WO2023233597A1 - 基板搬送装置 - Google Patents

基板搬送装置 Download PDF

Info

Publication number
WO2023233597A1
WO2023233597A1 PCT/JP2022/022370 JP2022022370W WO2023233597A1 WO 2023233597 A1 WO2023233597 A1 WO 2023233597A1 JP 2022022370 W JP2022022370 W JP 2022022370W WO 2023233597 A1 WO2023233597 A1 WO 2023233597A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage container
substrate
shutter mechanism
worker
transport device
Prior art date
Application number
PCT/JP2022/022370
Other languages
English (en)
French (fr)
Inventor
慧太 川上
智貴 羽石
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/022370 priority Critical patent/WO2023233597A1/ja
Publication of WO2023233597A1 publication Critical patent/WO2023233597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a substrate transport device, and, for example, to a technique that is effective when applied to a substrate transport device that transports semiconductor substrates.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2016-58481 (Patent Document 2), and Japanese Patent No. 5825948 (Patent Document 3) disclose that while a worker is accessing the storage container installation part, describes a technique that includes a mechanism that blocks a transfer robot from accessing a storage container installation section.
  • Patent No. 6822953 Japanese Patent Application Publication No. 2016-58481 Patent No. 5825948
  • the operation of installing a storage container that stores the substrate in a storage container installation section is performed by an operator.
  • the operation of taking out the substrate from the storage container installed in the storage container installation section and carrying it into the processing equipment that processes the substrate, or the operation of taking the substrate out of the processing equipment and storing the substrate in the storage container is , carried out by a transfer robot.
  • the storage container installation part is a place that is accessed by both the worker and the transfer robot, but the transfer robot is, for example, an industrial robot with a rated output of 80W or more, and the safety of the worker is ensured. Therefore, it is necessary to prevent contact between the worker and the transport robot at the storage container installation section. That is, in the substrate transfer device, it is necessary to take measures to prevent contact between the worker and the transfer robot.
  • the transportation robot can be prevented from coming into contact with the worker by cutting off the drive power of the transportation robot. is possible.
  • a substrate transport device in one embodiment includes a transport robot that transports a substrate, a first installation section in which a storage container that accommodates the substrate can be installed, and a first installation section that can be used to access the storage container or the first installation section from outside the device.
  • a first shutter mechanism provided to be able to block one access path;
  • a second shutter mechanism provided to be able to block a second access path when the transfer robot accesses the storage container; It includes a control section that controls opening and closing operations of the shutter mechanism.
  • FIG. 1 is a perspective view schematically showing a semiconductor inspection device.
  • FIG. 2 is a top view schematically showing the configuration of a substrate transfer device.
  • FIG. 2 is a side view schematically showing the configuration of a substrate transfer device.
  • FIG. 6 is a diagram showing a state in which the shutter is closed.
  • FIG. 3 is a diagram showing a state in which the shutter is open. It is a figure explaining the basic idea in embodiment. It is a flowchart explaining the flow of operation of the substrate transport device when an operator accesses the storage container installation part.
  • FIG. 2 is a flowchart illustrating the flow of operations of the substrate transfer device when the transfer robot accesses the storage container installation section.
  • FIG. 9 is a flowchart illustrating the operation of the substrate transfer device following FIG.
  • FIG. 8 is a flowchart illustrating the operation of transitioning to a state in which the operator can access the storage container installation section after the transfer robot accesses the storage container installation section.
  • FIG. 2 is a diagram schematically showing the configuration of a substrate transport device in an embodiment. It is a figure explaining the characteristic in an embodiment mode. It is a diagram showing a storage container called an "open cassette.” It is a figure showing an example of composition of a shutter mechanism. 7 is a diagram illustrating a locking mechanism in Modification 1.
  • FIG. This is a diagram illustrating an example in which a light curtain is provided to detect that a worker is accessing the storage container installation section, and an example in which a light curtain is provided to detect that a transport robot is accessing the storage container installation section.
  • FIG. FIG. 7 is a diagram showing a substrate transport device in Modification 4 and Modification 5.
  • a semiconductor inspection apparatus including a substrate transport device will be described as an example of a substrate transport device.
  • the substrate transport apparatus in this embodiment is not limited to this example, and can be widely applied to substrate transport apparatuses attached to substrate processing apparatuses that process substrates.
  • examples of the substrate transported by the substrate transport device include a semiconductor wafer (semiconductor substrate) and a reticle, but in this embodiment, a semiconductor substrate will be described as an example of the substrate.
