30% 범위이고,
    상기 템퍼드 마르텐사이트의 분율은 나머지 분율로서 포함되는,
    초고강도 냉연강판.
  9. 제 5 항 또는 제 8 항에 있어서,
    상기 잔류 오스테나이트의 평균 직경은 1.0 μm 이하인,
    초고강도 냉연강판.
PCT/KR2022/019634 2022-05-31 2022-12-05 초고강도 냉연강판 및 그 제조방법 WO2023234502A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0066960 2022-05-31
KR1020220066960A KR20230166684A (ko) 2022-05-31 2022-05-31 초고강도 냉연강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023234502A1 true WO2023234502A1 (ko) 2023-12-07

Family

ID=89025153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019634 WO2023234502A1 (ko) 2022-05-31 2022-12-05 초고강도 냉연강판 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20230166684A (ko)
WO (1) WO2023234502A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150002728A (ko) * 2012-03-30 2015-01-07 뵈스트알파인 스탈 게엠베하 고강도 냉연 강판 및 그의 제조 방법
KR20200018808A (ko) * 2017-06-30 2020-02-20 제이에프이 스틸 가부시키가이샤 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연 강판 및 그 제조 방법
KR20200064124A (ko) * 2017-11-10 2020-06-05 아르셀러미탈 냉간 압연되고 열처리된 강시트 및 그 제조 방법
KR20200075957A (ko) * 2018-12-18 2020-06-29 주식회사 포스코 강도와 연성의 밸런스 및 가공성이 우수한 강판 및 그 제조방법
KR20210072070A (ko) * 2018-12-18 2021-06-16 아르셀러미탈 냉간 압연 및 열 처리된 강판 및 냉간 압연 및 열 처리된 강판의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859068B1 (ko) 2016-10-31 2018-06-28 한전케이디엔주식회사 선로 상태 판단 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150002728A (ko) * 2012-03-30 2015-01-07 뵈스트알파인 스탈 게엠베하 고강도 냉연 강판 및 그의 제조 방법
KR20200018808A (ko) * 2017-06-30 2020-02-20 제이에프이 스틸 가부시키가이샤 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연 강판 및 그 제조 방법
KR20200064124A (ko) * 2017-11-10 2020-06-05 아르셀러미탈 냉간 압연되고 열처리된 강시트 및 그 제조 방법
KR20200075957A (ko) * 2018-12-18 2020-06-29 주식회사 포스코 강도와 연성의 밸런스 및 가공성이 우수한 강판 및 그 제조방법
KR20210072070A (ko) * 2018-12-18 2021-06-16 아르셀러미탈 냉간 압연 및 열 처리된 강판 및 냉간 압연 및 열 처리된 강판의 제조 방법

Also Published As

Publication number Publication date
KR20230166684A (ko) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2013069937A1 (ko) 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2018080133A1 (ko) 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2017155263A1 (ko) 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2018030715A1 (ko) 성형성이 우수한 고강도 박강판 및 그 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2019124765A1 (ko) 내충격특성이 우수한 고강도 강판 및 그 제조방법
WO2017051998A1 (ko) 도금 강판 및 이의 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2019088552A1 (ko) 냉간압연성이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2023234502A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2022124609A1 (ko) 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2021261884A1 (ko) 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2023096453A1 (ko) 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2024071522A1 (ko) 초고강도 강판 및 그 제조방법
WO2023048450A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2022255587A1 (ko) 핫스탬핑용 강판 및 그 제조방법
WO2019039774A1 (ko) 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945040

Country of ref document: EP

Kind code of ref document: A1