WO2023233686A1 - バイオマスエポキシ樹脂組成物 - Google Patents

バイオマスエポキシ樹脂組成物 Download PDF

Info

Publication number
WO2023233686A1
WO2023233686A1 PCT/JP2022/043801 JP2022043801W WO2023233686A1 WO 2023233686 A1 WO2023233686 A1 WO 2023233686A1 JP 2022043801 W JP2022043801 W JP 2022043801W WO 2023233686 A1 WO2023233686 A1 WO 2023233686A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
epoxy resin
resin composition
derived
monomer
Prior art date
Application number
PCT/JP2022/043801
Other languages
English (en)
French (fr)
Inventor
由布 岡田
研史 三村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2023233686A1 publication Critical patent/WO2023233686A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present disclosure relates to a biomass epoxy resin composition.
  • Epoxy resins are widely used as insulating materials for electrical equipment because they have excellent thermomechanical properties, electrical properties, moisture resistance, chemical resistance, dimensional stability, and the like.
  • Epoxy resin is a type of thermosetting resin that, once cured, reacts in a three-dimensional network to form a strong cured product that becomes insoluble and infusible, making it difficult to reuse it after curing. .
  • most used epoxy resins are disposed of by incineration, landfilling, etc., but when epoxy resins are incinerated, CO2 , which is a greenhouse gas, is generated.
  • Patent Document 1 JP 2009-263549 A (Patent Document 1) and JP 2013-181040 A (Patent Document 2) disclose epoxy resin compositions comprising an epoxy resin and a curing agent derived from biomass that is solid at room temperature.
  • Patent Document 1 proposes a method of using lignin having a phenol skeleton in the molecule as a curing agent, and discloses that a cured epoxy resin having a high glass transition temperature (Tg) of 200° C. or higher was obtained. ing.
  • Patent Document 2 proposes a method using a relatively low molecular weight plant-derived polyphenol derivative as a curing agent from the viewpoint of moldability.
  • Patent Document 3 discloses a multi-component synthetic resin adhesive containing at least one of a reactive diluent and a reactive resin (including an epoxy resin). .
  • Patent Document 3 cites the challenges of increasing the proportion of biologically derived materials in synthetic resin adhesives and improving product characteristics related to environmental friendliness and sustainability, and uses biologically derived reactive diluents and A method has been proposed to solve the above problems by using a reactive resin.
  • Patent Documents 1 and 2 both use a curing agent that is solid at room temperature, and there is a problem in that workability is inferior compared to resin compositions that use a liquid curing agent.
  • Patent Document 1 when lignin with a large molecular weight is used as a curing agent, the viscosity of the resin composition increases and the workability decreases.
  • Patent Document 2 when pyrogallol, which is a derivative of polyphenols, is used as a curing agent, it is expected that workability will be improved compared to lignin, but there is still room for improvement in heat resistance. There is.
  • Patent Document 3 a reactive diluent derived from biomass is used as a constituent component, but there is no study on workability or heat resistance.
  • heat resistance it is known that the structure of a cured product made of a multi-component synthetic resin has an effect, and control of the structure of the cured product is important.
  • the present disclosure has been made to solve the above-mentioned problems, and aims to provide a biomass epoxy resin composition that is environmentally friendly and has both workability and heat resistance.
  • the present inventors have found that by combining an epoxy resin, a biomass-derived curing agent, a biomass-derived monomer, and a polymerization initiator, the present inventors have achieved excellent environmental friendliness. It has also been found that the effect of achieving both workability and heat resistance can be obtained.
  • the present disclosure relates to the following biomass epoxy resin composition.
  • a biomass epoxy resin composition comprising an epoxy resin, a biomass-derived curing agent, a biomass-derived monomer, and a polymerization initiator, The gelation time of the polymer of the monomer at 100°C or less is within 20 minutes, A biomass epoxy resin composition, wherein a polymer of the monomer has a glass transition temperature of 60°C or higher.
  • biomass epoxy resin composition that is not only environmentally friendly but also has workability and heat resistance.
  • the biomass epoxy resin composition of this embodiment includes an epoxy resin (A), a biomass-derived curing agent (B), a biomass-derived monomer (C), and a polymerization initiator (D).
  • the gelation time of the polymer of the biomass-derived monomer (C) at 100° C. or lower is within 20 minutes.
  • the Tg of the polymer of the biomass-derived monomer (C) is 60°C or higher.
  • the polymer of the biomass-derived monomer (C) is also simply referred to as a "polymer”.
  • Epoxy resin (A) The epoxy resin (A) contained in the biomass epoxy resin composition of this embodiment is a compound having two or more oxirane rings (epoxy groups) per molecule.
  • the shape of the epoxy resin (A) is not particularly limited, but from the viewpoint of dissolving the solid biomass-derived curing agent (B), the epoxy resin (A) is preferably liquid at room temperature.
  • epoxy resins (A) examples include bisphenol A epoxy resins, bisphenol F epoxy resins, cresol novolac epoxy resins, alicyclic epoxy resins, glycidylamine epoxy resins, and the like.
  • bisphenol A epoxy resins and bisphenol F epoxy resins are preferred from the viewpoint of workability and heat resistance. Furthermore, when high heat resistance is required, polyfunctional epoxy resins are preferred.
  • the epoxy resin (A) may be derived from petroleum or biomass. Moreover, the epoxy resin (A) may be used alone or in combination of two or more types. When using two or more types in combination, the combination is not particularly limited.
  • biomass epoxy resin composition of this embodiment includes a biomass-derived curing agent (B).
  • a biomass-derived curing agent (B) By including the curing agent (B) derived from biomass, a biomass epoxy resin composition with excellent environmental properties can be obtained.
  • the biomass-derived curing agent (B) is preferably a compound having an aromatic ring.
  • aromatic compounds such as 4-aminobenzoic acid, 4-hydroxybenzoic acid, and protocatechuic acid, and lignin, which is a phenolic polymer compound, can be used in various ways. Examples include industrial lignin obtained by separation.
  • 4-aminobenzoic acid, 4-hydroxybenzoic acid, and protocatechuic acid are preferred.
  • 4-Aminobenzoic acid, 4-hydroxybenzoic acid, and protocatechuic acid have low molecular weights, and by using the low molecular weight biomass-derived curing agent (B), the mixing viscosity of the biomass epoxy resin composition can be kept low, making it easier to work with. This is because a biomass epoxy resin composition with excellent properties can be obtained.
  • the biomass-derived curing agent (B) may be used alone or in combination of two or more. Moreover, the curing agent (B) derived from biomass may be completely derived from biomass or may be partially derived from biomass.
  • the content of the biomass-derived curing agent (B) is based on the epoxy group in the molecule of the epoxy resin (A), the active hydrogen, hydroxyl group, carboxyl group, and acid of the amino group in the molecule of the biomass-derived curing agent (B).
  • an epoxy group such as anhydride and a functional group capable of reacting react with a 1:1 chemical equivalent
  • the epoxy group in the molecule of the biomass-derived curing agent (B) reacts with the epoxy group in the molecule of the epoxy resin (A).
  • the equivalent ratio of the functional groups may be 0.3 to 3.0. If the relevant amount ratio is outside the above range, properties such as heat resistance may not be fully expressed.
  • the content of the biomass-derived curing agent (B) is such that the number of active hydrogens between the epoxy groups in the epoxy resin (A) and the functional groups in the biomass-derived curing agent (B) is equivalent. It is preferable.
  • a bisphenol A type epoxy resin with an epoxy equivalent of 190 g/eq as the epoxy resin (A) and 4-aminobenzoic acid as the biomass-derived curing agent (B)
  • 100 parts by weight of the bisphenol A type epoxy resin is used.
  • the amount of 4-aminobenzoic acid was 24.0 parts by weight.
  • 4-hydroxybenzoic acid is added to 100 parts by weight of the bisphenol A type epoxy resin.
  • the amount of benzoic acid is 36.4 parts by weight.
  • biomass epoxy resin composition of this embodiment includes a biomass-derived monomer (C).
  • a biomass epoxy resin composition with excellent environmental friendliness and workability can be obtained.
  • biomass-derived monomer (C) examples include ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tetrabutyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and isodecyl (meth)acrylate.
  • the biomass-derived monomer (C) may be used alone or in combination of two or more. Moreover, the biomass-derived monomer (C) may be completely derived from biomass or may be partially derived from biomass. In addition, as long as it contains the monomer (C) derived from biomass, it may contain a monomer derived from petroleum.
  • biomass-derived monomers (C) ethyl methacrylate, tetrabutyl methacrylate, cyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, isobornyl (meth)acrylate, etc. are preferred, and isobornyl (meth)acrylate is more preferred.
  • isobornyl (meth)acrylate has a high Tg (Tg: 180°C)
  • a biomass epoxy resin composition with excellent heat resistance can be obtained by dissolving isobornyl (meth)acrylate and the epoxy resin (A). be. Therefore, a biomass epoxy resin composition using isobornyl (meth)acrylate can be suitably used for applications requiring high heat resistance.
  • the biomass epoxy resin composition of this embodiment has a polymer Tg of 60° C. or higher when it is made into a cured product.
  • the above-mentioned biomass-derived monomers (C) include those with a Tg of less than 60°C; By combining two or more types of C), the Tg of the polymer may be adjusted to 60° C. or higher.
  • the content of the biomass-derived monomer (C) is 10 to 70% by weight based on the epoxy resin (A), the biomass-derived curing agent (B), and the biomass-derived monomer (C).
  • the content of the biomass-derived monomer (C) is less than 10% by weight, the effect of the biomass-derived monomer (C) may be reduced. If the content of the biomass-derived monomer (C) exceeds 70% by weight, the biomass epoxy resin composition may become brittle and moldability may be impaired.
  • the biomass epoxy resin composition of this embodiment includes a polymerization initiator (D).
  • the polymerization initiator (D) is a compound that can initiate the polymerization of the biomass-derived monomer (C), and can be a radical initiator that generates active radicals, acids, etc. by the action of light or heat, or a compound that utilizes a redox reaction. There are redox initiators that generate radicals.
  • Examples of the polymerization initiator (D) include organic peroxides such as hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxycarbonates, peroxyketals, and ketone peroxides. Examples include combinations of these organic peroxides and reducing agents such as metal salts and amines. Among these polymerization initiators (D), combinations of hydroperoxides and metal salts and ketone peroxides and metal salts, which can efficiently generate radicals even at low temperatures, are preferred. Examples of hydroperoxides include tert-butyl hydroperoxide and cumene hydroperoxide.
  • Examples of ketone peroxides include methyl ethyl ketone peroxide and cyclohexanone peroxide.
  • Examples of the metal salt include cobalt salts such as cobalt naphthenate and cobalt octylate, and vanadium compounds such as vanadium pentoxide.
  • the content of the polymerization initiator (D) depends on the type of biomass-derived monomer (C) used, but is 0.001 to 20 parts by weight per 100 parts by weight of the biomass-derived monomer (C). , preferably 0.005 to 10 parts by weight.
  • the gelation time of the polymer described below can be adjusted to an appropriate range.
  • the biomass epoxy resin composition of this embodiment may contain a curing accelerator in order to increase the curing speed of the epoxy resin (A).
  • the curing accelerator is not particularly limited as long as it accelerates the curing of the epoxy resin (A), and examples thereof include tertiary amine accelerators such as benzyldimethylamine, and 2-ethyl-4-methylimidazole. Examples include imidazole promoters, phosphorus promoters such as triphenylphosphine, and organic metals such as zinc octylate.
  • the curing accelerator may be used alone or in combination of two or more types.
  • the content of the curing accelerator may be adjusted appropriately depending on the type of epoxy resin (A) and biomass-derived curing agent (B) used, and generally, the content of the curing accelerator is 0 to 100 parts by weight of the epoxy resin (A). .1 to 100 parts by weight.