  • FIG. 1 is a perspective view schematically showing a semiconductor inspection apparatus 100.
  • a semiconductor inspection apparatus 100 has a semiconductor substrate processing unit 101 provided at the rear of the apparatus, and a substrate transport device 102 provided at the front of the apparatus.
  • the semiconductor substrate processing unit 101 has a main function as a semiconductor inspection apparatus 100 that inspects or measures a semiconductor substrate, and a control section including a computer system and a power supply for controlling the function.
  • the semiconductor inspection apparatus 100 is a length measurement SEM (Scanning Electron Microscope)
  • the semiconductor substrate processing unit 101 includes an electron gun section, a stage section, a vacuum evacuation section, and a power supply section.
  • the control unit is configured to control the operations of these components, and is configured to measure the dimensions of the fine pattern formed on the semiconductor substrate by controlling these components. There is.
  • FIG. 2 is a top view schematically showing the configuration of the substrate transport device 102.
  • the substrate transfer device 102 includes a control section 210, a pre-aligner 211, a storage container installation section 220, and a transfer robot 230.
  • the control unit 210 is configured to control the transport operation of the semiconductor substrate 201 by the transport robot 230.
  • the pre-aligner 211 is a unit configured to measure the amount of eccentricity of the semiconductor substrate 201 and correct the amount of eccentricity, and detects the orientation flat or notch of the semiconductor substrate 201 and determines the direction of the orientation flat or notch. It is a unit that prepares the following.
  • the storage container installation section 220 is configured to place the storage container 200 therein, and has a container placement stand 221 on which the storage container 200 is placed.
  • the substrate transport device 102 is provided with at least one storage container stand 221, and for example, as shown in FIG. 2, a storage container stand 221a and a storage container stand 221b are provided.
  • the storage container 200 can be placed on the storage container stand 221a and the storage container stand 221b at the same time.
  • the storage container installation unit 220 has functions such as checking whether the storage containers 200 are normally placed on the storage container placement stand 221 and storing the placement history of the storage containers 200. , a sensor, a switch, and a reader are provided to check whether the semiconductor substrate 201 has protruded from the storage container 200 placed on the storage container stand 221.
  • the transport robot 230 is configured to be able to transport the semiconductor substrate 201, and is configured to operate under control by the control unit 210.
  • FIG. 3 is a side view schematically showing the configuration of the substrate transport device 102.
  • a storage container 200 is placed on a storage container stand 221, and it can be seen that a plurality of semiconductor substrates 201 are stored inside this storage container 200.
  • a transfer robot 230 is arranged in a space between the upper port 240 provided in the semiconductor substrate processing unit 101 and the storage container 200 arranged on the storage container stand 221 of the substrate transfer device 102.
  • the operation of the substrate transport device 102 will be explained with reference to FIG. 2.
  • an operator manually places the storage container 200 containing a plurality of semiconductor substrates 201 on the storage container stand 221 of the storage container installation section 220.
  • the transport robot 230 takes out the semiconductor substrate 201 from the storage container 200 placed on the storage container stand 221, and then places the taken out semiconductor substrate 201 on the pre-aligner 211.
  • the eccentricity of the semiconductor substrate 201 is corrected, and the orientation flats and notches are aligned.
  • the transfer robot 230 takes out the semiconductor substrate 201 from the pre-aligner 211 and transfers the semiconductor substrate 201 to the upper port 240 for delivery to the semiconductor substrate processing unit 101.
  • the semiconductor substrate 201 placed in the upper port 240 is then processed in the semiconductor substrate processing unit 101. Subsequently, the semiconductor substrate 201 processed by the semiconductor substrate processing unit 101 is placed in the upper port 240 again. Thereafter, under the control of the control unit 210, the transfer robot 230 picks up the semiconductor substrate 201 placed at the upper port 240, and then transfers it into the storage container 200 placed on the storage container stand 221 of the storage container installation unit 220. A semiconductor substrate 201 is housed therein. Then, the operator manually carries the storage container 200 containing the processed semiconductor substrates 201 to the outside of the substrate transport device 102. The substrate transport device 102 operates as described above.
  • the transfer robot 230 is an industrial robot with a rated output of 80W or more, and according to the SEMI standard, workers are protected by physical shields to prevent them from coming into contact with the transfer robot 230. Needed.
  • the transport robot 230 accesses the storage container installation section 220.
