WO2023234157A1 - 環境分解性成分を含有した樹脂成形品および樹脂ペレットの製造方法、樹脂ペレットの成形装置、樹脂ペレット - Google Patents

環境分解性成分を含有した樹脂成形品および樹脂ペレットの製造方法、樹脂ペレットの成形装置、樹脂ペレット Download PDF

Info

Publication number
WO2023234157A1
WO2023234157A1 PCT/JP2023/019440 JP2023019440W WO2023234157A1 WO 2023234157 A1 WO2023234157 A1 WO 2023234157A1 JP 2023019440 W JP2023019440 W JP 2023019440W WO 2023234157 A1 WO2023234157 A1 WO 2023234157A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molded product
resin molded
heating cylinder
manufacturing
Prior art date
Application number
PCT/JP2023/019440
Other languages
English (en)
French (fr)
Inventor
順久 小田切
武人 寺澤
健二 冨士本
康公 鈴木
Original Assignee
丸紅ケミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸紅ケミックス株式会社 filed Critical 丸紅ケミックス株式会社
Publication of WO2023234157A1 publication Critical patent/WO2023234157A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the present invention relates to a method for manufacturing a resin containing a component that decomposes in the natural environment, and a molded product using a resin containing a component that decomposes in the environment, and is a means for reducing environmental load and solving environmental problems. I will provide a.
  • Patent Document 1 discloses a method for producing a molding resin containing paper powder, in which finely divided paper powder of 50 ⁇ m or more and 150 ⁇ m or less is bound with a thermoplastic resin.
  • molding processes using the molding resin containing paper powder such as foam molding in injection molding, blow molding, pressure molding, etc.
  • paper powder includes silane coupling agents, higher fatty acids such as stearic acid, maleic acid-modified polyolefins, and olefin-maleic anhydride copolymers.
  • Maleic acid-modified polyolefins and olefin-maleic anhydride copolymers exhibit high compatibility (solubility) with the olefin resins to be blended, but no specific means of implementation has been disclosed.
  • Patent Document 2 discloses that similarly to Patent Document 1, fine paper powder (however, the average particle size has been changed from 10 ⁇ m to 50 ⁇ m) is bound using a thermoplastic resin. . In particular, it is disclosed that it contains 0.3 to 5 parts by weight of a compound having a maleic anhydride group. Although there is a description that compatibility (solubility) is increased by containing a compound having a maleic anhydride group, there is no specific explanation of how to use the compound having a maleic anhydride group.
  • the patent literature only shows a step in which paper powder, for example a polyolefin, and a compound having a maleic anhydride group are simply introduced into a twin-screw extruder and pelletized. Although compounds having maleic acid groups are disclosed, halogenated polyolefins such as chlorinated polyolefins are not disclosed.
  • Patent Document 3 describes a method for producing a resin containing fine paper powder with an average particle size of 10 ⁇ m to 100 ⁇ m. Similar to Patent Document 2, there is a description of a compound having a maleic acid group.
  • Patent No. 4904389 Patent No. 5683529 Japanese Patent No. 55991868 Patent Document 3 describes a method for producing a resin containing fine paper powder having an average particle size of 10 ⁇ m to 100 ⁇ m. Similar to Patent Document 2, there is a description of a compound having a maleic acid group.
  • the present invention provides a method for manufacturing a molding resin whose main component is an environmentally degradable component that easily decomposes in nature, and a method for processing molded products using the resin.
  • composition The environmentally decomposed substance and the maleic acid-modified polyolefin are mixed, and the maleic acid-modified polyolefin is supported on the powder surface of the environmentally decomposed substance.
  • action/effect Since the maleic acid-modified polyolefin is supported on the powder surface of the environmentally degradable substance, the maleic acid-modified polyolefin exhibits high compatibility (solubility) with the polyolefin.
  • the molding resin containing an environmentally decomposable substance is made of a maleic acid-modified polyolefin, and an environmentally degradable component, Since it exhibits high compatibility (solubility) with polyolefins, the physical strength of the resulting molding resin is higher than when maleic acid-modified polyolefins are not used.
  • composition A molding resin made of environmentally decomposed substances, a maleic acid-modified polyolefin, and a polyolefin that is compatible (soluble) with the maleic acid-modified polyolefin.
  • action/effect Since maleic acid-modified polyolefin, which is compatible (soluble) with polyolefins, is supported on the surface of the environmentally degradable component, resin molded products molded using the above-mentioned molding resin have sufficient strength to withstand use. You can obtain a molded product with
  • composition A resin molded product consisting of environmentally degradable components, maleic acid polyolefin, and polyolefin.
  • action/effect The maleic acid-modified polyolefin, which has high compatibility (solubility) with the polyolefin of the molding resin, binds the environmentally degradable component and the polyolefin, resulting in a molded product with high strength.
  • composition The maleic acid-modified polyolefin was made into a chlorinated polyolefin that similarly shows high compatibility (solubility) with polyolefins.
  • action/effect Since chlorinated polyolefin exhibits high compatibility (solubility) with polyolefin, chlorinated polyolefin binds environmentally decomposed components and polyolefin, resulting in a molded article with high strength.
  • composition The maleic acid-modified polyolefins according to claims 1 to 3 above are made into chlorinated polyolefins that similarly exhibit high compatibility (solubility) with polyolefins.
  • action/effect Since chlorinated polyolefin exhibits high compatibility (solubility) with polyolefin, chlorinated polyolefin binds environmentally decomposed components and polyolefin, resulting in a molded article with high strength.
  • composition The environmentally degradable component and the binder resin were replaced with styrene resin, or a polymer alloy or polymer blend containing styrene resin as the main component.
  • action/effect Since it is made of styrene resin, or a polymer alloy or polymer blend whose main component is styrene resin, the environmentally degradable component is bound to the styrene resin, or a polymer alloy or polymer blend whose main component is styrene resin. , a molded product with high strength can be obtained.
  • composition A method for manufacturing a resin molded article containing an environmentally degradable component of 10 W/V% or more, the method comprising: mixing the environmentally degradable component and a thermoplastic resin using a mixing device; The method includes the steps of heating and melt-kneading a mixture with a resin using a melt-kneading device, extruding the mixture, and cooling the mixture.
  • action/effect This is a method for manufacturing resin molded products that contain environmentally degradable components and whose main component is thermoplastic resin.As the products contain environmentally degradable components, they are decomposed by microorganisms, light, temperature, water, etc. in the natural world. Molding materials containing chemical components have the effect of reducing environmental impact.
  • composition The screw of a single-screw extruder incorporates subflights and/or dullage.
  • action/effect A single-screw extruder that is cheaper than a twin-screw extruder and has strong kneading properties by incorporating subflights and/or dullage into the screw to improve kneading properties.
  • the environmentally degradable component is dispersed in the thermoplastic resin, and the mixture is extruded into the air in a molten state before solidification. It is manufactured by cooling and solidifying the molten resin in air and cutting it.
  • the process of cutting in air involves cutting the molten resin (strand) with a rotary cutter the moment it comes out of the die (extruder mold), or cutting the molten resin (strand) from the die with a conveyor ( It is produced by a so-called cold cut method in which the material is cooled and solidified by blowing a gas, such as air, on a fine-mesh conveyor (or a fine-mesh conveyor), and then cut.
  • composition a step of replacing the inside of the mixing device with an inert gas in advance, a step of introducing the environmentally degradable component and the thermoplastic resin into the mixing device which has been replaced with the inert gas, and a step of replacing the inside of the mixing device with an inert gas;
  • the method further includes a step of reintroducing an inert gas and sealing with the inert gas.
  • the method further comprises the steps of transferring the mixture to the melt-kneading device, and replacing air that has entered the gap between the mixture transferred into the melt-kneading device with an inert gas before melt-kneading,
  • the mixture is forced into an inert gas atmosphere and cooled.
  • the mixture Before melting and kneading, the mixture is transferred to a melting and kneading device, and before melting and kneading, air (contains oxygen) gets into the gap between the environmentally degradable component and the thermoplastic resin that is the binder.
  • molten resin is put into a heating cylinder, heated, melted and kneaded, and the environmentally degradable component is dispersed in the thermoplastic resin, and the molten resin is bound by the thermoplastic resin (binder).
  • a molten resin in which environmentally degradable components are dispersed in a thermoplastic resin that has not yet (yet) been completely cooled and solidified and is in a molten state is extruded from a mold device.
  • the atmosphere in which the resin is extruded is extruded into an inert gas, cooled and solidified in the inert gas atmosphere, and then pelletized using a pelletizer.
  • the hot cut when the molten resin is extruded from a mold device into an inert gas atmosphere (meaning a space filled with inert gas) and hot cut without being cooled or solidified, the hot cut The pellets are cooled in an inert gas until the pellets are completely cooled and solidified.
  • composition In the step of heating and melting and kneading the mixture, a step of injecting into the heating cylinder a substance that is vaporized depending on the temperature of the heating cylinder of the melt-kneading device and/or the temperature of the molten resin in the heating cylinder; The method further includes the step of vaporizing the substance by the temperature and/or the temperature of the molten resin in the heating cylinder, and the mixture is extruded into an inert gas atmosphere and cooled.
  • a liquid that vaporizes depending on the temperature of the heating cylinder and the temperature of the molten resin in the heating cylinder is injected (added) into the heating cylinder, and the vapor of the vaporized substance is added to the molten resin in the heating cylinder.
  • the viscosity of the molten resin decreases.
  • the amount of liquid injected is controlled to be a constant volume relative to the volume of resin melted within the heating cylinder.
  • the molten resin extruded from the mold device is kept in an inert gas until cooling and solidification is completed, and then it is cut. Alternatively, it is hot-cut and then cooled and solidified in an inert gas.
  • the vaporizable liquid Since the vaporizable liquid is introduced into the molten resin in the heating cylinder, the viscosity of the molten resin is lowered and the kneading properties are improved.
  • the gas even if the gas is not a liquid, such as nitrogen gas, carbon dioxide gas, or liquefied carbon dioxide gas, it can be foamed in a heating cylinder using a chemical foaming agent such as baking soda or ADCA, Advancel (trade name), or solid carbon dioxide gas (dry ice). If foaming properties are imparted to the molten resin in the heating cylinder, fluidity will be improved.
  • thermoplastic resin containing an environmentally degradable component is produced using a molding device in which the inside of the molding device is replaced with an inert gas, such as nitrogen gas, and sealed with an inert gas, such as nitrogen gas, if necessary. Performs molding processing.
  • action/effect During molding, the inside of the molding machine (inside the hopper, heating cylinder), and the inside of the mold cavity during injection molding, are replaced with an inert gas, such as nitrogen gas, and sealed. As a result, molded products without discoloration or burning can be obtained.
  • This method includes a step of performing foam molding using a gas counter pressure method using a resin molded product, and an inert gas is used as the pressurized gas in the gas counter pressure method.
  • foam molding using thermoplastic resin containing environmentally degradable components that may cause discoloration or burning, it is used in the pressure inside the mold in GCP to clean and smooth the surface.
  • the gas is first pressurized with air and then recompressed using an inert gas having a pressure higher than that of the air, thereby replacing some or all of the original air with the inert gas.
  • GCP may be performed using an inert gas from the beginning.
  • action/effect In the GCP process, the gas that prepressurizes the inside of the sealing mold is replaced with an inert gas, so even if thermoplastic resin containing environmentally degradable components is used, it will not discolor or burn. does not occur.
  • composition It involves the process of performing injection molding processing using general molding, blow molding, or pressure molding using a resin molded product, and the injection molding process is performed after replacing the inside of the mold cavity with an inert gas in advance.
  • inert gas When performing general molding, blow molding, or pressure molding using thermoplastic resin containing environmentally degradable components that may cause discoloration or burning, inert gas is used in the mold cavity in advance. Then, the gas is replaced with an inert gas, sealed using the inert gas, and injection molding is performed.
  • action/effect When performing general molding, blow molding, or pressure molding using thermoplastic resin containing environmentally degradable components that may cause discoloration or burning, inert gas is used in the mold cavity in advance.
  • thermoplastic resins containing environmentally degradable components that are at risk of discoloration or burning are used.
  • molded products without discoloration or burning can be obtained.
  • composition The screw of the single-screw extruder is machined with double flights. Alternatively, a dalmage is incorporated in the screw of the single screw extruder.
  • the single-axis extruder screw used for sheet forming is processed into sheets using a forming device suitable for double-flight processing or sheet processing that incorporates dullage and has strong kneading properties.
  • the single-axis extruder screw used for sheet forming is used for double-flight processing or for sheet processing with a strong kneading property that incorporates dullage.Sheet processing is performed using a suitable forming device, so that the thermoplastic resin contains Even if the environmentally degradable component is not uniformly dispersed, it is heated and melted again by the single-screw extruder used for sheet forming and is strongly kneaded. At this stage, the environmentally degradable component is mixed with the thermovisible resin. evenly distributed throughout.
  • the method includes a step of forming a sheet using a multi-screw extruder with screws rotating in the same or different directions using a resin pellet resin molded product manufactured by the method for manufacturing a resin molded product.
  • the extruder used for sheet forming is a multi-screw extruder with strong kneading properties, with screws rotating in the same direction or in different directions, and sheet processing is performed by a forming device suitable for sheet processing. .
  • action/effect The extruder used for sheet forming is a multi-screw extruder with strong kneading properties, with screws rotating in the same direction or in different directions, and sheet processing is performed by a forming device suitable for sheet processing.
  • the environmentally degradable component is not uniformly dispersed in the thermoplastic resin, it is heated and melted again by the multi-screw extruder used for sheet forming according to claim 14, and is strongly kneaded.
  • the environmentally degradable component is uniformly dispersed in the thermovisible resin.
  • composition A step of adding a liquid to the powder of an environmentally degradable component and stirring it to form a slurry, a step of melting and kneading the thermoplastic resin in a single-screw or multi-screw extruder, and a heating cylinder of the extruder. a step of injecting the slurry-like environmentally degradable component from an opening provided in the heating cylinder while controlling the volume with respect to the volume of the thermoplastic resin in the heating cylinder; and and the molten resin to disperse the environmentally degradable component in the thermoplastic resin, extruding the mixture, cooling the mixture, and cutting the mixture.
  • a method for producing resin pellets including a step of producing resin pellets.
  • the environmentally degradable component is slurried using a liquid such as water and/or a solvent (water-soluble or insoluble substances can be used), and the slurry is heated in an extrusion molding machine.
  • a liquid such as water and/or a solvent (water-soluble or insoluble substances can be used)
  • the slurry is heated in an extrusion molding machine.
  • the slurry is introduced in a controlled volume relative to the volume of the resin and kneaded into the resin.
  • the melted and kneaded thermoplastic resin containing the environmentally degradable component is extruded and air-cooled or hot-cut to produce resin pellets containing the environmentally degradable component.
  • the slurry is introduced into the pre-melted resin and/or into the melted and kneaded resin through one or more openings in the heating cylinder of the injection molding machine, and kneaded.
  • the environmentally degradable components in the slurry are finely dispersed in the thermoplastic resin.
  • An injection processed product obtained by injecting and filling a heated and melted thermoplastic resin containing the environmentally degradable component into a mold. (action/effect)
  • By making it into a slurry there is less powder floating in the air, which reduces contamination of the working environment, making it easier to handle.
  • mixing them can be done easily if they are made into a slurry. In this case, you may mix them up before putting them into the heating cylinder. Alternatively, they may be placed separately in the heating cylinder and dispersed in the heated molten resin melted within the heating cylinder.
  • the method includes a step of steam cleaning the environmentally degradable component using steam to remove impurities such as lignin.
  • Environmentally degradable substances contain impurities such as lignin. Since lignin is water-soluble, much of the lignin can be removed by steam cleaning using high-temperature steam, such as steaming.
  • action/effect Lignin has low thermal stability and decomposes depending on the temperature during the molding process (thermal energy that melts the resin), resulting in discoloration and burning of the molded product. Therefore, in order to obtain beautiful molded products, it is necessary to remove lignin beforehand. Just remove it. In addition, by removing the lignin and decolorizing it using an aqueous solution of hypochlorous acid, hydrogen peroxide, chlorine dioxide, etc., beautiful resin pellets and resin molded products without discoloration or burning can be obtained.
  • composition Thermoplastic resin pellets were supported on the surface of PP using a varnish whose main component was a compatible resin that was compatible with the thermoplastic resin.
  • a styrene-based resin exhibiting thermoplasticity, or a polymer alloy or polymer blend pellet containing the above-mentioned styrene-based resin as its main component is coated with a varnish that is compatible with the thermoplastic resin and whose main component is a compatible resin. It was carried.
  • a multi-screw extruder with strong kneading properties is used, and even in the case of a single-screw extruder, a screw incorporating sub-flights and dalmage is used to improve kneading properties.
  • a multi-axis screw may be used for the melt-kneading part. Uses a screw that incorporates sub-flight and dalmage for improved kneading performance.
  • the means for supporting the environmentally degradable components on the surface of the pellets using the above-mentioned supporting means requires inexpensive equipment and is easy to run. The cost is low and economical.
  • a liquid dispersant or a liquid foaming agent for example, water, alcohol, etc. that are not found in the foaming residue
  • environmental decomposition can be avoided.
  • the dispersibility of the chemical component into the resin is improved.
  • Pulp powder with an average particle size of 30 ⁇ m is supported on the surface with maleic acid-modified polyolefin, pulverized, and the pulverized material and polyolefin (PE, PP, etc.) are mixed together. Dulmage is incorporated into the screw for the purpose of strong kneading. This is a photograph of a molding material that has been melt-kneaded and hot-cut into pellets using a single-screw extruder.
  • FIG. 2 is a CAD diagram of a molded product that is injection molded using the resin pellets (FIG. 1) containing the environmentally degradable component of the present invention. This is a diagram showing a mold with a QR code inscribed with information necessary for recycling the molded product.
  • FIG. 2 is a schematic diagram of an extruder equipped with a weight feeder. This is a schematic diagram of an extruder equipped with a weight feeder. The difference from FIG.
  • FIG. 5 is that it is a schematic diagram of a device that can add materials to be mixed into the molten resin in the melted and kneaded 192.
  • This is a photo of parts that seal the ejector pin, inclined core pin, etc. 8 is a photograph showing a combination of the parts shown in FIG. 7.
  • FIG. 8 is a schematic diagram showing that FIGS. 7 and 8 are assembled into a mold and the ejector pin, inclined core pin, etc. are sealed.
  • End.%, %W/V % by weight.
  • it contains 10% W/V of environmentally degradable components, for example, when it enters the soil, it will first be biodegraded by microorganisms (bacteria, germs, etc.), and then the remaining resin components will be miniaturized. Therefore, the rate of decomposition by microorganisms is said to be fast.
  • thermoplastic resin Resins that can be used in the present invention include both thermoplastic resins and thermosetting resins.
  • thermoplastic resins are AS (polycyanide vinyl) ABS (acrylonitrile-styrene-butadiene terpolymer), PS (polyphenylated vinyl) HIPS (high impact PS), modified PPO (modified PPE), ) are representative styrenic resins, PE (polyvinyl hydride), PP (polymethylated vinyl), olefinic resins such as polyolefin (polyalkylated vinyl), polyvinyl chloride (PVC), polyvinyl alcohol (PVAL), Modified PVAL, polyvinyl butyral, polyvinyl acetal, PET (polyethylene terephthalate).
  • AS polycyanide vinyl
  • PS polyphenylated vinyl
  • HIPS high impact PS
  • modified PPO modified PPE
  • PE polyvinyl hydride
  • PP polymethylated vinyl
  • PBT polybutylene terephthalate
  • Ester resins such as PEN (polyethylene naphthalate).
  • Amide resins such as 6-PA (polyamide), 6,6-PA, nitrocellulose, CMC (carboxymethyl cellulose), polylactic acid, polycaprolactone, polyhydroxyalkanoate, polyglycolic acid, casein, modified starch (starch, starch) ), modified cellulose, low-substituted polysaccharide derivative (low-substituted cellulose acetate), styrene-modified acrylic resin, acrylic resin, halogenated PP represented by chlorinated polyolefin, halogenated PE represented by chlorinated PE, acid Examples include polyolefins (PP, PE, etc.) modified with maleic acid or the like.
  • thermoplastic resins that are easily decomposed by biodegradation (degradation by microorganisms), photolysis, hydrolysis, oxidation, etc. are particularly preferred. These thermoplastic resins may be used as a single type polymer alloy or polymer blend. In the case of polymer alloys and polymer blends, it is preferable that the resins show compatibility and/or compatibility with each other, but if the strength of the molded product is not required, they will show compatibility and/or compatibility. There's no need.
  • thermosetting resin examples include epoxy resins, phenol resins, and urea resins. Like the thermoplastic resins described above, it can be used alone, but two or more types may be mixed together.
  • thermoplastic resins and thermosetting resins biodegrade over a long period of time, but PET, PEN, polylactic acid, etc. biodegrade at a fast rate. If PP is also made finer, the rate of biodegradation will increase.
  • the resin composition consists of environmentally degradable components such as pulp powder (powder), paper chips, and paper dust, maleic acid-modified polyolefin, and PP. The pulp powder first biodegrades to produce carbon dioxide gas and water. It is decomposed into Next, maleic acid modification causes biodegradation.
  • the PP undergoes biodegradation and decomposes into carbon dioxide gas and water, so there is little burden on the environment.
  • styrene-modified acrylic resin and methoxymethylated PA also biodegrade.
  • nitrified cotton, cellulose acetate, CMC, polylactic acid, etc. biodegrade faster than PP, ABS, etc.
  • the molded article contains a substance that decomposes by biodegradation, photolysis, hydrolysis, thermal oxidative decomposition, oxidative decomposition, ultraviolet decomposition, radiolysis, etc. These are called “environmentally degradable components” and “environmentally degradable materials.” Examples of environmentally decomposed components include paper pieces, pulp powder, wood flour called saw dust (garbage), tree bark, rice straw, straw from wheat, barley, rye, etc., and cotton.
  • Animal-derived bone powder, leather powder, etc. can also be used in the present invention, and among thermoplastic resins, PET, PVAL, styrene-modified acrylic resin, maleic acid-modified polyolefin, halogenated polyolefin, etc. are easily biodegradable (degraded by microorganisms). . Since it is difficult to use these plant- and animal-derived substances as they are, they must be made into fine particles (powder) before use. To make it fine, use a rotary cutter, etc. to make it fine, then use a dry jet mill, fine powder mill, roller mill of a fine grinder, etc. to make it fine, and then go through processes such as sieving to determine the particle size (size). Select.
  • the environmentally degradable components may be used alone or in combination of several types.
  • the size (particle size) is not so important as long as it is 1,000 microns ( ⁇ m) or less. Even if the thickness is 1,000 ⁇ m or more, for example, they may be stacked to form a multilayer structure. Each space is bonded using thermoplastic. If the amount and content of the environmentally degradable component of the present invention is 10% W/V in the final molded article, the rate of decomposition in nature will be high. If it is 51% W/V, it corresponds to the environment-friendly molded product currently required in the industry.
  • pulp powder The means for producing pulp powder, which is an environmentally degradable component used in the present invention, will be explained. It doesn't matter whether it's hardwood or softwood, but the wood is heated to about 200°C or 170°C by adding a chemical solution containing caustic soda ⁇ sodium hydroxide (NaOH) ⁇ and sodium sulfide as main ingredients to the chips obtained by crushing the wood. is heated to elute lignin and some hemicellulose. This is called cooking or steaming.
  • the chemical concentration and heating time vary depending on the type of raw material and the purpose of the pulp, and some products can be pulped within 2 hours. After extracting the cellulose, it is pulverized.
  • the pulp thus obtained is washed with water to remove the chemical solution, and then pulverized into fine particles without drying. It may be finely divided after drying.
  • the pulp powder obtained in this manner is one of the useful materials for the environmentally degradable substance used in the present invention, but it is not limited to pulp powder.
  • Reference Document 1 to Reference Document 3 state that the use of paper powder is an invention limited to paper powder. Paper powder collected from the market is made into fine particles simply by physical force, so in some cases the cellulose fibers are broken and cut, which naturally reduces the strength. On the other hand, in the present invention, pulp before making paper is used, so there is no cutting of the cellulose using paper powder.
  • Reference documents 1 to 3 disclose means for binding paper powder made from waste paper with an olefin resin, etc., as described above, but the present invention does not use paper powder from waste paper but binds cellulose fibers. The difference lies in the fact that a longer pulp is used. Naturally, the pulp powder may be a material unsuitable for paper production that is discarded as waste by a paper manufacturing company.
  • a compatibilizing agent is used to increase the binding strength between the environmentally degradable component and the thermoplastic resin.
  • effective compatibilizers include maleic acid-modified polyolefins and olefin-maleic anhydride copolymers.
  • Styrene-modified acrylic resin is used when the thermoplastic resin is a styrene resin represented by ABS, polycarbonate ester represented by PC, and PVC (polyvinyl chloride), and methoxymethylated polyamide is used when the thermoplastic resin is PA. Ru. Since the amount of these compatibilizers added varies depending on the desired properties of the resin, the exact amount added is not indicated.
  • Additives include glass fiber, glass beads (balls), carbon fiber, talc, charcoal (calcium carbonate), calcium sulfate, stone powder, charcoal powder, heat stabilizer. , a light absorber, an ultraviolet inhibitor, etc. can be added to improve rigidity, specific gravity (density), etc.
  • these are naturally environmentally friendly ingredients because they are simply made from large chunks of substances that originally exist in the natural world and made into fine particles using physical means. Ingredients that cannot be produced return to the natural world and become components that make up the natural world, so they do not have a major impact on the environment. If the desired strength cannot be achieved by simply bonding the pulp and powder with resin, the strength can be increased by mixing environmentally degradable ingredients such as cotton, thread, and cellulose nanofiber. Naturally, the amount can be added until a desired value is reached.
  • thermoplastic resins and thermosetting resins which are called crimping resins, fusion resins, or adhesion resins, and are collectively called bonding resins.
  • the following explanation assumes that the environmentally degradable component is pulp powder and the bonding resin is PP. Pulp powder is mixed at 51% W/V and PP at 49% W/V, melted and kneaded in a kneader, short shaft or multi-screw extruder, and when pelletized, the PP binds the pulp powder. Acts as a bonding resin.
  • polyolefin modified with maleic acid dissolves in solvents, so polyolefin modified with maleic acid can be used as a solvent-based varnish (a solution of resin dissolved in a solvent) or as a suspension or emulsion in water.
  • solvent-based varnish a solution of resin dissolved in a solvent
  • solution bonding The method of bonding pulp and powder using a water-based varnish.
  • Patent Documents 1 to 3 disclose that 0.3 to 55 W/V of a compound having a maleic anhydride group is contained. There is a description that compatibility (solubility) is increased by containing a compound having a maleic anhydride group, but no specific method of use is disclosed.
  • the present invention describes specific means for modifying pulp powder using maleic acid-modified polyolefins. Since PP is originally a material (resin) that is insoluble in solvents, it is necessary to modify it by some means to make it soluble in solvents. Conventionally, halogens such as chlorine have been used, but when using halogens, it is possible to create products that are soluble in organic solvents, but not in aqueous systems (emulsion type).
  • VOC Volatile Organic Compounds
  • maleic acid-modified polyolefins are used as adhesives for PP molded products. Even if you try to apply a two-component urethane paint to a PP molded product, you will not be able to obtain sufficient adhesion of the paint film, so if you first apply a maleic acid-modified polyolefin to the PP molded product and use it as a primer, you will be able to remove foreign substances. The adhesion of the two-component urethane paint film can be sufficiently ensured. In this way, maleic acid-modified polyolefin has the effect of increasing the bonding strength between PP and other substances.
  • aqueous solution (emulsion) containing a maleic acid-modified polyolefin is heated to about 40°C, and the above-described pulp powder is added and stirred to impregnate the maleic acid-modified polyolefin into the pulp powder, followed by filtration.
  • the aqueous solvent and the pulp powder containing the maleic acid-modified polyolefin are separated by centrifugation or the like and dried to obtain a bulk mixture of the maleic acid-modified polyolefin and the pulp powder.
  • the bulk thus obtained is pulverized, mixed with PP, and pelletized using a single (1) screw extruder or, if necessary, a multi-screw (for example, twin screw) extruder.
  • the pulp powder is pretreated with maleic acid-modified polyolefin, and since plasticity is previously imparted by the maleic acid-modified polyolefin, it can be sufficiently pelletized using a single-screw extruder.
  • the screw of the short-shaft extruder may be provided with one or more dullages in order to improve kneading performance.
  • the screws In the case of a multi-screw extruder, the screws generally rotate in the same direction (same direction), but may also rotate in opposite directions (different directions). Naturally, a dalmage may be provided to improve kneading properties.
  • the flight is made shallower to increase the compression ratio and the ratio of L (length)/D (diameter) of the screw is increased. This can also be done with a single screw extruder screw. Naturally, if the L/D is large and the flights are double flights, the kneading performance will be greatly improved.
  • the ignition point (temperature at the ignition point) of paper is 450°C for high-quality paper, 290°C for newspaper, and 400°C to 470°C for wood, which is higher than that of maleic acid-modified polyolefin and PP binder resin, but it does not discolor.
  • O 2 oxygen
  • N 2 inert nitrogen gas
  • the above PP pellets may be produced using halogenated polyolefins, such as halogenated PE or halogenated PP, instead of using maleic acid-modified polyolefins.
  • the binder resin is AS, ABS, PS, HIPS, modified PPO, PC, etc.
  • a styrene-modified acrylic resin may be used instead of the maleic acid-modified polyolefin.
  • Styrene-modified acrylic resins are manufactured and sold as solvent-based or water-based resins, for example, by DIC Corporation under the trade name Acrudic (trade name).
  • pulp powder is immersed in these solutions (varnish), dried, crushed, and produced into AS and ABS using a single-screw or multi-screw extruder.
  • PS, HIPS, modified PPO, PC, etc. are used as a binder resin to obtain thermoplastic resin pellets containing environmentally degradable components.
  • cacao bean seed coats and coffee grounds may be used, or a mixture of these may also be used. These may be used by mixing pulp and powder.
  • the pulp powder was placed in a rocking mixer made by Aichi Kikai Co., Ltd. that can be heated and has a sprayable interior, and while spraying a solvent-based maleic acid-modified polyolefin varnish, the mixture was rocked and rotated.
  • the pulp powder is heated to support the maleic acid-modified polyolefin on the surface of the pulp powder. If pulp powder carrying maleic acid-modified polyolefin and PP are mixed together, melted and kneaded using an extruder, etc., and made into pellets, it will be more effective than when the pulp powder and PP are bonded alone.
  • the maleic acid-modified polyolefin Since the maleic acid-modified polyolefin has strong adhesion to both pulp powder and PP, the physical strength and mechanical strength of the resin will be higher than when no maleic acid-modified resin is used.
  • the environmentally degradable components listed above may also be used.
  • the resin may be not only PP but also PE, or a mixture of PP and PE.
  • halogenated polyolefins and halogenated PE can also be used.
  • styrene-modified acrylic resin or methoxymethylated PA may be used.
  • the raw material pellets need to be colored, they are made into pellets using dyes or pigments.
  • painting may be performed.
  • the purpose of painting is to improve the moisture resistance and water resistance of the surface, as some of the environmentally decomposed components are highly hygroscopic and water absorbing, so they cannot be used on liquids, such as food containers and drinking water cups. Coat the surface of by some method.
  • One of the methods is painting. Air spray painting is common, but ironing, brush painting, spin casting, etc. can also be applied.
  • the resin that forms the main component of the paint is AS or ABS varnish prepared by dissolving AS or ABS using an organic solvent such as MEK (n-butanone) or ethyl acetate, or styrene-modified acrylic resin. Paint using a paint that has the main component.
  • PS, HIPS, or modified PPO the coating is performed using a varnish in which the AS is PS or HIS, or a paint whose main component is a styrene-modified acrylic resin.
  • PP it is painted with a PP paint whose main component is halogenated polyolefin or maleic acid-modified polyolefin. After painting with a PP paint mainly composed of halogenated polyolefin or maleic acid-modified polyolefin, it may be painted with a two-component urethane paint, if necessary.
  • the surface may be laminated instead of painting.
  • insert molding is mainly used as the laminating method.
  • PET if you put the PET film into the gap between the fixed side and the movable side of the injection mold, close the mold, and inject environmental resin, the PET will be heated by the temperature of the injected resin. It is pressed against the fixed side by the force of the environmental resin filling and is thermally fused to the surface of the molded product using the environmental resin.
  • an adhesive can be applied to the surface of the PET film in advance to increase the adhesive strength between the molded product and the laminate.
  • Injection molded products where PET film is put into an injection mold and PET is pasted on the surface where environmental resin is injected, there is some PET film left around the molded product, so this excess Separate the PET film.
  • the means PIM ild), heat the PET film, and use air pressure or vacuum pressure to pressure-form or vacuum-form it onto the fixed side, which is the design surface.
  • environmental resin is injected after incorporating and cutting with it.
  • Molded products to which the present invention can be applied include all molded products using thermoplastic resins and thermosetting resins, but in particular food packaging materials, food containers, food trays, vegetable and fruit bags, Plastic bags, garbage bags, carrier bags, cutlery, amenities, films, textiles, building materials, electronic devices, electronic parts, transportation, automobiles, auto parts, agricultural materials, agricultural films, fishing nets, fishing related products, sanitary products, pallets, tanks Examples include bottles, stationery, packaging materials, and cushioning materials. These molded products are expected to have great effects and effects, especially when applied in consideration of environmental issues.