  • the gelation time of the polymer at 100° C. or lower is within 20 minutes. If the gelation time of the polymer at 100°C or lower exceeds 20 minutes, the volatilization of the biomass-derived monomer (C) progresses, and the reaction between the epoxy resin (A) and the biomass-derived curing agent (B) progresses. This is because the degree of polymerization of the biomass-derived monomer (C) is suppressed due to the increase in viscosity, making it difficult to obtain the effects of adding the biomass-derived monomer (C).
  • the gelation time of the polymer at 100° C. or lower is preferably within 18 minutes. In addition, although the faster the gelation time, the better, from the viewpoint of moldability of the biomass epoxy resin composition, the gelation time is preferably 30 seconds or more.
  • the gelation time can be measured, for example, by the following procedure.
  • a gelling tester No. 153 Gel Time Tester manufactured by Yasuda Seiki Seisakusho Co., Ltd.
  • a rotor is rotated in a test tube containing 1 ml of a polymer sample, and when the gelation of the sample progresses and a certain amount of torque is applied to the rotor, the rotor falls due to the magnetic coupling mechanism and the timer stops. This time is defined as gelation time.
  • the biomass epoxy resin composition of this embodiment has a polymer Tg of 60° C. or higher when cured. When the Tg of the polymer is less than 60°C, heat resistance decreases.
  • the Tg of the polymer is preferably 100°C or higher. Note that, although Tg is preferably higher, it may be, for example, 300° C. or lower.
  • Tg can be measured, for example, by the following procedure.
  • a dynamic mechanical analysis (DMA) device (DMS6100 manufactured by Hitachi High-Tech Science Co., Ltd.) is prepared.
  • DMA dynamic mechanical analysis
  • a test piece made of a polymer (40 mm long x 10 mm wide x 1 to 3 mm thick) was measured under the following test conditions, and the peak top temperature of loss tangent (tan ⁇ ) was defined as Tg.
  • ⁇ Test conditions Deformation mode: Tensile mode Measurement temperature: 25-250°C Heating rate: 2°C/min Frequency: 0.2 ⁇ 5Hz
  • phase structure (hereinafter simply referred to as "phase structure") of the cured product of the biomass epoxy resin composition affects physical properties such as heat resistance and mechanical strength.
  • the phase structure is such that the epoxy resin cured product, which is a cured product of epoxy resin (A) and biomass-derived curing agent (B), exists in a separated state without being compatible with the polymer, that is, it is phase separated. Examples include a state in which the cured epoxy resin and the polymer are compatible with each other.
  • the phase structure can be specified by the peak shape and peak temperature of tan ⁇ of the dynamic viscoelasticity of the cured product.
  • Tg1 and Tg2 are different, and if they are completely phase separated from each other, the Tg of each will be two tan ⁇ . A peak appears.
  • the cured epoxy resin and the polymer are compatible, one tan ⁇ peak will appear.
  • the cured epoxy resin and the polymer have functional groups that can chemically bond to each other, and (2) the cured epoxy resin and the polymer each have a network structure.
  • One of the cured epoxy resin and the polymer forms a network structure, and the other has a long chain structure that does not form a network structure. Examples include the state of being a polymer and having no functional groups that chemically bond to each other.
  • the network structures or the network structure and the chain structure form one network structure through chemical bonds, there is one tan ⁇ peak.
  • the peak of tan ⁇ may appear as two peaks or a shoulder peak at a value different from the Tg of the cured epoxy resin and the polymer, respectively.
  • the cured epoxy resin and the polymer have functional groups that can chemically bond to each other, and (2) the mutual network structures of the cured epoxy resin and the polymer are uniformly physically entangled.
  • a semi-IPN structure is formed in which one long-chain polymer is physically entangled with the other network structure.
  • the compatibility between the cured epoxy resin and the polymer is improved by chemical bonding, but when there are few functional groups or when the molecular weight of the polymer is high, phase separation occurs partially or completely.
  • Tg2 when Tg2 is lower than Tg1, it is preferable that the cured epoxy resin and the polymer in the biomass epoxy resin composition are phase-separated. In this case, since Tg1 exhibits a Tg equivalent to that of the epoxy resin (A) alone, a decrease in the Tg of the entire biomass epoxy resin composition can be prevented.
  • Tg2 when Tg2 is higher than Tg1, it is preferable that the cured epoxy resin and the polymer in the biomass epoxy resin composition are completely or partially compatible. In this case, Tg1 can be improved more than the Tg of the epoxy resin (A) alone, and it can be suitably used for applications requiring higher heat resistance.
  • the biomass epoxy resin composition of the present embodiment contains radioactive carbon (carbon-14, hereinafter referred to as "C14").
  • C14 always exists in the atmosphere at a constant rate. During the growth process, plants take in CO2 from the atmosphere, so the amount of C14 contained in plants is the same as that in the atmosphere.
  • fossil resources such as petroleum do not contain C14, and biomass-derived carbon can be distinguished from petroleum-derived carbon.
  • the current concentration of C14 in the atmosphere is about 100 pMC (percent modern carbon), and if a certain biomass plastic was made from 100% biomass-derived material, the pMC of this sample would be around 100. . On the other hand, in the case of petroleum-derived substances, the pMC of this sample is approximately 0.
  • the value will be around 50 pMC. Therefore, by determining the proportion of C14 in the biomass epoxy resin composition, it is possible to verify the environmental load of the biomass epoxy resin composition.
  • the content of C14 based on the total carbon in the biomass epoxy resin composition of this embodiment is 20% or more.
  • the content rate of C14 is calculated using the following formula (1).
  • C14 content (%) in biomass epoxy resin composition 100 x C14 content in biomass epoxy resin composition/total carbon content in biomass epoxy resin composition... (1) If the content of C14 in the biomass epoxy resin composition is less than 20%, the effect as a carbon offset material will be poor.
  • the mixed viscosity of the biomass epoxy resin composition is preferably 5000 mPa ⁇ s or less at 60°C, more preferably 1000 mPa ⁇ s or less, and even more preferably 300 mPa ⁇ s or less.
  • the mixed viscosity of the biomass epoxy resin composition is measured using an E-type viscometer. Although it is preferable that the mixture viscosity is small, it may be, for example, 10 mPa ⁇ s or more.
  • the use of the biomass epoxy resin composition of this embodiment is not particularly limited and can be used for various purposes.
  • it may be used as a varnish for motors by dissolving it in an organic solvent, or it may be used as a molding resin for motors, power modules, etc. by adding a filler as in Embodiment 2, which will be described later.
  • the method for producing the biomass epoxy resin composition of this embodiment is not particularly limited.
  • an epoxy resin (A) and a biomass-derived curing agent (B) are mixed at room temperature or with heating to obtain a first mixture.
  • the heating temperature is, for example, in the range of 40 to 180°C.
  • a biomass-derived monomer (C) and a polymerization initiator (D) are mixed at room temperature to obtain a second mixture.
  • a biomass epoxy resin composition is obtained by heating and mixing these first mixture and second mixture.
  • the heating temperature and heating time may be appropriately set depending on the epoxy resin (A), biomass-derived curing agent (B), and biomass-derived monomer (C) to be used.
  • the heating temperature is, for example, in the range of 40 to 180°C, but preferably in the range of 40 to 120°C from the viewpoint of suppressing volatilization of the biomass-derived monomer (C).
  • the heating time is, for example, in the range of 1 to 180 minutes.
  • the degree of polymerization of the biomass-derived monomer (C) changes depending on the heating temperature and heating time. For example, when heated at a high temperature for a short time and when heated at a low temperature for a long time, The degree of polymerization may be the same.
  • a solvent may be used when mixing the epoxy resin (A) and the biomass-derived curing agent (B).
  • the solvent is not particularly limited, and examples thereof include toluene, methyl ethyl ketone, and the like.
  • the polymerization initiator (D) is added and the mixture is heated at room temperature or with heating.
  • the heating temperature when the epoxy resin (A), the biomass-derived curing agent (B), and the biomass-derived monomer (C) are mixed is, for example, in the range of 40 to 180°C.
  • the heating temperature after adding the polymerization initiator (D) is, for example, in the range of 40 to 180°C.
  • the curing conditions for the biomass epoxy resin composition are not particularly limited, but for example, the heating temperature is in the range of 30 to 300°C, and the heating time is in the range of 1 minute to 100 hours.
  • the biomass epoxy resin composition according to this embodiment further contains an inorganic filler (E).
  • an inorganic filler (E) By including the inorganic filler (E) in the biomass epoxy resin composition, a biomass epoxy resin composition having desired mechanical strength and linear expansion coefficient can be obtained. Note that explanations other than points different from Embodiment 1 will be omitted.
  • inorganic filler (E) examples include, but are not limited to, metal oxide particles such as aluminum oxide (alumina), zinc oxide, indium tin oxide (ITO), magnesium oxide, beryllium oxide, and titanium oxide, boron nitride, Examples include metal nitride particles such as silicon nitride and aluminum nitride, carbon compound particles such as silicon carbide, graphite, diamond, amorphous carbon, carbon black, and carbon fiber, and silica compound powders such as quartz and quartz glass. These may be used alone or in combination of two or more.
  • metal oxide particles such as aluminum oxide (alumina), zinc oxide, indium tin oxide (ITO), magnesium oxide, beryllium oxide, and titanium oxide
  • metal nitride particles such as silicon nitride and aluminum nitride
  • carbon compound particles such as silicon carbide, graphite, diamond, amorphous carbon, carbon black, and carbon fiber
  • silica compound powders such as quartz and quartz glass.
  • aluminum oxide (alumina), zinc oxide, magnesium oxide, beryllium oxide, titanium oxide, boron nitride, silicon nitride, aluminum nitride, diamond, quartz, quartz glass, etc. are preferable.
  • the average particle size of the inorganic filler (E) is preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 80 ⁇ m.
  • the average particle size of the inorganic filler (E) is less than 1 nm, the viscosity of the biomass epoxy resin composition becomes high, which may impair workability and moldability.
  • the average particle size of the inorganic filler (E) exceeds 100 ⁇ m, the strength of the cured product of the biomass epoxy resin composition decreases and the inorganic filler (E) tends to settle during storage of the biomass epoxy resin composition.
  • the content of the inorganic filler (E) is preferably 40 to 90% by weight, more preferably 70 to 85% by weight, based on the entire biomass epoxy resin composition.
  • the content of the inorganic filler (E) is less than 40% by weight, there is a possibility that a cured product of the biomass epoxy resin composition having desired mechanical strength and thermal expansion coefficient cannot be obtained. If the content of the inorganic filler (E) exceeds 90% by weight, the viscosity of the biomass epoxy resin composition may increase, and workability and moldability may be impaired.
  • the inorganic filler (E) may be subjected to a coupling treatment using a coupling agent.
  • Examples of such coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ - Examples include mercaptopropyltrimethoxysilane. These may be used alone or in combination of two or more.
  • the content of the coupling agent may be appropriately set depending on the type of the epoxy resin (A) and the inorganic filler (E), but for example, 0.01 parts by weight per 100 parts by weight of the epoxy resin (A). ⁇ 5 parts by weight.
  • the inorganic filler is A filler (E) may be mixed.
  • the inorganic filler (E) may be mixed in the step of heating and mixing the first mixture and the second mixture.
  • the inorganic filler (E) may be mixed in the step of mixing the epoxy resin (A), the biomass-derived curing agent (B), and the biomass-derived monomer (C) at room temperature or by heating.
  • the coupling treatment of the inorganic filler (E) with a coupling agent may be carried out using a conventionally known method before mixing the inorganic filler (E).