  • the storage container installation section 220 is also a place where the operator accesses to place the storage container 200 on the storage container placement stand 221 of the storage container installation section 220. Therefore, if no measures are taken, there will be no physical shield between the worker and the transport robot 230 in the storage container installation section 220. Therefore, since there is no physical shield between the worker and the transport robot 230, for example, if the transport robot 230 accesses the storage container installation part 220 while the worker is accessing the storage container installation part 220, , there is a risk that the worker and the transport robot 230 will come into contact with each other. For this reason, for example, a technique may be considered in which a shutter mechanism (sometimes referred to as a shutter) is provided at the boundary between the operator and the storage container installation section 220.
  • a shutter mechanism sometimes referred to as a shutter
  • FIG. 4 is a diagram showing a state in which the shutter 103 is closed. As shown in FIG. 4, a shutter 103 blocks off the operator (outside the device) and the storage container installation section 220. For this reason, the worker cannot access the storage container installation section 220, but the transport robot 230 is protected by a physical shield (shutter 103), so it cannot access the storage container installation section 220. It becomes possible to do so.
  • FIG. 5 is a diagram showing a state in which the shutter 103 is open. As shown in FIG. 5, there is a space between the storage container installation section 220 and the transport robot 230 that allows the transport robot 230 to take out the semiconductor substrate 201 from the storage container 200 or store the semiconductor substrate 201 in the storage container 200. It can be seen that a port 222a and a transport port 222b are provided. From this, it can be seen that even when the shutter 103 is closed as shown in FIG. 4, the transport robot 230 can access the storage container installation section 220 via the transport port 222a or the transport port 222b.
  • the technique of providing the shutter 103 as a physical shield while cutting off the drive power of the transfer robot 230 is an improvement from the perspective of ensuring worker safety while suppressing the decline in work efficiency in the substrate transfer device 102.
  • FIG. 6 is a diagram illustrating the basic idea of this embodiment.
  • the basic idea is to provide a worker-side shutter 104 (first shutter mechanism) between the outside of the device and the storage container installation section 220, and to provide a transport robot between the transport robot 230 and the storage container installation section 220.
  • the idea is to provide a side shutter 105 (second shutter mechanism).
  • the basic idea is that the worker side shutter 104 is arranged to be able to block the first access path when accessing the storage container installation section 220 from outside the device, and the transport robot 230 is connected to the storage container installation section 220.
  • the idea is to provide the substrate transfer device 102 with a transfer robot-side shutter 105 that is arranged to be able to block a second access path when accessing.
  • the basic idea is to provide the substrate transfer apparatus 102 with a dual shutter mechanism of the operator side shutter 104 and the transfer robot side shutter 105.
  • the worker-side shutter 104 is opened and the transport robot-side shutter 105 is closed.
  • the transport robot 230 cannot access the storage container installation section 220 because the transport robot-side shutter 105 is in the closed state.
  • the worker-side shutter 104 is in an open state, the worker can access the storage container installation section 220.
  • the transportation robot 230 is blocked from accessing the storage container installation section 220 by the transportation robot side shutter 105. Therefore, according to the basic idea, when the worker accesses the storage container installation section 220, there is no need to cut off the driving power of the transfer robot 230 in order to prevent contact between the transfer robot 230 and the worker. . Therefore, according to the basic concept, there is no need to turn on the drive power of the cut-off transfer robot 230 again, and as a result, it is possible to save time for bringing the transfer robot 230 into an operable state. Therefore, according to the basic idea, a remarkable effect can be obtained in that the safety of workers can be ensured while suppressing a decrease in work efficiency in the substrate transport device 102.
  • the transport robot 230 accesses the storage container installation section 220
  • the worker-side shutter 104 is closed and the transport robot-side shutter 105 is opened.
  • the worker cannot access the storage container installation section 220 because the worker-side shutter 104 is in the closed state.
  • the transport robot side shutter 1045 of the transport robot 230 is in an open state, the transport robot 230 can access the storage container installation section 220 while reliably preventing contact with the worker. .
  • FIG. 7 is a flowchart illustrating the flow of operations of the substrate transport device 102 when an operator accesses the storage container installation section 220.
  • FIG. 7 it is assumed that the worker-side shutter 104 is in a closed state. It is also assumed that the substrate transport device 102 is provided with an open switch that serves as a trigger for opening the operator-side shutter 104.
  • the control unit 210 of the substrate transfer device 102 determines whether the transfer robot 230 is accessing the storage container installation unit 220 (S102). When the control unit 210 determines that the transport robot 230 is accessing the storage container installation unit 220, it waits until the transport robot 230 finishes accessing the storage container installation unit 220. On the other hand, if the control unit 210 determines that the transport robot 230 is not accessing the container installation unit 220, it closes the transport robot-side shutter 105 (S103).