  • Processing of the resin containing environmentally degradable components in the present invention includes injection molding, injection foam molding, injection blow molding, injection pressure molding, extrusion molding, vacuum molding, block molding, calendar molding, etc. The following methods are mentioned.
  • binder resin a thermoplastic resin that connects environmentally decomposed components
  • thermosetting resin, etc. was PP, ePlas001 was manufactured. A hole is made in the heating cylinder of the extruder, and the resin is melted and plasticized, and an emulsion of maleic acid-modified polyolefin manufactured and sold by Unitika Co., Ltd. (Arrowbase DA-1010 (product name)) is added to the resin. ⁇ was injected at 2% W/V to impregnate the wood flour with maleic acid-modified polyolefin, and the surface of the wood flour was supported with the maleic acid-modified polyolefin to improve its binding with PP.
  • Arrowbase DA-1010 product name
  • the same action and effect can be obtained by using a halogenated polyolefin instead of the maleic acid-modified polyolefin (Arrowbase DA-1010).
  • a halogenated polyolefin instead of the maleic acid-modified polyolefin (Arrowbase DA-1010).
  • the maleic acid-modified polyolefin, styrene-modified acrylic resin, methoxymethylated Polyamide exhibits thermoplasticity, so even if it contains a large amount of environmentally degradable component powder, it still exhibits thermoplasticity, so when melt-kneading it with ordinary thermoplastic resins such as PP, ABS, PA, etc.
  • the pulverized material contains the thermoplastic substances (maleic acid-modified polyolefin, styrene-modified acrylic resin, methoxymethylated polyamide, etc.) and therefore exhibits thermoplasticity.
  • the pulverized material thus obtained may be bound with thermoplasticity. This is the difference between Patent Document 1, Patent Document 2, and Patent Document 3 in the manufacturing method.
  • This pulp powder is pelletized using a single screw extruder equipped with a dullage in the screw using 60% W/V and 40% W/V of PP.
  • ethanol C 2 H 5 OH
  • a plunger pump to lower the viscosity of the resin during melt-kneading in the heating cylinder and improve kneading properties.
  • propanol C 3 H 7 OH
  • a mixed solution of ethanol-propanol may be used.
  • water (H 2 O) or a mixture of ethanol and water, for example in a ratio of 50:50 may be used.
  • a solution of chlorinated polyolefin may be used instead of maleic acid-modified polyolefin.
  • the binding resin is a styrene resin such as ABS
  • a styrene-modified acrylic resin is used.
  • Maleic acid in the maleic acid-modified polyolefin acts as a reactive compatibilizer and chemically reacts with PP.
  • Chlorinated polyolefin has a physical bond (intermolecular force, van der Waals force) with pulp powder, and chlorinated polyolefin also has a physical sodium bond with PP.
  • Styrene-modified acrylic resin also shows physical bonding and compatibility (solubility) with ABS.
  • Example 2 ePlas002 was manufactured using paper pieces of 1,000 ⁇ m or less and paper powder instead of the wood flour in Example 1, and using PP resin as the binder resin.
  • Example 1 the wood flour was simply melted and kneaded using PP resin as a binder resin and pelletized without any treatment, so the binding strength between the wood flour and PP was low. With a resin with low binding strength, it is unavoidable that the molded product will be susceptible to cracking (impact strength, etc.) and decrease in strength, such as rigidity.
  • PP resin as a binder resin
  • Example 4 ePlas004 was produced by replacing the wood flour in Example 3 with paper pieces or paper powder of 1,000 ⁇ m or less.
  • Example 5 ePlas005 was manufactured by changing the PP binder resin of Example 1 to ABS.
  • Example 6 ePlas006 was manufactured by changing the binder resin of PP in Example 1 to HIPS.
  • Example 7 ePlas007 was manufactured by changing the PP binder resin of Example 1 to PPO ⁇ Noryl N190 (trade name) ⁇ modified with HIPS.
  • Example 8 ePlas008 was manufactured by changing PP of the binder resin of Example 1 to 6,6-PA (polyamide).
  • Example 9 ePlas009 was manufactured by using the maleic acid-modified PP of Example 3 as a styrene-modified acrylic resin and ABS as the binder resin.
  • Example 10 ePlas010 was manufactured using the binder resin of Example 9 as HIPS.
  • Example 10 ePlas011 was manufactured using PPO obtained by modifying the binder resin of Example 9 with HIPS.
  • Example 12 ePlas012 was produced by changing the maleic acid-modified polyolefin of Example 3 to methoxymethylated polyamide and using 6,6-PA as the binder resin.
  • Example 13 the materials of Examples 3, 9, 10, 11, and 12 were changed to paper chips or paper powder instead of wood flour.
  • Example 14 the wood flour in Examples 1 to 13 was changed to pulp powder with a particle size of 1,000 ⁇ m or less.
  • Example 15 uses the ePlas001 to ePlas012 materials (environmental resin pellets) produced in the above examples to perform general molding of the molded product shown in Fig. 3 using an injection molding machine with a mold clamping force of 180 tons. Injection molding was possible with no major difference compared to the case of using only ordinary resins such as PP, ABS, HIPS, and 6,6-PA.
  • Example 16 was foam molding.
  • a hole was made in the lower side of the heating cylinder of the injection molding machine (electric motor manufactured by Shibaura Machinery Co., Ltd.) with a mold clamping force of 180 tons used in Example 15 just before the compression zone, and a hole was made at the resin plasticization stage and from the start of metering.
  • 1.5% by volume (vol.%, %V/V) of anhydrous ethanol is added and vaporized at the temperature of the heating cylinder, and the ethanol vapor is used as a foaming gas to impart foamability to the molten resin. did.
  • a foamed molded product using ethanol as the foaming agent was obtained by injecting into the mold shown in Figure 3.
  • the blowing agent that can be used in the present invention is an alcohol such as the above-mentioned ethanol and propanol, and does not need to be anhydrous.
  • alcohol such as the above-mentioned ethanol and propanol
  • water may be used, and a mixture of water and alcohol, for example, a mixture of water and ethanol containing 40% V/V, or a mixed solution of ethanol and propanol at 1:1 may be used.
  • Foaming molding products using gas include Mucel, Amotek, Soffit, etc. It can also be carried out by providing a nozzle of an injection molding machine developed by Shinbo Minoru with a discharge port for liquefied carbon dioxide gas, and adding foamability to the molten resin in the nozzle with carbon dioxide gas when the molten resin is injected.
  • Solid foaming agents and inorganic chemical foaming agents such as sodium hydrogen carbonate, hydrogen carbonate represented by potassium hydrogen carbonate, ADCA (azo dicarboxylic acid amide), HDCA (hydro dicarboxylic acid amide), DPT
  • Organic chemical blowing agents such as (di-nitroso-pentamethylene-tetramine), hollow air balloons such as Advancecel (trade name) and Expancel (trade name) can also be used.
  • these blowing agents can be used alone, but they can also be used in combination.
  • Example 15 swirl marks (foam stripes) peculiar to foam molding occur on the surface, so if the gas counter pressure (GCP) method is performed, a foam molded product with a clean surface without swirl marks can be obtained. It will be done.
  • GCP gas counter pressure
  • heat and cool which increases the temperature of the mold surface, may be used. Even when no blowing agent is used, environmentally decomposed components absorb moisture, and if it is due to moisture inside, drying is required, but if GCP is performed without drying, silver due to absorbed moisture can be eliminated.
  • Embodiment 1 showed the main problems of plastic recycling and the means for solving them. There are many technical issues in plastic recycling, but the main ones are ⁇ color recycling,'' ⁇ recovery or maintenance of physical properties,'' ⁇ reproducing dimensions,'' and ⁇ sorting.'' First, I will explain the recycling of "color recycling". Although plastic has low mechanical strength, it is cheap, can be mass-produced, and can be colored freely. The ability to freely color plastic products means that plastic products of various colors are available on the market, so the problem of color, that is, the reproduction of color, is one of the issues that prevents plastic recycling from progressing. There are two ways to recycle this color.
  • One method is to collect only items (molded products) of the same color, wash them, crush them, and add virgin pellets to the crushed material.
  • the powdered materials are mixed and re-pelletized to obtain a molding material containing a certain amount of recycled material (approximately 10% to 50% by weight). Colors are reproduced in this way, but it is a means of recycling only plastic molded products of a specified color.
  • Molded products collected from the market are contaminated and have faded due to photodeterioration due to exposure to ultraviolet rays. In such cases, remove the photo-degraded parts (mainly the surface) by shot blasting or the like.
  • the molded product is placed in water or the like and rubbed by hand, or an ultrasonic vibrator is placed in the molded product for ultrasonic cleaning.
  • a pulverizer that uses this sound is a wet pulverizer, and when water is injected or pulverized underwater, a sound is emitted (generated), and the sound is transmitted into the water and physically removes dirt on the surface of the molded product. Cleans with power (sound waves).
  • the coating film is not separated or peeled, but the coating film is still attached, and the coating is crushed and recycled as necessary.
  • the styrene-modified acrylic resin which is the main component of the paint film, is compatible (dissolved) with the resin that makes up the molded product, and the coating is formed into pellets. Since it is melted into the resin during the heating and melting stage of the molding process and/or the heating and melting stage of the remolding process, there is less deterioration in the physical properties of the resin due to mixing of the coating films.
  • styrene-modified acrylic resin is a thermoplastic resin
  • a paint using this resin has low chemical resistance, and the paint film peels off when subjected to a rubbing test using alcohol, for example.
  • paints based on urethane resin are often used (the urethane resin in the paint film is thermosetting, while the styrene-modified acrylic resin is thermoplastic).
  • the coating film is made finer (for example, the average particle size is 1,000 ⁇ m or less, preferably 100 ⁇ m or less) using an extruder that can perform strong (high) kneading, such as a kneader, the urethane coating film becomes molded resin. Even if it is mixed with other materials, the physical properties do not deteriorate that much.
  • thermoplastic styrene-modified acrylic resins In the case of styrene-modified acrylic resins, the dyes and pigments in the coating film melt together during the pelletization stage and remolding stage, and the However, in the case of urethane resin, the dyes and pigments in the coating film remain in the coating film and do not migrate into the resin, reducing the physical properties of the resin. (The decrease is small.) In some cases, it does not.
  • the extruder with strong kneading may be a single (1) screw, but preferably a multi (2) screw extruder with a screw having one or several dullages is used. Although the screws may be rotated in the same direction, it is better to rotate them in different directions to improve kneading properties and make the urethane coating finer. Since PP is widely used in automobile parts, when painting PP molded products, primer treatment is performed using maleic acid-modified PP, and then a paint using thermosetting urethane resin is used.
  • ABS is a ternary graft copolymer of A, S, and butadiene rubber, which is a graft copolymerization of A and S to butadiene rubber, to an AS resin that is a copolymerization of A (vinyl cyanide) and S (vinyl phenylation). It is a blended polymer made by blending (mixing) together.
  • the butadiene rubber in the ternary graft copolymer of A, S, and butadiene rubber deteriorates due to heat and loses its properties as a rubber. Lost. As a result, repeated recycling reduces the physical properties of the resin, such as its impact strength. The deteriorated physical properties of the resin can be restored by mixing the new grafted butadiene rubber. If adding bluffed butadiene rubber reduces the rigidity of the resin, mix it with AS resin to balance it out and recycle it.
  • ABS has low weather (light) resistance due to butadiene rubber.
  • AAS (ASA) and AES which use acrylic rubber (AR) and ethylene propylene rubber (EPM, EPDM) instead of butadiene rubber, do not suffer from significant deterioration in physical properties like ABS even after repeated recycling.
  • the inventor used an injection molding machine equipped with a shut-off nozzle, set all zone temperatures to 220°C, and the temperature of the molten resin to 250°C. The molten resin is melted and kneaded and retained in a heating cylinder for about 30 to 60 minutes to apply thermal stress to the molten resin in the heating cylinder.
  • the purge is performed.
  • the lump is submerged in water to cool it, the cooled purge lump is crushed, and the crushed material is used to form a test piece for physical property evaluation to evaluate the physical properties.
  • this method is referred to as a "thermal deterioration test."
  • the Izod impact strength was 0% to 5% for AES, and 10% or less for AAS, but there was no decrease in the Izod impact strength for ABS. A significant decrease of 50% or more was confirmed.
  • PE polyethylene
  • PP polypropylene
  • the catalysts used during polymerization include Ziegler-Natta catalysts and metallocene catalysts.
  • the Izod impact strength reduction was only about 5% for each PP, and the results showed that PP has high heat resistance and is a resin suitable for recycling. Obtained.
  • Parel product name
  • the Izod impact strength decreases by nearly 90%, so Parel can be said to be a resin that is not suitable for recycling.
  • Recycling aids refer to materials and additives that restore recycled materials to their original physical properties.
  • resins added for the purpose of modification in order to impart other properties are also recycling aids.
  • ABS which is developed to reduce the influence of recycled materials, and AS mentioned above are both recycling aids. Since AES has high thermal stability, the physical properties of ABS can be restored by mixing AES collected from the market with recycled ABS.
  • AES in this case is also a recycling aid in a broad sense
  • HIPS used for modifying EPS is also a recycling aid. In this way, the recycling aid is defined as the original resin, resin additives, etc. in the present invention. Paints used to restore color (e.g. cover marks on molded products to other colors) are also recycling aids.
  • the molding shrinkage rate of recycled materials is almost the same as that of virgin materials that are foam molded, blow molded, and pressure molded, so when recycling is performed, It is better to use foam molding, blow molding, or pressure molding than general molding.
  • sorting When carrying out recycling, if it is not possible to accurately determine what kind of resin is used in the molded product to be recycled, and what additives and amounts are mixed in that resin, recycling is not possible. cannot be completely implemented. Below, we will specifically explain in detail the contents that need to be prepared in advance for recycling (sorting).
  • ABS is a blend polymer or polymer alloy made by mixing a copolymer of A and S with grafted butadiene rubber.
  • resins with various ratios of AS can be produced depending on the polymerization ratio of A and S (A and S ratio).
  • resins with different molecular weights eg, number average molecular weight, average molecular weight, etc.
  • the grafted butadiene rubber blended into AS has various particle sizes (bimodal type). In this way, various types can be manufactured using only ABS.
  • flame retardant for example, halogen type or non-halogen type
  • flame retardant aid for example, halogen type or non-halogen type
  • the resin may contain anti-aging agents as required, such as those listed in "Handbook of Rubber and Plastic Compound Chemicals, Second Revised Edition ⁇ Rubber Digest Co., Ltd., October 30, 1993, Second Revised Edition ⁇ ".
  • antioxidants antioxidants, antiozonants, ultraviolet absorbers, light stabilizers, plasticizers, fillers, reinforcing agents, stabilizers for PVC, lubricants, slip agents, internal mold release agents, antifogging agents, antistatic agents, Coloring agents (including the above dyes and pigments), coupling agents, preservatives, anti-mold agents, compatibilizers, modifiers, crystal nucleating agents, dispersants, light diffusing agents, foaming agents In the case of molding, a cell nucleating agent (referred to as a "resin additive" or simply "additive”) is used.
  • flame retardants used halogen compounds using the negative catalytic action of halogens, such as brominated epoxy and TBBA (tetra-bromo-bisphenol A derivatives), and antimony trioxide as a flame retardant aid. It used to be common, but its use is now discouraged due to problems with the generation of brominated dioxins and brominated benzofurans. Antimony trioxide is a dangerous substance, so I hesitate to use it. When recycling is performed today, if halides are contained in this way, it is necessary to recycle separately.
  • a barcode ⁇ regular barcode, two-dimensional barcode, QR code (registered trademark) ⁇ is engraved on the mold.
  • the barcode contains the weight of the molded product required for recycling, information about the resin that is the main component of the molded product, such as the molecular weight, the ratio of A and S, and the additives mentioned above, as mentioned above using ABS as an example. Enter information such as the type and amount added and the weight of the molded product.
  • a useful method is to write this information on the molded product, collect it from the market, and read it at the recycling stage, such as before cleaning or crushing, to identify prohibited substances at the recycling stage. Make sure that it does not contain any substances before pulverizing it. Molded products that contain prohibited substances should be placed in a separate location without being crushed.
  • QR codes are preferable to barcodes because they can store more information than barcodes. Attach a label (sticker) with a QR code printed on it. Alternatively, for injection molded products, if you stamp the QR code on the mold in advance, you can save the trouble of pasting the label ( Figure 4). Hereinafter, embodiments of the present invention will be described using a QR code. ( Figure 4 number 206)
  • the information in the QR code is read with a barcode reader, and when it is crushed, it is possible to know what kind of resin and how much additive is contained in the crushed material as a whole. Once this has been achieved, necessary additives can be added and modifications easily made using a computer, such as AI (Artificial Intelligence). Items (molded products) made using the recycled materials obtained in this way are also displayed with the aforementioned QR code, with the next recycling in mind. This means repeating recycling [recycling generations ⁇ first time (1 turn), second time (2 turns), third time (3 turns), etc. ⁇ . ] can be done.
  • the QR code information also includes, for example, the content (mixture ratio, etc.) of 1-turn material and 2-turn material. In other words, be sure to add the necessary information in preparation for future recycling implementation. This allows future recycling to be carried out without any problems.
  • the QR code can read the resin manufacturer's name, product name, grade, and detailed formulation of the resin (for example, the type and amount of additives, etc.), so if you leave it as is, important information that is kept as a resin manufacturer's secret will be revealed to competitors. Since there is a risk of leakage, it is not preferable to leave it as is. To do this, it is necessary to encrypt part or all of the content included in the QR code (for example, by using a combination of numbers and alphabets using prime numbers, etc.).
  • the encrypted contents are contained only in the AI: the type of resin, the type and amount of additives, the weight of the pulverized material (: the total weight of the pulverized molded product, and the total weight of the molded product written in the QR code). Weight information, or the meaning of the content of the weight of each molded product that is automatically measured and imported into AI), and the necessary security is in place to ensure that it is never leaked to other companies. AI needs to be imposed on those who operate it (operators, etc.).
  • AI examplementation of recycling
  • the AI confirms and understands all the information related to the resin and additives of the pulverized material intended for recycling, so if you instruct the AI to modify the pulverized material into a resin with physical properties, , AI calculates the type and amount of resin that needs to be recycled, and the type and amount of additives (such as the type and amount of recycling aid).
  • the type and amount of the resin and the type and amount of additives calculated by AI are added to the pulverized material in advance, and a test piece is formed and the physical properties are measured (quality control). Check whether it matches the content calculated by AI (planned physical property values of recycled materials).
  • EPS low-grade product
  • HIPS high-grade regeneration
  • PPO polyphenylene oxide
  • Noryl trade name
  • management is not done using the QR code shown in the present invention, so the resin and additives in the molded product cannot be determined, so they are crushed as they are without separating the type of resin, and are used to make artificial trees and flower pots.
  • the flow of plastic recycling actually using the present invention is shown. It is molded using virgin resin and painted if necessary. Molded products displayed with QR codes are supplied to the market and collected when their purpose is completed. The QR code shown on the molded product is used to check whether it is recyclable and whether it contains substances that would inhibit recycling. Recyclable molded products will be cleaned as necessary. Alternatively, use blasting or the like to remove the deteriorated surface portion.
  • QR code Even if you are pulverizing assorted or mixed colors without color-coding, you can use the QR code to pulverize only the molded products that have been determined to be recyclable, and check the type of resin and additives contained in the pulverized material. AI confirms the type and amount, adds recycling aids and other additives, tumbles, pelletizes, and remolders.
  • the molded product obtained can be mixed colors or miscellaneous colors if used as is, but if coloring is required, it should be painted for the purpose of cover marking. Of course, this molded product is engraved with a QR code that contains information on the type and amount of recycling aids and other additives, including the coating, assuming that it will be recycled. There is.
  • Embodiments 13 to 28 include environmentally degradable components that are biodegradable in the natural world by the force (action) of bacteria, photodegraded by ultraviolet rays, and hydrolyzed by water, etc., and have thermal visibility and thermal properties. Specific means and methods for manufacturing resin pellets used for processing resins containing environmentally degradable components that are mainly curable, as well as extrusion molding, injection molding, etc. using such resin pellets. Details of the necessary equipment and measures to prevent discoloration, burning, etc. are shown.
  • mixing device In the present invention, a device for mixing the respective materials is referred to as a "mixing device.” Common mixing devices include tumblers, Henschel mixers, rocking mixers, etc., but any device for the purpose of mixing the materials may be used. There are no restrictions on the means or structure. It can also be used in a concrete mixer. In the present invention, mixing using a tumbler is referred to as "tumbling". It is preferable to use a weight control device such as a back melter (trade name), a weight control feeder, a weight feeder, etc., as shown in the embodiments below (see FIGS. 5 and 6, numbers 187 and 188). .
  • a weight control device such as a back melter (trade name), a weight control feeder, a weight feeder, etc.
  • thermoplastic resin and environmentally degradable components
  • environmentally degradable components are in the form of powder, so they tend to contain air. Naturally, air contains about 20% oxygen by volume (about 23% by weight).
  • a kneader including a pressure kneader
  • Banbury mixer a single screw extruder, or a multi-screw extruder
  • some of the environmentally degradable components or some of the environmentally degradable components will be Components such as lignin are oxidized and discolored.
  • inert gas is placed inside the tumbler to lower the oxygen concentration.
  • lignin for example, washing with water and/or an organic solvent, boiling the water and/or organic solvent at elevated temperatures, or steam washing may be performed.
  • steam cleaning or the like the environmentally degradable components become hydrated, so the volume can be reduced.
  • washed with water it also absorbs water.
  • operations such as melting and kneading using a tumbler or the like become easier.
  • melting kneading equipment an apparatus that heats and melts and kneads a thermoplastic material among the mixed materials is referred to as a "melting kneading apparatus".
  • a melting kneading apparatus examples include single-screw (single-screw) and multi-screw (eg, twin-screw) extruders, kneaders that can be heated, Banbury mixers that can be heated, and rollers that can be heated.
  • twin-screw twin-screw
  • cellulose powder colored in a desired color may be mixed with a thermoplastic resin and melted and kneaded, environmentally degradable components will discolor or burn, causing color problems such as not being able to obtain the desired color. If you color it, the finished color will not be as expected.
  • a thermoplastic resin in an extruder heating cylinder for example, even if the resin used is PP, the resin is heated to nearly 200°C.
  • the color changes to yellow or brown.
  • the melting and kneading temperature is increased, the material will be burnt black. This problem of discoloration and burning is caused by oxygen in the air, and discoloration occurs in an atmosphere where oxygen is present. Discoloration is less likely when using inert gases such as nitrogen gas, carbon dioxide gas, and rare gases. Or it doesn't change color at all.
  • the inventor replaces the inside of the hopper with nitrogen gas during pelletization using an extruder, sheet molding, etc., for example. Specifically, by replacing the inside of the hopper with nitrogen gas and injecting nitrogen gas into the vent part of the extruder, nitrogen gas also enters the heating cylinder and prevents discoloration.
  • the materials to be melted, kneaded, and pelletized are placed in the hopper, and nitrogen gas is continuously introduced into the hopper.
  • nitrogen gas is continuously introduced into the hopper.
  • the nitrogen gas is injected into the hopper and sealed so that the nitrogen gas comes out from the bottom of the hopper, just before the heating cylinder, inside the hopper, preferably from the center of the material, as shown in FIGS. 5 and 6.
  • Nitrogen gas (numbered 187, numbered 188) under the hopper is sent from the hopper into the heating cylinder together with the mixture 001.
  • Molding equipment refers to extruders, sheet extruders, profile extruders, injection molding machines, block molding machines, casting machines, calendar molding machines, blow molding machines, etc. Things that have been processed using molding equipment are called “molded products, molded products, and molded products.” In the present invention, raw material pellets are also included in the molded product.
  • Cooling equipment includes a conveyor to air-cool the thermoplastic resin strands coming out of the extruder, a water tank to cool the thermoplastic resin strands, and a temperature controller and chiller to control the temperature of the molding machine. To tell. In the case of sheet forming, this also refers to conveyors, water tanks, etc. that cool the sheets.
  • Mold equipment is a general term for extruder dies, casting molds, injection molding molds, etc.
  • the "molding method” used in the present invention refers to extrusion molding methods, profile extrusion molding methods, cast molding methods, injection molding methods, block molding methods, calendar molding methods, etc. for producing strands or sheets, and in particular injection molding methods.
  • general molding methods general molding method, normal molding method
  • injection foam molding methods that use chemical foaming agents that are solid, liquid, or gaseous, and physical molding that is solid, liquid, or gaseous.
  • foam molding using a foaming agent also simply referred to as "foam molding” or foam molding method
  • extrusion molding using the foaming agent profile extrusion molding, casting, block molding, calendar molding, etc. It will be done.
  • Injection hollow molding methods such as Shinpress (product name), AGI (product name), Air Mold (product name), and their applied technologies such as RFM and H 2 M molding methods (these are simply referred to as “hollow molding methods” in the present invention)
  • Injection pressure molding (simply referred to as “pressure molding” or “pressure air molding method”), in which a gas with a pressure higher than atmospheric pressure is put into the gap between the molten resin and the mold, and the pressure of the gas is used to pressurize the molten resin and the mold. (also referred to as “molding method”) can be carried out using the resin containing the environmentally degradable component of the present invention.
  • Inert gas refers to a gas that contains environmentally degradable components and does not oxidize the hot molding material when the actual temperature of the molding material containing a thermoplastic resin is 380°C, such as nitrogen gas, It refers to carbon oxide, carbon dioxide gas, hydrogen gas, gas obtained by vaporizing organic solvents, and rare gases such as helium and neon. These gases are used alone or in combination as a composite gas. Gases particularly useful in the present invention are nitrogen gas and carbon dioxide gas. In particular, nitrogen gas is used extensively in the present invention because it can be obtained inexpensively and in large quantities using a separation device such as a separation membrane or PSA. In addition to combining with oxygen and being decomposed by oxygen, oxidation in the present invention refers to the loss of electrons by a target substance.
  • Gas replacement refers to reducing the pressure of the oxygen-containing air that has entered the device and/or gaps between materials, degassing it, and then replacing it with an inert gas such as nitrogen gas or carbon dioxide gas under reduced pressure. , and raise the pressure to below atmospheric pressure again. Instead of reducing the pressure, the pressure may be increased after introducing an inert gas. For example, an inert gas with a pressure higher than atmospheric pressure is introduced to replace the air. This method may be used only once, but sufficient replacement can be achieved by repeating it several times.
  • the air in the hopper of an extruder or injection molding machine, or the air in the gaps between the materials, can be depressurized, pressurized using the gas to be replaced, depressurized, and pressurized using the gas to be replaced.
  • the most suitable equipment for this method such as a back melter (trade name), is available, so gas replacement can be done easily. You can just do a vacuum (actually means to reduce the pressure) using Ecomac (trade name) from Haruna Co., Ltd. Inert gas may be again introduced into the vacuum device.
  • back melters devices with functions such as back melters and ecomacs are collectively referred to as "back melters”.
  • the back melter pressurizes above atmospheric pressure without reducing the pressure, returns it to atmospheric pressure, and then returns to atmospheric pressure. It may be replaced by pressurizing above atmospheric pressure.
  • Gas sealing means, for example, to expel air and replace the gas with inert nitrogen gas, and to prevent air from entering again, use a device such as an extruder to continuously or intermittently supply nitrogen gas. This means sending inert gas into the hopper and feed screw (subscrew) to create an atmosphere of only inert gas inside the destination equipment.
  • GCP method ⁇ "GCP” is a method used in foam molding to obtain a foam molded book with a smooth and clean surface without swirl marks (foam stripes), and usually uses air pressurized to a pressure higher than atmospheric pressure.
  • the gas used for GCP is not air containing oxygen, but nitrogen gas, carbon dioxide gas, or the like.
  • the inside of the mold is sealed with an O-ring for PL, etc., a load-type O-ring for ejector pins, or an ejector box, and the inside of the mold is pressurized with gas (generally air) above atmospheric pressure, then filled with foamable resin, and foamed.
  • gas generally air
  • GCP a means of exhausting the gas in the mold during or after filling with plastic resin to obtain a foam molded product with a smooth and clean surface and a foam layer inside. If the gas is air, discoloration and burning will occur, but the inside of the mold is pressurized in advance (this is called “pressurization”. It is also called “pressurized air” or “pressurized air”), and it is used for pressurization.
  • the gas is air, it will cause discoloration and burns because it contains oxygen. If you use inert nitrogen gas instead of ⁇ , you can reduce discoloration and burning.
  • the inside of the sealing mold is pressurized with air, and then nitrogen gas with a pressure higher than that of the air is introduced into the cavity, and the initial air is sometimes replaced by expelling it with the pressure of nitrogen gas.
  • the nitrogen gas is mainly pressurized inside the cavity, and other parts of the mold, such as the space at the bottom of the insert and the inside of the ejector box, are pressurized with cheap air. It is more economical than pressurizing everything with nitrogen gas. After the initial air is removed by vacuuming, the air may be pressurized again with nitrogen gas.
  • Pressurization may be performed using nitrogen gas from the beginning.
  • GCP is explained in PCT/JP2016/86380, PCT/JP2015/062611, PCT/JP2020/015536 documents, and the implementation of foam molding, GCP, blow molding, and pressure molding of the present invention is based on the contents of the above documents. use.
  • Carbon dioxide gas When carbon dioxide gas is used in GCP, in addition to preventing discoloration and burning, the carbon dioxide gas enters from the tip of the flow of the molten resin filled in the cavity and has the effect of improving the fluidity of the molten resin. Carbon dioxide gas has a higher affinity with molten resin than nitrogen gas, and when nitrogen gas is dissolved, fluidity improves. A mixed gas of nitrogen gas and carbon dioxide gas may also be used.
  • molten resin either foamable or non-foamable resin
  • nitrogen gas injection may be continued until completion.
  • a fluidity improver is used, but in molding equipment, extruders, and injection molding machines, a hole is made in the heating cylinder, and from there, the liquid that vaporizes at the temperature inside the heating cylinder is released.
  • the fluidity of the molten resin can be significantly improved.
  • the dispersibility of the environmentally degradable component in the thermoplastic resin can also be improved.
  • An anionic, cationic, or nonionic surfactant may be added (used in combination) to this liquid.
  • a commercially available dispersant may also be used.
  • gases such as nitrogen gas and carbon dioxide gas may be added to the molten resin to increase fluidity. Since carbon dioxide gas has a higher affinity (ease of mixing) with the molten resin than nitrogen gas, carbon dioxide gas is preferable when using a gas.
  • Solid foaming agents include, for example, hydrogen carbonates represented by baking soda, azo compounds represented by ADCA, chemical foaming agents such as nitrosation represented by DPT, and physical foaming agents such as hollow air spheres. It has the effect of increasing the fluidity of molten resin.
  • thermoplastic resin In order to improve the bond between the environmentally degradable component and the thermoplastic resin, if the thermoplastic resin is PP, an emulsion containing maleic acid-modified PP that has high bonding properties with the PP resin (solvent-based is also acceptable) is used. As with the liquid case, place it in a heating container to increase the binding ability (binding force) between the environmentally degradable component and the PP resin.
  • non-plastic resin is a styrene-based resin such as ABS
  • a solution of an emulsion of a styrene-modified acrylic resin, a solution of a styrene-modified acrylic resin dissolved in a solvent, or the like is used.
  • thermoplastic resin is polyamide
  • a solution or emulsion of methoxymethylated polyamide may be used in the same manner and placed in the heating cylinder.
  • these maleic acid-modified PP, styrene-modified acrylic resin, methoxymethylated polyamide solid (powder, etc.), and polyvinyl alcohol may be mixed together.
  • the maleic acid-modified PP is solid, it is mixed in a tumbler stage and then charged into an extruder hopper or the like.
  • Liquefied carbon dioxide gas is injected into the barrel and vaporized at the temperature of the heating cylinder, and can be used as a fluidity improver as carbon dioxide gas within the heating cylinder.
  • Solid carbon dioxide gas (dry ice) is made into pellets, and a device with a mechanism similar to a back melter is installed in an extruder, injection molding machine, or other molding equipment to produce dry ice mixed with dry ice and environmentally degradable components.
  • a mixture of thermoplastic resins is put into a heating cylinder and melted. When melted, the dry ice sublimes to become carbon dioxide gas, which dissolves into the molten resin. As a result, the fluidity of the molten resin in the heating cylinder is improved because carbon dioxide gas is dissolved therein. Dry ice can be used as a fluidity improver.
  • the particle size of the environmentally degradable component used in the third embodiment is not particularly limited. It doesn't matter if it's big or small. Sometimes a mixture of large and small particles is used.
  • the average particle diameter of the cellulose powder manufactured by Nippon Paper Industries Co., Ltd. (KC Flock W-100GK, W-50GK, W-400G) used in the examples of the present invention is sufficient if it is 200 ⁇ m or less to improve dispersibility and uniformity.
  • seeking uniform dispersion
  • a material with a diameter of 20 ⁇ m or more and less than 50 ⁇ m is used.
  • a mixture (referred to as "mixture 001" in the present invention) is prepared by mixing 51% by weight of this white powder (cellulose powder) and 49% by weight of natural-colored PP resin ⁇ Sumitomo Noblen HX101A (trade name) ⁇ .
  • the mixture was heated and melted and kneaded using a kneader (pressurized kneader manufactured by Toshin Co., Ltd.) using an electric rod heater. Although the melting temperature was adjusted to 200°C or less, the product obtained by melting and kneading the cellulose powder and PP resin turned brown (originally, both the cellulose powder and the PP resin pellets were white). was.