  • the biomass epoxy resin composition according to this embodiment further contains a compatible monomer (F).
  • the biomass epoxy resin composition contains the compatible monomer (F)
  • the epoxy resin cured product and the polymer partially form a chemical bond, and the compatibility between the epoxy resin cured product and the polymer is improved.
  • a biomass epoxy resin composition with improved heat resistance can be obtained. Note that explanations other than points different from Embodiment 1 will be omitted.
  • the compatible monomer (F) includes a first functional group that reacts with the epoxy resin (A) and the biomass-derived monomer (C), and a first functional group that reacts with the biomass-derived curing agent (B) and the biomass-derived monomer (C).
  • the monomer preferably has at least one functional group selected from the group consisting of second functional groups.
  • compatible monomers (F) having a first functional group examples include methacrylamide, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxyphenyl (meth)acrylate, 4-vinyl Phenol, acrylates and methacrylates such as ⁇ -carboxyethyl acrylate, styrenes such as p-acetoxystyrene, o-acetoxystyrene, m-acetoxystyrene, 3-methoxy-4-acetoxystyrene, p-hydroxyphenylstyrene, etc. Can be mentioned.
  • Examples of the compatible monomer (F) having a second functional group include glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, (meth)allyl glycidyl ether, (meth)allyl methylglycidyl ether, 3,4-epoxy Examples include cyclohexylmethyl (meth)acrylate, 4-hydroxybutyl acrylate glycidyl ether, and the like.
  • glycidyl methacrylate is preferred from the viewpoint of compatibility.
  • the content of the compatible monomer (F) may be adjusted as appropriate depending on the types of the epoxy resin (A), biomass-derived curing agent (B), and biomass-derived monomer (C) used. Also, The content of the epoxy resin (A) or the biomass-derived curing agent (B) may be adjusted depending on the content of the compatible monomer (F).
  • the content of the compatible monomer (F) is, for example, the epoxy group in the molecule of the epoxy resin (A), the active hydrogen of the amino group in the molecule of the compatible monomer (F), hydroxyl group, carboxyl group, acetoxy group,
  • an epoxy group such as an acid anhydride and a reactive functional group react with a 1:1 chemical equivalent
  • the epoxy group in the molecule of the epoxy resin (A) is compatible with the epoxy group in the molecule of the monomer (F).
  • the equivalent ratio of the functional groups may be 0.3 to 3.0. If the relevant amount ratio is outside the above range, properties such as heat resistance may not be fully expressed.
  • the content of the compatible monomer (F) is such that, for example, the content of the functional group that can react with the epoxy group in the molecule of the biomass-derived curing agent (B) and the epoxy group in the molecule of the compatible monomer (F),
  • the equivalent ratio of the functional group in the molecule of the biomass-derived curing agent (B) to the epoxy group in the molecule of the compatible monomer (F) is 0.3 to 3.0. All you have to do is make it so that If the relevant amount ratio is outside the above range, properties such as heat resistance may not be fully expressed.
  • the method of mixing the compatible monomer (F) is not particularly limited, but for example, the compatible monomer (F) is mixed in the step of mixing the biomass-derived monomer (C) and the polymerization initiator (D) at room temperature to obtain a second mixture. F) may be mixed.
  • the compatible monomer (F) may be mixed in the step of heating and mixing the first mixture and the second mixture.
  • the compatible monomer (F) may be mixed in the step of mixing the epoxy resin (A), the biomass-derived curing agent (B), and the biomass-derived monomer (C) at room temperature or by heating.
  • Example 1 Components (A) to (D) in the amounts shown in Table 1 were prepared.
  • Component (A-1) and component (B-1) were heated and mixed at 130° C. to obtain a first mixture.
  • component (C-1) and (D-1) at room temperature component (D-2) was added and mixed uniformly to obtain a second mixture.
  • the obtained first mixture and second mixture were mixed and heated at 100° C. for 15 minutes to obtain the biomass epoxy resin composition of Example 1. Further, the obtained biomass epoxy resin composition was heated at 80° C. for 2 hours, at 130° C. for 2 hours, and at 180° C. for 2 hours, respectively, to obtain a cured product of the biomass epoxy resin composition.
  • Examples 2 to 4 A biomass epoxy resin composition and a cured product thereof were obtained in the same manner as in Example 1, except that the amounts of component (C) and component (D) were changed to those shown in Table 1.
  • Example 5 Same as Example 1, except that the amount of the component (D) was changed to the amount shown in Table 1, and the heating time after mixing the first mixture and the second mixture was changed to 5 minutes. A biomass epoxy resin composition and its cured product were obtained by this method.
  • Example 6 Component (B-1) was changed to component (B-2), component (C-1) was changed to component (C-2), and the blending amounts of each component (B) to (D) are shown in Table 1.
  • a biomass epoxy resin composition and a cured product thereof were obtained in the same manner as in Example 1, except that the amounts were changed as shown.
  • Example 7 Components (A) to (E) in the amounts shown in Table 1 were prepared. Component (A-1) and component (B-1) were heated and mixed at 130° C. to obtain a first mixture. Component (C-1) was heated to 100° C. and mixed into the obtained first mixture, and after returning to room temperature, component (E-1) was added and mixed. Component (D-2) was added to these mixtures, mixed uniformly, and heated at 100° C. for 15 minutes to obtain the biomass epoxy resin composition of Example 7. Furthermore, a cured product of the biomass epoxy resin composition was produced in the same manner as in Example 1.
  • Example 8 Components (A) to (F) in the amounts shown in Table 1 were prepared. Component (A-1) and component (B-1) were heated and mixed at 130° C. to obtain a first mixture. After uniformly mixing component (C-1), component (F-1) and component (D-1) at room temperature, component (D-2) was added and mixed uniformly to obtain a second mixture. . The obtained first mixture and second mixture were mixed and heated at 100° C. for 15 minutes to obtain the biomass epoxy resin composition of Example 8. Furthermore, a cured product of the biomass epoxy resin composition was produced in the same manner as in Example 1.
  • Comparative example 1 Component (A) and component (B') in the amounts shown in Table 1 were prepared.
  • a biomass epoxy resin composition of Comparative Example 1 was obtained by heating component (A-1) and component (B'-1) at 100° C. for 15 minutes. Thereafter, the cured product was obtained in the same manner as in Example 1.
  • Comparative example 2 Components (A) and (B) in the amounts shown in Table 1 were prepared.
  • a biomass epoxy resin composition of Comparative Example 2 was obtained by heating component (A-1) and component (B-1) at 100° C. for 15 minutes. Thereafter, the cured product was obtained in the same manner as in Example 1.
  • Comparative example 3 Components (A) and (B) in the amounts shown in Table 1 were prepared.
  • a biomass epoxy resin composition of Comparative Example 3 was obtained by heating the components (A-1) and (B-2) at 100° C. for 15 minutes. Thereafter, the cured product was obtained in the same manner as in Example 1.
  • Biomass was prepared in the same manner as in Example 1, except that the (C-1) component was changed to the (C'-1) component, and the blended amount of the (C') component was changed to the amount shown in Table 1. An epoxy resin composition and a cured product thereof were obtained.
  • Component (A), component (B), and component (E) in the amounts shown in Table 1 were prepared.
  • Component (A-1) and component (B-1) were heated and mixed at 130° C. to obtain a first mixture.
  • component (E-1) was added, mixed uniformly, and heated at 100° C. for 15 minutes to obtain a biomass epoxy resin composition of Comparative Example 6.
  • a cured product of the biomass epoxy resin composition was produced in the same manner as in Example 1.
  • Each component shown in Table 1 (each component indicated by a symbol) is as follows.
  • E component E component
  • Fused silica FB74 manufactured by Denka Co., Ltd.
  • average particle size 30 ⁇ m
  • the samples used for the evaluation of (1) gelation time and (2) Tg are polymers obtained by polymerizing only component (C), and the samples used for the evaluation of (3) C14 are biomass epoxy resin compositions.
  • the sample used for evaluating the tan ⁇ peak temperature is a cured product of the biomass epoxy resin composition.
  • Tg A DMA device (DMS6100, manufactured by Hitachi High-Tech Science Co., Ltd.) was prepared. Using a test piece made of a polymer (40 mm long x 10 mm wide x 1 to 3 mm thick), measurements were made under the following test conditions. The peak top temperature of tan ⁇ in this measurement was defined as Tg. ⁇ Test conditions ⁇ Deformation mode: Tensile mode Measurement temperature: 25-250°C Heating rate: 2°C/min Frequency: 0.2 ⁇ 5Hz
  • C14 The C14 content of each sample was calculated using the following formula (1).
  • C14 content (%) in biomass epoxy resin composition 100 x C14 content in biomass epoxy resin composition/total carbon content in biomass epoxy resin composition...Formula (1)
  • Tan ⁇ peak temperature The above-mentioned DMA device was prepared. The tan ⁇ peak temperature of each sample was measured. When two peaks were obtained, the higher tan ⁇ peak value (intensity) was taken as the tan ⁇ peak temperature.
  • Table 1 shows the evaluation results of (1) to (5) above for the obtained evaluation samples.
  • the biomass epoxy resin composition of the example uses a biomass-derived curing agent (B) and a biomass-derived monomer (C), and has a C14 content of 20% or more, so it has excellent environmental friendliness. Further, the biomass epoxy resin composition of the example has excellent workability since the gelation time of the polymer is within 20 minutes. Furthermore, the biomass epoxy resin composition of the example has excellent heat resistance since the Tg of the polymer is 60° C. or higher.
  • Example 7 It was also confirmed that the mixture viscosity of Example 7 was significantly lower than that of Comparative Example 6 in which no biomass-derived monomer (C) component was added.
  • Example 5 the tan ⁇ peak was broad, which confirmed that the cured epoxy resin and the polymer were partially compatible.
  • Example 5 since two tan ⁇ peaks were obtained, it was confirmed that the epoxy resin cured product and the polymer were phase separated. As shown in Example 5, when the gelation time of the polymer is short, the cured epoxy resin and the polymer are not sufficiently compatible with each other, and the biomass epoxy resin composition is partially phase-separated. It is considered that a cured product is formed.
  • the tan ⁇ peak temperature showed a value higher than the Tg of the polymer itself. It is presumed that this is because the molecular chains of the cured epoxy resin and the polymer are physically entangled and restrained, resulting in a higher Tg value than that of the polymer alone, resulting in improved heat resistance.
  • Example 5 when the cured epoxy resin and the polymer undergo partial phase separation, the lower tan ⁇ peak temperature of the two tan ⁇ peaks is higher than that of the biomass epoxy that does not contain the biomass-derived monomer (C).
  • the tan ⁇ peak temperature showed a value equivalent to that of Comparative Example 2, which is a resin composition.
  • Example 6 Even when the Tg of the polymer is relatively low, as in Example 6, the mixing viscosity can be lowered compared to Comparative Example 3, which does not contain the biomass-derived monomer (C). It has been confirmed that it can improve sexual performance.
  • Examples 1 and 8 have the same monomer component content.
  • Example 1 only IBOMA, whose Tg as a single polymer is 180°C, is used, but in Example 8, the same amount of IBOMA and GM, whose Tg as a single polymer is 46°C, is used. ing.
  • IBOMA and GM have a large difference in Tg as a single polymer, the tan ⁇ peak temperature of Example 7 is higher than the tan ⁇ peak temperature of Example 1. This is because the biomass epoxy resin composition contains a compatible monomer (F), and the cured epoxy resin and polymer form partial chemical bonds in addition to physical molecular chain entanglement. It is presumed that the compatibility between the cured epoxy resin and the polymer was improved, and the heat resistance was improved.
  • F compatible monomer
  • Comparative Example 1 does not contain the biomass-derived curing agent (B) and the biomass-derived monomer (C), so it is inferior in environmental friendliness.
  • Comparative Examples 2 and 3 do not contain the biomass-derived monomer (C), so they are inferior in workability compared to Examples 1 to 6.
  • Comparative Example 4 has poor heat resistance because the Tg of the polymer is less than 60°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