  • control unit 210 opens the worker-side shutter 104 (S104).
  • S104 worker-side shutter 104
  • the transfer robot side shutter 105 is in the closed state, access to the storage container installation section 220 by the transfer robot 230 is blocked, and the operator can safely access the storage container installation section 220. (S105).
  • control unit 210 changes from the phase in which the worker-side shutter 104 is in the closed state to the first phase in which the worker-side shutter 104 is in the open state and the transfer robot-side shutter 105 is in the closed state.
  • the container installation section 220 is made accessible to the operator.
  • FIG. 8 is a flowchart illustrating the flow of operations of the substrate transport device 102 when the transport robot 230 accesses the storage container installation section 220.
  • FIG. 8 it is assumed that the worker-side shutter 104 is in an open state. It is also assumed that the substrate transport device 102 is provided with a close switch that serves as a trigger for closing the operator-side shutter 104.
  • the control unit 210 of the substrate transport device 102 determines whether the operator is accessing the storage container installation unit 220 (S202). When the control unit 210 determines that the worker is accessing the storage container installation unit 220, it waits until the worker finishes accessing the storage container installation unit 220. On the other hand, if the control unit 210 determines that the worker is not accessing the storage container installation unit 220, it closes the worker-side shutter 104 (S203).
  • control unit 210 opens the transport robot-side shutter 105 (S204).
  • the transport robot 230 can access the storage container installation section 220 while the worker's access to the storage container installation section 220 is blocked. (S205).
  • control unit 210 changes the transport robot from the first phase in which the worker shutter 104 is open and the transport robot shutter 105 is closed.
  • the side shutter 105 By controlling the side shutter 105 to enter a second phase in which it is opened, the substrate can be transferred from the storage container by the transfer robot 230.
  • FIG. 9 is a flowchart illustrating the operation of the substrate transfer apparatus 102 following FIG. It is a flowchart explaining the operation
  • the transport robot 230 accesses the storage container installation section 220 and takes out the semiconductor substrate 201 from the storage container 200. (S301). Then, under the control of the control unit 210, the transport robot 230 transports the semiconductor substrate 201 taken out from the storage container 200 into the semiconductor substrate processing unit 101 (S302). Next, after the semiconductor substrate 201 is processed in the semiconductor substrate processing unit 101 (S303), under the control of the control unit 210, the transfer robot 230 transfers the semiconductor substrate 201 processed in the semiconductor substrate processing unit 101 to the semiconductor substrate 201. It is carried out from the substrate processing unit 101. Then, under the control of the control unit 210, the transport robot 230 accesses the storage container installation unit 220 and stores the semiconductor substrate 201 in the storage container 200 (S304).
  • control unit 210 determines whether the transport robot 230 is accessing the storage container installation unit 220 (S305). When the control unit 210 determines that the transport robot 230 is accessing the storage container installation unit 220, it waits until the transport robot 230 finishes accessing the storage container installation unit 220. On the other hand, if the control unit 210 determines that the transport robot 230 is not accessing the container installation unit 220, it closes the transport robot-side shutter 105 (S306).
  • control unit 210 opens the worker-side shutter 104 (S307).
  • the transfer robot side shutter 105 is in the closed state, access to the storage container installation section 220 by the transfer robot 230 is blocked, and the operator can safely access the storage container installation section 220. (S308).
  • control unit 210 closes the transfer robot-side shutter 105 from the second phase, and then It is configured to shift to a third phase in which the worker-side shutter 104 is placed in an open state.
  • the operation of opening the operator-side shutter 104 is performed when the semiconductor substrate processing unit 101 processes the semiconductor substrate 201 stored in the storage container 200 designated by the operator. After all of this is completed and the semiconductor substrate 201 is stored in the storage container 200 as before by the transport robot 230, the opening can be performed automatically under the control of the control unit 210 without the operator pressing an open switch.
  • the operator does not need to press the open switch after processing (inspection, measurement, etc.) the semiconductor substrate 201 is finished, and as a result, the usability of the substrate transport device 102 can be improved for the operator.
  • the basic idea is a useful technical idea in that it can reliably ensure the safety of workers without cutting off the drive power of the transfer robot 230.
  • the inventor of the present invention found that there is room for improvement from the viewpoint of improving the work efficiency of the substrate transport device 102. Therefore, this room for improvement will be explained below. do.