  • the cause was assumed to be that the cellulose powder was oxidized by air (oxidation by oxygen in the air) and discolored.
  • Conventional resin pellets are made by placing the strands in water, cooling them, and then cutting them into pellets.However, as environmentally degradable components have high water absorption, cooling them in water is not preferable. Air cooling is preferable.
  • the molten lump of PP resin containing cellulose powder that has been melt-kneaded and has not yet been completely cooled and solidified is extruded using a plunger-type extruder, and then air-cooled on a stainless steel mesh conveyor (cellulose powder has water absorption properties). ), the strand was extruded and cut using a pelletizer to obtain PP resin pellets containing cellulose powder. Strand cut, air cooling and solidification ⁇ , the surface of the strand was oxidized and turned brown.
  • nitrogen gas can be continuously introduced into the lower part of the hopper (preferably the part of the pipe that connects to the heating cylinder) using a thin hose.
  • nitrogen gas may be purchased and used in a commercially available cylinder, but in this case, nitrogen gas cylinders are expensive and therefore not economical.
  • the inventor used nitrogen gas separated from the air using PSA (Pressure Swing Adsorption) or a nitrogen gas separation membrane ⁇ hollow fiber (N2 separator) sold by UBE Corporation ⁇ .
  • replacing the inside of the hopper with nitrogen gas lowers the oxygen concentration and prevents discoloration due to oxidation.
  • a heating cylinder high-vacuum plasticizing device ⁇ Baku Melter (product name) ⁇ manufactured and sold by Meiki Seisakusho Co., Ltd. and Japan Steel Works Co., Ltd. attached to molding machines.
  • Mixture 001 with the inside of the hopper replaced with nitrogen is placed in a heating cylinder, and before melting and kneading, a vacuum is drawn using a back melter to suck out the air that has entered the gaps between the cellulose powder and the PP resin pellets. It may be put into a heating cylinder as it is and melted and kneaded.
  • nitrogen gas replacement can be further enhanced by using a back melter in multiple stages rather than in one stage.
  • Mixture 001 in which the previous air has been replaced with nitrogen gas, is charged into the extruder and melted and kneaded.
  • a small sub-screw feed screw
  • a small sub-screw is installed in between to stabilize the amount fed into the heating cylinder. In this case, it is better to also replace the inside of the subscrew with nitrogen gas. This is necessary and recommended to prevent discoloration.
  • the extruder may be a single-screw (single-screw) extruder or a multi-screw (eg, twin-screw) extruder with strong (high) kneading properties.
  • a multi-screw extruder the screws may rotate in the same direction or in different directions.
  • a vent is provided in the heating cylinder. Cover this vent as well and fill it with nitrogen gas to seal it (meaning replacing the air with inert nitrogen gas). After melting and kneading, the molten resin is extruded through a die to form strands. Cool and solidify using a stainless steel mesh belt conveyor.
  • the amount to be added is 1 part or more, preferably 3 parts or more, per 100 parts of the molten resin containing the environmentally degradable component.
  • the vaporizable liquid is preferably an alcohol such as ethanol or propanol, water, or a mixture of water and alcohol. Although methanol can be used, it is not recommended as it is toxic. In the present invention, its use is discontinued. Pellets can be colored by adding dye to this liquid. The liquid may be injected not only in one place but also in several places, and a solution containing alcohol or the like and a dye/pigment may be injected.
  • Embodiment 17 (Injection molding processing) A means for preventing oxidation of cellulose powder when injection molding is performed using the cellulose powder-containing pellets 001 obtained in the third and fourth embodiments using the mixture 001 is shown. Discoloration and burning during injection molding can be prevented by nitrogen substitution and nitrogen sealing as in the case of the pellet 001.
  • the inside of the hopper of the injection molding machine is replaced with nitrogen gas.
  • the means of replacement is the same as the means of replacing nitrogen in the hopper when producing pellets 001 using an extruder in the pellet production described above.
  • the inside of the hopper is replaced with nitrogen, and then plasticized in the heating cylinder of an injection molding machine.
  • the injection molding machine of the fifth embodiment is equipped with the above-mentioned back melter, and some of the air in the pellet gap in the pellet 001 in the hopper is replaced with nitrogen gas, and then the pellet is sent into the back melter. .
  • the inside of the back melter is evacuated and the material is fed into a heating cylinder where it is melted, plasticized, and kneaded. After the back melter is evacuated, nitrogen gas may be introduced into the back melter again.
  • a single back melter may be used, but if multiple stages are used in series, the nitrogen gas replacement rate can be further increased. Since the gaps between the pellets 001 are replaced with nitrogen gas in this manner, discoloration and burning due to oxygen do not occur during the plasticization and melting and kneading stages.
  • the pellets 001 depopulated in the heating cylinder of the injection molding machine are then filled into the mold, but since there is air (actually oxygen in the air) in the cavity of the mold, the resulting molded product contains There is a risk of discoloration and burning. If the injection speed is increased, discoloration and burns will increase due to adiabatic compression. To solve this problem, the inside of the cavity is replaced with an inert gas, such as nitrogen gas. The means for replacing nitrogen gas in the cavity will be specifically explained.
  • the mold to be used has gas injection pins shown in Figures 52, 53, and 54 described in the patent publication (PCT/JP2016/86380) from either the fixed side, the movable side, or the spool runner (more than one is possible).
  • a gas pressurizing pin is provided, the mold is closed, and nitrogen gas is blown into the cavity by opening the valve (number 14) shown in FIG. 1 of the patent publication (PCT/JP2016/86380).
  • the molten resin of the pellet 001 is injected (filled) into the cavity.
  • the mold is opened and the molded product is formed. When taken out, a clean, white injection molded product without discoloration or burning is obtained by injection molding using pellets 001 produced using mixture 001.
  • pellet 001 contains 51% by weight of cellulose powder, its fluidity is significantly lower than that of 100% PP resin. Furthermore, the resin temperature during molding cannot be made that high because there is a concern that the cellulose powder may discolor or burn. Therefore, as a means to increase the fluidity of the molten resin, we applied the method of foam molding using a liquid described in the patent publication (PCT/JP2015/062611) to add alcohol, water, alcohol, etc. to the molten resin in the heating cylinder. and water to improve the fluidity of the molten resin.
  • the amount added is not foam molding, the amount added is several times that of foam molding, and the fluidity is increased and the injection is injected into a cavity that has been replaced with nitrogen gas.Then, resin holding pressure is applied to squeeze out the liquid. , squeeze out.
  • This method uses a foaming agent and applies holding pressure to prevent foaming. Naturally, there is a risk of discoloration and burning, so replace the inside of the hopper and cavity with inert gas and seal with inert gas.
  • thermoplastic resin as a fluidity improver for thermoplastic resin (as a means of injecting it into the heating cylinder), but it is not limited to alcohol, and can be injected into the molten resin inside the heating cylinder.
  • a similar flow support effect can be expected by using gaseous nitrogen gas or carbon dioxide gas that has been raised to a high pressure (a pressure higher than the back pressure of the molten resin in the heating cylinder during plasticization and melting).
  • baking soda sodium bicarbonate, sodium bicarbonate, acidic sodium carbonate
  • ADCA azo dicarboxylic acid amide
  • DPT di nitroso pentamethene ⁇ Tetramin
  • foam molding Although the action and effect of flow support using a liquid has been explained above, it is of course possible to carry out foam molding using pellets 001. Although alcohol was used as a fluidity improver in the sixth embodiment, foam molding is possible by reducing the amount added and using an appropriate amount of alcohol as a foaming agent.
  • the cellulose powder in the pellet 001 acts as a foaming nucleating agent, but if necessary, talc, metal oxides, inorganic fillers, etc. acting as a nucleating agent may be added for the purpose of foaming.
  • GCP gas canter pressure
  • Extrusion molding sheet extrusion molding
  • the inside of the hopper is sealed with nitrogen and replaced with nitrogen, and the feed screw is placed on the extruder heating cylinder, as in the case of injection molding. If provided, the air in the feed screw is also replaced with nitrogen to prevent discoloration and burning due to oxidation, and then the feed screw is put into a heating cylinder to plasticize and extrude the sheet. The same is true for injection molding machines and extrusion molding machines, but as long as oxygen does not enter the heating cylinder, there is no need to worry about discoloration or burning even if the temperature is raised a little.
  • the sheet comes out of the die of the extruder, it has not yet cooled and solidified and is still at a high temperature, so when it comes into contact with air, the surface will naturally oxidize and change color. Burning may occur in some cases. It is necessary to maintain a nitrogen gas atmosphere until the surface has finished cooling and solidifying and the surface temperature has dropped to a temperature at which it will no longer be oxidized and discolored. After cooling and solidification is completed, the sheet is cut into a desired size and used for air pressure forming or vacuum forming.
  • the heating cylinder is provided with a vent, air enters the heating cylinder from there and is oxidized. Since there is a risk of discoloration and burning, nitrogen gas is also introduced from the vent part, vent opening, etc. to prevent oxidation of the molten resin inside the heating cylinder.
  • Another port is provided, and an environmentally degradable component in the form of a slurry, which will be described later, is introduced into the heated and melted thermoplastic resin and kneaded.
  • the produced slurry may be a maleic acid-modified PP solution (including aqueous systems) if the thermoplastic resin is an olefin resin such as PP, ABS, HIPS, etc.
  • a solution including water-based ones of styrene-modified acrylic resin is used.
  • the slurry When producing pellets by melting and kneading the slurry using a short-shaft or multi-shaft extruder, the slurry is continuously pumped into the molten resin in a heating cylinder using a plunger pump or the like. and melt and knead it.
  • a certain amount of slurry is injected into the molten resin in the heating cylinder of the injection molding machine from the start of light weight to the end of the process. This is called capacity control.
  • capacity control In the case of injection molding machines, please refer to the literature ⁇ S&T Publishing Co., Ltd.
  • PP an olefin resin
  • the resin for example, mixture 001, pellets 001
  • any resin that can be used may be any resin that exhibits thermal visibility.
  • PE polymer alloy, polymer blend
  • PE a single PE item. Since the above-mentioned PP was in the form of pellets, it was mixed with cellulose powder and made into pellets to obtain Pellet 001.
  • ABS powder-like products are commercially available and can be obtained, so the inventor used cellulose powder. and ABS powder using a tumbler, Henschel mixer, etc., are put into the hopper shown in the fifth embodiment without pelletizing, and the powder is mixed without pelletizing.
  • the mixture may be injection molded as it is.
  • foam molding and GCP using alcohols are also possible.
  • ester resins such as PET, vinyl chloride, and polystyrene may also be used.
  • biodegradable plastics such as polylactic acid.
  • a polymer alloy or a polymer blend of these resins may be used.
  • liquids such as alcohols have been exemplified as means for increasing the fluidity of the resin
  • liquefied carbon dioxide gas may also be used. If you slightly modify the back melter shown earlier and mix solid carbon dioxide gas (dry ice) in it and put it into the heating cylinder, the dry ice will sublimate at the temperature of the heating cylinder and be added as a foaming gas. It is also possible to increase the amount and use it as a fluidity improver or a dispersant.
  • the means for carrying out the invention is shown using cellulose powder, but the present invention is not limited to cellulose powder.
  • Environmentally degradable components other than the cellulose powder shown in the present invention are also easily oxidized by oxygen, causing discoloration and burns. good.
  • Embodiment 21 (Support on PP etc. using maleic acid modification etc.) If the bonding force between an environmentally degradable component such as cellulose powder and PP is low, a substance that has a strong bonding force with PP, such as a surface of the environmentally degradable component (e.g. cellulose powder, paper powder, etc.) Halogenated polyolefins such as maleic acid-modified PP, chlorinated PP, and chlorinated PE are used.
  • an environmentally degradable component such as cellulose powder and PP
  • a substance that has a strong bonding force with PP such as a surface of the environmentally degradable component (e.g. cellulose powder, paper powder, etc.)
  • Halogenated polyolefins such as maleic acid-modified PP, chlorinated PP, and chlorinated PE are used.
  • the environmentally degradable component is in the form of powder, to eliminate the risk of dust explosion, place the environmentally degradable component in a Henschel mixer that has been replaced with an inert gas such as nitrogen gas, and then add malein.
  • Add acid-modified PP emulsion type with maleic acid-modified PP emulsified, solvent type with solvent dissolved), etc., and then stir to mix the environmentally degradable components and maleic acid-modified PP, etc. .
  • the obtained mass of environmentally degradable components containing maleic acid-modified PP is crushed to a particle size (size) that can be melted and kneaded with PP resin, and mixed with PP to form pellets or sheet molding. do.
  • Poval polyvinyl alcohol
  • a solvent can also increase the bonding strength between environmentally degradable components and binder resins such as PP, ABS, HIPS, etc.
  • the method of use (implementation) is the same as in the case of the maleic acid-modified PP solution and the styrene-modified acrylic resin solution shown above.
  • a solution of maleic acid-modified PP and styrene-modified acrylic resin is injected into a heating cylinder and mixed with environmentally degradable components and binder resins such as PP and ABS at the stage of melting and kneading.
  • Water in a solution water in the case of an emulsion
  • organic solvent in a solvent system etc. also act as a fluidity improver.
  • other additives such as pigments and dyes may be injected at the same time.
  • the flame retardant may be injected as a liquid using a solvent, water, or the like.
  • the environmentally degradable components and binder resin should be placed in a tumbler that has been subjected to explosion-proof treatment (replacement with non-gas, sealing with inert gas).
  • the mixture is mixed, pelletized using an extruder, formed into a sheet, or placed in the hopper of an injection molding machine and directly injection molded.
  • a fluidity improver such as alcohol, and these liquids are injected into the molten resin in the heating cylinder using a liquid injection device.
  • Low-molecular PE (WAX) polycaprolactone or a copolymer (resin) of polylactic acid and polycaprolactone may be mixed with PP or ABS. In this case, the viscosity of the molten resin decreases significantly.
  • the tenth embodiment shows specific means for producing pellets using mixture 001 using a single-screw extruder.
  • the kneading performance is inferior to that of a multi-screw (for example, two-screw) extruder.
  • a single-screw extruder it is possible to add dalmage to the screw to improve kneading performance.
  • kneading performance can be improved by increasing L (screw length)/D (screw diameter).
  • the kneading performance can be improved by making the screw flight a double flight. It is also possible to improve kneading performance by lengthening the compression zone.
  • the manufactured pellets are semi-finished products (raw materials/materials for manufacturing molded products), and the pellets are injection molded, extruded, etc. Since the pellets are heated and melted and kneaded again in the step , it is not necessary to use two extruders with high kneading properties. The pellets are heated, melted and kneaded again during the injection molding, extrusion molding, etc. stage, so environmentally degradable components such as cellulose powder are simply added to the air in the workplace for the purpose of facilitating workability. Pelletize it so that it does not dance as much as possible. There is no need for the environmentally degradable components to be uniformly mixed in the pellet; it is sufficient that the pellet maintains its shape.
  • a single-screw extruder is sufficient, and a flight screw may be sufficient, but if you want to improve kneading performance even a little, you may use a double flight (an additional flight is provided between flights).
  • a flight screw may be sufficient, but if you want to improve kneading performance even a little, you may use a double flight (an additional flight is provided between flights).
  • high kneadability is desired, use dullage (for example, mud type) as an environmentally degradable component, and if discoloration or burning of the thermoplastic resin occurs, use an inert gas such as nitrogen gas or carbon dioxide gas.
  • an inert gas such as nitrogen gas or carbon dioxide gas.
  • it is sufficient to seal the inside of the hopper and/or the inside of the heating cylinder and replace flammable gases and auxiliary gases, such as oxygen, that cause discoloration and burns with inert gases. explained.
  • a shut-off nozzle is used to increase the back pressure during plasticization and metering.
  • the mechanism of Dynamelter (trade name) manufactured by Meiki Seisakusho Co., Ltd. (a subsidiary of Japan Steel Works, Ltd.)
  • a manufacturer of injection molding machines a manufacturer of injection molding machines
  • the kneading performance will be even higher.
  • extrusion molding depending on the shape of the die, if you reduce the discharge rate and increase the back pressure inside the heating cylinder, you can use the sub-flight screw as mentioned earlier, even if you do not use a multi-screw extruder. Pelletization, sheet molding, and profile extrusion molding are fully possible with a single-screw extruder using a screw equipped with a durmage.
  • the cellulose powder and paper powder of the present invention have a low density and contain a large amount of air (containing about 21% oxygen).
  • air can escape from the hopper by increasing the back pressure a little, but this is not the case with products containing environmentally degradable ingredients.
  • the air (actually oxygen in the air) is an environmentally degradable component, and a large amount of air is contained in the gaps. If it is mixed with thermoplastic resin and plasticized, discoloration and burning will occur. To solve this problem, replace the air (oxygen) with an inert gas.
  • This material is put into the hopper of the extruder, and the inside of the hopper is also replaced with inert gas in advance to prevent discoloration and burning.
  • the vaporized vapor is melted into the molten resin and/or finely dispersed to lower the viscosity of the molten resin. Therefore, the dispersibility of environmentally degradable components in the heated and molten thermoplastic resin is reduced. It will be enhanced. Even if nitrogen gas is introduced in addition to the vaporizable substance, the viscosity of the molten resin is lowered, so that the environmentally degradable components are uniformly dispersed in the thermoplastic resin. Carbon dioxide gas may be used instead of nitrogen gas. Liquefied carbon dioxide gas may also be used. Furthermore, these may be combined.
  • Substances that thermally decompose at the temperature inside the heating cylinder to generate gas such as hydrogen carbonates represented by sodium hydrogen carbonate (baking soda, acidic sodium carbonate, NaHCO 3 ), ADCA (azo dicarboxylic acid amide, azo dicarboxylic acid) So-called solid foaming agents such as azo compounds such as amide), nitrosates such as DCP (di-nitroso-pentamethylenetetramine), and hollow air spheres such as Advancel (trade name) are combined with the environmentally decomposed components and heat.
  • the foaming agent may be used in a mixture with a plastic resin. Dry ice (solid carbon dioxide gas) may be placed in the mixture of the environmentally decomposed component and the thermoplastic resin. Dry ice may be continuously introduced into the heating cylinder by opening a window therein using a feed screw.
  • the molten resin that has been made foamable using gaseous, liquid, or solid foaming agents in this way naturally becomes somewhat foamed pellets (with foam cells inside), but the next step is processing. Since the pellets are remelted and re-kneaded during, for example, extrusion molding or injection molding, the environmentally degradable components do not need to be uniformly dispersed in the initial pellets. Even if foam cells are present inside the pellet, there is no serious problem.
  • Embodiment 24 (Means for producing pellets by supporting) Although the method of producing pellets containing environmentally degradable components using a single-screw or multi-screw extruder has been described, it is necessary to melt and knead the environmentally degradable components and thermoplastic resin to form pellets. There is no.
  • An environmentally degradable component may be supported on the surface of a thermoplastic resin pellet. Note that “supporting” refers to coating the surface of another substance (in the present invention, in the form of thermoplastic resin pellets) using some kind of binder or adhesive component.
  • the adhesive component is preferably a resin that is compatible (soluble) with the thermoplastic resin.
  • halogenated polyolefins such as chlorinated PP, chlorinated PE, and maleic acid-modified PP are preferred.
  • polyvinyl alcohol and the like polyvinyl alcohol and the like.
  • a styrene resin such as ABS
  • dope cement in which AS or ABS is dissolved using n-butanone ⁇ methyl ethyl ketone (MEK) ⁇ , ethyl acetate, etc. can be used.
  • MEK methyl ethyl ketone
  • HIPS PS or dope cement produced in the same way as HIPS can be used.
  • Styrene-modified acrylic resin is compatible (soluble) with both ABS and HIPS, so styrene-modified acrylic resin varnish, which is a raw material for paint, is a coating agent used for supporting both solvent-based and water-based (emulsion-based) materials. It can also be used as For polyamide resins such as 6-nylon (trade name) and 6,6-nylon (trade name), methoxymethylated polyamide varnish can be used.
  • the supported materials do not contain environmentally degradable components in the pellets, like pellets manufactured using single-screw or multi-screw extruders, kneaders, pressure kneaders, Banbury mixers, etc. Although it is only on the surface, it is remelted during injection molding and extrusion molding (sheet molding) as described above, so it is best to disperse it as uniformly as possible at this stage.
  • sheet molding sheet molding
  • high kneading properties can be obtained by using a multi-screw extruder, but in the case of a single-screw extruder, a screw with high kneading properties is used, such as by providing a dullage as described above. Just do it.
  • thermoplastic resin In addition to the environmentally degradable component, thermoplastic resin, and coating agent, pigments such as titanium oxide, dyes, etc. may be added using the above-mentioned supporting means.
  • this supporting means is suitable for producing materials for powder metallurgy.
  • Metal powder is supported on the surface of a thermoplastic resin pellet, and the pellet is injection molded to create a shape (molding) in an inert gas atmosphere, such as nitrogen gas. Fire it with If alumina, magnesia, zirconia, etc. are used instead of metal powder, they can be used as materials for producing ceramics (fine ceramics). Similar to the powder metallurgy, ceramic powder is supported on the surface of a thermoplastic resin, molded (shaped) by injection molding, etc., and fired in a nitrogen gas atmosphere.
  • the pellets supported on the thermoplastic resin surface are impregnated in a liquid, for example, a solution containing a dispersant, dried if necessary, and then extrusion molding, injection molding, etc. are performed.
  • a liquid for example, a solution containing a dispersant
  • the environmentally degradable component in the form of a slurry is introduced not through a hopper but through a separate opening provided in the heating cylinder, and is mixed with the molten resin in the heating cylinder and kneaded.
  • the material may be inserted through a separate opening provided in the heating cylinder, similar to the extruder. In these cases, the volume (amount to be added) of the molten resin is controlled.
  • an extruder When molding a sheet using pellets of the resin containing environmentally degradable components of the present invention, an extruder is used.
  • the extruder may be a single-screw extruder, but it is better to use a multi-screw extruder, for example, the rotation direction is the same or different (different), since the environmentally degradable component is thermoplastic.
  • the above-mentioned replacement with an inert gas, such as nitrogen replacement in the hopper may be performed.
  • the environmentally degradable components in the pellets do not need to be so uniformly and finely dispersed. It may be pelletized using a single-screw extruder. In this case, change the single-screw extruder screw to double flight. Pellets containing environmentally degradable components can be sufficiently produced using a single-screw extruder if equipped with a dulmage or the like.
  • the environmentally degradable component first create pellets containing about 30% by weight of the environmentally degradable component using a single shaft, and use a supporting means to increase the content of the environmentally degradable component by 30% by weight.
  • a varnish such as maleic acid-modified PP, styrene-modified acrylic resin, Poval, etc. containing 30% by weight is used, the pellet will contain 30% by weight, and the surface will contain 30% by weight. It is possible to produce pellets for use in sheet molding and injection molding, which contain 60% by weight of environmentally degradable components.
  • Figure 5 shows a raw material for a resin whose main component is a thermoplastic resin containing an environmentally degradable component by mixing an environmentally degradable component into the molten resin in the heating cylinder and melting and kneading it, for example, to be used in injection molding. It is a figure in which a sheet used for resin pellets, vacuum forming, and pressure forming is manufactured. Devices with numbers 185, 198, etc. The amount fed into the heating cylinder 192 by the weight feeder can be controlled by the rotation speed of the feed screw numbered 198. FIG. 5 shows a specification in which the amount of each material is measured and fed into the number 192 before being put into the number 192.
  • reference numeral 185 is a hopper into which environmentally degradable components such as pulp powder and paper dust are placed.
  • Reference numeral 186 is a hopper into which a thermoplastic resin for melting and kneading environmentally degradable components is placed.
  • the environmentally degradable component in the number 185 and the thermoplastic resin in the number 186 are in the number 192, and the screw number 193
  • the plastic resin is kneaded by rotation and heated by a heater (not shown) installed at 192, and the plastic resin melts, so the environmentally degradable component enters the molten thermoplastic resin and is heated by a heater (not shown) installed at 192. It is dispersed by the rotational force and pushed forward.
  • the arrow numbered 189 indicates that the environmentally degradable component is pushed out by the rotation of the subscrew 198.
  • the number 196 means that the thermoplastic resin in the number 192 advances forward by the rotation of the number 193.
  • the amount introduced into the heating cylinder can be adjusted by the rotation speed of each screw 196, 197, and the content of the environmentally degradable component in the thermoplastic resin is determined by this rotation speed.
  • This is called a weight control device, weight control feeder, weight feeder, etc.
  • FIG. 6 shows an apparatus that incorporates the hopper 185, reference numeral 198, etc. of FIG. 5 and introduces an environmentally degradable component into the molten resin that has been previously melted. Compared to FIG. 5, it is further away from the hopper numbered 186. Similarly to FIG. 5, the input amount is controlled by the rotation of the feed screw, numbered 198.
  • ceramic powders, metal powders, etc. can also be added to the molten resin to produce pellets. . In this way, using the apparatus shown in FIGS.
  • the environmentally degradable component, ceramic powder, or metal powder is mixed into the thermoplastic resin, and the pellets are made of the respective materials (environmentally degradable).
  • the pellets are made of the respective materials (environmentally degradable).
  • As a means of increasing the content of environmentally degradable components, ceramic powders, metal powders, etc. it is possible to support environmentally degradable components, ceramic powders, metal powders, etc. in each pellet. It is possible to increase the content (concentration in a broad sense) of environmentally degradable components, ceramic powder, metal powder, etc. contained in the material.
  • reference numeral 194 indicates a vent.
  • Reference numbers 187 and 188 indicate that inert gas is introduced into the hipper to prevent environmentally degradable components from discoloring or burning.
  • Reference number 195 is the die of the extruder, from which the strands come out and can be hot cut (not shown) to produce pellets containing environmentally degradable components. However, in this case, it is also necessary to prevent discoloration and burning caused by inert gas. Instead of hot cutting, it is also possible to cut by air cooling, in which case the material is cooled and solidified in an inert gas atmosphere such as nitrogen gas, and then cut into pellets. In the same way as sheet pellets, it can be extruded from a die, cooled in air, and if necessary cooled in an inert gas to prevent discoloration and burning.
  • the environmentally degradable component contained within the number 185 may be used as a powder as it is. It may be used by moistening it by adding water, alcohol, etc. You may add a large amount of liquid to make a slurry.
  • Reference numeral 198 can also be used to fill the heating cylinder with gas or/and liquid, thereby lowering the melt viscosity of the resin and making it easier for environmentally degradable components to disperse into the thermoplastic resin.
  • a device that uses small screws (subscrews, feed screws) at the key points 197 and 198 in Figures 5 and 6 to feed a stable amount into the heating cylinder of a molding machine is manufactured by Meiki Co., Ltd., for example. Dynamelter (product name) manufactured by Seisakusho is similar in structure and function.
  • An FCM device Frarrell continuous kneader manufactured by Nishida Giken Co., Ltd. may be used.
  • thermoplastic resins as main components include styrene resins such as PS, HIPA, and ABS, olefin resins such as PE and PP, ester resins such as PET, polyamide, and vinyl chloride. It is possible to use any resin that shows this.
  • main component refers to a component contained in the resin in an amount of 10% or more by weight or volume. The terms “main component” and “constituting” are roughly synonymous; for example, “the thermoplastic resin that makes up the pellet" means that the pellet contains 10% or more of the thermoplastic resin. .
  • each molded product scheduled for recycling using analytical equipment such as GC-MASS, FT-IR, or fluorescent X-ray analysis before recycling it. Actually it's not possible.
  • This barcode, etc. includes the type and amount of additives in the resin that composes the molded product mentioned above, the molecular weight distribution of the resin, the number average molecular weight, the grafting rate if graft copolymerization is being performed, and the amount of the grafted monomer.
  • the type and amount of flame retardant, flame retardant aid, and weight of the molded product are recorded. This barcode is read during the recycling stage, and the read data is entered into a computer before being crushed.
  • the obtained pulverized material contains information necessary for regeneration (recycling), so it is possible to create new resins using recycling by determining the amount of resin and resin additives added to the pulverized material. Can be manufactured. In this way, the weight of the molded product collected from the market, the type and amount of resin contained in the molded product, the type and amount of additives, etc. can be determined reliably and accurately. It is possible to easily and reliably improve and modify resins using
  • the type of resin mentioned above for example the ratio of An (acrylonitrile, vinyl cyanide) to styrene (vinyl phenylation) in AS resin (An ratio), and the type of rubber if graft rubber is added.
  • the amount, size distribution, type and amount of additives, etc. are secrets of manufacturers who manufacture and sell molding materials, and are not easily disclosed. Since the resin used for recycling is not limited to just one company, it is necessary to encrypt this information using prime numbers, etc., to ensure that it is never leaked to outsiders. Manufacturing new resins using recycled materials uses AI and allows AI to determine the desired new resin formulation. Of course, whether the new resin calculated by AI satisfies the required physical and chemical properties will be confirmed by actually molding test pieces such as dumbbells.
  • Figure 4 shows a QR code 206 stamped on an actual molded product to be recycled (actually stamped on the mold).
  • a QR code (number 206) with the information necessary for recycling written on the molded product is engraved on the mold, and the mold is used to process the injection molded product. If the QR code is read with a barcode reader, it can be recycled.
  • Information necessary for implementation (weight of the molded product, manufacturer name, product name, grade of the resin used to produce the molded product, type of resin, type and amount of additives, recycling information regarding the paint if it has been painted) Be able to reliably read information necessary for Figure 4 shows an injection molded product containing 20% by weight of environmentally degradable components and mainly composed of thermoplastic resin PP, which was molded using an injection mold with a QR code engraved on it. By reading this QR code, sending it to a PC, etc., and comparing it with a database, it can be easily recycled. Since you can know the content of environmentally degradable components, you can easily and quickly scan a QR code to determine whether it can be burned and recovered as thermal energy or used as a raw material for manufacturing recycled resin materials.
  • the inventor uses a resin backup ring (numbered 200) made of, for example, PEEK (polyetheretherketone) at the bottom of the load-type O-ring 201, as shown in FIG.
  • PEEK polyetheretherketone
  • FIG. 1 A detailed explanation of the weighted O-ring can be found in the document ⁇ S&T Publishing Co., Ltd., October 20, 2022, 1st edition, 1st printing, ⁇ Preparation for mass production of foam molding, blow molding, and pressure molding, and environmental burden. Explanation of specific means of reduction'' written by Yasuki Suzuki and Minoru Shinbo ⁇ .
  • Figure 7 is a photo of the parts that seal the ejector pin, inclined core pin, etc.
  • FIG. 65 is a load-type O-ring
  • FIG. 202 is a spacer for adjusting the thickness.
  • FIG. 8 is an assembly diagram showing a combination of a load type O-ring numbered 201, a backup ring numbered 200, and a spacer numbered 202. This combination further enhances the sealing effect and allows for sufficient sealing of high-pressure gas.
  • FIG. 9 is a schematic diagram showing means for incorporating and sealing the load-type O-ring 201 into a mold.
  • Number 202 indicates an ejector pin and an inclined core pin.
  • the number 203 indicates a mold or a mold insert, and the number 204 also indicates a mold or a mold insert.
  • high-pressure gas such as a DC motor, an AC motor, a servo motor, a hydraulic pump, and a pneumatic cylinder (such as a gas booster manufactured by Haskell, USA).
  • Haskell gas booster When using a servo motor, there are great benefits such as simple equipment, energy savings, and easy maintenance. However, the case of a Haskell gas booster with a compression ratio of 30/75 will be explained as an example. If the central air cylinder of Haskell's bass booster is a servo motor, the servo motor stops at the position where the first stage cylinder is lowered to the end, or when the cylinder is a two stage compression cylinder. It is preferable to stop the servo motor when it reaches the last position, and in this case, the servo motor remains at the stopped position due to the pressure of the high pressure gas in one cylinder. If necessary, the servo motor may be provided with a mechanical lock (for example, a mechanical lock on an injection molding machine).
  • a mechanical lock for example, a mechanical lock on an injection molding machine.
  • the present invention is applied to molded products using resins with low environmental impact.
  • thermoplastic resin and environmentally degradable components 1. These are resin pellets containing 51% W/V pulp powder and using PP as a binder resin. 185. Hopper. 186. Hopper. 187. It was shown that discoloration and burning of thermoplastic resin and environmentally degradable components could be slightly reduced by sending an inert gas (for example, nitrogen gas) into the hopper 185. 188. It has been shown that discoloration and burning of thermoplastic resin and environmentally degradable components can be slightly reduced by feeding an inert gas (for example, nitrogen gas) into the hopper 186. 189. Arrow indicating that material is fed by rotation of feed screw 198. 190. An arrow indicating that the material is fed by the rotation of the feed screw 197. 191.
  • inert gas for example, nitrogen gas
  • the interior is partitioned by a circuit that feeds the respective materials extruded from the feed screws 197 and 198 provided at the top of the heating cylinder 192 into the numbered 192, and the material numbered 185 and the numbered 186 are separated. It is sent separately from the other materials. There is no partition and the mixture may be mixed inside this 191.
  • 192. Extruder heating cylinder. 193.Screw inside the heating cylinder of the extruder. 194. A vent port for removing gas generated within the heating cylinder 192. Inert gas may be introduced from this part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は環境分解成分を用いて製造した環境樹脂の最適な製造法と、其の樹脂を用いた最適な加工法を提供することを課題とする。 本発明は、環境樹脂を用いた射出品、押出成形品を製造する手段を提供する。