エポキシ樹脂と、バイオマス由来の硬化剤と、バイオマス由来のモノマーと、重合開始剤と、を含むバイオマスエポキシ樹脂組成物であって、前記モノマーの重合体の100℃以下におけるゲル化時間が20分以内であり、前記モノマーの重合体のガラス転移温度が60℃以上である、バイオマスエポキシ樹脂組成物。

Description

バイオマスエポキシ樹脂組成物
 本開示は、バイオマスエポキシ樹脂組成物に関する。
 エポキシ樹脂は、熱機械特性、電気特性、耐湿性、耐薬品性、寸法安定性等に優れることから、電気機器の絶縁材料として広く用いられている。エポキシ樹脂は、一度硬化すると三次元網目状に反応が進行して強固な硬化物を形成し、不溶不融となる熱硬化性樹脂の一種であり、硬化後の再利用は困難とされている。このため、使用済みのエポキシ樹脂の多くは、焼却、埋立等により処理されているが、エポキシ樹脂を焼却する際には、温室効果ガスであるCOが発生する。
 近年、地球温暖化防止の観点から、CO排出量の削減が課題となっている。また、石油資源の使用量の節減も求められており、低環境負荷の材料が必要とされている。このような背景から、カーボンニュートラル特性を有するバイオマス材料をエポキシ樹脂の原料として用いることが提案されている。
 特開2009-263549号公報(特許文献1)および特開2013-181040号公報(特許文献2)では、エポキシ樹脂および常温固形のバイオマス由来の硬化剤からなるエポキシ樹脂組成物が開示されている。特許文献1では、硬化剤として分子中にフェノール骨格を有するリグニンを用いる方法が提案されており、200℃以上の高いガラス転移温度(Tg)を有するエポキシ樹脂硬化物が得られたことが開示されている。また、特許文献2では、成型性の観点から、硬化剤として比較的低分子量の植物由来のポリフェノール類の誘導体を用いる方法が提案されている。
 また、特表2016-520677号公報(特許文献3)では、反応性希釈剤および反応性樹脂(エポキシ樹脂を含む)のうち少なくとも1種を包含する多成分系合成樹脂接着剤が開示されている。特許文献3では、合成樹脂接着剤における生物由来材料の割合を向上させること、環境性や持続性に関連した製品特性を改善すること、を課題として挙げており、生物由来の反応性希釈剤および反応性樹脂を用いることで、上記課題を解決する方法が提案されている。
特開2009-263549号公報 特開2013-181040号公報 特表2016-520677号公報
 しかしながら、特許文献1および2では、いずれも常温固形の硬化剤を用いており、液状の硬化剤を用いた樹脂組成物と比較して、作業性に劣るといった問題がある。特に、特許文献1に開示されるように、硬化剤として分子量の大きいリグニンを用いた場合には、樹脂組成物の粘度が向上し、作業性が低下する。また、特許文献2に開示されるように、硬化剤としてポリフェノール類の誘導体であるピロガロールを用いた場合には、リグニンと比較して作業性の改善は期待されるものの、耐熱性に改善の余地がある。
 また、特許文献3では、構成成分としてバイオマス由来の反応性希釈剤を用いているが、作業性や耐熱性に関しての検討はなされていない。特に耐熱性に関しては、多成分系合成樹脂からなる硬化物の構造が影響することが知られており、硬化物の構造の制御が重要となる。
 本開示は、上記のような課題を解決するためになされたものであり、環境性に優れると共に、作業性および耐熱性を両立したバイオマスエポキシ樹脂組成物を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、エポキシ樹脂と、バイオマス由来の硬化剤と、バイオマス由来のモノマーと、重合開始剤と、を組み合わせることによって、環境性に優れ、かつ、作業性および耐熱性を両立させることができるという効果が得られることを見出した。
 本開示は、以下のバイオマスエポキシ樹脂組成物に関する。
 エポキシ樹脂と、バイオマス由来の硬化剤と、バイオマス由来のモノマーと、重合開始剤と、を含むバイオマスエポキシ樹脂組成物であって、
 前記モノマーの重合体の100℃以下におけるゲル化時間が20分以内であり、
 前記モノマーの重合体のガラス転移温度が60℃以上である、バイオマスエポキシ樹脂組成物。
 本開示によれば、環境性に優れると共に、作業性および耐熱性を両立したバイオマスエポキシ樹脂組成物を提供することができる。
 以下、本開示の実施の形態について説明する。
 実施の形態1.
 <バイオマスエポキシ樹脂組成物>
 本実施の形態のバイオマスエポキシ樹脂組成物は、エポキシ樹脂(A)と、バイオマス由来の硬化剤(B)と、バイオマス由来のモノマー(C)と、重合開始剤(D)と、を含む。バイオマス由来のモノマー(C)の重合体の100℃以下におけるゲル化時間は20分以内である。バイオマス由来のモノマー(C)の重合体のTgは60℃以上である。なお、以下、バイオマス由来のモノマー(C)の重合体を、単に「重合体」とも称する。
 (エポキシ樹脂(A))
 本実施の形態のバイオマスエポキシ樹脂組成物に含まれるエポキシ樹脂(A)は、1分子当たり2個以上のオキシラン環(エポキシ基)を有する化合物である。エポキシ樹脂(A)の形状は、特に制限はないが、固形のバイオマス由来の硬化剤(B)を溶解させる観点から、エポキシ樹脂(A)は、常温で液状であることが好ましい。
 このようなエポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂(A)の中でも、作業性および耐熱性の観点から、ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂が好ましい。また、高耐熱性が求められる場合には、多官能エポキシ樹脂が好ましい。
 エポキシ樹脂(A)は、石油由来であってもよいし、バイオマス由来であってもよい。また、エポキシ樹脂(A)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて使用する場合には、その組み合わせは特に限定されない。
 (バイオマス由来の硬化剤(B))
 本実施の形態のバイオマスエポキシ樹脂組成物は、バイオマス由来の硬化剤(B)を含む。バイオマス由来の硬化剤(B)を含むことにより、環境性に優れたバイオマスエポキシ樹脂組成物を得ることができる。
 バイオマス由来の硬化剤(B)は、耐熱性の観点から、芳香環を有する化合物であることが好ましい。このようなバイオマス由来の硬化剤(B)としては、例えば、4-アミノ安息香酸、4-ヒドロキシ安息香酸、プロトカテク酸等の芳香族化合物、フェノール性高分子化合物であるリグニンを種々の方法で単離して得られる工業リグニン等が挙げられる。これらのバイオマス由来の硬化剤(B)の中でも、4-アミノ安息香酸、4-ヒドロキシ安息香酸、プロトカテク酸が好ましい。4-アミノ安息香酸、4-ヒドロキシ安息香酸、プロトカテク酸は低分子量であり、低分子量のバイオマス由来の硬化剤(B)を用いることで、バイオマスエポキシ樹脂組成物の混合粘度が低く抑えられ、作業性に優れたバイオマスエポキシ樹脂組成物を得ることができるからである。
 バイオマス由来の硬化剤(B)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、バイオマス由来の硬化剤(B)は、完全にバイオマス由来であってもよいし、部分的にバイオマス由来であってもよい。
 バイオマス由来の硬化剤(B)の含有量は、エポキシ樹脂(A)の分子中のエポキシ基と、バイオマス由来の硬化剤(B)の分子中のアミノ基の活性水素、水酸基、カルボキシル基、酸無水物等のエポキシ基と反応し得る官能基とが、1:1の化学当量で反応する場合に、エポキシ樹脂(A)の分子中のエポキシ基に対するバイオマス由来の硬化剤(B)の分子中の官能基の当量比が0.3~3.0となるようにすればよい。該当量比が上記の範囲外の場合、耐熱性等の特性が十分に発現しない可能性がある。
 また、バイオマス由来の硬化剤(B)の含有量は、エポキシ樹脂(A)中のエポキシ基と、バイオマス由来の硬化剤(B)中の官能基との活性水素数が当量となるようにすることが好ましい。例えば、エポキシ樹脂(A)としてエポキシ当量が190g/eqであるビスフェノールA型エポキシ樹脂を、バイオマス由来の硬化剤(B)として4-アミノ安息香酸を用いる場合、ビスフェノールA型エポキシ樹脂100重量部に対して、4-アミノ安息香酸24.0重量部となる。例えば、エポキシ樹脂(A)として同様のビスフェノールA型エポキシ樹脂を、バイオマス由来の硬化剤(B)として4-ヒドロキシ安息香酸を用いる場合、ビスフェノールA型エポキシ樹脂100重量部に対して、4-ヒドロキシ安息香酸36.4重量部となる。
 (バイオマス由来のモノマー(C))
 本実施の形態のバイオマスエポキシ樹脂組成物は、バイオマス由来のモノマー(C)を含む。バイオマス由来のモノマー(C)を含むことにより、環境性および作業性に優れたバイオマスエポキシ樹脂組成物を得ることができる。
 バイオマス由来のモノマー(C)としては、例えば、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、テトラブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ネオペンチルグリコールジメタクリレート等が挙げられる。バイオマス由来のモノマー(C)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、バイオマス由来のモノマー(C)は、完全にバイオマス由来であってもよいし、部分的にバイオマス由来であってもよい。なお、バイオマス由来のモノマー(C)を含んでいれば、石油由来のモノマーを含んでいてもよい。
 これらのバイオマス由来のモノマー(C)の中でも、エチルメタクリレート、テトラブチルメタクリレート、シクロへキシルメタクリレート、テトラヒドロフルフリルメタクリレート、イソボルニル(メタ)アクリレート等が好ましく、イソボルニル(メタ)クリレートがより好ましい。イソボルニル(メタ)クリレートはTgが高く(Tg:180℃)、イソボルニル(メタ)クリレートとエポキシ樹脂(A)とが相溶することによって、耐熱性に優れたバイオマスエポキシ樹脂組成物が得られるからである。そのため、イソボルニル(メタ)クリレートを用いたバイオマスエポキシ樹脂組成物は、高耐熱性が求められる用途へ好適に用いることができる。
 なお、後述するように、本実施の形態のバイオマスエポキシ樹脂組成物は、硬化物としたときに、重合体のTgが60℃以上である。上述のバイオマス由来のモノマー(C)には、Tgが60℃未満のものも含まれるが、Tgが60℃以上のバイオマス由来のモノマー(C)と、Tgが60℃未満のバイオマス由来のモノマー(C)とを2種以上組み合わせることで、重合体のTgが60℃以上となるように調整すればよい。
 バイオマス由来のモノマー(C)の含有率は、エポキシ樹脂(A)、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)に対して、10~70重量%である。バイオマス由来のモノマー(C)の含有率が10重量%未満の場合、バイオマス由来のモノマー(C)による効果が小さくなるおそれがある。バイオマス由来のモノマー(C)の含有率が70重量%を超える場合、バイオマスエポキシ樹脂組成物が脆くなり、成型性が損なわれるおそれがある。
 (重合開始剤(D))
 本実施の形態のバイオマスエポキシ樹脂組成物は、重合開始剤(D)を含む。重合開始剤(D)は、バイオマス由来のモノマー(C)の重合を開始し得る化合物であり、光または熱の作用により活性ラジカル、酸等を発生させるラジカル開始剤や、酸化還元反応を利用してラジカルを発生させるレドックス開始剤等がある。
 重合開始剤(D)としては、例えば、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシエステル類、ジアシルパーオキサイド類、パーオキシカーボネート類、パーオキシケタール類、ケトンパーオキサイド類等の有機過酸化物、これらの有機過酸化物と、金属塩やアミン類等の還元剤との組合せ、等が挙げられる。これらの重合開始剤(D)の中でも、低い温度でも効率よくラジカルを発生することができるハイドロパーオキサイド類と金属塩との組合せ、ケトンパーオキサイド類と金属塩との組合せが好ましい。ハイドロパーオキサイド類としては、例えば、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。ケトンパーオキサイド類としては、例えば、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等が挙げられる。金属塩としては、例えば、ナフテン酸コバルト、オクチル酸コバルト等のコバルト塩、五酸化バナジウム等のバナジウム化合物等が挙げられる。
 重合開始剤(D)の含有量は、使用するバイオマス由来のモノマー(C)の種類にもよるが、バイオマス由来のモノマー(C)100重量部に対して、0.001~20重量部であり、0.005~10重量部であることが好ましい。重合開始剤(D)の含有量を上記範囲内とすることで、後述する重合体のゲル化時間を適切な範囲に調整することができる。
 (硬化促進剤)
 本実施の形態のバイオマスエポキシ樹脂組成物は、エポキシ樹脂(A)の硬化速度を上げるために、硬化促進剤を含んでいてもよい。硬化促進剤としては、エポキシ樹脂(A)の硬化を促進させるものであれば特に制限はなく、例えば、ベンジルジメチルアミン等の第三級アミン系促進剤、2-エチル-4-メチルイミダゾール等のイミダゾール系促進剤、トリフェニルホスフィン等のリン系促進剤、オクチル酸亜鉛等の有機金属等が挙げられる。硬化促進剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。硬化促進剤の含有量は、使用するエポキシ樹脂(A)やバイオマス由来の硬化剤(B)の種類によって適宜調整すればよく、一般的に、エポキシ樹脂(A)100重量部に対して、0.1~100重量部である。
 (バイオマスエポキシ樹脂組成物の性状)
 [ゲル化時間]
 本実施の形態のバイオマスエポキシ樹脂組成物は、硬化物としたときに、重合体の100℃以下におけるゲル化時間が20分以内である。重合体の100℃以下におけるゲル化時間が20分を超える場合、バイオマス由来のモノマー(C)の揮発が進行すると共に、エポキシ樹脂(A)とバイオマス由来の硬化剤(B)との反応が進み、粘度が増加するためバイオマス由来のモノマー(C)の重合度が抑えられ、バイオマス由来のモノマー(C)の添加による効果が得られ難くなるからである。重合体の100℃以下におけるゲル化時間は、18分以内であることが好ましい。なお、ゲル化時間は早い方が好ましいが、バイオマスエポキシ樹脂組成物の成形性の観点から、30秒以上が好ましい。