  • the substrate transfer device 102 is provided with a worker-side shutter 104 and a transfer robot-side shutter 105.
  • the control section 210 controls the worker-side shutter 104 to open and the transport robot-side shutter 105 to close.
  • This allows the operator to access the storage container installation section 220, and also blocks access to the storage container installation section 220 by the transport robot 230.
  • this means that contact between the worker and the transport robot 230 can be prevented and the safety of the worker can be ensured, but if the worker accesses the storage container installation section 220 This also means that the transport robot 230 cannot access the storage container installation section 220 to perform work.
  • the storage container installation section 220 of the substrate transport device 102 includes a storage container placement stand 221a and a storage container placement stand 221b. Therefore, for example, when the worker-side shutter 104 is in the open state and the worker accesses the storage container stand 221a, the worker does not access the storage container stand 221b.
  • the transport robot 230 can access the storage container stand 221b that is not accessed by the worker, the transport robot 230 can work on the storage container stand 221b while the worker works on the storage container stand 221a. Therefore, it is considered that the work efficiency of the substrate transport device 102 can be improved.
  • the basic idea is that the transport robot 230 cannot access the storage container stand 221b that is not accessed by the operator. In other words, the basic idea is that there is room for improvement from the viewpoint of improving the work efficiency of the substrate transport device 102.
  • FIG. 10 is a diagram schematically showing the configuration of the substrate transport device 102 in an embodiment.
  • the substrate transfer device 102 has a storage container stand 221a and a storage container stand 221b.
  • a separation wall 400 is provided to separate the stand 221b from the stand 221b.
  • a worker-side shutter 401a is installed between the storage container stand 221a isolated by the isolation wall 400 and the outside of the apparatus.
  • a worker-side shutter 401b is installed between the storage container stand 221b isolated by the isolation wall 400 and the outside of the apparatus.
  • a transport robot-side shutter 402a is installed between the storage container stand 221a and the transport robot 230 (not shown in FIG. 10).
  • a transport robot-side shutter 402b is installed between the storage container stand 221b and the transport robot 230.
  • Each of the worker-side shutter 401a, the worker-side shutter 401b, the transport robot-side shutter 402a, and the transport robot-side shutter 402b is configured to perform opening and closing operations based on the control of the control unit 210 (not shown in FIG. 10). It is configured.
  • the substrate transfer device 102 is provided with a switch 410, and is configured to open and close the worker-side shutter 401a and the worker-side shutter 401b using this switch 410 as a trigger.
  • the transport robot-side shutter 402a and the transport robot-side shutter 402b are provided with a function to recognize an open state and a closed state, and the opening and closing operations are performed under control of the control unit 210 based on this function. There is.
  • the substrate transfer device 102 in the embodiment includes a first installation part (storage container stand 221a) and a second installation part (storage container stand 221b) in which the storage container 200 (not shown in FIG. 10) can be installed. and has.
  • the first installation part and the second installation part are separated by a separation wall 400.
  • the substrate transfer device 102 includes an operator-side shutter 401a that is provided to be able to block a first access path when accessing the storage container 200 or the first installation section from outside the device, and a worker-side shutter 401a that allows the transfer robot 230 to access the storage container 200.
  • a transport robot-side shutter 402a is provided to be able to block a second access path when accessing, and a shutter 402a on the transfer robot side is provided to be able to block a third access path when accessing the storage container 200 or the second installation part from outside the device.
  • a transport robot-side shutter 402b is provided to be able to block a fourth access path when the transport robot 230 accesses the storage container 200.
  • the substrate transfer device 102 includes a control unit configured to control the opening and closing operations of the worker-side shutter 401a, the worker-side shutter 401b, the transfer robot-side shutter 402a, and the transfer robot-side shutter 402b. There is. As described above, the substrate transport device 102 in the embodiment is configured.
  • the worker accesses the storage container stand 221b.
  • the worker first presses an open switch included in the switch 410 that opens the worker-side shutter 401b.
  • pressing down the open switch serves as a trigger, and the control unit 210 opens the worker-side shutter 401b.
  • the control unit 210 closes the transport robot-side shutter 402b that faces the worker-side shutter 401b.
  • the control unit 210 closes the worker-side shutter 401a and opens the transport robot-side shutter 402a, which faces the worker-side shutter 401a.
  • a separation wall 400 is provided between the storage container stand 221a and the storage container stand 221b, and a shutter is provided on the side of the storage container stand 221a. It has a separate shutter provided on the storage container stand 221b side.