Description

環境分解性成分を含有した樹脂成形品および樹脂ペレットの製造方法、樹脂ペレットの成形装置、樹脂ペレット
 本発明は、自然環境の中で、分解する成分を含有する樹脂の製造方法、及び環境分解成分を含有する樹脂を用いた成形品に関するモノで、環境負荷を低減し、環境問題を解決する手段を提供する。
 特許文献1には、50μm以上150μm以下の微細化された紙粉を、熱可塑性樹脂で結着させた紙粉含有の成形加工用樹脂の製造方法が示されている。然しその紙粉含有の成形加工用樹脂を用いた成形加工、例えば射出成形の中の発泡成形、中空成形、圧空成形等に関しての記載は一切ない。
 樹脂の混練性を高める為に紙粉にはシランカップリング剤、ステアリン酸等の高級脂肪酸、マレイン酸変性のポリオレフィン、オレフィン-無水マレイン酸共重合体を例示されている。マレイン酸変性のポリオレフィン、オレフィン-無水マレイン酸共重合体は配合予定のオレフィン系樹脂とは高い相容(溶)性を示すが、具体的な実施の手段が示されていない。
 特許文献2には、特許文献1と同様に微細紙粉(但し平均粒径が10μmから50μmと変更されている。)を同じ様に熱可塑性樹脂を用いて結着させる事が開示されている。特に無水マレイン酸基を有する化合物を0.3~5重量部含む事を開示している。無水マレイン酸基を有する化合物を含有する事で相容(溶)性が高まるとの記述があるが、無水マレイン酸基を有する化合物をどの様にして使用するかの具体的な説明はない。特許文献から、2軸の押出機に紙粉と、例えばポリオレフィンと、無水マレイン酸基を有する化合物を単に入れ込み、ペレット化する工程しか示していない。然もマレイン酸基を有する化合物は示されているが、塩素化ポリオレフィンに代表されるハロゲン化ポリオレフィンの開示はされていない。
 特許文献3には、平均粒径が10μmから100μmの微細紙粉を含む樹脂の製造方法が記載されている。特許文献2と同様にマレイン酸基を有する化合物の記載は有る。
特許第4904389号公報 特許第5683529号公報 特許第55991868号公報 特許文献3には、平均粒径が10μmから100μmの微細紙粉を含む樹脂の製造方法が記載されている。特許文献2と同様にマレイン酸基を有する化合物の記載は有る。
 プラスチック成形品の環境汚染が問題となる昨今、自然界で容易に分解する環境分解性成分を主成分とする成形用樹脂の製造方法と、其の樹脂を用いた成形品の加工法を提供する。
課題を解決するため(為)の手段
発明の構成、作用、効果
 (構成)
 環境分解物質とマレイン酸変性のポリオレフィンとが混ざり合い、環境分解物質の粉体表面にマレイン酸変性のポリオレフィンが担持されている。
 (作用・効果)
 環境分解物質の粉体表面にマレイン酸変性のポリオレフィンが担持されているので、マレイン酸変性のポリオレフィンは、ポリオレフィンと高い相容(溶)性を示すので、前記マレイン酸変性のポリオレフィン含有の環境分解物質と、ポリオレフィンとを単軸、又は多軸押出機を用いて溶融混錬して得られるポリオレフィンを用い、環境分解物質を含む成形加工用樹脂は、マレイン酸変性のポリオレフィンによって環境分解成分と、ポリオレフィンとは高い相容(溶)性を示すので、得られる前記成形用樹脂の物理的な強度は、マレイン酸変性のポリオレフィンを用いない場合より高くなる。
 (構成)
 環境分解物質と、マレイン酸変性のポリオレフィンと、マレイン酸変性のポリオレフィンと相容(溶)性を持つ、ポリオレフィンとからなる成形加工用樹脂。
 (作用・効果)
 ポリオレフィンと相容(溶)性をもつマレイン酸変性のポリオレフィンが、環境分解成分の表面に担持されているので、前記成形加工用樹脂を用いて、成形加工した樹脂成形品は使用に耐える強度を持つ成形品が得られる。
 (構成)
 環境分解成分と、マレイン酸ポリオレフィンと、ポリオレフィンとから成る樹脂成形品。
 (作用・効果)
 成形用樹脂のポリオレフィンと高い相容(溶)性を示すマレイン酸変性のポリオレフィンが、環境分解成分とポリオレフィンとを結着させるので、強度の高い成形品が得られる。
 (構成)
 マレイン酸変性のポリオレフィンを、同じ様にポリオレフィンと高い相容(溶)性を示す塩素化ポリオレフィンにした。
 (作用・効果)
 塩素化ポリオレフィンは、ポリオレフィンと高い相容(溶)性を示すので、塩素化ポリオレフィンが、環境分解成分とポリオレフィンとを結着させるので、強度の高い成形品が得られる。
 (構成)
 前記請求項1乃至請求項3に記載のマレイン酸変性のポリオレフィンを、同じ様にポリオレフィンと高い相容(溶)性を示す塩素化ポリオレフィンにした。
 (作用・効果)
 塩素化ポリオレフィンは、ポリオレフィンと高い相容(溶)性を示すので、塩素化ポリオレフィンが、環境分解成分とポリオレフィンとを結着させるので、強度の高い成形品が得られる。
 (構成)
 環境分解成分と、結着樹脂をスチレン系樹脂、又はスチレン系樹脂を主成分とするポリマーアロイ、ポリマーブレンドに置き換えた。
 (作用・効果)
 スチレン系樹脂、又はスチレン系樹脂を主成分とするポリマーアロイ、ポリマーブレンドにしたので、環境分解成分とスチレン系樹脂、又はスチレン系樹脂を主成分とするポリマーアロイ、ポリマーブレンドとを結着させるので、強度の高い成形品が得られる。
 (構成)
 環境分解性成分を10W/V%以上含む樹脂成形品の製造方法であって、環境分解性成分と、熱可塑性樹脂とを、混合装置を用いて混合する工程と、環境分解性成分と熱可塑性樹脂との混合物を、溶融混練装置を用いて加熱溶融混練する工程と、前記混合物を押し出す工程と、前記混合物を冷却する工程と、を含む。
 (作用・効果)
 環境分解性成分を含む、熱可塑性樹脂を主成分とする樹脂成形品の製造方法で、環境分解性成分を含むので、自然界では微生物、光、温度、水などによって分解などするので、該環境分解性成分含有の成形材料は、環境負荷低減の効果を奏する。予め混合装置を用いて混合した、環境分解性成分と、熱可塑性樹脂と混合物を、加熱溶融して混錬する工程で、予め混合されているので、押し出し機などの加熱溶融混錬装置に投入して、加熱溶融混錬を行う場合に、混錬性の高い(強い)装置を用いなくても、熱可塑性樹脂中に環境分解性成分を容易に分散する事が出来る。
 (構成)
 単軸押し出し機のスクリューには、サブフライト、又は/及びダルメージが組み込まれている。
 (作用・効果)
 2軸の押し出し機よりも安価な単軸の押し出し機の混錬性を高める為に、スクリューにサブフライト、又は/及びダルメージを組み込んだ強混錬性を持たせた単軸の押し出し機。
 (構成)
 溶融混練された前記混合物において、前記環境分解性成分が前記熱可塑性樹脂中に分散されており、前記混合物が固化前の溶融状態のままで空気中に押し出される。溶融樹脂を、空気中で冷却固化して、カットして製造する。空気中でのカットの工程は、ダイ(押し出し機の金型)から出た瞬間に、ロータリーカッターでカットする、所謂ホットカットの手段と、又はダイから出た溶融樹脂(ストランド)を、コンベアー(細かい網のコンベアーでも可)上で、気体、例えば空気を吹きかけての冷却固化をしてから、カットする所謂コールドカットとの方法(手段)で製造する。
 (作用・効果)
 環境分解性成分は吸水性が高いので、通常の樹脂のペレットの製造時の様に、水槽にストランドを没し、冷却・固化してからのカット(ペレット化)が困難なので、水を使用しないで、ホットカットするか、又は空気中で冷却・固化完了させてからカットして製造する。
 (構成)
 前記混合装置の内部を予め不活性ガスで置換する工程と、前記不活性ガスで置換した前記混合装置内へ前記環境分解性成分と前記熱可塑性樹脂とを投入する工程と、前記混合装置内に不活性ガスを再び入れて、不活性ガスで封止する工程と、をさらに有する。空気中の酸素によって酸化されて変色・焼けなどを起こしやすい環境分解性成分と、バインダーである熱可塑性樹脂とを混合装置で混ぜ合わせる際に、予め混合装置内を不活性なガスで置換して於いてから、必要量の環境分解性成分を入れて、バインダーである熱可塑性樹脂を入れて、混合前に再び中に不活性なガスを入れて、内部を再び不活性ガスで置換して、必要に応じては不活性ガスを入れながら(封止しながら)混合する。
(作用・効果) 
 混合装置内を不活性なガスで置換する事で粉塵爆発の危険性は回避され、混合された環境分解性成分、熱可塑性樹脂の隙間は、不活性ガスで置換されているので、加熱して溶融混錬の段階で、環境分解性成分、バインダーである熱可塑性樹脂の変色・焼けなどを少なく出来る作用・効果を奏する・
 (構成)
 前記混合物を、前記溶融混練装置に移す工程と、溶融混練装置内に移された前記混合物の隙間に入り込んだ空気を溶融混練の前に不活性ガスで置換する工程と、をさらに有し、
 前記混合物は不活性ガス雰囲気の中に押し出されて冷却される。溶融混錬の前に、溶融混錬装置に移し、溶融混錬の前に、再び環境分解性成分と、バインダーである熱可塑性樹脂との隙間に入り込んだ空気(酸素が含有されている。)を、真空引きをして、減圧をして、空気を除去して、再び不活性ガスを入れて、大気圧、或いは大気圧以上に加圧して、隙間を不活性なガスで置換してから、加熱筒内へ投入してから、加熱して、溶融混錬して、環境分解性成分が熱可塑性樹脂中に分散され、熱可塑性樹脂によって結合(バインダー)された、前記溶融樹脂を金型装置から押し出す時に、今(未)だに冷却・固化が完了せず溶融状態のある環境分解性成分が熱可塑性樹脂中に分散された溶融樹脂を、金型装置から押し出す際に、前記熱可塑性樹脂が押し出される雰囲気は不活性なガス中に押し出されて、不活性なガスの雰囲気中で冷却・固化してからペレタイザーでペレット化される。尚該溶融樹脂は、不活性なガスの雰囲気(不活性なガスで満たされた空間の意味。)中に金型装置から押し出し、冷却・固化せずにホットカットする場合には、前記ホットカットがなされ、ペレット化したペレットを冷却・固化が完了するまでは、該ペレットは不活性なガス中で冷却がなされる。
(作用・効果)
 溶融混錬の前に、酸素が含有する空気を除去してから、溶融混錬して、溶融混錬した樹脂は、冷却・固化が完了{空気に触れても変色などが起こらない温度まで冷却する。但し空気によっての変色が起こらなくても、ペレットの温度が高いと互いに融合(くっついてしまう)してしまうので、融合がしなくなるまでの間}させる。加熱して溶融混錬して、ペレット化するまで不活性なガスの雰囲気で行われるので、変色・焼けのないペレットが得られる。
 (構成)
 前記混合物を加熱溶融混練する工程において、前記溶融混練装置の加熱筒の温度、又は/及び加熱筒内の溶融融樹脂の温度によって気化する物質を加熱筒内に注入する工程と、前記加熱筒の温度、又は/及び加熱筒内の溶融融樹脂の温度によって前記物質を気化させる工程と、をさらに有し、前記混合物は不活性ガス雰囲気の中に押し出されて冷却される。溶融混錬の段階で加熱筒内へ加熱筒の温度、加熱筒内の溶融樹脂の温度によって気化する液体を注入(添加)して、気化した前記物質の蒸気は、加熱筒内の溶融樹脂中に入り込んで、溶融樹脂の粘度賀下がる。注入される液体の量は、加熱筒内で溶融する樹脂の容量に対して一定量の容量の制御されている。金型装置から押し出された溶融樹脂は、不活性なガスの中に冷却・固化が完了まで維持され、冷却・固化が完了した時点でカットされる。或いはホットカットされてから、不活性なガス中で冷却・固化される。
(作用・効果)
 気化性の液体を加熱筒内の溶融樹脂中に入れるので、溶融樹脂の粘度が下がり、混練性が高くなると言う作用・効果を奏する。又液体ではなく気体、例えば窒素ガス、炭酸ガス、液化炭酸ガスでも、重曹、ADCAなど化学発泡剤、アドバンセル(商品名)、固体の炭酸ガス(ドライアイス)を用い、加熱筒内で起泡され加熱筒内の溶融樹脂に発泡性を付与すれば、流動性は向上する。
 (構成)
 樹脂成形品を、不活性ガスで置換された成形装置へ投入し、不活性なガスで封止しながら成形加工を行う工程を有する。成形装置内を不活性なガス、例えば窒素ガスで置換して、必要に応じて不活性なガス、例えば窒素ガスで封止した、成形装置を用いて、環境分解性成分含有の熱可塑性樹脂の成形加工を行う。
(作用・効果)
 成形加工時に成形加工機の中(ホッパー内、加熱筒内)、射出成形加工に於いては金型のキャビティ内などを不活性なガス、例えば窒素ガスで置換をして、封止をしているので、変色・焼けのない成形品が得られる。
 (構成)
 樹脂成形品を用いてガス・カウンター・プレッシャー法により発泡成形を行う工程を有し、不活性ガスを前記ガス・カウンター・プレッシャー法の圧気ガスに使用する。変色・焼け発生の危険性のある環境分解性成分含有の熱可塑性樹脂を用い、発泡成形を行う際に、表面を綺麗にして、平滑にする手段のGCPに於いて金型内の圧気に用いる気体を、初めはエアーで圧気してから、前記エアーの圧力以上の不活性ガスを用いて再圧気して、初めのエアーの一部、全部を不活性なガスで置換する。始めから不活性なガスを用いてGCPを行っても良い。
(作用・効果)
 GCPの工程に於いて、シール金型内を予め与圧するガスを、不活性なガスによって置換するので、変色・焼けの生じやすい、環境分解性成分含有の熱可塑性樹脂を用いても変色・焼けは生じない。
 (構成)
 樹脂成形品を用いて、一般成形、中空成形、圧空成形のいずれかの射出成形加工を行う工程を有し、予め金型のキャビティ内を不活性ガスで置換してから射出成形加工をする。変色・焼け発生の危険性のある環境分解性成分含有の熱可塑性樹脂を用いて、一般成形、中空成形、圧空成形の何れかを行う際に、予め金型のキャビティ内の不活性ガスを使用して、不活性ガスで置換し、不活性ガスを用いて封止して、射出成形加工を行う。
(作用・効果)
 変色・焼け発生の危険性のある環境分解性成分含有の熱可塑性樹脂を用いて、一般成形、中空成形、圧空成形の何れかを行う際に、予め金型のキャビティ内の不活性ガスを使用して、不活性ガスで置換し、不活性ガスを用いて封止して、射出成形加工を行う事で、変色・焼けの危険性がある環境分解性成分含有の熱可塑性樹脂を用いても、変色・焼けのない成形品が得られる。
 (構成)
 前記単軸押し出し機のスクリューには、ダブルフライトの加工がなされている。もしくは、前記単軸押し出し機のスクリューには、ダルメージが組み込まれている。シート成形に用いる単軸の押し出し機スクリューは、ダブルフライトの加工、又はダルメージが組み込まれた強混練性を持ったシート加工に適した成形装置によってシート加工が成される。
(作用・効果)
 シート成形に用いる単軸の押し出し機スクリューは、ダブルフライトの加工、又はダルメージが組み込まれた強混練性を持ったシート加工適した成形装置によってシート加工が成されるので、熱可塑性樹脂中に、環境分解性成分は均一に分散していなくても、シート成形に用いる単軸の押し出し機によって、再び加熱溶融されて、強混練され、この段階で前記環境分解性成分は、前記熱可視性樹脂中に均一に分散される。
 (構成)
 樹脂成形品の製造方法によって製造された樹脂ペレット樹脂成形品を用いて、スクリューの回転方向が同方向の、又は異方向の多軸の押し出し機を用いてシート成形の加工を行う工程を有する。シート成形に用いる押し出し機は、スクリューの回転方向が同方向の、又は異方向の、強混練性を持った多軸の押し出し機を用いてシート加工に適した成形装置によってシート加工が成される。
(作用・効果)
 シート成形に用いる押し出し機は、スクリューの回転方向が同方向の、又は異方向の、強混練性を持った多軸の押し出し機を用いてシート加工に適した成形装置によってシート加工が成されるので、熱可塑性樹脂中に、環境分解性成分は均一に分散していなくても、請求項14のシート成形に用いる多軸の押し出し機によって、再び加熱溶融されて、強混練され、この段階で前記環境分解性成分は、前記熱可視性樹脂中に均一に分散される。
 (構成)
 環境分解性成分の粉体に液体を加えて、攪拌して、スラリー状にする工程と、単軸、又は多軸の押し出し機で熱可塑性樹脂を溶融混練する工程と、前記押し出し機の加熱筒内に、加熱筒に設けられた開口部から前記スラリー状の環境分解性成分を、前記加熱筒内の前記熱可塑性樹脂の容量に対して容量制御して注入する工程と、前記環境分解性成分と前記溶融樹脂との混合物を溶融混練して、環境分解性成分を、熱可塑性樹脂中に分散させる工程と、前記混合物を押し出す工程と、前記混合物を冷却する工程と、前記混合物をカットして樹脂ペレットとする工程と、を含む樹脂ペレットの製造方法。環境分解性成分に液体、例えば水、又は/及び溶剤(水に対して可溶でも、不可溶のモノでも使用は可能。)を用いて、スラリー化して、前記スラリーを、押し出し成形機の加熱筒の中の、加熱溶融の前の段階の樹脂中に、又は/及び加熱溶融された溶融樹脂中に、押し出し成形機の加熱筒に開けられた、1箇所の穴、又は複数の箇所の穴から、前記スラリーを、樹脂の容量に対して、容量を制御して入れ込み、樹脂中に混練する。前記溶融混錬した環境分解性成分含有の前記熱可塑性樹脂を押し出し、空冷して、或いはホットカットして環境分解性成分を含有する樹脂ペレットを製造する。前記スラリーを射出成形機の加熱筒に開けられた1箇所乃至複数の個所から、溶融の前段階の樹脂中に、又は/及び溶融混錬された樹脂中に入れて、混錬して、前記スラリー中の環境分解性成分を、熱可塑性樹脂中に微分散をさせる。前記環境分解性成分含有の加熱溶融された熱可塑性樹脂を金型内に射出して、充填した射出加工品。
 (作用・効果)
 スラリー化する事で、粉体が空気中に舞う事が少なくなり、作業環境の汚染が少なくなるので、取り扱いが容易、また環境分解性成分を2種以上、例えばセルロースパウダーと、紙粉とを混ぜ合わせて使用する場合に、其々をスラリーとして於けば、容易の混錬出来る。この場合加熱筒に入れる前に混同してもよい。或いは加熱筒内に別々に入れて、加熱筒内で溶融された加熱溶融樹脂内に分散させてもよい。
 (構成)
水蒸気を用いて前記環境分解性成分を水蒸気洗浄して、リグニンなどの不純物を取り除く工程を含む。環境分解性物質にはリグニン等の不純物が含まれている。リグニンは水溶性なので、温度の高い水蒸気を用いての水蒸気洗浄、例えば蒸し上げれば、リグニンの多くは除去できる。
 (作用・効果)
 リグニンは熱安定性が低く、成形加工時の温度(樹脂を溶融させる熱エネルギー)よって分解し、結果成形品の変色・焼けの原因になるので、綺麗な成形品を得るには、予めリグニンを除去すればよい。又リグニンを除去した後に次亜塩素酸の水溶液、過酸化水素水、二酸化塩素などを用いて脱色させると、変色・焼けのない綺麗な樹脂ペレット、樹脂成形品が得られる。
 (構成)
 熱可塑性樹脂のペレットがPPの表面に熱可塑性樹脂と相溶する、相容する樹脂を主成分とするワニスを用いて担持した。もしくは、熱可塑性を示すスチレン系樹脂、又は前記スチレン系樹脂を主成分とするポリマーアロイ、ポリマーブレンドのペレットの表面に熱可塑性樹脂と相溶する、相容する樹脂を主成分とするワニスを用いて担持した。
 (作用・効果)
 シートの押し出し加工を行う場合には、強い混錬性の多軸の押し出し機を用いて、単軸の場合でも混練性を高める為に、サブフライト、ダルメージを組み入れたスクリューを用いる。射出成形加工の場合、溶融混練の部分を多軸としたスクリューを使用してもよい。混練性を高めたサブフライト、ダルメージを組み入れたスクリューを用いる。よって原材料のペレットは、環境分解性成分が樹脂中に分散をしている必要はなく、前記担持の手段での環境分解性成分をペレットの表面に担持する手段は、使用する設備は安価、ランイングコストも低く経済的である。前記シートの押し出し加工、異形押し出し加工、射出成形加工などの場合液体の分散剤、液体の発泡剤(例えば水、アルコールなどの発泡残渣にないモノ)を使用して溶融粘度を下げれば、環境分解性成分の樹脂中への分散性が高められる。
平均粒径30μmのパルプ粉の表面をマレイン酸変性のポリオレフィンで担持し、粉砕して、粉砕材と、ポリオレフィン(PE,PP等)とを混ぜ合わせスクリューに強混練性を目的にしてダルメージを組み込んだ単軸の押出機で、溶融混練して、ホットカットしてペレット化した成形材料の写真である。 平均粒径が1,000μm以下の環境分解性成分に、例えばマレイン酸変性のポリオレフィン等を含浸させ、表面をマレイン酸変性のポリオレフィン等で担持する事に用いたロッキングミキサーの写真である。 本発明の環境分解性成分を含む樹脂ペレット(図1)を用いて射出成形加工をした成形品のCAD図である。 成形品にリサイクルに必要な情報を書き込んだQRコードを金型に刻印した図である。 重量フィーダーを設置した、押し出し機の模式図である。 重量フィーダーを設置した押し出し機の模式図で、図5との違いは溶融混錬した192内の溶融樹脂に混合予定のモノ(材料)を入れる事が出来る装置の模式図である。 エジェクターピン、傾斜コアピンなどをシールする部品の写真である。 図7の其々の部品の組み合わせを示した写真である。 図7、図8を金型に組み込み、エジェクターピン、傾斜コアピンなどをシールした事を示す模式図である。
  (用語の定義)
 まず、本発明に於いて用いる用語を定義する。
 「環境樹脂」とは、環境負荷を低減させる目的で後述の環境分解成分を含有する熱可塑性を示す樹脂、又は熱硬化性を示す樹脂の総称で、前記環境分解成分の含有量が10重量%(wt.%、%W/V)以上含んでいる。
 環境分解成分を10%W/V含有していると、例えば土壌内(土中)に入り込むと、先に微生物(バクテリア、細菌等)によって生分解されてから、残った樹脂成分は微細化されているので微生物によって分解の速度は速いとされる。
  (熱可塑性樹脂)
 本発明使用可能な樹脂(レジン)は熱可塑性樹脂、及び熱硬化性樹脂全てである
はじめに熱可塑性樹脂を説明する。
 本発明で使用可能な熱可塑性樹脂はAS(ポリシアン化ビニル)ABS(アクリロニトリル・スチレン・ブタジエン3元共重合体)、PS(ポリフェニル化ビニル)HIPS(高衝撃性PS)、変性PPO(変性PPE)に代表スチレン系樹脂、PE(ポリ水素化ビニル)、PP(ポリメチル化ビニル)、ポリオレフィン(ポリアルキル化ビニル)に代表されるオレフィン系樹脂、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVAL)、変性PVAL、ポリビニルブチラール、ポリビニルアセタール、PET(ポリエチレンテレフタレート)。PBT(ポリブチレンテレフタレート)。PEN(ポリエチレンナフタレート)等のエステル系樹脂。6-PA(ポリアミド)、6、6-PA等のアミド系樹脂、ニトロセルロース、CMC(カルボキシメチルセルロース)、ポリ乳酸、ポリカプロラクトン、ポリヒドロキシアルカノエート、ポリグリコール酸、カゼイン、変性澱粉(デンプン、でんぷん)、変性セルロース、低置換度多糖体誘導体(低置換度セルロースアセテート)、スチレン変性アクリル樹脂、アクリル樹脂、塩素化ポリオレフィンに代表されるハロゲン化PP、塩素化PEの代表されるハロゲン化PE、酸、例えばマレイン酸等を用いて変性したポリオレフィン(PP、又はPE等)が例示出来る。
 本発明では特に生分解(微生物により分解)、光分解、加水分解、酸化等で分解が容易な熱可塑性樹脂が好ましい。これ等熱可塑性樹脂は一種類ポリマーアロイ、ポリマーブレンドとしても良い。
 ポリマーアロイ、ポリマーブレンドとする場合には、互いの樹脂は相溶性、及び、又は相容性を示す事は好ましいが、成形品の強度を求めなければ相溶性、及び、又は相容性を示す必要はない。
  (熱硬化性樹脂)
 本発明で使用可能な熱可塑性樹脂はエポキシ樹脂、フェノール樹脂、尿素樹脂等が例示で出来る。前記熱可塑性樹脂と同様に(単体)でも使用出来るが、2種以上混ぜ合わせても良い。
  (微生物等によって分解される樹脂等)
 上記熱可塑性樹脂、熱硬化性樹脂の多くは長い時間掛かれば生分解等はするが、PET、PEN、ポリ乳酸等は生分解等の速度は速い。PPも微細化されれば生分解の速度は上がる。パルプ・パウダー(粉)、紙片、紙粉等の環境分解成分と、マレイン酸変性のポリオレフィンと、PPとからなる樹脂組成は初めにパルプ・パウダーが生分解等をして炭酸ガスと、水とにまで分解をされる。次にマレイン酸変性が生分解等をする。最後にPPが生分解等をして炭酸ガスと、水とに分解するので環境への負荷は少ない。
 同じ様にスチレン変性アクリル樹脂、メトキシメチル化のPAも同じ様に生分解等をする。
 当然硝化綿、酢酸セルロース、CMC、ポリ乳酸等はPP、ABS等よりは生分解等の速度は速い。
  〔環境分解成分{バイオマス(biomass)}〕
 本発明では、成形品が生分解、光分解、加水分解、熱酸化分解、酸化分解、紫外線分解、放射線分解等で分解をする物質を含む。これを「環境分解成分」、「環境分解材料」という。
 環境分解成分を例示すると、紙片、パルプ・パウダー、たとえば鋸塵(ゴミ)と称する木粉、木の皮、稲作の藁(米の藁)、小麦、大麦、ライ麦等の藁(麦藁)、コットン、綿花、セルロース、蒟蒻(こんにゃく)、カカオ豆の種皮、コーヒーかす、卵の殻、天かす、そば粉、パン、パン粉、大豆、豆類、おから、菜種、酒粕、麹、茶葉、もち米、もち麦、雑穀米、玄米、砂糖、塩、キノコ、肉、牛肉、豚肉、鶏肉、羊肉、馬肉、大豆ミート、代替肉、畜産物、畜産加工品、粉ミルク、乳製品、肥料、飼料、生産食材(水産、農産)、魚粉、魚、魚鱗、魚骨、貝殻、野菜、果実、またそれらの皮、葉、種、芯等、食品残渣、廃棄食料、規格外食品、規格外部材、廃材、廃油、砂、泥、土、葉、花、炭、竹、雑草、酸化チタン、炭酸カルシウム、カーボンブラック、パルプ・パウダー、木質セルロース、セルロース微粉、セルロースナノファイバー、麻、段ボール、人毛、スピルリナ、アミノ酸、タンパク質、ビタミン、サトウキビ、でんぷん、スターチ等が例示される。動物由来の骨粉、皮革粉等も本発明では使用可能、熱可塑性樹脂の内でもPET、PVAL、スチレン変性アクリル樹脂、マレイン酸変性のポリオレフィン、ハロゲン化ポリオレフィン等は生分解(微生物による分解)しやすい。
 これ等植物、動物由来のモノはそのままで使用が難しいので、微細(粉)化して使用する。微細化するには、ロータリーカッター等を用い微細化し、乾式ジェットミル、ファインパウダーミル、微粉砕機のローラーミル等を用いて微細化し、振るい(ふるい)等の工程を経て、粒度(大きさ)を選別する。微細化には先に示した物理的な手段以外に、微生物による糖化発酵させても良い。化学薬品を用いた微細化も可能である。
 環境分解成分はI種類だけでも、或いは数種類のモノを混ぜ合わせて使用しても良い。大きさ(粒径)はそれ程重要ではなく1,000ミクロン(μm)以下であれば良い。
1,000μm以上であっても例えば重ね合わせて多層にすれば良い。各その間を熱可塑性を用いて結着させる。
 本発明の環境分解成分の添加量、含有量は最終形態の成形品で10%W/V含有していれば、自然界での分解の速度は高くなる。51%W/Vであれば今業界で求める環境に優しい成形品には該当する。
  (パルプ・パウダー)
 本発明に於いて使用する環境分解成分であるパルプ・パウダーの製造の手段について説明する。広葉樹でも、針葉樹でもどちらでも構わないが木材を例えば苛性ソーダ{水酸化ナトリウム(NaOH)}と、硫化ナトリウムを主成分とする薬液を、前記木材を粉砕したチップに加え、200℃程度、170℃程度の加熱をしてリグニン、及び一部のヘミセルロースを溶出する。これを蒸解または蒸煮という。原料の種類やパルプの用途により薬液濃度及び加熱時間が異なり、2時間以内でパルプ化出来るモノもある。これによってセルロースを抽出した後、粉砕をする。この様にして得られたパルプを水洗し、薬液を除去した後、乾燥せずに粉砕して微細化する。乾燥してから微細化しても良い。この様にして得られたパルプ・パウダーが本発明で用いる環境分解物質の有用な材料の一つであるが、パルプ・パウダーに限定されない。
 木材を用いたパルプパウダーの製造の工程を説明したが、木材に限らずカカオ豆の種皮、コーヒーかす、竹、草、落ち葉等でも構わない。
 引例文献1、乃至引例文献3には紙粉を使用する事が、紙粉の限定した発明である事が述べられている。紙粉は、市場から回収した者を単に物理的な力で微細化するので、場合によってはセルロース繊維が切れて、切断されてしまっているので、当然強度低下はしている。一方本発明では紙を作る前のパルプを用いているので紙粉を用いた上記セルロースの切断はない。
 例えばオフィスで出されるプリントアウトした紙の多くはシュレッダー処理してしまうので、セルロース繊維が切断されるので、古紙として再生は難しい。引例文献1、乃至引例文献3には上述した様に古紙を用いた紙粉をオレフィン系樹脂等で結着させる手段を開示しているが、本発明は古紙からの紙粉ではなく、セルロース繊維に長いパルプ分を使用している事に差違がある。
 当然パルプ・パウダーは、製紙会社で廃棄物として廃棄される、紙の製造に不向きなモノであっても良い。
(相容(溶)化剤)
 環境分解性成分と、熱可塑性樹脂とはそれ程結合力はないので、環境分解性成分と熱可塑性樹脂との結着力を上げるために相容(溶)化剤を使用する。熱可塑性樹脂がPPに代表されるオレフィン系樹脂の場合に有効な相容(溶)化剤は、マレイン酸変性のポリオレフィン、オレフィン-無水マレイン酸共重合体である。熱可塑性樹脂がABSに代表されるスチレン系樹脂、PCに代表されるポリ炭酸エステル、PVC(ポリ塩化ビニル)では、スチレン変性のアクリル樹脂が、熱可塑性樹脂がPAではメトキシメチル化ポリアミドが使用される。
 これらの相容(溶)化剤の添加量は、所望される樹脂の特性によって変わるので、正確な添加量は示さない。
  (強化剤成分等)
 必要に応じて強化剤を添加する、添加剤にはガラス(硝子)繊維、ガラスビーズ(球)、炭素繊維、タルク、炭カル(炭酸カルシウム)、硫酸カルシウム、石粉、炭の粉、熱安定剤、光吸収剤、紫外線防止剤等を添加し、剛性を、比重(密度)等を例示出来る。
 当然これ等も元々は自然界に存在するモノをただ単に物理的な手段で大きな塊を微細化しただけなので当然環境には優しい成分であり、前記環境樹脂が生分解して残った上記の生分解不可能な成分は自然界に戻り、自然界を構成する成分になるので環境には大きな影響を与えない。
 パルプ・パウダーが微細なので単に樹脂で結合させただけでは所望する強度に達しない場合に環境分解成分のコットン(綿花)、糸、セルロースナノファイバーを混ぜ合わせれば強度を上げる事が出来る。当然添加量は所望する値に達するまで添加する事が出来る。
 (接合、結着)
 環境分解成分はそれだけでは、互いに接合出来ないので、他の物質を用いて接合する。接合に用いる主たる物質は、熱可塑性樹脂、熱硬化性樹脂でこれらを圧着樹脂(Crimping Resin)、又は融着樹脂(Fusion Resin)、又は接着樹脂(Adhesion Resin)といと言い、総称して接合樹脂(Join Resin)という。
 環境分解成分をパルプ・パウダー、接合樹脂をPPの場合で説明する。パルプ・パウダーを51%W/V、PPを49%W/V混ぜ合わせ、ニーダー、短軸、又は多軸の押出機で溶融混錬して、ペレット化すればPPがパルプ・パウダーを接合する接合樹脂として作用する。この場合にPPは一旦熱を掛けて溶融させるのでこの場合を特に「溶融接合」という。
 マレイン酸で変性したポリオレフィンは、溶剤に溶解するので、マレイン酸変性のポリオレフィンを溶剤系のワニス(樹脂を溶剤に溶解をした溶液)、又は溶剤系のワニスを水の中で、サスペンジョン、エマルジョンとした水系ワニスを用いてパルプ・パウダーを接合させる方法を「溶液接合」という。
 特許文献1、乃至特許文献3には無水マレイン酸基を有する化合物を0.3~55W/V含む事を開示している。無水マレイン酸基を有する化合物を含有する事で相容(溶)性が高まるとの記述があるが具体的な使用の方法が一切開示されていない。
 本発明はマレイン酸変性のポリオレフィンを用いたパルプ・パウダーの改質の具体的な手段を説明する。元々PPは溶剤には不溶のモノ(樹脂)であるので何らかの手段で改質をして溶剤に可溶にする必要がある。従来は塩素等のハロゲンを用いていたが、ハロゲンを用いた場合には有機溶剤には可溶なモノは作れるが、水系(エマルジョンタイプ)には出来ない。環境問題特にVOC(Volatile Organic Compounds)の規制が開始されると、水系モノの提供の要求が高まったので、ハロゲン化ではなくマレイン酸変性したモノ(PE、PPに代表にされるポリオレフィン)は勿論溶剤系以外に水系とする事が出来る。マレイン酸変性のポリオレフィンの使用用途にはPP成形品の接着剤への用途がある。PP成形品に2液のウレタン塗料の塗布を試みても、塗膜の十分な付着性は得られないので、PP成形品に一旦マレイン酸変性のポリオレフィンを塗布して、プライマーとすれば異質の2液ウレタン塗料の塗膜の付着性は十分担保出来る。この様にマレイン酸変性のポリオレフィンにはPPと他のモノとの結合力高める作用・効果がある。
 マレイン酸変性のポリオレフィンを含む水溶液(エマルジョン)を40℃程度の加温をして、前記説明をしたパルプパウダーを投入、攪拌して、パルプパウダーにマレイン酸変性のポリオレフィンを含浸さてから、濾過、遠心分離等で水系溶剤とマレイン酸変性のポリオレフィンを含有したパルプ・パウダーとを分離し乾燥して、マレイン酸変性のポリオレフィンとパルプパウダーとが混ざった塊(バルク)を得る。
 この様にして得られたバルクを粉砕して、PPと混ぜ合わせ、単(1)軸の押出機、必要に応じては多軸(例えば2軸)の押出機を用いてペレット化する。パルプ・パウダーはマレイン酸変性のポリオレフィンを用いて前処理してあり、予めマレイン酸変性のポリオレフィンによって可塑性が付与されているので、単軸の押出機でも十分にペレット化出来る。必要に応じて短軸押出機のスクリューには混練性を高める為に1箇所以上ダルメージを設けても良い。多軸押出機の場合のスクリューの回転方向は同回転(同方向)が一般的であるが、逆回転(異方向)としても良い。混練性を高めるには当然ダルメージを設けても良い。又フライト(スクリューの溝)を浅くして、圧縮率を高める事、スクリューのL(長さ)/D(直径)の比を高めたりする。この事は単軸の押出機のスクリューでも実施される。当然L/Dが大きいく、フライトがダブルフライトとすれは混練性は大きく向上する。
 紙の発火点(発火点の温度)は上質紙で450℃ 、新聞紙で290℃ 、木材だと400℃~470 ℃程度、マレイン酸変性のポリオレフィン、結着樹脂のPPに比べて高いが、変色・焼けが懸念される場合は押出機ホッパー内の空気{変色・焼けの原因となり支燃性を持つ酸素(O)}を不活性な窒素ガス(N)で置換する事で回避出来る。実際にはホッパー内に連続して窒素ガス(PSA、又は分離膜を用いて空気中の窒素を取り出したモノで十分)を入れれば良い。
 上記PPのペレットの製造はマレイン酸変性のポリオレフィンでなくてもハロゲン化ポリオレフィン、例えばハロゲン化PE、ハロゲン化PPでも構わない。