 ゲル化時間は、例えば、次の手順で測定され得る。測定装置として、例えば、ゲル化試験機((株)安田精機製作所製 No.153ゲルタイムテスター)が準備される。重合体からなる試料1mlを入れた試験管の中でローターを回転させ、試料のゲル化が進み一定のトルクがローターに掛かると磁気カップリング機構によりローターが落ち、タイマーが止まる。このときの時間をゲル化時間とする。
 [ガラス転移温度]
 本実施の形態のバイオマスエポキシ樹脂組成物は、硬化物としたときに、重合体のTgが60℃以上である。重合体のTgが60℃未満の場合、耐熱性が低下する。重合体のTgは、100℃以上であることが好ましい。なお、Tgは高い方が好ましいが、例えば、300℃以下であってもよい。
 Tgは、例えば、次の手順で測定され得る。測定装置として、例えば、動的粘弾性測定(DMA)装置((株)日立ハイテクサイエンス社製 DMS6100)が準備される。重合体からなる試験片(縦40mm×横10mm×厚さ1~3mm)を用い、以下の試験条件で測定し、損失正接(tanδ)のピークトップ温度をTgとする。
 {試験条件}
 変形モード:引張りモード
 測定温度 :25~250℃
 昇温速度 :2℃/分
 周波数  :0.2~5Hz
 [相構造]
 本実施の形態において、バイオマスエポキシ樹脂組成物の硬化物の相構造(以下、単に「相構造」との称する。)は、耐熱性、機械的強度等の物性に影響を及ぼす。相構造は、エポキシ樹脂(A)とバイオマス由来の硬化剤(B)との硬化物であるエポキシ樹脂硬化物が重合体と相溶せずに分離した状態で存在、すなわち、相分離している状態や、エポキシ樹脂硬化物と重合体とが相溶している状態等が挙げられる。相構造は、硬化物の動的粘弾性のtanδのピーク形状およびピーク温度で特定することができる。
 エポキシ樹脂硬化物のTg(以下、Tg1とも称する。)と重合体のTg(以下、Tg2とも称する。)とが異なる場合、互いに完全に相分離していれば、それぞれが示すTgとして2つのtanδピークが現れる。
 また、エポキシ樹脂硬化物と重合体とが相溶すれば、1つのtanδピークが現れる。エポキシ樹脂硬化物と重合体とが相溶する場合、(1)エポキシ樹脂硬化物と重合体とが互いに化学結合できる官能基を有する、(2)エポキシ樹脂硬化物と重合体とがそれぞれ網目構造を形成するが、互いに化学結合する官能基を持たない、(3)エポキシ樹脂硬化物と重合体とのいずれか一方は網目構造を形成し、もう一方は網目構造を形成していない長鎖状ポリマーであり、互いに化学結合する官能基を持たない、といった状態が挙げられる。(1)では、互いの網目構造、または、網目構造と鎖状構造とが化学結合によって1つの網目構造を形成するために、tanδのピークは1つとなる。(2)では、互いの網目構造が均一に物理的に絡まった相互侵入網目(IPN)構造を形成する場合、tanδのピークが1つとなる。(3)では、長鎖状ポリマーが他方の網目構造に物理的に絡まったsemi-IPN構造を形成するために、tanδのピークは1つとなる。
 さらに、tanδのピークが、エポキシ樹脂硬化物および重合体のそれぞれ単体が示すTgとは異なる値に2つのピークまたはショルダーピークとして現れる場合がある。このような場合、(1)エポキシ樹脂硬化物と重合体とが互いに化学結合できる官能基を有する、(2)エポキシ樹脂硬化物と重合体との互いの網目構造が均一に物理的に絡まったIPN構造を形成する、(3)長鎖状ポリマーが他方の網目構造に物理的に絡まったsemi-IPN構造を形成する、といった状態が挙げられる。(1)では、化学結合によりエポキシ樹脂硬化物と重合体との相溶性は向上するが、官能基が少ない場合や重合体の分子量が高い場合、部分的あるいは全体的に相分離する。(2)では、部分的に絡まりが弱い部分があると、重合体は相分離する。(3)では、(2)同様に、分子鎖の絡まりが弱い部分があると、重合体は部分的または全体的に相分離する。
 本実施の形態においては、Tg2がTg1よりも低い場合、バイオマスエポキシ樹脂組成物中のエポキシ樹脂硬化物および重合体は、相分離していることが好ましい。この場合、Tg1はエポキシ樹脂(A)単体と同等のTgを発現するため、バイオマスエポキシ樹脂組成物全体のTgの低下を防ぐことができる。
 一方、Tg2がTg1よりも高い場合、バイオマスエポキシ樹脂組成物中のエポキシ樹脂硬化物および重合体は、完全相溶または部分相溶していることが好ましい。この場合、Tg1をエポキシ樹脂(A)単体のTgよりも向上させることができ、より高耐熱性を要する用途に好適に用いることができる。
 (放射性炭素)
 本実施の形態のバイオマスエポキシ樹脂組成物は、放射性炭素(炭素14、以下「C14」とする。)を含む。C14は、大気中に常に一定の割合で存在する。植物は成長過程において、大気中のCOを取り込むので、植物に含まれるC14も大気中と同じ割合になる。一方、石油のような化石資源にはC14は含まれておらず、バイオマス由来の炭素と石油由来の炭素とは区別することができる。現在の大気中のC14濃度は約100pMC(percent Modern Carbon)であり、仮にあるバイオマスプラスチックが100%バイオマス由来の物質で製造されたものであれば、この試料のpMCは100前後を示すことになる。一方、石油由来の物質の場合は、この試料のpMCは略0を示す。例えば、バイオマス由来の物質と石油由来の物質との配合率(炭素の量を基にした数値)がそれぞれ50%ずつの試料の場合、50pMC前後の値を示すことになる。したがって、バイオマスエポキシ樹脂組成物中のC14の割合を求めることにより、バイオマスエポキシ樹脂組成物の環境への負荷具合を検証することができる。
 本実施の形態のバイオマスエポキシ樹脂組成物中の全炭素に対するC14の含有率は、20%以上である。C14の含有率は、以下の式(1)ように算出する。
 バイオマスエポキシ樹脂組成物中のC14の含有率(%)=100×バイオマスエポキシ樹脂組成物中のC14含有量/バイオマスエポキシ樹脂組成物中の全炭素含有量・・・(1)
 バイオマスエポキシ樹脂組成物中のC14の含有率が20%未満の場合、カーボンオフセット材料としての効果が乏しくなる。
 (混合粘度)
 バイオマスエポキシ樹脂組成物の混合粘度は、作業性の観点から、60℃において5000mPa・s以下が好ましく、1000mPa・s以下がより好ましく、300mPa・s以下がさらに好ましい。本実施の形態においては、バイオマスエポキシ樹脂組成物の混合粘度は、E型粘度計を用いて測定される。なお、混合粘度は小さい方が好ましいが、例えば、10mPa・s以上であってもよい。
 (用途)
 本実施の形態のバイオマスエポキシ樹脂組成物の用途は、特に制限はなく、様々な用途に利用することができる。例えば、有機溶媒に溶解させてモータ用のワニスとして使用してもよく、後述する実施の形態2のように充填剤を添加してモータやパワーモジュール等のモールド樹脂として使用してもよい。
 <バイオマスエポキシ樹脂組成物の製造方法>
 本実施の形態のバイオマスエポキシ樹脂組成物の製造方法は、特に制限はない。例えば、エポキシ樹脂(A)およびバイオマス由来の硬化剤(B)を常温または加熱して混合し、第1混合物を得る。加熱温度は、例えば、40~180℃の範囲である。バイオマス由来のモノマー(C)および重合開始剤(D)を常温で混合し、第2混合物を得る。これらの第1混合物および第2混合物を加熱して混合することで、バイオマスエポキシ樹脂組成物を得る。加熱温度および加熱時間は、使用するエポキシ樹脂(A)、バイオマス由来の硬化剤(B)、バイオマス由来のモノマー(C)に応じて適宜設定すればよい。加熱温度は、例えば、40~180℃の範囲であるが、バイオマス由来のモノマー(C)の揮発を抑制する観点から、40~120℃の範囲であることが好ましい。加熱時間は、例えば、1~180分の範囲である。なお、バイオマス由来のモノマー(C)の重合度は、加熱温度と加熱時間との相互により変化するものであり、例えば、高温で短時間加熱した場合と、低温で長時間加熱した場合とで、同等の重合度となる場合がある。
 エポキシ樹脂(A)およびバイオマス由来の硬化剤(B)を混合する際に、溶剤を用いてもよい。溶剤としては、特に制限はないが、例えば、トルエン、メチルエチルケトン等が挙げられる。
 また、例えば、エポキシ樹脂(A)、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)を常温または加熱して混合後、重合開始剤(D)を添加して、常温または加熱して混合してもよい。エポキシ樹脂(A)、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)を混合した場合の加熱温度は、例えば、40~180℃の範囲である。重合開始剤(D)を添加した後の加熱温度は、例えば、40~180℃の範囲である。
 バイオマスエポキシ樹脂組成物の硬化条件は、特に制限はないが、例えば、加熱温度は30~300℃の範囲であり、加熱時間は1分~100時間の範囲である。
 実施の形態2.
 本実施の形態に係るバイオマスエポキシ樹脂組成物は、さらに無機充填剤(E)を含む。バイオマスエポキシ樹脂組成物が無機充填剤(E)を含むことで、所望の機械強度や線膨張係数を有するバイオマスエポキシ樹脂組成物を得ることができる。なお、実施の形態1と異なる点以外の説明は省略する。
 (無機充填剤(E))
 無機充填材(E)としては、特に限定されないが、例えば、酸化アルミニウム(アルミナ)、酸化亜鉛、酸化インジウム錫(ITO)、酸化マグネシウム、酸化ベリリウム、酸化チタン等の金属酸化物粒子、窒化ホウ素、窒化ケイ素、窒化アルミニウム等の金属窒化物粒子、炭化珪素、黒鉛、ダイヤモンド、非晶カーボン、カーボンブラック、炭素繊維等の炭素化合物粒子、石英、石英ガラス等のシリカ化合物粉類等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、絶縁性の観点から、酸化アルミニウム(アルミナ)、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、酸化チタン、窒化ホウ素、窒化ケイ素、窒化アルミニウム、ダイヤモンド、石英、石英ガラス等が好ましい。
 無機充填材(E)の平均粒径は、1nm~100μmであることが好ましく、1nm~80μmであることがより好ましい。無機充填材(E)の平均粒径が1nm未満の場合、バイオマスエポキシ樹脂組成物の粘度が高くなり、作業性や成形性が損なわれるおそれがある。無機充填材(E)の平均粒径が100μmを超える場合、バイオマスエポキシ樹脂組成物の硬化物の強度低下やバイオマスエポキシ樹脂組成物の保管時に無機充填材(E)の沈降が起きやすい。
 無機充填材(E)の含有量は、バイオマスエポキシ樹脂組成物全体に対して、40~90重量%であることが好ましく、70~85重量%であることがより好ましい。無機充填材(E)の含有量が40重量%未満の場合、所望の機械強度や熱膨張係数を有するバイオマスエポキシ樹脂組成物の硬化物が得られないおそれがある。無機充填材(E)の含有量が90重量%を超える場合、バイオマスエポキシ樹脂組成物の粘度が高くなり、作業性や成形性が損なわれるおそれがある。
 (カップリング剤)
 無機充填材(E)とバイオマスエポキシ樹脂組成物との濡れ性の改善や、無機充填材(E)とバイオマスエポキシ樹脂組成物との界面の補強、無機充填剤(E)の分散性の向上等を目的として、無機充填剤(E)にカップリング剤によるカップリング処理を施してもよい。このようなカップリング剤としては、例えば、γ―グリシドキシプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等が挙げられる。これらは単独で用いてもよいし、2種類以上を併用してもよい。
 カップリング剤の含有量は、エポキシ樹脂(A)や無機充填剤(E)の種類等に応じて適宜設定すればよいが、例えば、エポキシ樹脂(A)100重量部に対して、0.01~5重量部である。
 (製造方法)
 無機充填剤(E)の混合方法は、特に制限はないが、例えば、エポキシ樹脂(A)およびバイオマス由来の硬化剤(B)を常温または加熱して混合し、第1混合物を得る工程で無機充填剤(E)を混合してもよい。例えば、第1混合物および第2混合物を加熱して混合する工程で無機充填剤(E)を混合してもよい。
 また、例えば、エポキシ樹脂(A)、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)を常温または加熱して混合する工程で無機充填剤(E)を混合してもよい。
 なお、カップリング剤による無機充填剤(E)のカップリング処理は、従来公知の方法を用いて、無機充填剤(E)を混合する前に実施すればよい。
 実施の形態3.
 本実施の形態に係るバイオマスエポキシ樹脂組成物は、さらに相溶性モノマー(F)を含む。バイオマスエポキシ樹脂組成物が相溶性モノマー(F)を含むことで、エポキシ樹脂硬化物と重合体とが部分的に化学結合を形成し、エポキシ樹脂硬化物と重合体との相溶性が向上する。その結果、耐熱性が向上したバイオマスエポキシ樹脂組成物を得ることができる。なお、実施の形態1と異なる点以外の説明は省略する。
 (相溶性モノマー(F))
 相溶性モノマー(F)としては、エポキシ樹脂(A)およびバイオマス由来のモノマー(C)と反応する第1官能基、および、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)と反応する第2官能基からなる群から選択される少なくとも1種の官能基を有するモノマーであることが好ましい。
 第1官能基を有する相溶性モノマー(F)としては、例えば、メタクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、4-ビニルフェノール、β-カルボキシエチルアクリレート等のアクリレート類やメタクリレート類、p-アセトキシスチレン、o-アセトキシスチレン、m-アセトキシスチレン、3-メトキシ-4-アセトキシスチレン、p-ヒドロキシフェニルスチレン等のスチレン類等が挙げられる。
 第2官能基を有する相溶性モノマー(F)としては、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル、(メタ)アリルメチルグリシジルエーテル、3,4-エポキシシクロへキシルメチル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられる。
 これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、相溶性の観点から、グリシジルメタクリレートが好ましい。
 相溶性モノマー(F)の含有量は、使用するエポキシ樹脂(A)、バイオマス由来の硬化剤(B)、バイオマス由来のモノマー(C)の種類によって適宜調整すればよい。また、
相溶性モノマー(F)の含有量に応じて、エポキシ樹脂(A)またはバイオマス由来の硬化剤(B)の含有量を調整してもよい。