  • the characteristic points are that a worker-side shutter 401a is provided between the storage container stand 221a on the left side of the isolation wall 400 and the outside of the device, and a transporter side shutter 401a is provided between the storage container stand 221a and the transfer robot 230.
  • a robot-side shutter 402a While a robot-side shutter 402a is provided, an operator-side shutter 401b is provided between the storage container stand 221b on the right side of the isolation wall 400 and the outside of the apparatus, and a worker-side shutter 401b is provided between the storage container stand 221b and the transfer robot 230. The point is that a transport robot side shutter 402b is provided between them. Based on this configuration, if the worker-side shutter 401a is open and the transport robot-side shutter 402a is closed, the worker-side shutter 401b is closed, and the transport robot-side shutter 402b is closed.
  • control unit 210 controls to open the worker-side shutter 401a, if the worker-side shutter 401a is in the closed state and the transfer robot-side shutter 402a is in the open state, the worker-side shutter 401b is brought into the open state, and The feature is that the control unit 210 controls the transport robot side shutter 402b to be in a closed state.
  • the worker-side shutter 401a when the worker-side shutter 401a is in the open state and the transfer robot-side shutter 402a is in the closed state on the storage container stand 221a, the worker 420 The storage container 200 located at 221a can be accessed.
  • the control unit 210 controls the storage container stand 221b so that the worker-side shutter 401b is in a closed state and the transport robot-side shutter 402b is in an open state.
  • the transport robot 230 can access the storage container 200 placed on the storage container stand 221b.
  • the operator 420 can access the storage container stand 221a and the transport robot 230 can access the storage container stand 221b at the same time. Therefore, according to the feature point, it is possible to improve the work efficiency in the substrate transport device 102.
  • a separation wall 400 is provided between the storage container stand 221a and the storage container stand 221b. Therefore, even if the worker 420 accesses the storage container stand 221a and the transport robot 230 accesses the storage container stand 221b at the same time, the isolation wall 400 prevents the worker 420 from coming into contact with the transport robot 230. can be prevented. From the above, according to the features of the specific embodiment, a remarkable effect can be obtained in that the work efficiency of the substrate transport device 102 can be improved while ensuring the safety of the worker 420.
  • FIG. 12 is a diagram showing a storage container called an "open cassette 450.”
  • an "open cassette 450” is not placed in a closed space and accessed by the transfer robot, but is placed on the storage container stand 221 of the substrate transfer device 102 and accessed by the transfer robot. Further, this "open cassette 450" is placed on the storage container stand 221 manually by the operator. From this, when using the "open cassette 450" as a storage container, both the worker and the transport robot will access the "open cassette 450" on the storage container stand 221 without any physical obstructions. .
  • the substrate transport device 102 that embodies the above-mentioned technical idea.
  • the substrate transfer device 102 embodying the above-mentioned technical idea has great technical significance especially when applied to a substrate transfer technique that employs an "open cassette 450" as a storage container.
  • the shutter and the shutter opening/closing mechanism are collectively referred to as the shutter mechanism.
  • the shutter mechanism may be any mechanism as long as it can move the shutter in the vertical direction.
  • the air cylinder is a component in which a cylinder block 311 moves linearly on a cylinder rod 310 using air pressure.
  • the linear guide is a component in which the linear guide block 321 moves smoothly on the linear guide rail 320.
  • an air cylinder and a linear guide are attached to the base 300 in parallel, and the shutter 350, air cylinder, and linear guide are connected with a bracket 330.
  • the cylinder block 311 moves directly to the upper end of the cylinder rod 310, and the linear guide block 321 and shutter 350, which are connected by the bracket 330, also move toward the upper end of the cylinder rod 310. Moves straight to the top.
  • the shutter 350 opens smoothly.
  • the other side of the shutter 350 may be provided with a mechanism for linearly moving the shutter 350, similar to the mechanism described above, but the shutter mechanism on only one side is sufficient to realize linearly moving the shutter 350.
  • a mechanism for guiding the linear movement of the shutter 350 may be simply provided on the other side of the shutter 350.
  • the shutter mechanism is provided with a function of detecting opening and closing of the shutter 350, but any function may be used as the detection function.
  • a non-contact door sensor As a configuration to realize the detection function.
  • a non-contact type door sensor when the actuator approaches the sensor head to a certain distance, the output of the sensor head turns "ON", but when the actuator moves away from the sensor head to a certain distance, the output of the sensor head turns "OFF". It is a sensor.