 結着樹脂がAS、ABS、PS、HIPS、変性PPO、PC等の場合について説明する。この場合はマレイン酸変性のポリオレフィンの代わりにスチレン変性アクリル樹脂を用いれば良い。スチレン変性アクリル樹脂は溶剤系、水系として例えばDIC(株)からアクルディック(商品名)で製造・販売されている。マレイン酸変性のポリオレフィンの場合と同じ様にパルプ・パウダーをこれ等の溶液(ワニス)に浸漬して、乾燥して、粉砕して、単軸、又は多軸の押出機を用いてAS、ABS、PS、HIPS、変性PPO、PC等を結着樹脂として用いた環境分解成分含有の熱可塑性を示す樹脂ペレットが得られる。
 パルプ・パウダー以外にカカオ豆の種皮、コーヒーかすを用いても良く、これ等を混ぜ合わせたモノでも良い。これらはパルプ・パウダー混ぜ合わせ、用いても良い。
 溶液接合について環境分解成分をパルプ・パウダーを用いて説明する。パルプ・パウダーにマレイン酸変性のポリオレフィンの水(エマルジョン)系ワニスを入れて十分に攪拌をした後に、PPは一切混ぜず(加えず)に、乾燥してペレット化したモノを加熱溶融し、例えば金型に入れてから、加熱(Heat)して、圧縮(Press)をすれば造形(ブロック)出来る。勿論の事、PPを結着樹脂として用いたモノでも良い。
  (環境分解物質へのマレイン酸変性のポリオレフィン等の担持)
 愛知機械(株)製の加熱が可能な、中にスプレーが可能なロッキングミキサーの中にパルプ・パウダーを入れて、溶剤系のマレイン酸変性のポリオレフィンワニススプレーしながらロッキングして、回転させて、加熱して、前記パルプ・パウダーの表面にマレイン酸変性のポリオレフィンを担持する。マレイン酸変性のポリオレフィンが担持されたパルプ・パウダーとPPとを混ぜ合わせ、押出機等を用いて溶融混錬して、ペレット化すれば、パルプ・パウダーとPPとだけで接合をした場合よりも、マレイン酸変性のポリオレフィンはパルプ・パウダーとPPの両方に強い接着力があるので、マレイン酸変性の樹脂を用いない場合より樹脂の物理的な強度、機械的な強度は高くなる。パルプ・パウダー以外には先に例示した環境分解成分を用いても良い。樹脂はPPだけでなくPEでも、或いはPPとPEとを混ぜ合わせ使用しても良い。マレイン酸変性のポリオレフィン以外にハロゲン化ポリオレフィン、ハロゲン化PEも使用出来る。先に述べた様にスチレン変性アクリル樹脂、メチシキメチル化PAにしても良い。
  (着色)
 原料ペレットに着色が必要な場合には、染料、顔料を使用してペレット化する。それ以外には塗装をおこなっても良い。塗装の目的は、前記環境分解成分は吸湿性、吸水性が高いモノがあるので、液体、例えば食品容器、飲料水のコップ等では使用出来ないので、耐湿性、耐水性を向上させるのは表面を何等(なんら)かの方法で表面をコートする。その方法の一つが塗装である。塗装はエアースプレー塗装が一般的であるが、しごき塗装、刷毛塗り、スピンキャスト等も実施出来る。
 AS、ABSの場合に塗料の主成分をなす樹脂はAS、ABSを例えばMEK(n-ブタノン)、酢酸エチル等の有機溶剤を用い溶解させたAS、又はABSのワニス、或いはスチレン変性アクリル樹脂を主成分とする塗料を用い塗装する。PS、HIPS、変性PPOの場合は前記ASをPS、HISとしたワニス、又はスチレン変性アクリル樹脂を主成分とする塗料を用い塗装する。PPの場合はハロゲン化ポリオレフィン、又はマレイン酸変性のポリオレフィンを主成分としたPP用塗料で塗装する。ハロゲン化ポリオレフィン、又はマレイン酸変性のポリオレフィンを主成分としたPP用塗料で塗装した上で、必要に応じては2液のウレタン塗料で塗装をしても良い。
 塗装の代わりに表面をラミネートしても良い。ラミネートの方法は、射出成形の場合は主にインサート成形を用いる。PETの場合はPETフイルムを射出成形用金型の固定側と、可動側の隙間に入れて、金型を閉めて、環境樹脂を射出すれば、射出された樹脂の温度によってPETは加熱され、環境樹脂充填の力で固定側に押し付けられ、環境樹脂を用いた成形品表面に熱融着する。融着力を上げるには必要に応じてPETフイルムの表面に予め接着剤を塗布し成形品とラミネートとの接着力を上げる事が出来る。
 PETフイルムを射出成形用金型に入れて、環境樹脂を射出した表面にPETが貼り付けられた射出成形品は成形品の周(回)りには、PETフイルムが残っているので、この余分なPETフイルムを切り離す。
 特願昭61-224223号公報、特願昭62-211322号公報、特願昭63-11873号公報、特願平1-184522号公報等に示された手段(PIM{(Press Injection Mild)を用い、PETフイルム加熱して、空気圧、又は真空圧を用いて、例えば意匠面である固定側に、圧空成形、真空成型した後、例えば射出成形機の金型にトムソン型、プレス型を組み込み、それを用いてカットしてから、環境樹脂を射出する場合もある。
 多軸の押出(押出し、押し出し)機を用いて、環境樹脂の片側、又は両側にPETをラミネートしたシートから、圧空成形、真空成型を用いて絞り、皿等の食器をつくる事が出来る。当然PETでなくPP、PEでも実施出来る。
  (適用可能な商品)
 本発明で適用(実施)可能な成形品は、熱可塑性樹脂、熱硬化性樹脂を用いた成形品なら全て適用可能であるが、特に食品包材、食品容器、食品トレー、野菜、果物袋、レジ袋、ごみ袋、手提げ袋、カトラリー、アメニティ、フィルム、繊維、建材、電子機器、電子部品、輸送、自動車、自動車部品、農業用資材、農業用フィルム、漁網、漁業関係、衛生用品、パレット、タンク、ボトル、文具、梱包材、緩衝材を例示する。これ等の成形品は環境問題を考える上では特に適用すれば、作用・効果が大きい事が期待される。
 (成形加工法)
 本発明で環境分解性成分を含有した樹脂の加工には、射出成形加工、射出発泡成形加工、射出中空成形、射出圧空成形加工、押出成形加工、真空成形加工、ブロック成形加工、カレンダー成形加工等の方法が上げられる。
  (環境樹脂の製造)
 製材所で処理に困っていた木材を鋸で切断する時に出る木粉をふるいを用いて粒径1,000μm以下のモノに振り分けた。1,000μm以下の木粉51%W/VにPP樹脂の粉体を49%W/Vをヘンシェルミキサーで混ぜ合わせ、その混合した粉体を2軸押し出し機で溶融混錬して、押出されたストランドを水中に没しての冷却でなく、吸水しない空冷してからペレタイザーでカット(切断)して木粉51W/V含有の、バインダー樹脂(環境分解成分を繋げる樹脂成分で熱可塑性樹脂、又は熱硬化性樹脂等を言う。)がPPであるePlas001を製造した。
 押出機の加熱筒に穴を開けて、溶融して可塑化中の樹脂に対して、ユニチカ(株)が製造販売しているマレイン酸変性のポリオレフィンのエマルジョン{アローベースDA-1010(商品名)}を2%W/V注入し、木粉にマレイン酸変性のポリオレフィンを含浸させ、木粉の表面をマレイン酸変性のポリオレフィンで担持し、PPとの結着性を高めた。
 マレイン酸変性のポリオレフィン(アローベースDA-1010)の代わりにハロゲン化ポリオレフィンを用いても同じ作用・効果が発揮出来る。
 この様に熱可塑性を全く示さない前記環境分解性成分の粉体に、マレイン酸変性のポリオレフィン、スチレン変性アクリル樹脂等で担持すれば、前記マレイン酸変性のポリオレフィン、スチレン変性アクリル樹脂、メトキシメチル化ポリアミドは熱可塑性を示すので、結果環境分解性成分の粉体を多く含ませても、熱可塑性を示すので、通常の熱可塑性樹脂、例えばPP、ABS、PA等と溶融混練をする際に、高い混練性を持つ多軸押出機を用いなくても、単軸押出機で、ダルメージを持たせれば容易に、混練してペレット化出来る。
 この様にして選れたペレットを更に高混練をするならば、例えば射出成形加工で、成形品を成形する際にスクリューにダルメージを持たせてモノを使用すれば良いこの部分、即ち熱可塑性を示さない環境分解性成分を、熱可塑性を示す物質を含む溶液の浸漬し、乾燥して得られた塊(バルク)を粉砕する。粉砕したモノは前記熱可塑性を示す物質(マレイン酸変性のポリオレフィン、スチレン変性アクリル樹脂、メトキシメチル化ポリアミド等)を含んでいるので、熱可塑性を示す。
 この様にして得られた前記粉砕したモノを熱可塑性で結着させれば良い。ここが前記特許文献1、特許文献2、特許文献3との製造方法の関する部分の差違である。
  (環境樹脂の製造)
 50℃の加温をしながらパルプ粉80%w/Vに対してマレイン酸変性のポリオレフィン((アローベースDA-1010)を20%W/Vをロッキングミキサー(図2)を用いてパルプ粉の表面のマレイン酸変性のポリオレフィンを担持し、内部にはマレイン酸変性のポリオレフィンを含浸させ、乾燥してPPと相容(溶)性を示す。PPと十分に結着するパルプ粉を得た。
 このパルプ・パウダーを60%W/V、PPを40%W/V用いてスクリューにダルメージを組み込んだ単軸押出機を用いてペレット化する。ペレット化の際に溶融混練性を上げるために、単軸押出機の加熱筒に穴を開けて、加熱筒内の環境分解成分のパルプ粉を吹含んだ溶融樹脂中にエタノール(COH)を2.5%W/V、プランジャポンプを用いて連続的に注入して、加熱筒内の溶融混練中の樹脂の粘度を下げ、混練性を高めた。エタノールの代わりにプロパノール(COH)でも、エタノールプロパノールの混合溶液でも良い。エタノールの代わるに水(HO)でも、エタノールと水との例えば50:50の混合物でも構わない。
 マレイン酸変性のポリオレフィンに変わり塩素化ポリオレフィンの溶液を用いても構わない。結合樹脂がABS等のスチレン系樹脂の場合はスチレン変性アクルル樹脂を用いる。
 マレイン酸変性のポリオレフィンはマレイン酸が反応型相容(溶)化剤として作用し、PPと化学的に反応する。
 塩素化ポリオレフィンはパルプ・パウダーと物理的に的結合(分子間力、ファンデルワールス力)をし、塩素化ポリオレフィンはPPとも物理的ナトリウム結合をする。
 スチレン変性アクルル樹脂もABSとは物理的な結合、相容(溶)性を示す。
 本実施例2は前記実施例1の木粉の代わりに1,000μm以下の紙片、紙粉を用い、バインダー樹脂にPP樹脂を用いてePlas002を製造した。
 前記実施例1では木粉に何も処理をせずに単にPP樹脂をバインダー樹脂として溶融混錬をして、ペレット化しただけであったので、木粉とPPとの結着力が低い。結着力の低い樹脂では成形加工した成形品の割れやすさ(衝撃強度等)、剛性等の強度低下は避けられないので、実施例3では予め木粉にマレイン酸変性のポリオレフィン(マレイン酸変性のポリオレフィンを水を主成分とした溶媒)にエマルジョンとしたモノを用いて、木粉にマレイン酸変性のポリオレフィンを含侵させ、表面に担持(コーティング)したモノを用いて同様に溶融混錬して、ペレット化してePlas003を製造した。
 実施例4は前記実施例3の木粉を1,000μm以下の紙片、紙粉に変更してePlas004を製造した。
 実施例5は前記実施例1のバインダー樹脂のPPをABSに変更してePlas005を製造した。
 実施例6は前記実施例1のバインダー樹脂のPPをHIPSに変更してePlas006を製造した。
 実施例7は前記実施例1のバインダー樹脂のPPをHIPSで変性したPPO{ノリルN190(商品名)}に変更してePlas007を製造した。
 実施例8は前記実施例1のバインダー樹脂のPPを6,6-PA(ポリアミド)に変更してePlas008を製造した。
 実施例9は前記実施例3のマレイン酸変性のPPをスチレン変性アクリル樹脂としてバインダー樹脂をABSとしてePlas009を製造した。
 実施例10は前記実施例9のバインダー樹脂をHIPSとしてePlas010を製造した。
 実施例10は前記実施例9のバインダー樹脂をHIPSで変性したPPOとしてePlas011を製造した。
 実施例12は前記実施例3のマレイン酸変性のポリオレフィンをメトキシメチル化ポリアミドに変更してバインダー樹脂を6,6-PAとしてePlas012を製造した。
 実施例13は前記実施例3、実施例9、実施例10、実施例11、実施例12を木粉ではなく紙片、紙粉に変更した。
 実施例14は前記実施例1、乃至実施例13の木粉を粒径が1,000μm以下のパルプ粉に変更した。
 実施例15は前記実施例で製造したePlas001、乃至ePlas012の材料(環境樹脂ペレット)其々を用いて、型締力180トンの射出成形機を用いて図3の成形品を一般の成形を行い通常の樹脂、例えばPP、ABS、HIPS 6,6-PAだけの場合と比較して大きな差はなく射出成形加工が出来た。
 前記実施例は一般(通常)成形であったが、実施例16は発泡成形とした。実施例15で使用した型締力180トンの射出成形機{芝浦機械(株)製の電動機}の加熱筒の下側に圧縮ゾーンの直前に穴を開け、樹脂可塑化の段階、計量開始から、計量完了の間で、無水エタノールを1.5体積%(vol.%、%V/V)入れ、加熱筒の温度で気化させて、エタノール蒸気を発泡性ガスとして溶融樹脂に発泡性を付与した。
 図3の金型に射出して、発泡剤をエタノールを用いた発泡成形品を得た。本発明で使用可能な発泡剤は先に示したエタノール、プロパノールの代表されるアルコール類で、敢えて無水でなくても良い。アルコール以外に水でも良く、水とアルコールの混合物、例えば水が40%V/V含有のエタノールとの混合物、エタノールとプロパノール1:1の混合溶液でも良い。
 気体を用いた発泡成形ミューセル、アモテック、ソフィット等が上げられる。新保實が開発した射出成形機ノズルに液化炭酸ガスの吐出口を設けて、溶融樹脂の射出時にノズル内の溶融樹脂に炭酸ガスで発泡性を付与する手段でも実施出来る。
 固体の発泡剤で無機系の化学発泡剤の炭酸水素ナトリウム、炭酸水素カリウムに代表される炭酸水素塩、ADCA(アゾ・ダイ・カルボン酸アミド)、HDCA(ヒドロ・ダイ・カルボン酸アミド)、DPT(ダイ・ニトロソ・ペンタメチレン・テトラミン)に例示される有機系の化学発泡剤、アドバンセル(商品名)、エキスパンセル(商品名)等の中空気球も使用出来る。勿論の事これ等の発泡剤は単品でも使用されるが、混ぜ合わせて使用しても良い。
 実施例15では表面に発泡成形特有のスワール・マーク(発泡縞模様)が発生するので、ガス・カウンター・プレッシャー(GCP)法を実施すればスワール・マークのない表面が綺麗な発泡成形品が得られる。GCP以外には金型表面の温度を高めるヒート・アンド・クールを用いても良い。
 発泡剤を用いない場合でも環境分解成分は吸湿し、中の水分に起因する場合は、乾燥をするが乾燥をせずにGCPを行えば、吸水した水分に起因するシルバーをなくす事が出来る。
 発泡成形以外には中空成形でも、圧空成形でも本発明の環境樹脂ePlasを用いて図3の成形品で実施可能かを確認したところ、従来のPP、ABS同様に成形が出来る事を確認した。
 環境分解成分は変色・焼け発生がある場合は、射出成形、押出成形の場合はホッパー内を窒素ガスを入れて変色・焼けをなくす。射出成形の場合は金型(キャビティ)内を溶融樹脂の充填前に窒素ガス置換を行うと良い。
 本実施例17は発泡成形を示したが、この発泡成形の関する説明は、国際出願番号 PCT/JP2015/069216号公報、出願番号 特願2021-041312等に、詳細な説明があり、本発明の於ける射出成形、及び押出成形、ブロック成形等と、中空成形、及び圧空成形は国際出願番号 PCT/JP2016/086380号公報、国際出願番号 PCT/JP2020/015536号公報、国際出願番号 PCT/JP2020/015536号公報、国際出願番号 PCT WO2005/018902等に詳細な説明はあり、上記の公報の国際出願番号 PCT/JP2015/069216号公報、出願番号 特願2021-041312、国際出願番号 PCT/JP2016/086380号公報、国際出願番号 PCT/JP2020/015536号公報、国際出願番号 PCT/JP2020/015536号公報、国際出願番号 PCT WO2005/018902の内容の全ては本特許の明細書に包含する。
  (実施形態1)
 実施形態1はプラスチックリサイクルの主たる課題とその解決の手段を示した。プラスチック・リサイクルの技術的な課題は多々あるが、主たるモノは、「色のリサイクル」と、「物性の回復、又は維持」と、「寸法の再現」と、そして「仕分け」である。初めに「色のリサイクル」のリサイクルに付いて説明する。プラスチックは機械的な強度は低いが、安価で大量生産が出来る事、着色が自由に出来る事が特色である。この着色が自由に出来る事は、言い換えれば様々な色のプラスチック製品が市場に提供されているので、この色の問題、即ち色の再現がプラスチック・リサイクルが進まない課題の一つである。この色のリサイクルの手段は2つあって、その一つの方法は、同色のモノ(成形品)だけを集めて来て、洗浄して、粉砕をして、粉砕した粉砕材に、バージンのペレット、又は粉末のモノを混ぜ合わせて、再ペレット化して、リサイクル材が一定の量(10重量%から50重量%程度)混ざり込んだ成形材料を得る。この様にして色を再現するが、定められた色のプラスチック成形品だけをリサイクルする手段である。
  (洗浄の手段)
 市場から回収した成形品は、汚れが付いている事と、紫外線などのよって光劣化して、退色している。この様な場合は、ショット・ブラストなどで、光劣化した部分(主には表面)を除去する。洗浄は成形品を水などの中に入れて、手でこすって洗浄するか、或いは超音波振動子を入れて超音波洗浄する。
 粉砕機で成形品を粉砕をすると音が出る。この音を利用した粉砕機が湿式粉砕機で、水を注入しながら、又は水中で粉砕をすると音が出て(発生)、その音は水中に伝わり、成形品表面の汚れを、物理的な力(音波)で洗浄をする。
  (塗装を用いた色のリサイクル)
 様々な色の成形品が存在する場合、色分けをせず、そのまま粉砕して、必要に応じてペレット化した成形材料は雑色、雑色のまま成形加工して得られた雑色の成形品の表面を塗装によって彩色する事で所望する色の成形品にリサイクルする事が出来る。
 彩色(化粧塗装、カバーマーク塗装)を用いての塗料は、例えば成形品を構成する樹脂がABS、HIPS、変性PPOの場合は、成形品を構成する樹脂と相容(溶)性を持つスチレン変性アクリル樹脂を主成分とする塗料を用いて塗装をする。
 前記相容(溶)性を用いた塗料を用い塗装をした塗膜付き成形品は、再リサイクル時、塗膜の分離・剥離をせず塗膜付きのままで、粉砕して、必要に応じてペレット化した成形材料を用い成形加工した成形品では、先の塗膜は、塗膜の主成分であるスチレン変性アクリル樹脂は、成形品を構成する樹脂と相容(溶)して、ペレット化の段階、又は/及び再成形加工の加熱溶融の段階で樹脂の中に融けるので、塗膜が混ざり合う事に起因する樹脂の物理的な物性低下は少なくなる。
 上記スチレン変性アクリル樹脂は熱可塑性を示す樹脂なので、この樹脂を用いた塗料は、耐薬品性は低く、例えばアルコールを用いたラビングテストなどでは塗膜は剥がれてしまう。
 耐薬品性が求められる場合は、ウレタン樹脂を主成分とした塗料(塗膜のウレタン樹脂は熱硬化性を示し、一方スチレン変性アクリル樹脂は熱可塑性を示す。)が多用されるが、ウレタン樹脂を主成分とした塗料で塗装した塗装成形品は、塗膜の分離・剥離を行う事が良いが、塗膜の分離・剥離をせず塗膜付きのままで、粉砕し、2軸押出機、ニーダーなどの強(高)混練が可能な押し出し機などを用いて、塗膜を微細化(例えば平均粒径が1,000μm以下、望ましくは100μm以下)すれば、ウレタンの塗膜が成形樹脂に混ざり合っても、物理的な物性はそれ程は低下しない。場合によっては、熱可塑性のスチレン変性アクリル樹脂の場合より低下(:スチレン変性アクリル樹脂の場合は、塗膜中の染料・顔料が、ペレット化の段階、再成形の段階で共に融けて、樹脂中へ移行して、樹脂の物性を低下させるが、ウレタン樹脂の場合は、溶融しないので、塗膜中の染料・顔料は塗膜中に留まり、樹脂中に移行しないので、樹脂の物理的な物性の低下は少ない。)しない場合もある。
 強混錬を有する押し出し機は単(1)軸でも良いが、望ましくは、多(2)軸押し出し機で、ダルメージを1箇所乃至数箇所持たせたスクリューを使用する。スクリューの回転方向は同方向でも良いが、混練性を高め、ウレタン塗膜を微細化するのは、異方向の場合が良い。自動車部品ではPPを多用しているので、PPの成形品の塗装には、マレイン酸変性のPPを用いてプライマー処理してから、熱硬化性のウレタン樹脂を用いた塗料を使用する。
  (物性の回復)
 ABS、HIPSなどのスチレン系樹脂では物理的な性質を高める目的で、配合予定の樹脂の成分をグラフト化させたゴムを配合する。ABSを用いて説明する。ABSはA(シアン化ビニル)とS(フェニル化ビニル)を共重合させたAS樹脂に、ブタジエンゴムにAとSとをグラフト共重合させたAとSとブタジエンゴムとの3元グラフト共重合体をブレンド(混ぜあわせた)したブレンドポリマーである。ABSを成形して、粉砕して、再成形すると、AとSとブタジエンゴムとの3元グラフト共重合体(ブラフトブタジエンゴム)の中のブタジエンゴムは熱劣化して、ゴムとしても性質が失われる。結果リサイクルを繰り返すと樹脂の物理的な性質の衝撃強度などは低下する。
 低下した樹脂の物性を回復するのは、新しい前記グラフトブタジエンゴムを混ぜ合わせれば低下した物性の回復は出来る。ブラフトブタジエンゴムを入れると、樹脂の剛性が下がる場合はAS樹脂を混ぜ合わせバランスを取ってリサイクルを行い使用する。
  (物性の維持)
 ABSはブタジエンゴムに起因する耐候(光)性は低い。ブタジエンゴムの代わりに、アクリルゴム(AR)、エチレンプロピレンゴム(EPM、EPDM)を用いたAAS(ASA)、AESはリサイクルを繰り返しても、ABSの様な著しい物性の低下はない。リサイクル性を確認する簡単な手段として、発明者はシャット・オフ・ノズルを付帯した射出成形機を用い、全てのゾーン設定温度を220℃、溶融樹脂の温度を250℃に成る様にして、樹脂を溶融混錬して、加熱筒内で30分から60分程度滞留させて、加熱筒内の溶融樹脂の熱ストレスを与え、所定の時間(例えば30分)経過した後、パージして、そのパージ塊を水中に没して冷却して、冷却が完了したパージ塊を粉砕して、その粉砕材を用いて、物性評価用の試験片を成形加工して、物理的な物性を評価(:この手段を本発明では「熱劣化試験」と言う。)した結果、AESの場合はアイゾット(izod)衝撃強度が0%~5%、AASでも10%以下であったが、ABSの場合は低下が著しく50%以上の低下が確認された。
 同様にPE(ポリエチレン)の場合の滞留の試験ではアイゾッド衝撃強度の低下は殆どなく、バージン材と略同じで著しい物性低下は確認されない。PEは熱安定性が高くリサイクルには適する樹脂であると言える。
 PP(ポリプロピレン)の場合は分子構造から、シンジオタクチックのPP、アイソタクチックのPP、アタックティックのPPがあり、更に重合時に使用する触媒に、チーグラ・ナッタ触媒と、メタロセン触媒とがありこれ等の其々のモノを同様に熱劣化試験を行なった結果、アイゾッド衝撃強度低下は何れのPPも5%程度に留まり、PPは耐熱性が高く、リサイクルには向く樹脂であるとの結果を得た。
 空気中の水分を吸って(吸湿して、)成形品表面がいつも濡れている様に、ポリエーテルエステルアミドをABSに混ぜ合わせた永久制電性樹脂{東レ(株)のパレル(商品名)}の場合の熱劣化試験では90%近くアイゾッド衝撃強度は低下するので、パレルはリサイクルには向かない樹脂と言える。
  (リサイクル助剤)
 「リサイクル助剤」とは、リサイクル材を元の物性のモノの回復させる材料、添加剤をリサイクル助剤と称する。又別の性質を持たせる為に、改質を目的に添加する樹脂などもリサイクル助剤である。それ以外例えばABSはリサイクルを行うと衝撃強度が低下する。この際に同じABSを例えば半分加えれば、幾らかは物性の回復は図れる。このリサイクル材の影響を少なくさせる為に展開するABSも、前記ASもリサイクル助剤である。
 AESは熱安定性が高いので、市場から回収して来たAESをリサイクルしたABSと混ぜ合わせればABSの物性を回復させる事が出来る。この場合のAESも広義のリサイクル助剤である、又EPSの改質に用いるHIPSもリサイクル助剤である。この様にリサイクル助剤とは元々の樹脂、樹脂の添加剤などを本発明ではリサイクル助剤と定義する。色を回復(:成形品を他の色へカバーマークなど)させる為の塗料もリサイクル助剤でもある。
  (寸法の維持)
 リサイクル行った樹脂は、熱履歴を受けて一部の分子鎖は切れて、低分子化する。それ以外には物性の回復を目的にリサイクル助剤を添加したりすると溶融状態の樹脂の流動性は変化するので、射出成形加工では、一般の射出成形加工法(:キャビティ内に溶融樹脂を充填してから、ヒケなどの成形品の欠損をなくす為に保圧を掛けるなどの成形加工の工程を言う。)では寸法のバラツキ(:成形収縮率のバラツキ)が大きくバージン材を使用した場合の様に寸法は安定せず、リサイクル材の場合では寸法のバラツキは大きく安定はしない。この課題を解決するためには、保圧を用いない成形法の発泡成形(射出発泡成形)、中空成形(射出中空成形)、圧空成形(射出圧空成形)を用いると、成形予定の樹脂の主たる成分(分子構造が、)が同じ場合リサイクル材の成形収縮率はバージン材を用いて、発泡成形、中空成形、圧空成形を行った場合と成形収縮率略同じになるので、リサイクルを実施する場合には一般成形より発泡成形、中空成形、圧空成形を行った方が良い。
  (仕分け)
 リサイクルを実施する場合に、リサイクル予定の成形品にはどの様な樹脂が使用され、その樹脂にはどの様な添加剤がどれだけの量が配合されているかを正確に、把握出来なければリサイクルは完全に実施は出来ない。
 以下リサイクルに向けての事前に準備が必要な内容(;仕分け)を詳細に、具体的に説明する。
 初めは成形品の主成分である樹脂に付いてABSを例にして説明する。上述した様にABSはAとSとの共重合体にグラフトブタジエンゴムとを混ぜ合わせたブレンドポリマー、ポリマーアロイである。ここでASにはAとSとの重合の割合(AとS比)によって様々な比率の樹脂の製造が出来る。当然重合開始剤、重合停止剤によって分子量(例えば数平均分子量、平均分子量など)の異なる樹脂が製造され、分子量分布にも違いが生じる。ブタジエンゴムでもAとSとの比、グラフト化率などにも違いがある。ASに配合するグラフトブタジエンゴムの粒径も様々なモノ(バイモーダル・タイプ)を用いる。この様にABSだけでも様々な種類が製造出来る。
  (その他添加剤)
 先に述べた様にABSには、着色を目的に染料・顔料を使用する。難燃性が要求される場合は、難燃剤(例えばハロゲンタイプ、又は非ハロゲンタイプなど)、難燃助剤を添加する。それ以外には樹脂には必要に応じて例えば「便覧 ゴム・プラスチック配合薬品 改訂第二版 {(株)ラバーダイジェスト社 1993年10月30日 改訂第二版}」に記載されている老化防止剤、酸化防止剤、オゾン劣化防止剤、紫外線吸収剤、光安定剤、可塑剤、充填剤、強化剤、PVC用安定剤、滑剤、スリップ剤、内部離型剤、防曇剤、帯電防止剤、着色剤(上記の染料・顔料含む。)、カップリング剤、防腐剤、防黴(カビ)剤、相容(溶)化剤、改質剤、結晶核剤、分散剤、光拡散剤、発泡成形の場合の気泡核剤(「樹脂の添加剤」、或いは簡単に「添加剤」と言う。)などを使用する。
 これ等添加剤は、これ等添加剤を含む成形品は成形加工して市場へ提供する段階では使用が可能でも、何年かの後市場から回収して、リサイクルを行う場合に混ざり込んではならない物質になっている場合もある。難燃剤を例にして説明する。以前は難燃剤はハロゲンの負触媒作用を用いたハロゲンの化合物、例えば臭素化エポキシ、TBBA(テトラ・ブロモ・ビスフェノールA誘導体)と、難燃助剤に三酸化アンチモンを用い難燃化するのが一般的であったが、現在は臭素化ダイオキシン、臭素化ベンゾフラン発生の問題から使用を控えている。三酸化アンチモンは劇物なので使用を躊躇っている。今日リサイクルを行う場合にはこの様にハロゲン化物が含有されている場合、別にリサイクルをする必要がある。
 然し成形品を見ただけでは上述した様にリサイクル(等価再生、上位再生)実施に必要な情報(樹脂の種類、添加剤など)を確実の把握する事が出来ないので、結果リサイクルは下位の再生になってしまう。
  (表示)
 上述した様にリサイクルに必要な膨大な情報を義務化されているリサイクルマークだけで把握するのは困難、発明者は一定の重量、例えば重量が100グラム(g)以上の成形品には、予め金型にバーコード{:通常のバーコード、二次元バーコード、QRコード(登録商標)}を刻印して於く。そのバーコードの中にリサイクルに必要な成形品の重量、ABSを例にして上述した様に成形品の主成分である樹脂関する情報、例えば分子量、AとSとの比、上述した添加剤に関する情報(種類と添加量)と、成形品の重量などの情報を入れて於く。有用な手段は、成形品にこれ等の情報を書き込み、市場から回収して、リサイクルの段階、例えば洗浄の前、或いは粉砕の前に読み込み、リサイクルの段階、今の時点で使用の禁止物質が含まれていない事を確認してから粉砕などをする。使用禁止の物質が含まれている成形品は粉砕などをせずに別の場所に避けて於く。
 その情報は膨大であるので、バーコード、好ましくはQRコード(2次元バーコード)として成形品其々に付与する。バーコードよりもQRコードの方が書き込む事が可能な情報量が多いのでQRコードの方が好ましい。QRコードを印刷したラベル(シール)を貼り付ける。或いは射出成形品では予め金型にQRコードを刻印して於おけば、ラベル貼り付けの手間は省ける(図4)。
 以下本発明ではQRコードを用いて実施の形態を説明する。(図4 附番206)
 QRコードの情報はバーコードリーダーで読み取り、粉砕をすると、その粉砕材には、粉砕が完了した粉砕材全体では、どの様な樹脂が、添加剤がどれだけ含まれているかを把握出来る。ここまで出来れば後はコンピューター、例えばAI(Artificial Intelligence)を用いて、必要な添加剤を添加し改質などが容易に出来る。この様にして得られたリサイクル材を用いて成形加工したモノ(成形品)にも次のリサイクルを考えて、先に述べたQRコードの表示を行う。これによってリサイクルを繰り返す〔リサイクルの世代{1回目(1ターン)、2回目(2ターン)、3回目(3ターン)・・・など}を繰り返す事の意味。〕事が出来る。勿論例えば1ターンのモノと、2ターンのモノとの含有量(混合に比など)も前記QRコードの情報には含んで於く。即ち将来のリサイクル実施に向けての準備として必要な情報を、必ず付加して於く。これによって将来のリサイクルは何ら問題はなく実施出来る。
  (秘密の保持)
 QRコードの中には例えば樹脂メーカー名、商品名、グレード、樹脂の詳細な配合(例えば添加剤の種類と量など)が読み取れるので、そのままでは樹脂メーカーの秘密とする重要な内容が競合他社に漏れ出す危険性を含んでいるので、そのままでは好ましくはない。その為にはQRコードに含まれる内容の一部、又は全部を暗号化(例えば素数などを用いての数字、アルファベットの組み合わせなど、)して於く必要がある。暗号化された内容はAIの中だけで樹脂の種類、添加剤の種類と量、粉砕材の重量(:粉砕を行った成形品の重量の総和を、QRコード内に書き込まれた成形品の重量の情報、或いは一個一個其々の成形品の重量を自動に計量されAI中に取り込まれた内容の意味。)行われ、決して他には、他社には漏れ出さない様に必要なセキュリティをAIには、AIを操作する者(オペレーターなど)には課す必要がある。
  (リサイクルの実施)
 具体的にリサイクル行い事、樹脂の改質を行うには全てAIの中で行う。AIはリサイクルを目的にした粉砕材の樹脂と添加剤などの係る情報を全て確認して把握しているので、AIには粉砕材をどの様な物性の樹脂に改質するかを指示すれば、AIは計算をして、リサイクルの必要な樹脂の種類と量、添加剤の種類と量(:リサイクル助剤の種類と量など)が算出される。予め前記粉砕材に、AIが算出した前記樹脂の種類と量、添加剤の種類と量を加えて、試験片などを成形加工して、物性の測定(:品質の管理)を行い、結果がAIが算出した内容(リサイクル材の予定の物性値)と合致しているか、一致しているかを確認する。結果が良ければ、リサイクルに必要な樹脂の種類と量、添加剤の種類と量を加えて、必要な手段(例えば短軸、スクリューが同方向、異方向回転の多軸押出機、ニーダー加工などで溶融混錬、ペレット化など)リサイクル材を製造する。得られたリサイクル材はサンプリングを行い物性を測定し、生産前に予め確認をした物性値と比較して所望する物性値にリサイクルがなされ、完了したかを確認をする。
  (等価再生、上位再生、及び下位再生)
 例えばOA機器プリンターの筐体(成形品)を用いて、リサイクルをして同じOA機器プリンターの筐体へのリサイクルは同じ価値のあるモノ(プリンターの筐体)を用いて同じ価値のあるモノ(プリンターの筐体)へのリサイクル(再生)を「等価再生」と言う。
 発泡スチロール(例えばEPS)の主成分はPS(GP)なので、減容化して粉砕したモノにブタジエンゴムにスチレンをグラフト共重合させたブタジエンゴムを混ぜ合わせ、ペレット化すればHIPS(高衝撃性ポリスチレン)に改質出来る。この様にEPSと言う低級なモノを用い、HIPSで改質する事は、EPSより価値の高い、上位のHIPSにする事を「上位再生」と言う。このHIPSとPPO(ポリフェニレンオキサイド)を混ぜ合わせ、難燃剤を加えれば、ノリル(商品名)を同じモノをEPSを用いても製造出来る。
 ところが現在は本発明で示したQRコードなどを用いて管理がなされていないので、成形品の中の樹脂、添加剤が判らないので、樹脂の種類も分けずにそのまま粉砕して、擬木、植木鉢などを加工する樹脂として用いる場合は「下位再生」と言う。
 市場から回収された成形品は可燃物なので、セメント工場、製鉄所、火力発電所などで燃料と使用して熱エネルギー(エネルギーの種類としては下位のモノ)としてリサイクルする場合は下位の再生でこの場合は一回切り(ワンタイム)になってしまう。これも下位再生である。
  (リサイクルの手段のフロー)
 実際に本発明を用いたプラスチック・リサイクルのフローを示す。バージンの樹脂を用いて成形加工し、必要に応じて塗装をする。QRコードで表示した成形品を市場に供給、役目が完了すれば回収する。成形品に示されたQRコードなどで、リサイクルが可能か、リサイクルの阻害物質などが含まれていないかを確認する。リサイクル可能な成形品は、必要に応じて洗浄する。或いはブラストなどを用いて表面の劣化した部分を除去する。
 同材質で同色のモノが集まれば、それだけを粉砕して、AIが計算をした必要なリサイクル助剤を添加し、均一にする目的でタンブラーなどをして、ペレット化してリサイクル材として再使用する。この場合にリサイクルを行った樹脂がどれだけの量が含まれ、それぞれの添加剤、リサイクル助剤の量などは将来再びリサイクルの対象になる成形品である事から、この成形品にもQRコードなどで成形品を構成する樹脂、添加剤などの情報を書き込んで於く。