 相溶性モノマー(F)の含有量は、例えば、エポキシ樹脂(A)の分子中のエポキシ基と、相溶性モノマー(F)の分子中のアミノ基の活性水素、水酸基、カルボキシル基、アセトキシ基、酸無水物等のエポキシ基と反応し得る官能基とが、1:1の化学当量で反応する場合に、エポキシ樹脂(A)の分子中のエポキシ基に対する相溶性モノマー(F)の分子中の官能基の当量比が0.3~3.0となるようにすればよい。該当量比が上記の範囲外の場合、耐熱性等の特性が十分に発現しない可能性がある。
 相溶性モノマー(F)の含有量は、例えば、バイオマス由来の硬化剤(B)の分子中のエポキシ基と反応し得る官能基と、相溶性モノマー(F)の分子中のエポキシ基とが、1:1の化学当量で反応する場合に、相溶性モノマー(F)の分子中のエポキシ基に対するバイオマス由来の硬化剤(B)の分子中の官能基の当量比が0.3~3.0となるようにすればよい。該当量比が上記の範囲外の場合、耐熱性等の特性が十分に発現しない可能性がある。
 (製造方法)
 相溶性モノマー(F)の混合方法は、特に制限はないが、例えば、バイオマス由来のモノマー(C)および重合開始剤(D)を常温で混合し、第2混合物を得る工程で相溶性モノマー(F)を混合してもよい。例えば、第1混合物および第2混合物を加熱して混合する工程で相溶性モノマー(F)を混合してもよい。
 また、例えば、エポキシ樹脂(A)、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)を常温または加熱して混合する工程で相溶性モノマー(F)を混合してもよい。
 以下、実施例を挙げて本開示を詳細に説明するが、本開示はこれらに限定されるものではない。
 <実施例1>
 表1に示す配合量の(A)~(D)の各成分を準備した。(A-1)成分および(B-1)成分を130℃で加熱して混合し、第1混合物を得た。(C-1)成分および(D-1)を常温で均一に混合後、(D-2)成分を添加し、均一に混合することで第2混合物を得た。得られた第1混合物および第2混合物を混合し、100℃で15分間加熱することで実施例1のバイオマスエポキシ樹脂組成物を得た。また、得られたバイオマスエポキシ樹脂組成物を80℃で2時間、130℃で2時間、180℃で2時間、それぞれ加熱し、バイオマスエポキシ樹脂組成物の硬化物を得た。
 <実施例2~4>
 (C)成分および(D)成分の配合量を表1に示す量に変更した点を除いては、実施例1と同様の方法でバイオマスエポキシ樹脂組成物およびその硬化物を得た。
 <実施例5>
 (D)成分の配合量を表1に示す量に変更した点、第1混合物および第2混合物を混合した後の加熱時間を5分間に変更した点を除いては、実施例1と同様の方法でバイオマスエポキシ樹脂組成物およびその硬化物を得た。
 <実施例6>
 (B-1)成分を(B-2)成分に、(C-1)成分を(C-2)成分にそれぞれ変更し、(B)~(D)の各成分の配合量を表1に示す量に変更した点を除いては、実施例1と同様の方法でバイオマスエポキシ樹脂組成物およびその硬化物を得た。
 <実施例7>
 表1に示す配合量の(A)~(E)の各成分を準備した。(A-1)成分および(B-1)成分を130℃で加熱して混合し、第1混合物を得た。得られた第1混合物に(C-1)成分を100℃で加熱して混合し、常温に戻した後、(E-1)成分を添加し、混合した。これらの混合物に、(D-2)成分を添加し、均一に混合し、100℃で15分間加熱することで実施例7のバイオマスエポキシ樹脂組成物を得た。また、バイオマスエポキシ樹脂組成物の硬化物は、実施例1と同様の方法で製造した。
 <実施例8>
 表1に示す配合量の(A)~(F)の各成分を準備した。(A-1)成分および(B-1)成分を130℃で加熱して混合し、第1混合物を得た。(C-1)成分、(F-1)成分および(D-1)成分を常温で均一に混合後、(D-2)成分を添加し、均一に混合することで第2混合物を得た。得られた第1混合物および第2混合物を混合し、100℃で15分間加熱することで実施例8のバイオマスエポキシ樹脂組成物を得た。また、バイオマスエポキシ樹脂組成物の硬化物は、実施例1と同様の方法で製造した。
 <比較例1>
 表1に示す配合量の(A)成分および(B’)成分を準備した。(A-1)成分および(B’-1)成分を100℃で15分間加熱することで比較例1のバイオマスエポキシ樹脂組成物を得た。それ以降、実施例1と同様の方法でその硬化物を得た。
 <比較例2>
 表1に示す配合量の(A)成分および(B)成分を準備した。(A-1)成分および(B-1)成分を100℃で15分間加熱することで比較例2のバイオマスエポキシ樹脂組成物を得た。それ以降、実施例1と同様の方法でその硬化物を得た。
 <比較例3>
 表1に示す配合量の(A)成分および(B)成分を準備した。(A-1)成分および(B-2)成分を100℃で15分間加熱することで比較例3のバイオマスエポキシ樹脂組成物を得た。それ以降、実施例1と同様の方法でその硬化物を得た。
 <比較例4>
 (C-1)成分を(C’-1)成分に変更し、(C’)成分の配合量を表1に示す量に変更した点を除いては、実施例1と同様の方法でバイオマスエポキシ樹脂組成物およびその硬化物を得た。
 <比較例5>
 (D)成分の配合量を表1に示す量に変更した点、第1混合物および第2混合物を混合後の加熱時間を60分間に変更した点を除いては、実施例1と同様の方法でバイオマスエポキシ樹脂組成物およびその硬化物を得た。
 <比較例6>
 表1に示す配合量の(A)成分、(B)成分および(E)成分を準備した。(A-1)成分および(B-1)成分を130℃で加熱して混合し、第1混合物を得た。得られた第1混合物を80℃に冷却後、(E-1)成分を添加し、均一に混合後、100℃で15分間加熱することで比較例6のバイオマスエポキシ樹脂組成物を得た。また、バイオマスエポキシ樹脂組成物の硬化物は、実施例1と同様の方法で製造した。
 表1に示される各成分(記号表記の各成分)は、以下の通りである。
 〔エポキシ樹脂:A成分〕
 (A-1)
 ビスフェノールA型エポキシ樹脂〔三菱化学(株)社製 jER828〕(常温で液体)
 〔バイオマス由来の硬化剤:B成分〕
 (B-1)
 4-アミノ安息香酸(常温で固体)
 (B-2)
 4-ヒドロキシ安息香酸(常温で固体)
 〔石油由来の硬化剤:B’成分〕
 (B’-1)
 酸無水物硬化剤〔昭和電工マテリアルズ(株)製 HN2000〕(常温で液体)
 〔バイオマス由来のモノマー:C成分〕
 (C-1)
 イソボルニル(メタ)クリレート(IBOMA)(常温で液体)(Tg:180℃)
 (C-2)
 テトラヒドロフルフリル(メタ)クリレート(常温で液体)(Tg:60℃)
 (C-3)
 テトラヒドロフルフリルアクリレート(常温で液体)(Tg:-12℃)
 〔重合開始剤:D成分〕
 (D-1)
 硬化剤328E〔化薬アクゾ(株)製〕
 (D-2)
 オクチル酸コバルト
 〔無機充填剤:E成分〕
 (E-1)
 溶融シリカ〔デンカ(株)製 FB74〕(平均粒径:30μm)
 〔相溶性モノマー:F成分〕
 (F-1)
 グリシジルメタクリレート(GM)(常温で液体)(Tg:46℃)
 <評価方法>
 評価は下記の方法により行った。なお、(1)ゲル化時間および(2)Tgの評価に用いる試料は(C)成分のみを重合させたときの重合体であり、(3)C14の評価に用いる試料はバイオマスエポキシ樹脂組成物であり、(5)tanδピーク温度の評価に用いる試料はバイオマスエポキシ樹脂組成物の硬化物である。
 (1)ゲル化時間
 ゲル化試験機((株)安田精機製作所製 No.153ゲルタイムテスター)が準備された。試料1mlを入れた試験管の中でローターを回転させ、試料のゲル化が進み一定のトルクがローターに掛かると磁気カップリング機構によりローターが落ち、タイマーが止まった時間を各試料のゲル化時間とした。測定は、試験管をオイルバスにて100℃に加温することで実施した。
 (2)Tg
 DMA装置((株)日立ハイテクサイエンス社製 DMS6100)が準備された。重合体からなる試験片(縦40mm×横10mm×厚さ1~3mm)を用い、以下の試験条件で測定した。この測定におけるtanδのピークトップ温度をTgとした。
 {試験条件}
 変形モード:引張りモード
 測定温度 :25~250℃
 昇温速度 :2℃/分
 周波数  :0.2~5Hz
 (3)C14
 各試料のC14の含有率を、以下の式(1)を用いて算出した。
 バイオマスエポキシ樹脂組成物中のC14の含有率(%)=100×バイオマスエポキシ樹脂組成物中のC14含有量/バイオマスエポキシ樹脂組成物中の全炭素含有量・・・式(1)
 (4)混合粘度
 E型粘度計(東機産業(株)社製、RE105U)が準備された。試料として、(A)~(C)の各成分を含む混合物が準備された。該混合物は、(A)成分および(B)成分を130℃で加熱して混合し、(C)成分を100℃で加熱して混合された。なお、(C)成分を含まない試料は、(A)成分および(B)成分を130℃で加熱して混合した混合物とした。各混合物の60℃における混合粘度を測定した。混合粘度が300mPa・s未満を「W」、300mPa・s以上1000mPa・s未満を「X」、1000mPa・s以上5000mPa・s未満を「Y」、5000mPa・s以上を「Z」とし、「Z」以外を良好とした。このような試料を用いる理由としては、(D)成分を添加して加熱すると、重合反応が開始され、混合粘度が刻々と変化(上昇)するためである。なお、バイオマスエポキシ樹脂組成物中の(D)成分の含有量は少量であることから、(D)成分を添加することによっては、バイオマスエポキシ樹脂組成物の混合粘度に影響はない。
 (5)tanδピーク温度
 上述のDMA装置が準備された。各試料のtanδピーク温度を測定した。2つのピークが得られた場合は、tanδピーク値(強度)の高い値をtanδピーク温度とした。
 得られた評価用の試料についての上記(1)~(5)の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <結果>
 実施例のバイオマスエポキシ樹脂組成物は、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)を用いており、C14の含有率が20%以上であることから、環境性に優れる。また、実施例のバイオマスエポキシ樹脂組成物は、重合体のゲル化時間が20分以内であることから、作業性に優れる。さらに、実施例のバイオマスエポキシ樹脂組成物は、重合体のTgが60℃以上であることから、耐熱性に優れる。
 実施例1~5および8の混合粘度は、バイオマス由来のモノマー(C)を添加していない比較例2および3と比較して、大幅に低下することが確認された。特に、実施例3、4では、バイオマス由来のモノマー(C)を50重量%以上添加することにより、実施例1に示すような、ポッティング材として用いられる酸無水物硬化系エポキシ樹脂組成物と同等以下の混合粘度となる。
 また、実施例7の混合粘度は、バイオマス由来のモノマー(C)成分を添加していない比較例6と比較して、大幅に低下することが確認された。
 これらの結果から、バイオマス由来のモノマー(C)を含むことで、作業性を大幅に向上できることが確認された。また、バイオマス由来のモノマー(C)の含有率を増加させることで、さらに作業性を向上できることが確認された。
 実施例1~4では、tanδピークがブロードになっていたことから、エポキシ樹脂硬化物と重合体とが部分的に相溶していることが確認された。一方、実施例5では、2つのtanδピークが得られたことから、エポキシ樹脂硬化物と重合体とが相分離していることが確認された。実施例5に示すように、重合体のゲル化時間が短い場合には、エポキシ樹脂硬化物と重合体とが十分に相溶しきらず、部分的に相分離した状態でバイオマスエポキシ樹脂組成物の硬化物が形成されるものと考えられる。
 実施例1~4に示すtanδピーク温度より、重合体単体でのTgが180℃であるIBOMAの添加量を増加するにつれて、バイオマスエポキシ樹脂組成物の硬化物のTgが高くなることが確認された。実施例1および2において、tanδピーク温度はエポキシ樹脂硬化物のTgと重合体のTgとの間の値を示した。これは、エポキシ樹脂硬化物と重合体とが部分的に相溶することにより、バイオマスエポキシ樹脂組成物全体のTgが、エポキシ樹脂硬化物とのTgと重合体のTgとの間の値となったものと推測される。
 また、実施例3および4において、tanδピーク温度は重合体単体のTgよりも高い値を示した。これは、エポキシ樹脂硬化物と重合体との分子鎖が物理的に絡み合って拘束されることで、重合体単体よりも高いTgの値となり、耐熱性が向上したものと推測される。
 実施例5のように、エポキシ樹脂硬化物と重合体とが部分的に相分離する場合、2つのtanδピークのうち低い方のtanδピーク温度は、バイオマス由来のモノマー(C)を含まないバイオマスエポキシ樹脂組成物である比較例2のtanδピーク温度と同等の値を示した。しかし、エポキシ樹脂硬化物と重合体とが部分的に相分離する場合であっても、バイオマス由来のモノマー(C)を含むことで、作業性および耐熱性を向上できることが確認された。
 これらの結果から、バイオマス由来のモノマー(C)を含むことで、耐熱性を向上できることが確認された。
 実施例6のように、重合体のTgが比較的低い場合であっても、バイオマス由来のモノマー(C)を含まない比較例3と比較して、混合粘度を低下させることができるため、作業性を向上できることが確認された。
 実施例1および8は、モノマー成分の含有率が同じである。実施例1では、重合体単体でのTgが180℃であるIBOMAのみを使用しているが、実施例8では、IBOMAと重合体単体でのTgが46℃であるGMとを同量使用している。IBOMAとGMとでは、重合体単体でのTgが大きく異なるが、実施例7のtanδピーク温度は、実施例1のtanδピーク温度よりも向上している。これは、バイオマスエポキシ樹脂組成物が相溶性モノマー(F)を含むことで、エポキシ樹脂硬化物と重合体とが物理的な分子鎖の絡み合いに加えて部分的な化学結合を形成するために、エポキシ樹脂硬化物と重合体との相溶性が向上し、耐熱性が向上したものと推測される。
 これらの結果から、相溶性モノマー(F)を含むことで、耐熱性を向上できることが確認された。
 比較例1は、バイオマス由来の硬化剤(B)およびバイオマス由来のモノマー(C)を含まないため、環境性に劣る。
 比較例2および3は、バイオマス由来のモノマー(C)を含まないため、実施例1~6と比較して、作業性に劣る。
 比較例4は、重合体のTgが60℃未満であるため、耐熱性に劣る。
 比較例5は、重合体の100℃におけるゲル化時間が20分を超えていたため、バイオマス由来のモノマー(C)の揮発が進行し、バイオマス由来のモノマー(C)の重合度が抑えられた。そのため、低分子量の重合体が形成され、重合体のTgも60℃未満となり、耐熱性が低下したものと考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (8)