  • the sensor head 340a and the sensor head 340b are attached to the base 300, while the actuator 341a and the actuator 341b are attached to the bracket 330.
  • the actuator 341a corresponds to the sensor head 340a
  • the actuator 341b corresponds to the sensor head 340b.
  • the outputs of the sensor head 340a and the sensor head 340b are input to the control section 210 (not shown in FIG. 13).
  • the actuator 341a moves away from the sensor head 340a, and as a result, the output of the sensor head 340a becomes "OFF".
  • the actuator 341b approaches the sensor head 340b, the output of the sensor head 340b becomes "ON" near the end of opening of the shutter 350.
  • the control unit 210 When the output of the sensor head 340b becomes "ON”, the control unit 210 recognizes that the shutter 350 is in the open state. However, if the output of both the sensor head 340a and the sensor head 340b is "ON", or the output of the sensor head 340b is "ON” for a certain period of time after the shutter 350 starts the opening operation. If an abnormality occurs, the control unit 210 is configured to determine that the operation of the shutter 350 is abnormal and display an error message.
  • the actuator 341b moves away from the sensor head 340b, and as a result, the output of the sensor head 340b becomes "OFF".
  • the output of the sensor head 340a becomes "ON" near the completion of the closing operation of the shutter 350.
  • the control unit 210 recognizes that the shutter 350 is in the closed state. However, there are cases where the output of the sensor head 340b is "ON” or the output of the sensor head 340a is "OFF” even after a certain period of time has passed since the shutter 350 started the closing operation. If this occurs, the control unit 210 is configured to determine that the operation of the shutter 350 is abnormal and display an error message.
  • the shutter mechanism is configured as described above.
  • Modification 1 Next, the substrate transport device 102 in Modification 1 will be described.
  • the worker-side shutter 104 or the transport robot-side shutter 105 is closed, the worker-side shutter 104 or the transport robot-side shutter is forcibly opened by a force from outside the device. Then, there is no physical obstruction between the worker and the transfer robot 230.
  • FIG. 14 is a diagram showing an example of a locking mechanism.
  • a solenoid locking mechanism 500 is shown as an example of a locking mechanism.
  • the solenoid locking mechanism 500 is a mechanism in which the shaft 501 pops out when energized, and the shaft 501 is retracted when the energization is cut off.
  • a hole into which the shaft 501 can be inserted is provided in the worker-side shutter 104. At this time, the hole into which the shaft 501 is inserted may be provided in a component attached to the worker-side shutter 104.
  • the solenoid lock mechanism 500 is configured to be energized, so that the shaft 501 pops out from the solenoid lock mechanism 500, and the shaft 501 is attached to the worker-side shutter 104. inserted into the hole. As a result, the worker-side shutter 104 is locked.
  • the worker-side shutter 104 is unlocked by cutting off the power to the solenoid lock mechanism 500 and pulling the shaft 501 into the solenoid lock mechanism 500.
  • the closed state of the worker-side shutter 104 can be forcibly maintained.
  • the transport robot side shutter 105 is also provided with a locking mechanism having the same configuration as the locking mechanism provided on the worker side shutter 104. Thereby, the closed state of the transport robot-side shutter 105 can also be forcibly maintained in the transport robot-side shutter 105. Therefore, by providing a locking mechanism for both the worker-side shutter 104 and the transport robot-side shutter 105, it is possible to reliably prevent a state in which there is no physical obstruction between the worker and the transport robot 230. can.
  • ⁇ Modification 2> For example, in FIG. 10, the operator-side shutter 401a is opened on the condition that the transport robot-side shutter 402a is closed. Similarly, the operation of opening the worker-side shutter 401b is performed on the condition that the transport robot-side shutter 402b is in the closed state.
  • a logic circuit is installed in the substrate transfer device 102, which invalidates the command to make the open state by the control unit 210 based on the output of the sensor that detects the closed state.
  • control unit 210 when the control unit 210 outputs a control signal to open the worker-side shutter 401a, a sensor (for example, the sensor in FIG. 13) that detects the closed state of the transport robot-side shutter 402a When the output of the head 340b) is "OFF", the control signal output from the control unit 210 is invalidated by the logic circuit described above.
  • a sensor for example, the sensor in FIG. 13
  • both shutters will be in the open state. may not be prohibited.
  • the output (control signal) from the control unit 210 that opens both the worker-side shutter 401a and the transport robot-side shutter 402a is always given priority to the control that opens the transport robot-side shutter 402a.