 色分けをしないで、雑色・混色のままで粉砕をする場合も、同じ様にQRコードから、リサイクル実施可能かを判断した成形品だけ粉砕して、粉砕材に含まれる樹脂の種類と添加剤など種類と量をAIが確認し、同じ様にリサイクル助剤、その他添加剤などを加え、タンブラーした後、ペレット化して、再成形をする。得られた成形品は、混色・雑色、そのまま使用する場合は構わないが、彩色が必要な場合はカバーマークを目的に塗装する。勿論の事この成形品にはQRコードによって再リサイクルを前提にした、塗装を行った事を含め、リサイクル助剤、その他添加剤などの種類と量の情報を持たせたQRコードの刻印はしてある。
 この様に成形品にQRコードを用いてリサイクル実施に必要な情報を成形品に付与する事で、リサイクル実施は容易になる。再リサイクルを行う場合でも、成形品に付与したQRコードによってリサイクルが確実に行える様になる。真空成形など金型を用いない場合は成形品に刻印が出来ないので、例えばQRコードはシルク印刷、QRコードを印刷したシールなどを貼り付ける。なおシルク印刷に用いたインクなどの情報、シールの材質などの情報も勿論の事QRコードに書き込んで於く。
  (実施形態14)
 近年環境問題への関心が高まる中、バイオマスプラスチックへの関心が高まって来た。実施形態13乃至実施形態28では、自然界でバクテリアの力(作用)などによって生分解などをする、紫外線などによって光分解する、水などによって加水分解する環境分解性成分を含み、熱可視性、熱硬化性を主成分とする環境分解性成分含有の樹脂の加工に用いる樹脂ペレットの製造の具体的な手段・方法と、それ等の樹脂ペレットを用いての押し出し成形加工、射出成形加工など、その他必要な装置、変色・焼けなどを防止する手段の詳細を示す。
  (混合装置)
 本発明で其々の材料を混ぜ合わせる装置を「混合装置」と言う。混合装置の一般的なものはタンブラー、ヘンシェルミキサー、ロックングミキサーなどが例示出来るが、其々の材料を混ぜ合わせる目的の装置ならば、何でも良い。手段、構造などは一切問わない。コンクリートミキサーでも使用は可能である。タンブラーを用いて混ぜ合わせる事を本発明では「タンブリング」と言う。
 後記の実施形態で示す、バックメルター(商品名)の様な重量制御装置、重量制御フィーダー、重量フィーダーなどを使用する事が好ましい(図5、図6、付番187、付番188参照。)。
  (粉塵爆発)
 セルロースパウダー、紙粉、小麦粉、ふすま、木粉などの環境分解性成分、環境分解性物質は可燃性の微粉末なので、粉塵爆発の危険性をはらんでいる。予め混合装置内を不活性な気体、例えば窒素ガスなどで置換をしてから、その中に其々の材料を入れて混ぜ合わせる。タンブラーを用いて具体的に説明をする。タンブラーの中に空気は窒素ガスによって置換し、その中にセルロースパウダー、熱可塑性樹脂、必要に応じてその他添加剤を入れて、タンブラーを回転させ混ぜ合わせる。
 ヘンシェルミキサーの場合も同じでミキサー内を予め窒素ガスで置換をしてから其々の材料を入れて混ぜ合わせる。混ぜ合わせの段階でも、必要に応じては窒素ガスを入れ続ける。
 本発明の環境分解性成分は1種類の使用でも良いが、必要に応じて数種類を混ぜ合わせて使用すると、品質の向上、経済的効果が期待出来る。
  (タンブラー)
 ペレット化の前にタンブラーを用いて熱可塑性樹脂と環境分解性成分とを混ぜ合わせるのが一般的である。この混ぜ合わせたモノには当然空気を含んでいる。特に環境分解性成分は性状が粉体なので特に中には空気を含みやすい。当然空気の中には体積割合で約20%(重量の割合では約23%)の酸素を含む。このままニーダー(加圧ニーダーを含む。)、バンバリーミキサー、単軸押し出し機、多軸押し出し機を用いてペレット化したのでは先の酸素によって環境分解性成分、或いは環境分解性成分の中に一部の成分、例えばリグニンなどが酸化され、変色する。この課題を解決するためには、タンブラーの中に不活性なガスを入れ、酸素の濃度を下げる。
 リグニンを除去するには、例えば、水又は/及び有機溶剤を用いて洗浄する、或いは先の水、又は/及び有機溶剤の温度を上げての湯煎する、又は水蒸気洗浄などをする事などある。水蒸気洗浄などをすると、環境分解性成分は含水などするので、体積を少なくさせる事が出来る。水洗をするとその場合も含水などをする。
 この様にして体積を少なくさせる事で、タンブラーなど、溶融混錬などの作業が容易になる。
  (溶融混錬装置)
 混ぜ合わせた先の材料の中で熱可塑性を示す材料を加熱溶融して、混錬する装置を本発明では「溶融混錬装置」と言う。単軸(1軸)の、多軸(例えば2軸)の押し出し機、加熱が可能なニーダー、加熱が可能なバンバリーミキサー、加熱が可能なローラーなどが例示出来る。
 然し溶融混錬装置へ投入される前の段階では、粉塵爆発に危険性があるので、窒素ガス置換などを講じる必要はある。
 例えば回転が同方向の、異方向でも良いが2軸の押し出し機を用いて溶融混錬をすると、粉塵爆発以外に、例えば白色の、所望する色に着色したセルロースパウダー(環境分解性成分を数種類混ぜ合わせても良い。)などは、熱可塑性樹脂と混ぜ合わせ溶融混錬をすると、環境分解性成分などは変色・焼けが生じ、所望する色が得られないなどの色の問題が発生する。着色した場合は予定の色に仕上がらない。これは押し出し機加熱筒で熱可塑性樹脂を溶融混錬する場合、例えば使用する樹脂がPPであっても200℃近くに加熱する。この200℃の温度では、例えば環境分解性成分を用いた場合は、黄色く、又は褐色に変色する。場合によっては、溶融混錬の温度を高めれば黒く焼けてしまう。この変色、焼けの問題は空気中の酸素によって生じ、酸素が存在する雰囲気の中で変色などする。不活性なガス例えば窒素ガス、炭酸ガス、希ガスなどの中では変色は少ない。或いは全く変色しない。
 この変色の課題を解決する手段として発明者は、例えば押し出し機を用いてのペレット化、シート成形などでは前記ホッパー内を窒素ガスで置換を行う。具体的にはホッパー内を窒素ガスでの置換と、押し出し機のベント部分への窒素ガスの注入を行う事で加熱筒内へも窒素ガスが入り込み変色を防止する。
 中を窒素置換したモノ(隙間の空気を窒素ガスで置換した混合物001)をニーダー、バンバリーミキサー、単軸、多軸の押し出し機を用いて溶融混錬する段階でも、酸素が入り込むと酸化によって変色の危険性がある。今単軸、又は多軸の押し出し機を用いての溶融混錬を説明する。予め先に混合物を押し出し機のホッパー内に入れる前にホッパー内の空気を窒素ガスで置換している事が好ましい。そのホッパーの中に、溶融混錬、ペレット化するモノ(タンブラーして、窒素置換したモノ)を入れ、ホッパー内には窒素ガスを連続的に入れて於く。本発明ではこれをホッパー内の窒素ガス封止と言う。
 ホッパー内への窒素ガス埜注入、封止は図5、図6に示す様にホッパーの下部、加熱筒の直前、ホッパーの中、好ましくは材料の中央部から窒素ガスが出る様にする。
 ホッパー下の窒素ガス(附番187、付番188)はホッパーから加熱筒内へ前記の混合物001と一緒に送り込まれる。
  (変色・焼け)
 環境分解性成分、熱可塑性樹脂などは常温では問題がないが、熱が高い場合、例えば200℃近くに加熱され、空気と触れると、空気中の酸素によって酸化され、黄色に、或いは褐色に変色する。又酸化が更に進むと焼けになる。本発明では変色、焼けを総称して「変色など」、又は「変色・焼け」と表現する。
  (成形装置)
 「成形装置」とは、押し出し機、シート押し出し機、異形押し出し機、射出成形機、ブロック成形機、注型機、カレンダー成形機、ブロー成形機などを言う。成形装置を用いて加工がなされたモノを「成形品、成形加工品、成形加工したモノ」と言う。原料のペレットも本発明では成形品に含む。
  (冷却装置)
 「冷却装置」とは、押し出し機にから出た熱可塑性樹脂のストランドを空冷する為にコンベアー、水冷する為の水槽などと、成形機の温度を制御(コントロール)する温調器、チラーなどを言う。シート成形の場合もシートを冷却するコンベアーなど、水槽などを言う。
  (金型装置)
 「金型装置」とは、押し出し機のダイ、注型加工用に金型、射出成形加工用の金型などの総称である。
  (成形加工法)
 本発明で言う「成形加工法」とは、ストランド、又はシートを製造する押し出し成形法、異形押し出し成形法、注型成形法、射出成形法、ブロック成形法、カレンダー成形法などを言い、特に射出成形加工では、一般の成形加工法(一般成形法、通常成形法)に以外に、性状が固体、液体、気体の化学発泡剤を用いた射出発泡成形法、性状が固体、液体、気体の物理発泡剤を用いた射出発泡成形法(単に「発泡成形、又は発泡成形法」とも言う。)、前記発泡剤を用いての押し出し成形、異形押し出し成形、注型、ブロック成形、カレンダー成形なども含まれる。
 シンプレス(商品名)、AGI(商品名)、エアーモールド(商品名)と、その応用技術のRFM、HM成形法に例示される射出中空成形法(これ等を本発明では単に「中空成形、又は中空成形法」とも言う。)、溶融樹脂と金型とに隙間に大気圧以上の圧力を持つガスを入れてそのガスの圧力で加圧する射出圧空成形(単に「圧空成形、又は圧空成形法」とも言う。)を言うも本発明の環境分解性成分含有の樹脂を用いて実施出来る。
  (不活性ガス)
 「不活性ガス」とは、環境分解性成分を含み、そして熱可塑性樹脂を含む成形材料の実際の温度が380℃の時に、温度の高い成形材料を酸化させないガスを言い、例えば窒素ガス、一酸化炭素、炭酸ガス、水素ガス、有機溶剤を気化させたガス、ヘリウム、ネオンなどの希ガスなどを言い、これ等のガスは単独で、或いは混ぜ合わせて複合ガスとして使用する。特に本発明で有用なガスは窒素ガスと、炭酸ガスである。特に窒素ガスは分離膜、PSAなどの分離装置を用いて安価に、多量に得る事が出来るので、本発明では多用する。尚本発明で言う酸化とは、酸素と結合する事、酸素によって分解される事以外に、酸化とは対象となる物質が電子を失う事を言う。
  (ガス置換)
 「ガス置換」とは、装置内、又は/及び材料の隙間に入り込んだ酸素を含む空気を減圧して、脱気してから、減圧の状態で、不活性なガス例えば窒素ガス、炭酸ガスなどを入れて、再び大気圧下まで圧力を高めれば良い。
 減圧をせずに、逆に不活性ガスを入れてから加圧しても良い。例えば大気圧以上の圧力を持った不活性なガスを入れ、空気と置換する。この方法は1回でも良いが数回繰り返せば十分に置換出来る。押し出し機、射出成形機のホッパー内の空気は、又材料の隙間の空気は減圧、置換予定のガスを用いての加圧、減圧、置換予定のガスを用いての加圧を繰り返せば良い。この方法に最適な設備、例えばバックメルター{バックメルタ)(商品名)}が準備されているので簡単にガス置換出来る。(株)ハルナのエコマック(商品名)を用いて、真空引き(実際は減圧する事を意味する。)をしただけでも良(よ)い。真空引きの装置内に再び不活性なガスを入れても良い。本発明ではバックメルター、エコマックなどの機能を持った装置を総称して「バックメルター」と言う事にする
 バックメルターで減圧をせずに大気圧以上に加圧して、大気圧まで戻し、再び大気圧以上に加圧して置換して良い。
 タンブラーで混ぜ合わせた環境分解性成分と熱可塑性樹脂との混合物を閉ざされた容器内に入れ、真空ポンプなどを用いて真空引きをして、減圧された中に不活性な窒素ガスを入れると、タンブラーされたモノに中の空気(特には酸素)は窒素ガスによって置換される。この空気を窒素ガスに置換する作業は1回でも多くの酸素を窒素ガスに置換出来るが、更に窒素ガスの置換を望むならば、複数回行う事が好ましい。
  (ガス封止)
 「ガス封止」とは、例えば空気を追い出し、不活性な窒素ガスでガス置換した中に、再び空気が侵入するのを防ぐ為に連続的に、或いは断続で窒素ガスを装置、例えば押し出し機のホッパー内、フィードスクリュー(サブスクリュー)の中に不活性なガスを送り込み先の装置内の中を不活性なガスだけの雰囲気にする事を意味する。
  {ガス・ウンター・プレッシャー(GCP)、GCP法}
 「GCP」とは発泡成形に於いて、スワール・マーク(発泡縞模様)のない表面が平滑で綺麗な発泡成形本を得る手段で、通常は大気圧以上の圧力に加圧したエアーを用いるが、先に述べた様に環境分解性成分を用いると変色・焼けが著しい。この課題を解決する手段として、GCPに用いる気体を、酸素を含んでいるエアーではなく、窒素ガス、炭酸ガスなどを使用する。
 PLなどをOリングで、エジェクターピンなどを荷重式Oリングで、或いはエジェクターボックスでシールした金型内を大気圧以上にガス(一般には空気)で加圧してから発泡性樹脂を充填し、発泡性樹脂の充填の途中、或いは充填完了後に金型内のガスを排気して表面が平滑な、綺麗な、内部に発泡層を持った発泡成形品を得る手段、所謂GCPに於いて、使用するガスがエアーの場合は変色・焼けが発生するが、予め金型内を加圧する(これを「与圧」と言う。「圧気」とも、「圧気する。」も言う。)、与圧に用いるガスをエアー{;エアー(空気)の場合酸素が含有しているので、変色・焼けが発生する。}でなく、不活性な窒素ガスを使用すれば、変色・焼けなどは少なく出来る。
 始めに前記シール金型内をエアーで圧気してから、エアーの圧力よりも高い圧力の窒素ガスをキャビティ内に入れて、始めのエアーを窒素ガスの圧力で追い出して置換する事もある。この場合が窒素ガスは主にキャビティ内を圧気し、金型の他の部分、例えば入子の底の空間、エジェクターボックス内などは安価なエアーで圧気すると、シールされた射出加工用の金型全てを窒素ガスで圧気するよりも経済的である。
 真空引きをして初めの空気を抜いてから、再び窒素ガスで圧気する事もある。初めから窒素ガスを用いて圧気をしても良い。
 GCPに付いてはPCT/JP2016/86380、PCT/JP2015/062611、PCT/JP2020/015536文献で説明をされており、本発明の発泡成形、GCP、中空成形、圧空成形の実施は前記文献の内容を使用する。
  (流動支援)
 GCPに炭酸ガスを用いると変色・焼けの防止に加え、炭酸ガスはキャビティ内に充填された溶融樹脂の流動先端部から入り込み溶融樹脂の流動性を向上させる作用・効果がある。炭酸ガスは窒素ガスに比べて溶融樹脂との親和力が高く、窒素ガスが溶け込むと、流動性が向上する。窒素ガスと炭酸ガスとの混合ガスでも良い。
 シール金型を用いなくても、金型が閉められ、溶融樹脂(発泡性樹脂でも非発泡性樹脂の何れでも可)の充填の前に大気圧以上の圧力を持つ窒素ガスをキャビティ内に入れて、始めのキャビティ内の空気を窒素ガスで置換してから、溶融樹脂を充填する工程に於いて、溶融樹脂の充填の前に窒素ガスの注入を止める場合と、充填が開始され、充填が完了するまで窒素ガスの注入を続ける場合とがある。
  (流動支援と、分散)
 溶融樹脂の流動性を上げるには、流動性向上剤を用いるが、成形加工装置、押し出し機と射出成形機とでは加熱筒に穴を開けて、其処から、加熱筒内の温度で気化する液体、例えば水、アルコール類、水とアルコールの混合物、その他有機溶剤などを入れて気化させると、溶融樹脂の流動性を著しく向上させる事が出来る。当然流動性を高める事が出来れば、環境分解性成分の熱可塑性樹脂中の分散性も高められる。この液体の中にアニオン系の、又はカチオン系の、又はノニオン系の界面活性剤を加えて(併用する。)も良い。市販の分散剤でも構わない。
 流動性を高めるのは先の液体以外に、窒素ガス、炭酸ガスなどの気体を溶融樹脂に入れて良い。炭酸ガスは窒素ガスに比べて溶融樹脂との親和性(混ざり易さ)が高いので、気体を用いる場合は炭酸ガスが良い。
 固体発泡剤は、例えば重曹に代表される炭酸水素塩、ADCAに代表されるアゾ化合物、DPTに代表されるニトロソ化などの化学発泡剤、中空気球などの物理発泡剤も、加熱筒内の溶融樹脂の流動性を高める効果がある。
 環境分解性成分と熱可塑性樹脂との結合性を高めるには、熱可塑性樹脂がPPの場合には、PP樹脂と結合性の高いマレイン酸変性のPPを含むエマルジョン(溶剤系でも可)を前記液体の場合と同様に加熱用内に入れ、環境分解性成分とPP樹脂との結着性(結着力)を高める。滅可塑性樹脂がABSなどのスチレン系樹脂の場合はスチレン変性アクリル樹脂をエマルジョンとした溶液、スチレン変性アクリル樹脂を溶剤を用いて溶解した溶液などを用いる。熱可塑性樹脂がポリアミドの場合はメトキシメチル化ポリアミドの溶液、又はエマルジョンとしたモノを同じ様に使用、加熱筒内へ入れれば良い。
 当然これ等マレイン酸変性のPP、スチレン変性アクリル樹脂、メトキシメチル化ポリアミドの固体(粉体など)、ポリビニルアルコールを混ぜ合わせても良い。この場合に前記マレイン酸変性のPPなどの性状が固体の場合、タンブラー(タンブリング)の段階で混ぜ合わせてから、押し出し機ホッパーなどへ投入する。
 液化した炭酸ガスをバレル内に注入して加熱筒の温度で気化させて、加熱筒内で炭酸ガスとして流動性向上剤として用いる事が出来る。固体の炭酸ガス(ドライアイス)をペレット状にして、バックメルターの様な機構の装置を押し出し機、射出成形機、その他成形装置に設けて、ドライアイスを混ぜ合わせたドライアイス、環境分解性成分、熱可塑性樹脂の混合物を加熱筒内へ入れて、溶融させ、溶融時にドライアイスは昇華して炭酸ガスとなって、溶融樹脂中に溶け込む。結果加熱筒内の溶融樹脂は炭酸ガスが溶け込んでいるので流動性は向上する。ドライアイスは流動性向上剤として用いる事が出来る。
  (実施形態15)
  (ペレットの製造)
 本第3実施形態に用いる環境分解性成分の粒径は特に問わない。大きくても、小さくても構わない。粒径の大きいモノ、小さなモノとを混ぜ合わせて使用する場合もある。本発明の実施例に使用した日本製紙(株)製のセルロースパウダー(KCフロック W-100GK、W-50GK、W-400G)の平均粒子径は200μm以下であれば十分、分散性を高め均一性(均一な分散)を求める場合は20μm以上、50μm未満もモノを使用する。日本製紙(株)製のセルロースパウダーKCフロックは元々は障子紙の様に白色の粉体である。この白色の粉体(セルロースパウダー)を51重量%と、自然色のPP樹脂{住友ノーブレン HX101A(商品名)}を49重量%混ぜ合わせた混合物(本発明では「混合物001」とする。)を、加熱には電気式の棒ヒーターを使用したニーダー{(株)トーシン製の加圧式ンーダー}で加熱し、溶融混練をした。溶融温度は200℃以下に調整をしたが、前記セルロースパウダーと、PP樹脂とを溶融混錬したモノは褐色に変色(元々はセルロースパウダーもPP樹脂のペレットも共の白色であった。)していた。原因はセルロースパウダーが空気により酸化(空気中の酸素による酸化)され変色したと推測した。
 変色が空気中の酸素よって生じたモノかを確認をする為に、ニーダーの加熱部をビニル袋で囲い、中に不活性な窒素ガスを入れて{ニーダーで溶融混錬中には窒素ガスを連続的に入れ続け、空気との置換を行い、樹脂の溶融の環境(溶融混錬時の雰囲気)を窒素ガスで封止した。)同様に200℃で溶融加熱した結果、空気中で溶融混錬をしたモノと比較して、変色は殆ど認められない白色であった。これによって変色は空気中の酸素である事が判明した。僅かながら変色が認められたが、それはセルロースパウダー、PPのペレットの隙間に入り込んだ空気によるものと推測した。
 溶融混錬した前記セルロースパウダー含有のPP樹脂の塊を窒素ガスの雰囲気から空気中に出した時に、表面温度が溶融混錬時の200℃近くになっているので、空気中の酸素によって表面は褐色に変色した。
 この実験からセルロースパウダーが酸化されやすく変色する。然し空気を不活性な窒素ガスなどで置換すればこの変色の問題は解決する事が確認出来た。
 従来の樹脂(例えばPP樹脂)のペレットはストランドを水中に入れて冷却してから、カットしてペレットにするが、環境分解性成分は吸水性が高いので、水中での冷却は好ましくはなく、空冷が望ましい。
 先に溶融混錬をしたセルロースパウダー含有のPP樹脂の、冷却固化が完了していない、溶融状態の塊をプランジャー式の押し出し機で押し出し、ステンレスメッシュのコンベアー上で空気空冷(セルロースぱ吸水性が高いので、)して、ストランドを押し出し、ペレタイザーを用いてカット(切断)してセルロースパウダー含有のPP樹脂ペレットを得たが、プランジャーで押し出しストランドとした段階で、空気中での作業{ストランドカット、空気(エアー)冷却固化}であったので、ストランドの表面は酸化され、褐色に変色した。
 変色を防止する為にはニーダーの場合と同様に窒素ガス置換を行う事で防止出来る事を確認した。具体的にはコンベアーをトンネル構造として、囲い込んで、中に窒素ガスを入れて窒素ガスで置換する。ダイから押し出されたストランドの窒素ガスを吹きかけて冷却する。この様に溶融混錬の段階、ストランドを引いてペレット化の段階で空気を窒素ガスで置換する事でセルロースパウダーの酸化は防止出来て、変色のない白色のペレットを得る事が出来る。上記実施形態はセルロースだけを用いたが、セルロースパウダーと紙粉(製紙工場からのモノ、或いは市場から回収した紙を微粉化下元の何れでも可でも良い。又これ等を混ぜ合わせても良い。
  (実施形態16)
  (酸化防止の手段=窒素ガス封止)
 前記第3実施形態からセルロースパウダーの変色(酸化による。)は、空気中の酸素による事が確認出来た。
 然し前記加圧式の加熱ニーダーはバッチ式の生産(製造)なので、生産性が低い。ペレットを得るには単軸、又は多軸の押し出し機と、ペレタイザーを用いて連続的に生産をした方が生産コストが下がり、経済的である。
 押し出し機を用いて酸化させないで、変色のないペレットを得る手段を本第4実施形態に示す。混合物001を押し出し機のホッパーに入れ、ホッパー内の空気を不活性な窒素ガスに置換する。実際にはホッパーの下部(加熱筒と繋がるパイプの部分が好ましい。)に細いホースで連続的に窒素ガスを入れ込めば良い。この時に窒素ガスは市販のボンベの購入して使用しても良いが、この場合窒素ガスのボンベは高価なので決して経済的ではない。発明者はPSA(Pressure Swing Adsorption)、或いは窒素ガス分離膜{UBE(株)から販売されている中空糸(N2セパレーター)}を使用して空気中から分離した窒素ガスを用いた。
 先に示した様にホッパー内を窒素ガス置換すれば酸素濃度が下がり、酸化による変色などは避けられる。
 それ以上に変色などを避けるには例えば(株)名機製作所、(株)日本製鋼所が成形機に付帯し製造販売している加熱筒内高真空可塑化装置{バクメルター(商品名)}を用いる。ホッパー内を窒素置換した混合物001を加熱筒に入れ、溶融混錬の前に、バックメルターを用いて真空引きをして、セルロースパウダー、PP樹脂ペレットの隙間に入り込んでいる空気を外へ吸い出す。そのまま、加熱筒に入れて溶融混錬しても良い。
 必要に応じて真空引きをした後、バックメルター内に窒素ガスを入れれば、隙間の空気は略窒素ガスに置換される。より窒素ガスの置換効果を高めるのはバックメルターを1段ではなく、多段用いれば更に効果は高くなる。
 押し出し機には先の空気が窒素ガス置換された混合物001を投入し溶融混錬するが、押し出し機の場合、投入量を安定させる為に、加熱筒の上、ホッパーの下、加熱筒とホッパーの間に小さなサブスクリュー(フィードスクリュー)を設けて加熱筒内への投入量を安定させる。この場合サブスクリュー内も窒素ガス置換を行った方が良い。変色などの防止にはこれを行う必要があり、推奨する。
 押し出し機は単軸(1軸)でも、強(高)混錬性の多軸(例えば2軸)の押し出し機を用いる。多軸の押し出し機の場合はスクリューの回転の方向は同回転でも、異方向回転でも良い。
 押し出し機の場合は加熱筒にベントが設けられている。このベントにも覆いをして中に窒素ガスを入れて窒素ガス封止(不活性な窒素ガスに空気を置換する事の意味。)を行う。
 溶融混錬した後、溶融樹脂はダイから押し出てストランドを作る。ステンレスメッシュのベルトコンベアーを用いて冷却・固化する。冷却・固化の段階でも、ストランド表面の酸化による変色を避ける為に先のニーダーを用いてペレットを得た場合に説明した様に、ダイから出たスリランドの酸化による表面の変色を避ける為に、同様に窒素ガス置換(空気を不活性な窒素ガスの置き換える事。空気中の酸素を窒素ガスに置き換える事。)する。冷却・固化が完了し、温度が下がりペレット化(コールドカット)する。
 この様に空気中の酸素濃度を下げ略ゼロとする事で、セルロースパウダーが変色する事なく白色のペレットが得られる。
 ペレットの製造の段階で、顔料・染料を入れ込めば様々な色のセロルースパウダー含有のペレットが得られる。
 尚PPは溶融温度が200℃では酸化される事はない。故に200℃程度ではPPの変色・焼けはない事を確認している。
 押し出し機のスクリューは混錬性を高める目的でダルメージを用いると、混錬性は高いので、環境分解性成分が熱可塑性樹脂中への分散性は高くなる。
 溶融混錬した加熱筒内の溶融樹脂中に特許公報(PCT/JP2015/062611)で示した手段で気化性の液体を入れれば、前記特許公報PCT/JP2015/062611)の発泡目的ではなく、押し出し機加熱筒内の溶融樹脂の溶融粘度を下げて、セルロースパウダーと、樹脂のPPとの混錬性を高め、分散性が上がる。
 発泡目的でないので添加量は、例えばエタノールの場合には環境分解性成分を含む溶融樹脂100部に対して、1部以上、好ましくは3部以上添加すると良い。
 気化性の液体はエタノール、プロパノールなどのアルコール類、水、水とアルコール類との混合物が良い。メタノールの使用出来るが毒性があるので推奨はしない。本発明では使用を中止する。
 この液体の中の染料を入れればペレットに着色が出来る。液体注入は一か所に限らず、数箇所でも良く、アルコールなどと、染料・顔料を含んだ溶液を入れても良い。
 セルロースパウダーとオレフィン系樹脂のPPとの結合力を高め、最終の成形品の強度を高める為に、セルロースとPPとの界面・境界領域の結合力を高める為にマレイン酸変性のPPのエマルジョンタイプの溶液〔ユイチカ(株)から販売されている型番がDB-4010{アローベース(商品名)}〕などを入れても良い。
 当然な事酸化チタン、アルミナ、マグネシアなどの白色の無機物を加えればより白くさせる事も可能である。
 必要に応じて可塑剤、防腐剤、防カビ剤、分散剤などを使用する。これ等の物質の性状が固体の場合は例えば混合物001に適量を混ぜ合わせ使用する。
 アルコールなど有機溶剤を用いた溶液の場合は、先に述べた用の液体注入装置(特許公報 PCTPCT/JP2015/062611)の図1、図4、乃至図19などの装置用いて加熱筒内へ注入すれば良い。
  (実施形態17)
  (射出成形加工)
 混合物001を用いて第3実施形態、第4実施形態で得られたセルロースパウダー含有のペレット001を用いて射出成形加工する場合のセルロースパウダーの酸化防止の手段を示す。
 手段は前記ペレット001を用いた様に窒素置換、窒素封止で、射出成形加工時の変色、焼け防止は可能である。
 初めに射出成形機のホッパー内を窒素ガスで置換する。置換の手段が前記ペレット製造で押し出し機を用いてペレット001を製造した時のホッパー内の窒素置換の手段と同様である。
 ホッパー内を窒素置換し、続いて射出成形機の加熱筒内で可塑化する。本第5実施形態の射出成形機には先に述べたバックメルターが付帯され、ホッパー内のペレット001は、ペレット隙間の空気の幾分かは窒素ガス置換され、次にバックメルター内に送り込まれる。バックメルター内を真空引きして、加熱筒内に送り込み溶融して可塑化して混錬する。
 バックメルターを真空引きした後、もう一度窒素ガスをバックメルター内に入れても良い。当然バックメルターは、1段でも良いが複数段直列に用いれば更に窒素ガスの置換率を高める事が出来る。
 この様にペレット001の隙間を窒素ガスで置換するので、可塑化、溶融混錬の段階で酸素の起因する変色・焼けは生じない。
 射出成形機加熱筒内で過疎化されたペレット001は次に金型内へ充填されるが、金型のキャビティ内に空気が、実際は空気中の酸素が存在すので、得られる成形品には変色・焼けの危険性がある。射出速度を上げると断熱圧縮で変色・焼けは多くなる。
 この問題を解決するにはキャビティ内を不活性なガス、例えば窒素ガスで置換をする。キャビティ内の窒素ガス置換の手段を具体的に説明する。
 使用する金型には固定側、又は可動側、又はスプールランナーの何れか(複数でも可)から、特許公報(PCT/JP2016/86380)に記載の図52、図53、図54のガス注入ピン、ガス加圧ピンが設けられ、金型が閉じられて、金型内を特許公報(PCT/JP2016/86380)図1の弁(附番14)を開けてキャビティ内へ窒素ガスを吹き込む。キャビティ内の空気が窒素ガスに置換された事を見計らい、前記ペレット001の溶融樹脂をキャビティ内に射出(充填)する、溶融樹脂の冷却・固化の完了が完了、金型を開けて成形品を取り出せば、混合物001を用いて製造したペレット001を用いて射出成形加工した変色・焼けのない白色の綺麗な射出成形品が得られる。
  (実施形態18)
 ペレット001は51重量%のセルロースパウダーを含むので、PP樹脂100%のモノよりも流動性は著しく低下する。その上セルロースパウダーの変色・焼けが懸念されるので、成形時の樹脂温度はそれ程高くは出来ない。そこで溶融樹脂の流動性を増し手段として特許公報(PCT/JP2015/062611)に記載されている液体を用いた発泡成形の手段の応用として、加熱筒内の溶融樹脂中にアルコール類、水、アルコール類と水との混合物を入れて溶融樹脂の流動性の向上を図る。添加量は発泡成形ではないので、発泡成形の数倍以上の量を入れ、流動性を上げて窒素ガス置換したキャビティ内に射出して、続いて樹脂保圧を掛けて前記液体を搾(絞、しぼ)り出す。発泡剤を用い保圧を掛けて発泡させない手段である。
 当然変色・焼けの危険性があるので、ホッパー内、キャビティ内の不活性ガスによる置換、不活性ガスでの封止を行う。
 先には液体を熱可塑性樹脂の流動性向上剤にアルコールなどの使用(加熱筒内への注入の手段)を示したが、アルコールに限定されずに、加熱筒内の溶融樹脂内へ注入出来る圧力まで圧力(;可塑化・溶融時の加熱筒内の溶融樹脂の背圧より高い圧力)を高めた気体の窒素ガス、炭酸ガスを用いても同じ様に流動支援効果は期待出来る。
 アルコール類などの液体、窒素ガス、炭酸ガスなどの気体以外に、重曹(炭酸水素ナトリウム、重炭酸ナトリウム、酸性炭酸ナトリウム)、ADCA(アゾ・ダイ・カルボン酸アミド)、DPT(ダイ・ニトロソ・ペンタメチテン・テトラミン)と、それ以外に中空気球のアドバンセル(商品名)、エキスパンセル(商品名)も同じ様に流動性支援効果は期待出来る。
  (発泡成形)
 先には液体を用いた流動支援の作用・効果を説明したが、当然ペレット001を用いての発泡成形の実施も可能である。先の第6実施形態に於いてアルコール類は流動性向上剤として用いたが、添加量を少なくして、適量を用いればアルコール類も発泡剤として用いれば、発泡成形は可能である。
 ペレット001中のセルロースパウダーは、起泡核剤として作用するが、必要に応じて起泡を目的に核剤として作用するタルク、金属酸化物、無機フィラーなどを加えても良い。
  {ガス・ウンター・プレッシャー(GCP)}
 当然特許公報(PCT/JP2016/86380)、文献{S&T出版(株) 2022年10月20日 第1版 第1刷「発泡成形・中空成形・圧空成形の量産実施に向けての準備と、環境負荷低減の具体的な手段の解説」鈴木 康公 新保 實著}に記載されているガス・カンター・プレッシャー(GCP)法、GCPの手段を用いれば、セルロースパウダーの表面での浮きを少なく出来る。GCPの圧力(金型内への与圧)を高める、金型温度を高めるなどを行えばGCPの効果によるセルロースパウダーの浮きは更に少なく出来る。
 一般の樹脂、例えばABS、PPなどを用いたGCPに於いて、予め金型内を与圧する気体はエアーであるが、エアーであると、変色・焼けの問題があるので、不活性な窒素ガスを用いる場合もある。炭酸ガスを用いると、炭酸ガスは流動の先端部から溶融樹脂の中に溶け込み、溶融樹脂の流動性の向上、セルロースパウダーの浮きの低下(押さえ込み)の効果がある。
 当然この発泡成形の場合も先の第4実施形態(押し出し成形であるが射出成形でも略同じ)、第5実施形態で説明した様に、ホッパー内での窒素置換、バックメルターなどの装置を用いての窒素置換を行う必要はある。
  (実施形態19)
  (押し出し成形=シートの押し出し成形)
 ペレット001を用いて押し出しの成形を行いシートの生産を実施する場合、前記射出成形の場合と同様に、ホッパー内を窒素封止し、窒素置換して、押し出し機加熱筒上に、フィードスクリューが設けられている場合は、そのフィードスクリューの中の空気も窒素置換して、酸化による変色・焼けが生じない様にしてから加熱筒内に入れて可塑化し、シートを押し出す。射出成形機の場合も、押し出し成形機の場合も同じであるが、加熱筒内へ酸素が入り込まなければ多少温度を高めても、変色・焼けの心配はない。
 然しシートが押し出し機のダイから出た時は、冷却固化が進んではいなくて、高温であるので、空気と触れると当然な事表面は酸化され変色する。場合によっては焼けが発生する。表面の冷却・固化が完了し、酸化され変色しなくなる温度まで表面温度が下がる時間までは、窒素ガスの雰囲気にする必要がある。冷却固化が完了してからは所望する大きさにカットして圧空成形、真空成形の用いるシートとする。
 第7実施形態のシートを製造する押し出し成形の場合も、先の第4実施形態の場合も、加熱筒にベントが設けられている場合は、其処から空気が加熱筒内へ入り込み、酸化され、変色・焼け発生の恐れがあるので、その部分{ベント部、ベント口(くち)など}からも窒素ガスを入れて、加熱筒内の溶融樹脂の酸化を防止する。
 又別の口を設けて加熱溶融された熱可塑性樹脂の中に後述するスラリー状にした環境分解性成分を入れて混錬する。加熱溶融混錬の段階で、スラリーの製造に用いた水、有機溶剤などは、更に別のベント口から吸引し、加熱筒外へ逃がす。
 スラリーの製造は、環境分解性成分に水、又は/及びアルコールなどの有機溶剤を加え、ヘンシュルミキサーなどを用いて製造する。
 製造されたスラリーは、単軸、又は多軸の押し出し成形の場合は、熱可塑性樹脂がPPなどのオレフィン系樹脂の場合はマレイン酸変性のPP溶液(水系も含む。)、ABS、HIPSなどのスチレン系樹脂の場合は、スチレン変性アクリル樹脂の溶液(水系も含む。)を用いる。
 スラリーは短軸、多軸の押し出し機を用いて溶融混錬して、ペレットを製造する場合、スラリーはプランジャーポンプなどを用いて、加熱筒内の溶融樹脂に対して一定量を、連続的に注入して、溶融混錬をする。
 射出成形加工の場合は、スラリーは軽量の開始から、終わりまでの間に射出成形機の加熱筒内の溶融樹脂中に、加熱筒内の溶融樹脂に対して、一定量を注入する。これを容量制御と言う。射出成形機の場合は、文献{S&T出版(株) 2022年10月20日 第1版 第1刷「発泡成形・中空成形・圧空成形の量産実施に向けての準備と、環境負荷低減の具体的な手段の解説」鈴木 康公 新保 實著}に記載されている図(ページ36に記載の写真17)の液体注入装置が使用出来る。尚本書のページ66の図32、写真24にはガス・カウンター・プレッシャー装置が示されている。
  (実施形態20)