  1.  エポキシ樹脂と、バイオマス由来の硬化剤と、バイオマス由来のモノマーと、重合開始剤と、を含むバイオマスエポキシ樹脂組成物であって、
     前記モノマーの重合体の100℃以下におけるゲル化時間が20分以内であり、
     前記モノマーの重合体のガラス転移温度が60℃以上である、バイオマスエポキシ樹脂組成物。
  2.  前記バイオマスエポキシ樹脂組成物中の全炭素に対する放射性炭素の含有率が20%以上である、請求項1に記載のバイオマスエポキシ樹脂組成物。
  3.  前記硬化剤が、4-アミノ安息香酸、4-ヒドロキシ安息香酸およびプロトカテク酸からなる群から選択される少なくとも1種を含む、請求項1または2に記載のバイオマスエポキシ樹脂組成物。
  4.  前記モノマーが、エチルメタクリレート、テトラブチルメタクリレート、シクロへキシルメタクリレート、テトラヒドロフルフリルメタクリレートおよびイソボルニル(メタ)アクリレートからなる群から選択される少なくとも1種を含む、請求項1から3のいずれか1項に記載のバイオマスエポキシ樹脂組成物。
  5.  前記重合開始剤が、ハイドロパーオキサイド類およびケトンパーオキサイド類からなる群から選択される少なくとも1種と、金属塩と、を含む、請求項1から4のいずれか1項に記載のバイオマスエポキシ樹脂組成物。
  6.  無機充填剤をさらに含有する、請求項1から5のいずれか1項に記載のバイオマスエポキシ樹脂組成物。
  7.  相溶性モノマーをさらに含有する、請求項1から6のいずれか1項に記載のバイオマスエポキシ樹脂組成物。
  8.  前記相溶性モノマーは、グリシジルメタクリレートである、請求項7に記載のバイオマスエポキシ樹脂組成物。
PCT/JP2022/043801 2022-06-02 2022-11-28 バイオマスエポキシ樹脂組成物 WO2023233686A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022022471 2022-06-02
JPPCT/JP2022/022471 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023233686A1 true WO2023233686A1 (ja) 2023-12-07