 先の実施形態などは樹脂(例えば、混合物001、ペレット001)にはオレフィン系樹脂のPPを用いたが、本発明では使用可能な樹脂は熱可視性を示す樹脂なら構わない(使用可能である。)。PPの溶融温度を下げる目的でPEを加える事、例えばPP:PE=50:50などの混合樹脂(ポリマーアロイ、ポリマーブレンド)が出来る。PEだけ(PEの単品)でも実施は出来る。
 前記PPの性状はペレットであったので、セロロースパウダーと混ぜ合わせ、ペレット化してペレット001としたが、ABSの場合は性状がパウダーのモノが市販され、入手が可能なので、発明者はセルロースパウダーと、ABSパウダーとをタンブラー、ヘンシェルミキサーなどを用いて混ぜ合わせたABS含有のセルロースパウダーを、ペレット化せずに、第5実施形態で示すホッパー内に入れてペレット化はせずに、粉体の混合物そのままで射出成形しても良い。
 当然の事アルコール類を用いた発泡成形、GCPも実施可能である。ABS以外にはエステル系樹脂のPET、塩化ビニル、ポリスチレンなどでも構わない。生分解プラスチックのポリ乳酸などの使用も可能である。又これ等樹脂のポリマーアロイ、ポリマーブレンドとしても良い。
 樹脂の流動性を高める手段としてアルコール類などの液体を例示したが、それ以外に液化炭酸ガスでも良い。先に示したバックメルターを少し改造して、その中に固体の炭酸ガス(ドライアイス)を混ぜて、加熱筒内に入れれば、加熱筒の温度でドライアイスを昇華させ発泡性ガスとして、添加量を増やして流動性向上剤として、分散剤としての使用も可能である。
 本発明の第3実施形態などではセルロースパウダーを用いて発明の実施の手段を示したがセルロースパウダーに限定させるモノではない。本発明で示したセロロースパウダー以外の環境分解性成分も酸素のよって酸化され変色・焼けが生じやすいので、これ等の物質を用いる場合も不活性な窒素ガス封止、窒素ガス置換を行えば良い。
  (実施形態21)
  (マレイン酸変性などを用いたPPなどへの担持)
 セルロースパウダーなどの環境分解性成分と、PPとの結合力が低い場合には、環境分解性成分(例えばセルロースパウダー、紙粉など)の、例えば表面に、PPと強い結合力を持つ物質、例えばマレイン酸変性のPP、又塩素化PP、塩素化PEなどに例示されるハロゲン化ポリオレフィンを用いる。
 実施の具体的な初段を説明する。環境分解性成分に性状が粉体の場合、粉塵爆発の危険性をなくす為に、予めヘンシェルミキサー内を窒素ガスなどの不活性ガスで置換した中に、環境分解性成分を入れ、続いてマレイン酸変性のPP(性状はマレイン酸変性のPPを乳化させたエマルジョンタイプ、溶剤の溶解した溶剤タイプ)などを入れてから、攪拌して環境分解性成分とマレイン酸変性のPPなどとを混ぜ合わせる。得られたマレイン酸変性のPPなどが含有した環境分解性成分の塊を、PP樹脂と溶融混錬可能な粒径(大きさ)に粉砕して、PPと混ぜ合わせてペレット化、或いはシート成形をする。
 PPでなくスチレン系樹脂のAS、ABS、PS、HIPSなどの場合は、マレイン酸変性のPPの代(変、替、か)わりに、スチレン変性アクリル樹脂、アクリル樹脂、酸変性のアクリル樹脂などを使用する。これ等の性状は先に示した様に、エマルジョンタイプ、溶剤タイプの共に入手出来るので、何れも使用可能である。
  ポバール(ポリビニルアルコール)を水、又は溶剤に溶解したモノも、環境分解性成分をバインダーの樹脂であるPPなど、ABS、HIPSなどと環境分解性成分との結合力を高める事は出来る。使用(実施)方法は先に示したマレイン酸変性のPPの溶液、スチレン変性アクリル樹脂の溶液の場合と同じである。
 マレイン酸変性のPP、スチレン変性のアクリル樹脂の溶液を、加熱筒内に注入して、環境分解性成分、PP、ABSなどのバインダー樹脂との溶融混錬の段階で混ぜ込む。溶液の水(エマルジョンの場合の水)、溶剤系のモノの有機溶剤などは流動性向上剤としても作用する。この場合に顔料・染料など、その他添加剤を同時に注入しても良い。樹脂に難燃性を付与させる場合は難燃剤を溶剤、水などを用いて液体として注入すれば良い。
 マレイン酸変性のPP、スチレン変性のアクリル樹脂が固体の場合は、環境分解性成分と、バインダー樹脂とを防爆処理(不可ガスでの置換、不活性ガスを用いての封止)をしたタンブラーで混ぜ合わせ、押し出し機を用いてのペレット化、シート成形、或いは射出成形機のホッパー内に入れて直接に射出成形加工する。当然この場合に流動性向上剤のアルコールなどの併用・使用も可能で、これ等液体は加熱筒内の溶融樹脂中に液体注入装置を用いて注入する。
 低分子のPE(WAX)ポリカプロラクトンでも、ポリ乳酸とポリカプロラクトンの共重合体(樹脂)をPPなど、或いはABSなどと混ぜ合わせても良い。この場合の溶融樹脂の粘度は大きく下がる。
  (実施形態22)
 第10実施形態は、単軸の押し出し機を用いて、混合物001を用いて、ペレットを製造する具体的な手段を示す。単軸の押し出し機の場合は、多軸(例えば2舳)の押し出し機に比べて混練性が劣る。然し単軸の押し出し機でもスクリューにダルメージを入れて混練性を高める事も出来る。又L(スクリューの長さ)/D(スクリューの直径)を大きくする事で混練性を高める事も出来る。又スクリューのフライトをダブルフライトにする事でも混練性は高められる。圧縮のゾーンを長くして混練性を高める事も可能である。
  (スクリュー形状)
 本発明の環境分解成分と熱可塑性樹脂とからなる、樹脂のペレットを製造する場合、製造されたペレットは、半完成品(成形品を製造する原料・材料)、ペレットは射出成形、押し出し成形などの段階で再び、加熱溶融され、混練されるので、前記ペレットは高混練性の2舳の押し出し機を敢えて使用しなくても良い。ペレットは前記射出成形、押し出し成形などの段階で、再び加熱溶融され、混練されるので、作業性を容易にする事を目的に、単にセルロースパウダーなど環境分解性成分が、例えば作業場の空気中に舞う事などが出来るだけない様に、ペレット化する。前記ペレットの中は何も環境分解性成分が均一に混ざり込んでいる必要はなく、ペレットの形状さえを保っていれば良い。
 押し出し機のスクリュー形状は単軸のモノで十分、ただ単にフライトスクリューでも良いが、少しでも混練性を高めたいならば、ダブルフライト(フライトの間に更にフライトを設ける。)としても良い。
 高混練性を求めるならば、ダルメージ(例えばマッドタイプ)を環境分解性成分、熱可塑性樹脂の変色・焼けが発生する場合は、前記窒素ガス、炭酸ガスに例示される不活性なガスを用いて、ホッパー内、又は/及び加熱筒内を封止し、変色・焼けの原因となる示燃性ガス、助燃ガス、例えば酸素を不活性なガスで置換すれば良い事は先の実施形態などで説明した。
 混練性を高めるには、例えば射出成形の場合は、シャット・オフ・ノズルを用いて、可塑化中、計量中の背圧を高める事で混錬性は高くなる。この時に射出成形機の製造・販売のメーカーの(株)名機製作所{(株)日本製鋼所の子会社}のダイナメルター(商品名)の機構を用いると、より混錬性は高くなる。
 押し出し成形の場合は、ダイの形状から、吐出量を少なくして、絞って、加熱筒内の背圧を高めれば、敢えて多軸の押し出し機でなくても、先述した、サブフライトのスクリュー、ダルメメージ入りのスクリューを用いた単軸の押し出し機で、ペレット化、或いはシート成形、異形押し出し成形は十分に可能である。
 発明者の鈴木 康公(ヤスヒロ)は加熱筒内に発火点の低いアルコールを用いた射出発泡成形の特許を別出願(出願番号はPCT/JP2015/062611)している。この場合酸化しやすいアルコールもバレル内の温度(例えばABSの成形加工では230℃程度)程度では樹脂の変色・焼けの原因にはならない。成形品の変色・焼けは生じない。これは加熱筒内の加熱溶融した樹脂には空気(酸素)がない(入っていない。)からである。
 ところが本発明のセルロースパウダー、紙粉に代表されるモノは密度が低く、中に多くの空気(約21%の酸素を含む。)が含まれている。普通の押し出し成形加工、射出成形加工などでは背圧を少し高めれば、空気はホッパーから逃げて行くが、環境分解性成分含有の場合はそうはいかない。その空気(実際には空気中の酸素)は環境分解性成分はその隙間に多量の空気が含まれている。そのまま熱可塑性樹脂と混ぜ合わせて、可塑化すれば変色・焼けが発生する。この問題を解決するには、その空気(酸素)を不活性なガスで置換する。置換にはこれら環境分解性成分を真空引きの装置の中に入れて、真空引きして空気を追い出し、続いて不活性なガス、例えば窒素ガスを入れて常圧(1atm,760mmHg)にすれば内部の空気は略不活性ガスに置換される。この工程は必要に応じて複数回実施しても良い。次にその中に必要な熱可塑性樹脂を入れ、混ぜ合わせて(例えばタンブラー,ミキサーなどを用いて、)る。その際に再び空気が入り込まない様に混合機(器)の中には不活性な、例えば窒素ガスで封止して於く。
 この材料を押し出し機のホッパー内に入れる、そのホッパー内も変色・焼けの防止の為に予め不活性なガスの置換をして於く。
 先には真空引きをして環境分解性成分に入り込んだ空気を不活性なガスで置換をする事を示したが、別には例えば環境分解性成分の小麦粉と水とを混ぜ合わせスラリーとする事で、小麦粉内の空気を追い出す事が出来る。
 この小麦粉のスラリーを成形機の押し出し機に溶融混練を行う予定の熱可塑性樹脂を混ぜ合わせて、不活性ガスで置換したホッパー内に入れ、溶融混練すれば、予め入れた水は、押し出し機の途中のベント口から引き出せ(一端には真空ポンプでの吸引が一般的)ば良い。
 水以外にはエタノール、プロパノールなどのアルコールでも良い。更に前記アルコールと、水との混合物でも使用出来る。小麦粉でなくセルロースパウダー、紙粉などの環境分解性成分でも良く、これ等を混ぜ合わせて使用しても良い。
 ペレット化の段階で、押し出し機の加熱筒内で混練性を高めるには圧縮比を高めれば良いが、この場合にも変色・焼けの問題はある。この場合も不活性ガスでの置換が有効である。
 混練性を高める手段にスクリューにダルメージを設ける事は述べたが、この場合も不活性ガスで置換すれば変色・焼けの問題は解決する。
  (実施形態23)
 次に押し出し機を用いて溶融混練を高める手段を説明する。環境分解性成分と、熱可塑性樹脂とを混ぜ合わせて、単軸、又は2舳の押し出し機で溶融混練をする場合に、加熱筒に穴を開けて、加熱筒内へ、加熱筒内の溶融樹脂への気化性物質{常温(23℃)で、常圧(1atm,760mmHg)で液体、例えば水、アルコールなど、}を入れて、加熱筒の温度、又は/及び加熱筒内の溶融樹脂の温度で気化して、気化した蒸気は、溶融樹脂内に融け込み、又は/及び微分散して、溶融樹脂の粘度を下げるので、加熱溶融した熱可塑性樹脂内に環境分解性成分の分散性は高まられる。
 前記気化性物質以外に窒素ガスを入れても溶融樹脂の粘度は下がるので、環境分解性成分は熱可塑性樹脂中で分散は均一になる。窒素ガス以外に炭酸ガスでも良い。液化した炭酸ガスを用いても良い。更にこれ等を組み合わせても良い。
 加熱筒内の温度で熱分解してガスを発生させる物質例えば炭酸水素ナトリウム(重曹、酸性炭酸ナトリウム、NaHCO)に代表される炭酸水素塩、ADCA(アゾ・ダイ・カルボン酸アミド、アゾジカルボン酸アミド)代表されるアゾ化合物、DCP(ダイ・ニトロソ・ペンタメチレンテトラミン)に代表されるニトロソ化物、アドバンセル(商品名)などの中空気球など、所謂固形の発泡剤を前記環境分解成分と熱可塑性樹脂とを混ぜ合わせたその中に前記発泡剤を使用しても良い。ドライアイス(固体の炭酸ガス)を環境分解成分と熱可塑性樹脂とを混ぜ合わせた中に入れても良い。ドライアイスを加熱筒に窓を開けてその中にフィードスクリューを用いて連続的に入れても良い。
 この様に気体の、液体の、固体の発泡剤を用いて発泡性を持たせた溶融樹脂は当然幾らかは発泡したペレット(内部に発泡セルを持つ、)であるが、次の段階の加工、例えば押し出し成形、射出成形などでペレットは再溶融され、再混練されるので、始めのペレットでは環境分解性成分は均一に分散されている必要はない。ペレットの内部に発泡セルが存在していてもそれ程の問題はない。
 アルコールの代わりに液化炭酸ガスを用いる手段もある。具体的には加熱筒内で溶融した樹脂に液化炭酸ガスを入れれば、溶融樹脂は発泡性が付与され、結果溶融樹脂の粘度が下がり、混練性は良くなる。液化炭酸ガスでなく、固体の炭酸ガス(ドライアイス)を入れても、ドライアイスは加熱筒内で昇華し、気体の炭酸ガスとなり、加熱筒内の溶融樹脂に発泡性が付与されると同様に混練性は高くなる。
  (実施形態24)
  (担持によるペレットの製造の手段)
 単軸、又は多軸の押し出し機を用いての環境分解性成分含有のペレットの手段を述べたが、敢えて環境分解性成分と、熱可塑性樹脂とを溶融混錬をしてペレット化をする必要がない。熱可塑性樹脂のペレットの表面に環境分解性成分を担持すれば良い。尚「担持」とは、他の物質(本発明では熱可塑性樹脂のペレットとして於く。)の表面に何らかのバインダー、接着成分を用いてコーティングする事を言う。尚接着成分とは、熱可塑性樹脂と相容(溶)性を示す樹脂が好ましく、例えばオレフィン系樹脂のPPでは、塩素化PP、塩素化PEの代表されるハロゲン化ポリオレフィン、マレイン酸変性のPP、ポリビニルアルコールなどが例示出来る。ABSなどのスチレン系樹脂ならば、例えばAS、又はABSをn-ブタノン{メチル・エチル・ケトン(MEK)}、酢酸エチルなどを用いて溶解したドープセメントが使用出来る。HIPSならばPS、又はHIPSを同様に製造したドープセメントが使用出来る。
 スチレン変性アクリル樹脂は、ABS、HIPS共に相容(溶)性を示すので、塗料の原料であるスチレン変性アクリル樹脂ワニスは溶剤系のモノ、水系(エマルジョン系)のモノ共に担持に使用するコーティング剤としても使用出来る。6-ナイロン(商品名)、6,6-ナイロン(商品名)などのポリアミド系樹脂ならば、メトキシメチル化ポリアミドのワニスが使用出来る。
 担持したモノは当然単軸、多軸の押し出し機、ニーダー、加圧式ニーダー、バンバリーミキサーなどを用いて製造されたペレットの様に、ペレットの中に環境分解性成分が入っているのではなく、表面にあるだけであるが、上述した様に射出成形、押し出し成形(シート成形)の際に再溶融されるので、この段階で出来るだけ均一に分散させれば良い。例えば射出成形機に於いては従来のシングルフライトのスクリューではなく、ダブルフライトのスクリュー、圧縮ゾーンが長く圧縮率の高いスクリュー、或いは発泡成形のミューセル(商品名)を実施するには高混錬性が要求されるので、射出成形機のスクリューにもダルメージを持たせている。尚ダルメージの次に一旦溶融樹脂の圧力を下げる為にスクリューはフライトを高くするなどの構造が組み込まれている。
 押し出し機を用いてのシート成形の場合は多軸押し出し機を用いれば高混錬性が得られるが、単軸の場合は上述した様にダルメージを設けるなどして高混錬性のスクリューを使用すれば良い。
 上述した様に高混錬性スクリューを用いれば、環境分解性物質の、又は/及び熱可塑性樹脂に変色・焼けが生じる場合は上述した様にホッパー内などを不活性なガスを用いた置換をすれば良い。
 尚先の述べた担持の手段で環境分解性成分と熱可塑性樹脂とコーティング剤だけでなく、酸化チタンなどの顔料、染料などを加えても良い。
 又この担持の手段を用いれば粉末冶金の材料の製造にも向く。金属粉末を熱可塑性樹脂ペレットの表面に担持して、射出成形用のペレットとして、このペレットを用いて射出成形加工をして形状を作り(造形)、不活性なガス、例えば窒素ガス雰囲気の中で焼成する。
 金属粉末の代わりにアルミナ、マグネシア、ジルコニアなどにすればセラミック(ファインセラミック)の製造の材料とする事も出来る。前記粉末冶金と同様に熱可塑性樹脂の表面にセラミック粉を担持し、射出成形加工などをして成形(造形)し、窒素ガス雰囲気内で焼成する。
 熱可塑性樹脂表面に担持したペレットは成形加工前に、液体例えば分散剤を含む溶液内に含浸して、必要に応じて乾燥をしてから、押し出し成形、射出成形可能などを行う。
  (実施形態25)
  (減容化)
 セルロースパウダー、紙粉、ふすまなどの環境分解性成分は性状が粉末、粉体で、然も密度が低く、嵩張(かさば)るので、そのまま押し出し機のホッパーに入れても上手くは加熱筒の中に入っていかない。この問題を解決する為に、前記セルロースパウダーの少量の水、又はアルコールなどの溶剤を加えて、一旦スラリー状にしてから、プレスして、減容化して、密度を上げたからPPのペレットと混ぜ合わせて溶融混練をする。
 スラリー状にした環境分解性成分は、押し出し機を用いた場合には、ホッパーではなく、加熱筒に設けられた別の口から入れて、加熱筒内の溶融樹脂と混ぜ合わせ、混錬する。射出成形機の場合も前記押し出し機と同様に加熱筒に設けた別の口から入れれば良い。これ等の場合は溶融樹脂に対して容量(;加える量)を制御して入れる。
  (実施形態26)
  (シート成形)
 本発明の環境分解性成分含有の樹脂のペレットを用いてシートを成形する場合には、押し出し機を用いる。この場合の押し出し機は単軸の押し出し機でも良いが、多軸の、例えば回転方向が同方向の、或いは異(違う)なる方向の押し出し機を用いた方が、環境分解性成分が熱可塑性樹脂中に均一に、そして微分散が出来る。この場合に変色・焼けの発生が懸念させる場合は先に述べた不活性ガスでの置換、例えばホッパー内などの窒素置換を行えば良い。溶融樹脂の粘度を下げるには、液体を加熱筒内の溶融樹脂中に入れれば流動性は向上し、混練性も上がる。
 シートを成形する場合に多軸の押し出し機を用いれば、先のペレット内の環境分解性成分はそれ程は均一に、微分散していなくても良い。単軸の押し出し機を用いてペレット化すれば良い。この場合に単軸の押し出し機のスクリューをダブルフライトに。ダルメージなどを設ければ単軸の押し出し機でも環境分解性成分含有のペレットの製造は十分に出来る。
 更に環境分解性成分の含有量を高めたい場合は、例えば初めに単軸で30重量%程度の環境分解性成分含有のペレットを作成して、担持の手段で前記ペレット(環境分解性成分を30重量%含有した、)のマレイン酸変性のPP、スチレン変性のアクリル樹脂、ポバールなどのワニスを用いて、例えば30重量%担持すれば、ペレットの中に30重量%が含有され、表面に30重量%が担持された環境分解性成分が60%重量含有するシート成形、射出成形の用いるペレットが製造出来る。
  (実施形態27)
 図5は加熱筒内の溶融樹脂に環境分解性成分を混ぜ込み、溶融混練して、環境分解性成分含有の、熱可塑性樹脂を主成分とする、樹脂の原料、例えが射出成形加工に用いる樹脂ペレット、真空成形、圧空成形に用いるシートが製造される図である。附番185、付番198などから成る装置。重量フィーダーは附番198のフィードスクリューの回転数のよって、加熱筒192内へ送り組む量が制御出来る。図5は附番192へ入れる前に其々の材料の量を計量し、付番192内へ送り込む仕様である。其々を192内へ送り込み、混合は附番193の回転・混合の力による。図5に於いて符番185は環境分解性成分、例えばパルプパウダー、紙粉などを入れるホッパーである。符番186は環境分解性成分を溶融混練する熱可塑性樹脂を入れるホッパーである。符番197、附番198サブスクリューが回転すると、一定量が押し出し機の加熱筒192内に入る。符番198のサブスクリューが回転すると、環境分解性成分の一定量が押し出し機の加熱筒192内に入る。符番185内の環境分解性成分と、符番186内の熱可塑性樹脂(性状はペレット、又はパウダー、バルクを粉砕した粉砕材など)とは符番192内に入り、符番193のスクリューの回転によって混練され、符番192に設けられたヒーター(図示せず。)によって加熱され、前記可塑性樹脂は、溶融するので、環境分解性成分は前記溶融した熱可塑性樹脂中に入り、スクリュー193の回転の力によって分散され、前方に押し出される。符番189の矢印は、サブスクリュー198の回転によって環境分解性成分が押し出される事を示している。符番196は符番192内の熱可塑性樹脂が、符番193の回転によって前方に進む事を意味している。何れも加熱筒内へ入れ込む量は其々のスクリュー196、197の回転数によって調整が可能で、この回転数によって、熱可塑性樹脂の中の環境分解性成分の含有量は定まる。これを重量制御装置、重量制御フィーダー、重量フィーダーなどと言う。
 (実施形態28)
 図6は前記図5のホッパー185、符番198などからなる装置を、先に溶融した溶融樹脂中に、環境分解性成分を入れ込む装置を示している。図5と比較して、符番186のホッパーからは離れている。前記図5の同様に附番198にフィードスクリューの回転に取って投入量がコントロールされる。溶融樹脂へ投入するモノは本発明で説明する環境分解性物質の粉体、ペレットなど以外にセラミックの粉体(パウダー)、金属粉などを入れてこれ等含有にペレットの製造にも使用は出来る。この様に図5、図6で示す装置を用いて、熱可塑性樹脂中に、前記環境分解性成分、又はセラミックパウダー、又は金属粉を混ぜ合わせ、ペレット化したペレットの其々の材料(環境分解性成分、又はセラミックパウダー、又は金属粉など)の含有量を高める手段として前記製造したペレットに、環境分解性成分、又はセラミックパウダー、又は金属粉などを担持すれば、ペレットの1粒1粒内に含有する環境分解性成分、又はセラミックパウダー、又は金属粉などの含有量(広義の意味での濃度)を高める事が出来る。
 図5、図6に於いて符番194はベントを示している。符番187、188は環境分解性成分に変色・焼けを防止する目的で不活性なガスをヒッパー内に入れ込む事を示している。
 符番195は押し出し機のダイで、此処からストランドが出て、ホットカット(図示せず。)すれば環境分解性成分含有のペレットの製造が出来る。但しこの場合も不活性ガスによる変色・焼けの防止を図る事も必要である。
 ホットカットではなく、空冷をして、カットする事も可能、やはりこの場合の窒素ガスなどの不活性なガス雰囲気中での冷却・固化の後、カットしてペレトとする。
 シートの場合のペレットと同様にダイから押し出して、空冷して、必要に応じては不活性なガス中で冷却する事で、変色・焼けを防止する事が出来る。
 符番185内に入れる環境分解性成分は、そのままの粉体で使用しても良い。水、アルコールなどを加えて湿らせて使用しても良い。液体を多く加えてスラリーにしても良い。符番198は加熱筒内に気体、又は/及び液体を入れ、結果樹脂の溶融粘度を下げて、熱可塑性樹脂中に環境分解性成分が分散しやすい用にする事も出来る。
 図5、図6の符番197、符番198の要に小さなスクリュー(サブスクリュー,フィードスクリュー)を用いて安定した量を成形機の加熱筒内に入れ込む装置は、例えば(株)名機製作所のダイナメルター(商品名)などがその構造、機能などは近い。(株)西田技研のFCM装置(ファレル式連続混練機)を用いても良い。
 尚繰り返し説明をすると、「環境分解性成分」とは自然界で、ミミズなどの生物、バクテリアなどの微生物によって分解される物質を言う。光分解、熱的な分解、加水分解する事が可能な物資も環境分解性成分に含まれる。又主成分の熱可塑性樹脂とはPS、HIPA、ABSに例示されるスチレン系樹脂、PE、PPに代表されるオレフィン系樹脂、PETなどのエステル系樹脂、ポリアミド、塩化ビニルなど本発明では熱可塑性を示す樹脂ならば使用は可能である。
 尚本発明で言う「主成分」とは、樹脂中に重量、又は体積で10%以上含有する事を言う。尚「主成分」と、「構成する」とは略同義語で、例えば「ペレットを構成する熱可塑性樹脂が・・・」とはペレット内に熱可塑性樹脂を10%以上含有する事を意味する。
  (実施形態28)
  (最終処理)
 環境分解性成分含有の熱可塑性樹脂を主成分とする複合材料から成形加工された成形品をどの様にして処分するかがもう一つの課題である。環境分解性成分含有の成形品の最終処分は、埋め立てるか、或いは焼却して熱エネルギーとして回収する。この時に埋め立て処理をする場合には、有害な物質が含まれていないか、焼却する場合は大気汚染をするガスの発生がないか、/燃焼したガスによって大気汚染はしないか?燃焼残渣(灰)に有害物質が含まれていないか?である。埋め立ての処理を行う場合には有害物質が含まれていないか?が重要である。然し今の成形品では成形品の主成分を示すリサイクルマークしか表示はなく、これでは環境汚染が心配で、焼却も、埋め立ても出来ない。
  {上位再生、等価再生、下位への再生(下位再生)}
 成形品の再生には例えば魚箱に使用されているEPS(発泡スチロール)を加熱溶解してGP(PS)に戻してから、再び魚箱の使用するリサイクルを同じ物から同じ物へ、同じ価値のあるモノへのリサイクルを「等価再生」と言う。先の魚箱を減容化して得られたPSにブタジエンゴムにスチレンを共重合させたブタジエンゴム含有のブタジエンゴムにスチレンをグラフト共重合させたグラフトゴムを20重量%程度加えれば高襲撃性のPS{HIPS(ハイ・インパクト・ポリスチレン)}とする事が出来る。これは魚箱から、HIPSを製造して、例えば家電製品、OA機器などの成形品に用いる事が出来る・この様に樹脂の価値が上がる再生を「上位再生」と言う。一方成形品を燃やす事で熱エネルギーとして回収する再生など、或いは擬木などへの再生を「下位への再生」と言う。
 上述した如何なる再生に於いても処分をする成形品の中に有害物質が含まれていないかが重要となる。
 然し再生予定の成形品1ヶ1ヶ其々をGC-MASS,FT-IR,蛍光X線分析などの分析機器を用いて分析してから再生すのでは手間が掛る。実際は不可能である。発明者は一定の条件、例えば重量が100グラム以上の成形品には、成形品の重量、成形品の樹脂の種類、樹脂の数平均分子量、分子量分布、難燃剤、難燃助剤の種類と量、顔料、染料の種類と量、又塗装が行われている場合塗膜の主成分となる塗膜用の樹脂(例えばウレタン系、1液ラッカー系など)の種類と量、塗膜中の顔料・染料の種類と量、その他添加剤などと成形品の中が、成形品を構成する全ての材料の種類と、量とが成形品を見ただけで簡単に把握出来る事が必要、発明者は成形品にバーコード、二次元バーコード、QRコード、アルファベット、アルファベットと数字との組み合わせなどを用いて、簡単に、確実に、そして瞬時に成形品のリサイクルを行う為に必要な情報を読み取る事が出来る様にした。
 具体的には射出成形品の場合は金型に例えば数字とアルファベットとからなる記号、バーコード、QRコード(二次元バーコード)などを刻印する。このバーコードなどには、先に述べた成形品を構成する樹脂の添加剤の種類と量、樹脂の分子量分布、数平均分子量、グラフト共重合している場合はグラフト率、グラフトをしたモノマーの種類など、難燃化させたモノは、難燃剤、難燃助剤の種類と量、成形品の重量などが書き込んである。
 リサイクルの段階でこのバーコードなどを読み込み、コンピューターにその読み込んだデーターを入れた後に、粉砕をする。得られた粉砕材には、再生(リサイクル)に必要な情報が含まれているので、粉砕材にどれだけの量の樹脂、樹脂の添加剤などを加えれば、リサイクルを用いた新たな樹脂の製造が出来る。
 この様に市場から回収して、成形品の重量とその成形品の中に含まれる樹脂の種類と量、添加剤の種類と量などが確実に、正確に把握できるので、再生が、再生材を用いての樹脂の改良・改質が容易に、確実に出来る。
 先に述べた樹脂の種類、例えばAS樹脂でのAn(アクリロニトリル、シアン化ビニル)とスチレン(フェニル化ビニル)との比(An比)、グラフトゴムが添加されている場合は、ゴムの種類と量、大きさの分布など、添加剤の種類と量などは成形材料を製造し、販売をするメーカーの秘密であり、簡単には開示されない。再生に用いる樹脂は1社だけとは限らないので、これ等の情報は素数などを用いて暗号化し、決して部外者には漏れない工夫をする必要はある。再生材を用いた新しい樹脂に製造は、AIを用い、AIが所望する、新しい樹脂の配合を決定させる。当然AIが算出したこの新しい樹脂は、物理的な、化学的な物性が要求値を満足しているかは実際にダンベルなどの試験片を成形して確認する。
 図4(写真)はリサイクル予定の実際の成形品に刻印(実際は金型に刻印)したQRコード206である。成形品にリサイクルに必要な情報を書き込んだQRコード(附番206)を金型に刻印して、その金型を用いて成形加工した射出成形品で、QRコードをバーコードリーダーで読み込めばリサイクル実施に必要な情報(成形品に重量、成形品の生産に用いた樹脂のメーカー名、商品名、グレード、樹脂の種類、添加剤の種類と量、塗装が行われていれば、塗料に関するリサイクルに必要な情報など)を確実に読み取る;事が出来る。図4はQRコードを刻印した射出成用金型で成形した環境分解性成分が20重量%含み、熱可塑性樹脂のPPを主成分とした射出成形品。このQRコードを読み取りPCなどへ送り込み、データベースと照合する事で容易にリサイクルが出来る。環境分解性成分の含有量が判りので、燃焼させて熱エネルギーとしての回収、樹脂のリサイクル材製造の原料として使用は可能かの判断などはQRコードを読み取る事で容易に、簡単に、短時間で出来る。尚このQRコードは、iPhone(アイフォン)のカメラでスキャンした処、本成形品を製造した竜舞プラスチック(株)(群馬県太田市龍舞町535)のURL(ホームページ)が現れ、成形品に刻印したQRコードは実際に読み取れる事が確認出来た。
 本実施形態26は詳細な説明が文献{S&T出版(株)2022年10月20日 第1版 第1刷「発泡成形・中空成形・圧空成形の量産実施に向けての準備と、環境負荷低減の具体的な手段の解説」鈴木 康公 新保 實著の中に述べられている。
  (実施形態29)
  {高圧のガスを用いる場合の押し出す軸体(エジェクターピン、傾斜コアなど)のシールの手段}
  (バックアップリング)
 公知文献PCT/JP2016/86380には加重式Oリングを用いた金型のシールの手段が記載されている(先の文献の図3、図27、図28など)が、高圧のガス、例えば圧力が35MPa、50MPaなどの圧力を持たせた(圧縮した)ガスを用いる場合は、例えば単にエジェクターピンを中にスプリング、ゴム製のOリングを組み込んだ加重式Oリング、一般の凹形状のリングなどだけでは完全にシール出来ない。そこで発明者は図7に示す様に荷重式Oリング201の底部に例えばPEEK(ポリエーテルエーテルケトン)などから成る樹脂製のバックアップリング(附番200)を用いる。特に傾斜コアのシール場合は有効である。尚加重式Oリングの詳細な説明は文献{S&T出版(株)2022年10月20日 第1版 第1刷「発泡成形・中空成形・圧空成形の量産実施に向けての準備と、環境負荷低減の具体的な手段の解説」鈴木 康公 新保 實著}に記載されている。
 図7は、エジェクターピン、傾斜コアピンなどをシールする部品(附番199のバックアップリング、付番200の荷重式Oリング、付番201のスペーサー)其々の写真。(第18実施形態)
 引用文献のPCT/2016/86380の図65図、79などでは加重式Oリング、凹形状のOリングを用いてエジェクターピン、傾斜コアピンのシール(図82)など手段を示されているが、ガスの圧力が高くなると、より厳密なシールが必要である。
 シール効果(シール性)を高めるには図7に示すバックアップリング(附番200)を用いると良い。附番201は荷重式Oリングで、付番202は厚さを調整するスペーサーである。図8は附番201の荷重式Oリング、200のバックアップリング、202のスペーサーの組み合わせを示したASSY(組み立て)図である。この組み合わせによってシール効果はより高められ、高圧ガスのシールが十分に出来る。
 図9は荷重式Oリング201を金型への組み込みシールをする手段を示した模式図である。附番202はエジェクターピン、傾斜コアピンを示し。附番203は金型、或いは金型の入子を、付番204も金型、或いは金型の入子を示している。
 高圧のガスを製造する手段はDCモーター、ACモーター、サーボモーター、或いは油圧ポンプ、空圧のシリンダー(例えば米国ハスケルのガスブースターなど。)様々な手段がある。サーボモーターを用いる場合は設備が簡単、省エネルギーなど、メンテナンスが容易などの効果は大きい。然しハスケルのガスブースターの30/75(圧縮比)の場合を例として説明する。ハスケルのバスブースターの中央のエアーシリンダーをサーボモーターとした場合には、サーボモーターの停止位置が途中ではなく、第一段のシリンダーが最後尾に下がった位置での停止、或いは二段圧縮のシリンダーが最後尾に到達した時点でサーボモーターを止める(停止する。)事の何れかが好ましく、この場合には一方のシリンダー内の高圧ガスの圧力によって、サーボモーターは停止した位置で留まる。必要の応じてサーボモーターを機械的なロック(例えば射出成形機のメカロックの様に、)を設ける場合もある。
 上述の実施例、実施形態は説明のために例示したモノで、本発明としてそれに限定されるモノではなく、特許請求の範囲、発明の詳細な説明、及び図面の記載から当事者が認識する事が出来る本発明の技術的思想に反しない限り、変更、及び付加が可能である。
産業上の利用分野
 本発明は環境負荷の少ない樹脂を用いた成形品に適用される。
1.パルプ粉を51%W/V含有した結着樹脂にPPを用いた樹脂ペレットである。
185.ホッパー。
186.ホッパー。
187.ホッパー185内へ不活性ガス(例えば窒素ガス)を送り込み、熱可塑性樹脂、環境分解性成分の変色・焼けが微牛出来る事を示した。
188. ホッパー186内へ不活性ガス(例えば窒素ガス)を送り込み、熱可塑性樹脂、環境分解性成分の変色・焼けが微牛出来る事を示した。
189.フィードスクリュー198の回転によって、材料が送られる事を示した矢印。
190.フィードスクリュー197の回転によって、材料が送られる事を示した矢印。
191.加熱筒192の上部に設けた前記フィードスクリュー197、198から押し出された其々の材料を附番192内へ入れる回路で内部は仕切られ、付番185内の材料と、付番186内の材料とは別々に送り込まれる。仕切りはなくこの191内で混合しても良い。
192.押し出し機の加熱筒。
193.押し出し機の加熱筒内のスクリュー。
194. 加熱筒192内で発生するガスを抜くベント口。この部分から不活性ガスを入れても良い。
195.押し出し機の金型装置(ダイ)。
196.溶融混錬された加熱筒191内の樹脂が押し出される方向を示した矢印。
197.フィードスクリュー。
198.フィードスクリュー。
199.附番192の加熱筒内へ気体、又は/及び液体を入れ込んで、溶融樹脂の粘度を下げて、混練性を高める事が出来る様にしてある。
200.バックアップリング
201.荷重式Oリング。
202.厚さを調整するスペーサー。
203. エジェクターピン、又は傾斜コアピン。
204.金型、或いは金型の入子。
205.金型、或いは金型の入子。
206. 金型のQRコードが転写された射出成形に示された、リサイクルを行う為に必要な情報を入れ込んだQRコード。成形品に刻まれたQRコードで、リサイクル実施に必要な情報・内容の多くを全てを含ませる様にする。