Family

ID=89025960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043801 WO2023233686A1 (ja) 2022-06-02 2022-11-28 バイオマスエポキシ樹脂組成物

Country Status (1)

Country Link
WO (1) WO2023233686A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520677A (ja) * 2013-04-05 2016-07-14 フィッシャーヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトfischerwerke GmbH & Co. KG 生物由来の反応性希釈剤及び樹脂を有する合成樹脂接着剤
JP2017088708A (ja) * 2015-11-06 2017-05-25 住友ベークライト株式会社 ポリアミド樹脂およびポリアミド樹脂の製造方法
JP2019218458A (ja) * 2018-06-19 2019-12-26 積水化学工業株式会社 粘着テープ
WO2020196424A1 (ja) * 2019-03-28 2020-10-01 住友ベークライト株式会社 水溶性添加剤組成物
JP6967168B1 (ja) * 2021-03-02 2021-11-17 大日精化工業株式会社 水性顔料分散液、水性インクジェットインク、及び乾燥皮膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520677A (ja) * 2013-04-05 2016-07-14 フィッシャーヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトfischerwerke GmbH & Co. KG 生物由来の反応性希釈剤及び樹脂を有する合成樹脂接着剤
JP2017088708A (ja) * 2015-11-06 2017-05-25 住友ベークライト株式会社 ポリアミド樹脂およびポリアミド樹脂の製造方法
JP2019218458A (ja) * 2018-06-19 2019-12-26 積水化学工業株式会社 粘着テープ
WO2020196424A1 (ja) * 2019-03-28 2020-10-01 住友ベークライト株式会社 水溶性添加剤組成物
JP6967168B1 (ja) * 2021-03-02 2021-11-17 大日精化工業株式会社 水性顔料分散液、水性インクジェットインク、及び乾燥皮膜

Similar Documents

Publication Publication Date Title
Ratna Modification of epoxy resins for improvement of adhesion: a critical review
EP2736999B1 (en) Flexible bismaleimide, benzoxazine, epoxy-anhydride adduct hybrid adhesive
CN102884100B (zh) 包括作为增韧剂的聚(环氧丙烷)多元醇的环氧树脂组合物
US20070191556A1 (en) Polymeric epoxy resin composition
KR101755296B1 (ko) 에폭시 접착제 조성물
KR20140009296A (ko) 에폭시 수지 조성물 및 그것을 사용한 반도체 봉지재
EP3289038A1 (en) A one-part curable adhesive compositionand the use thereof
JP4821163B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
Raghavachar et al. Rubber-toughening epoxy thermosets with epoxidized crambe oil
JP2017501265A (ja) 硬化性組成物
CN114031896B (zh) 一种碳纤维缠绕用环氧树脂组合物及其制备方法
CN104892858A (zh) 一种高生物基含量环氧树脂组合物及其固化方法和应用
JP2013519746A (ja) 二成分樹脂系
WO2014062530A2 (en) Toughened epoxy thermosets containing core shell rubbers and polyols
JP5547456B2 (ja) 一液型エポキシ樹脂組成物及びそれを用いた接着方法
Karak Modification of epoxies
Kim et al. Synthesis of acid anhydride‐modified flexible epoxy resins and enhancement of impact resistance in the epoxy composites
WO2023233686A1 (ja) バイオマスエポキシ樹脂組成物
WO2023174891A1 (en) Epoxy resin adhesive
JP2002003699A (ja) エポキシ樹脂組成物、その製造方法及びエポキシ樹脂硬化物
WO2002100951A1 (fr) Composition de resine thermodurcissable
JP2006291093A (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP3936287B2 (ja) 液状熱硬化性樹脂組成物
Wu et al. Preparation and Properties Characterization of Interpenetrating Polymer Networks/Organically Modified Montmorillonite/Scrap Leather Fibers Composites
JPH1121430A (ja) 液状エポキシ樹脂組成物およびコンクリート構造物の補修・補強方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944961

Country of ref document: EP

Kind code of ref document: A1