Claims (37)

  1.  環境分解性成分を10W/V%以上含む樹脂成形品の製造方法であって、
     環境分解性成分と、熱可塑性樹脂とを、混合装置を用いて混合する工程と、
     環境分解性成分と熱可塑性樹脂との混合物を、溶融混練装置を用いて加熱溶融混練する工程と、
     前記混合物を押し出す工程と、
     前記混合物を冷却する工程と、
     を含む、樹脂成形品の製造方法。
  2.  請求項1に記載の樹脂成形品の製造方法において、
     前記混合物をカットして樹脂ペレットとする工程、
     をさらに有する、樹脂成形品の製造方法。
  3.  請求項1に記載の樹脂成形品の製造方法において、
     前記混合物を予め定められた大きさにカットして樹脂のシートとする工程、
     をさらに有する、樹脂成形品の製造方法。
  4.  請求項1に記載の樹脂成形品の製造方法において、
     前記溶融混練装置は、単軸、又は多軸の押し出し機、又は加熱式のニーダー、又は加熱式のバンバリーミキサーのいずれかである、樹脂成形品の製造方法。
  5.  請求項1に記載の樹脂成形品の製造方法において、
     前記混合物を冷却する工程において、前記混合物は空気により空冷される、樹脂成形品の製造方法。
  6.  請求項1に記載の樹脂成形品の製造方法において、
     前記混合装置は、タンブラーミキサー、VH混合機、又はロッキングミキサー、重量フィーダーのいずれかである、樹脂成形品の製造方法。
  7.  請求項1に記載の樹脂成形品の製造方法において、
     前記単軸押し出し機のスクリューには、サブフライト、又は/及びダルメージが組み込まれている、樹脂成形品の製造方法。
  8.  請求項1に記載の樹脂成形品の製造方法において、
     溶融混練された前記混合物において、前記環境分解性成分が前記熱可塑性樹脂中に分散されており、前記混合物が固化前の溶融状態のままで空気中に押し出される、樹脂成形品の製造方法。
  9.  請求項1に記載の樹脂成形品の製造方法において、
     前記混合装置の内部を予め不活性ガスで置換する工程と、
     前記不活性ガスで置換した前記混合装置内へ前記環境分解性成分と前記熱可塑性樹脂とを投入する工程と、
     前記混合装置内に不活性ガスを再び入れて、不活性ガスで封止する工程と、
     をさらに有する、樹脂成形品の製造方法。
  10.  請求項1に記載の樹脂成形品の製造方法において、
     前記混合物を、前記溶融混練装置に移す工程と、
     溶融混練装置内に移された前記混合物の隙間に入り込んだ空気を溶融混練の前に不活性ガスで置換する工程と、
     をさらに有し、
     前記混合物は不活性ガス雰囲気の中に押し出されて冷却される、樹脂成形品の製造方法。
  11.  請求項1に記載の樹脂成形品の製造方法において、
     前記混合物を加熱溶融混練する工程において、前記溶融混練装置の加熱筒の温度、又は/及び加熱筒内の溶融融樹脂の温度によって気化する物質を加熱筒内に注入する工程と、
     前記加熱筒の温度、又は/及び加熱筒内の溶融融樹脂の温度によって前記物質を気化させる工程と、
     をさらに有し、
     前記混合物は不活性ガス雰囲気の中に押し出されて冷却される、樹脂成形品の製造方法。
  12.  請求項1乃至請求項11のいずれかに記載の製造方法によって製造された樹脂成形品を、不活性ガスで置換された成形装置へ投入し、不活性なガスで封止しながら成形加工を行う工程を有する、樹脂成形品の製造方法。
  13.  請求項1乃至請求項11のいずれかに記載の製造方法によって製造された樹脂成形品を用いてガス・カウンター・プレッシャー法により発泡成形を行う工程を有し、
     不活性ガスを前記ガス・カウンター・プレッシャー法の圧気ガスに使用する、樹脂成形品の製造方法。
  14.  請求項1乃至請求項11のいずれかに記載の製造方法によって製造された樹脂成形品を用いて、一般成形、中空成形、圧空成形のいずれかの射出成形加工を行う工程を有し、
     予め金型のキャビティ内を不活性ガスで置換してから射出成形加工をする、樹脂成形品の製造方法。
  15.  請求項1に記載の製造方法によって製造された樹脂成形品を用いて、スクリューの回転方向が同方向の、又は異方向の単軸の押し出し機を用いてシート成形の加工を行う工程を有する、樹脂成形品の製造方法。
  16.  請求項15に記載の樹脂成形品の製造方法において、
     前記単軸押し出し機のスクリューには、ダブルフライトの加工がなされている、樹脂成形品の製造方法。
  17.  請求項15に記載の樹脂成形品の製造方法において、
     前記単軸押し出し機のスクリューには、ダルメージが組み込まれている、樹脂成形品の製造方法。
  18.  請求項1に記載の樹脂成形品の製造方法によって製造された樹脂成形品を用いて、スクリューの回転方向が同方向の、又は異方向の多軸の押し出し機を用いてシート成形の加工を行う工程を有する、樹脂成形品の製造方法。
  19.  請求項15乃至請求項18の樹脂成形品の製造方法によって製造された樹脂成形品を用いて、圧空成形、又は真空成形を行う工程を有する、樹脂成形品の製造方法。
  20.  請求項15乃至請求項18のいずれかに記載の樹脂成形品の製造方法において、
     樹脂ペレットと、化学発泡剤の炭酸水素ナトリウム、又は/及びアゾ・ダイ・カルボン酸アミド(ADCA)を使用して、発泡成形を行う工程を有する、樹脂成形品の製造方法。
  21.  請求項15乃至請求項18のいずれかに記載の樹脂成形品の製造方法において、
     23℃、1気圧の状態で液体である物質であり、気化温度が180℃以下の液体を、溶融樹脂の容量に対して、容量を制御して、連続的に、或いは断続的に、或いは不連続に、可塑化、溶融混練中の加熱筒内の溶融樹脂中に注入して、加熱筒の温度、又は/及び加熱筒内の溶融樹脂の温度によって前記液体を気化させ、加熱筒内の溶融樹脂中に、加圧溶解させて、又は/及び微分散をさせて、加熱筒内の溶融樹脂に発泡性を付与する工程を有する、樹脂成形品の製造方法。
  22.  請求項15乃至請求項18のいずれかに記載の樹脂成形品の製造方法において、
     圧力を制御した気体を、可塑化、溶融混練中の加熱筒内の溶融樹脂中に、連続的に注入して、加熱筒内の溶融樹脂中に、前記気体を加圧溶解させて、又は/及び微分散をさせて、加熱筒内の溶融樹脂に発泡性を付与する工程を有する、樹脂成形品の製造方法。
  23.  請求項15乃至請求項18のいずれかに記載の樹脂成形品の製造方法において、
     臨界温度以下の炭酸ガスを臨界圧力以上の圧力で加圧して液化した液化炭酸ガスを、加熱筒内の溶融樹脂の容量に対して容量を制御して、連続的に、或いは断続的に、或いは不連続に可塑化、溶融混練中の加熱筒内の溶融樹脂中に注入して、加熱筒の温度、又は/及び加熱筒内の溶融樹脂の温度によって前記液化炭酸ガスを気化させ、加熱筒内の溶融樹脂中に、加圧溶解させて、又は/及び微分散をさせて、加熱筒内の溶融樹脂に発泡性を付与する工程を有する、樹脂成形品の製造方法。
  24.  請求項15乃至請求項18のいずれかに記載の樹脂成形品の製造方法において、
     押し出し機の加熱筒に別に開けられた開口部から、フィードスクリュー装置を用いて、ドライアイスのペレットを、加熱筒内の溶融樹脂の容量に対して容量を制御して、連続的に、或いは断続的に、或いは不連続に可塑化、溶融混練中の加熱筒内の溶融樹脂中に注入して、加熱筒の温度、又は/及び加熱筒内の溶融樹脂の温度によって前記ドライアイスを昇華させ、発泡性ガスとして、加熱筒内の溶融樹脂中に、加圧溶解させて、又は/及び微分散をさせて、加熱筒内の溶融樹脂に発泡性を付与する工程を有する、樹脂成形品の製造方法。
  25.  請求項15乃至請求項18のいずれかに記載の樹脂成形品の製造方法において、
     可塑化、溶融混練中の加熱筒内の溶融樹脂中に、性状が固体の、液体の、又は気体の、2種類以上の発泡剤を併用して、加熱筒内の溶融樹脂に発泡性を付与する工程を有する、樹脂成形品の製造方法。
  26.  環境分解性成分の粉体に液体を加えて、攪拌して、スラリー状にする工程と、
     単軸、又は多軸の押し出し機で熱可塑性樹脂を溶融混練する工程と、
     前記押し出し機の加熱筒内に、加熱筒に設けられた開口部から前記スラリー状の環境分解性成分を、前記加熱筒内の前記熱可塑性樹脂の容量に対して容量制御して注入する工程と、
     前記環境分解性成分と前記溶融樹脂との混合物を溶融混練して、環境分解性成分を、熱可塑性樹脂中に分散させる工程と、
     前記混合物を押し出す工程と、
     前記混合物を冷却する工程と、
     前記混合物をカットして樹脂ペレットとする工程と、
     を含む樹脂成形品の製造方法。
  27.  環境分解性成分の粉体に液体を加えて、攪拌して、スラリー状にする工程と、
     単軸、又は多軸の押し出し機で熱可塑性樹脂を溶融混練する工程と、
     前記押し出し機の加熱筒内に、加熱筒に設けられた開口部から前記スラリー状の環境分解性成分を、前記加熱筒内の前記熱可塑性樹脂の容量に対して、容量制御して注入する工程と、
     前記環境分解性成分と前記溶融樹脂との混合物を溶融混練して、環境分解性成分を、熱可塑性樹脂中に分散させる工程と、
     前記混合物をシート状に押し出す工程と、
     を含む環境分解性成分含有の樹脂成形品の製造方法。
  28.  前記記載の請求項1乃至請求項11のいずれかに記載の樹脂成形品の製造方法において、
     水蒸気を用いて前記環境分解性成分を水蒸気洗浄して、不純物を取り除く工程を含む、樹脂成形品の製造方法。
  29.  前記記載の請求項1乃至請求項11のいずれかに記載の樹脂成形品の製造方法において、樹脂ペレットを加工するために使用される成形装置。
  30.  オレフィン系樹脂ペレットの表面にマレイン酸変性のPPのワニスを用いて環境分解性成分が担持された、成形加工用の樹脂ペレット。
  31.  オレフィン系樹脂ペレットの表面に、ポリビニルアルコール水溶液を用いて環境分解性成分が担持された、成形加工用の樹脂ペレット。
  32. スチレン系樹脂、又はスチレン系樹脂を主成分とするポリマーアロイ、又はポリマーブレンドとした樹脂ペレットの表面にスチレン変性のアクリル樹脂のワニスを用いて環境分解性成分が担持された、成形加工用の樹脂ペレット。
  33.  単軸押し出し機を用いて、環境分解性成分を含有する樹脂ペレットを製造する工程と、
     該環境分解性成分含有の樹脂ペレットの表面に、ワニスを用いて環境分解性成分を担持する工程と、
     を含む、樹脂ペレットの製造方法。
  34.  請求項33に記載の樹脂ペレットの製造方法において、
     前記樹脂の主成分は、PPであり、
     前記ワニスは、マレイン酸変性のPPを含有する、樹脂ペレットの製造方法。
  35.  請求項33に記載の樹脂ペレットの製造方法において、
     前記樹脂の主成分は、スチレン系樹脂であり、
     前記ワニスは、スチレン変性アクリル樹脂を含有する、樹脂ペレットの製造方法。
  36.  請求項33に記載の樹脂ペレットの製造方法において、
     前記樹脂の主成分は、スチレン系樹脂のPS、HIPS、又はPS、HIPSを主成分とするポリマーアロイ、ポリマーブレンドであり、
     前記ワニスは、PS、又はHIPSを有機溶剤で溶解して得られるワニス、又は/及び前記ワニスを用いて水系にしたワニスである、樹脂ペレットの製造方法。
  37.  請求項33に記載の樹脂ペレットの製造方法において、
     前記樹脂の主成分は、スチレン系樹脂のAS、又はABS、又はAS、又はABSを主成分とするポリマーアロイ、ポリマーブレンドであり、
     前記ワニスは、AS、又はABSを有機溶剤で溶解して得られるワニス、又は/及び前記ワニスを用いて水系にしたワニスである、樹脂ペレットの製造方法。
PCT/JP2023/019440 2022-06-01 2023-05-25 環境分解性成分を含有した樹脂成形品および樹脂ペレットの製造方法、樹脂ペレットの成形装置、樹脂ペレット WO2023234157A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-089658 2022-06-01
JP2022089658 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023234157A1 true WO2023234157A1 (ja) 2023-12-07

Family

ID=89024832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019440 WO2023234157A1 (ja) 2022-06-01 2023-05-25 環境分解性成分を含有した樹脂成形品および樹脂ペレットの製造方法、樹脂ペレットの成形装置、樹脂ペレット

Country Status (1)

Country Link
WO (1) WO2023234157A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089483A (ja) * 2008-09-12 2010-04-22 Daicel Polymer Ltd セルロース繊維含有熱可塑性樹脂組成物の製造方法
JP2013213155A (ja) * 2012-04-03 2013-10-17 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂組成物
JP2014015512A (ja) * 2012-07-06 2014-01-30 Japan Polyethylene Corp セルロース繊維含有樹脂組成物
JP2020063350A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース強化ポリオレフィン系樹脂組成物の製造方法
JP2021172705A (ja) * 2020-04-21 2021-11-01 オイレス工業株式会社 摺動部材用樹脂組成物及び摺動部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089483A (ja) * 2008-09-12 2010-04-22 Daicel Polymer Ltd セルロース繊維含有熱可塑性樹脂組成物の製造方法
JP2013213155A (ja) * 2012-04-03 2013-10-17 Mitsubishi Engineering Plastics Corp ポリアセタール樹脂組成物
JP2014015512A (ja) * 2012-07-06 2014-01-30 Japan Polyethylene Corp セルロース繊維含有樹脂組成物
JP2020063350A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース強化ポリオレフィン系樹脂組成物の製造方法
JP2021172705A (ja) * 2020-04-21 2021-11-01 オイレス工業株式会社 摺動部材用樹脂組成物及び摺動部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Feeder Ruder | Moriyama", 31 October 2018 (2018-10-31), XP093115410, Retrieved from the Internet <URL:http://www.spindle.co.jp/ms-moriyama/products/e_feeder/> *

Similar Documents

Publication Publication Date Title
CN102329436B (zh) 植物粉基塑料铅笔及其制造方法
EP3632581A1 (en) A composite material and method of preparing the same from substantially unsorted waste
CN1715335A (zh) 含有天然填充材的树脂组合物的制造方法和该树脂组合物
KR100442195B1 (ko) 성형품제조방법 및 성형품제조용 혼련장치
CN110003594B (zh) 一种人造岗石废渣填充聚合物复合材料及其制备方法
US10633506B2 (en) Reconstituted composite materials derived from waste made by solid state pulverization
KR101645823B1 (ko) 기계적 물성이 향상된 친환경 복합고분자 원료 펠릿, 그 제조방법, 및 이를 사출성형하여 제조된 팔레트
CN113308053B (zh) 一种自发泡植物纤维改性聚丙烯材料及其制备方法
WO2023234157A1 (ja) 環境分解性成分を含有した樹脂成形品および樹脂ペレットの製造方法、樹脂ペレットの成形装置、樹脂ペレット
Whelan Injection moulding materials
KR20170059175A (ko) 목분을 이용한 바이오플라스틱 복합재 제조방법 및 이에 의해 제조된 바이오플라스틱 복합재
KR101208107B1 (ko) 바이오매스 펠렛을 이용한 자동차 내장재용 플라스틱의 제조방법
CA2290493C (en) Method of recycling polyester foam
JPH11226955A (ja) 使用済み発泡ポリスチレンの処理方法及び装置
KR100545045B1 (ko) 폐지를 이용한 생분해성 재료제 성형품 제조 방법
CN114211664A (zh) 一种增韧热塑性塑料的制备方法
KR101467255B1 (ko) 가로수 전정지를 이용한 바이오 플라스틱 성형방법 및 그 성형방법에 의해 제조된 바이오 플라스틱 제품
KR101688089B1 (ko) 우유팩으로부터 분리된 폴리에틸렌으로 제조된 펠릿 분쇄물을 포함하는 트레이용 수지조성물 및 이를 이용하여 제조된 트레이
JP3509750B2 (ja) 植物質食品加工残さ複合成形材料の製造方法及びその複合成形材料を用いた成形方法
JP2015516895A (ja) バイオマスペレットを用いた自動車内装材用プラスチック成形品及びその製造方法
CN115368676B (zh) 一种适用于tpu的流纹母粒、其制备方法及其应用
WO2022259984A1 (ja) 樹脂複合材料の製造方法および製造装置
JP4786978B2 (ja) 木質様成形品の製造方法
WO2017131364A1 (ko) 난각분말 수지 조성물
US20210046745A1 (en) Multilayer Thermoplastic Articles With Improved Recyclability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815915

Country of ref document: EP

Kind code of ref document: A1