  • the above-mentioned logic circuit causes the worker-side shutter 401a to be opened.
  • the output (control signal) from the control unit 210 is invalidated. Thereby, for example, even if the transfer robot 230 extends its arm, it is possible to prevent the transfer robot 230 from being damaged due to contact between the transfer robot 230 and the transfer robot-side shutter 402a.
  • the safety interlock circuit has a configuration that can cut off the driving power of the transfer robot 230 in conjunction with the opening of both the worker-side shutter 104 and the transfer robot-side shutter 105.
  • any circuit configuration may be used.
  • a safety interlock circuit is a safety interlock circuit that uses a mechanical relay.
  • a mechanical relay is a component in which when the operating coil is energized, the contacts come into contact and the relay contacts turn "ON.”
  • the drive power source for the transfer robot 230 is connected to the relay contact.
  • the input of the operating coil is connected to the output of a sensor that detects the closed state of each of the worker-side shutter 104 and the transfer robot-side shutter 105.
  • the configuration is such that power is supplied to the transfer robot 230 and the transfer robot 230 can operate only while either the worker-side shutter 104 or the transfer robot-side shutter 105 is in the closed state.
  • the power supply to the transfer robot 230 is cut off.
  • ⁇ Modification 4> an example will be described in which a light curtain 900 is provided to detect that an operator is accessing the storage container installation section 220, as shown in FIG. 15, for example.
  • the light curtain 900 is a device configured to be able to detect access to the storage container installation section 220 from outside the device, including workers.
  • the worker-side shutter 104 is kept in a closed state while the light curtain 900 detects access to the storage container installation section 220 from outside the device, including the worker. It is configured so that it cannot be done.
  • the light curtain 900 detects access to the storage container installation section 220 from outside the device, including the worker, while the worker-side shutter 104 is performing a closing operation. In this case, the closing operation of the worker-side shutter 104 is interrupted.
  • a light curtain 900a is installed on the storage container stand 221a, and a light curtain 900a is installed on the storage container stand 221b.
  • a light curtain 900b is installed against it.
  • the light curtain 900a can detect access to the storage container stand 221a
  • the light curtain 900b can detect access to the storage container stand 221b.
  • detection by the light curtain 900a and the light curtain 900b Based on the results, the closing operations of the worker-side shutter 401a and the worker-side shutter 401b can be restricted. Therefore, according to the fourth modification, it is possible to prevent the worker from being caught between the worker-side shutter 401a or the worker-side shutter 401b, thereby ensuring the safety of the worker.
  • the light curtain 900a is provided for the storage container stand 221a
  • the light curtain 900b is provided for the storage container stand 221b. This makes it possible to prevent unnecessary interruption of the closing operation while ensuring the safety of the worker.
  • the light curtain 901 is a device configured to be able to detect access to the storage container installation section 220 by the transport robot 230.
  • a light curtain 901 is provided in the fifth modification, but since the route by which the transport robot 230 accesses the storage container installation section 220 is determined, a photoelectric sensor or the like is installed instead of the light curtain 901. May be used.
  • the substrate transfer device 102 in Modification 5 is configured such that the transfer robot side shutter 105 cannot be closed while the light curtain 901 detects access to the storage container installation section 220 by the transfer robot 230. It is configured. Further, in the substrate transfer apparatus 102 in the fifth modification, when the light curtain 901 detects access to the storage container installation section 220 by the transfer robot 230 while the transfer robot side shutter 105 is performing a closing operation, , the closing operation of the transport robot side shutter 105 is interrupted.
  • a light curtain 901a is installed on the storage container stand 221a, and a light curtain 901a is installed on the storage container stand 221b.
  • a light curtain 901b is installed against it.
  • the light curtain 901a can detect access to the storage container stand 221a
  • the light curtain 901b can detect access to the storage container stand 221b.
  • detection by the light curtain 901a and the light curtain 901b Based on the results, the closing operations of the transport robot-side shutter 402a and the transport robot-side shutter 402b can be restricted.
  • the transfer robot 230 can be prevented from being pinched by the transfer robot-side shutter 402a or the transfer robot-side shutter 402b, and thereby the transfer robot 230 can be prevented from being damaged.
  • the light curtain 901a is provided for the storage container stand 221a
  • the light curtain 901b is provided for the storage container stand 221b.
  • ⁇ Modification 6> For example, in order to correct tolerances due to the storage container 200 being a molded product and clearance errors during transportation due to assembly errors of the substrate transportation device 102 and the transportation robot 230, the substrate transportation device 102 and the storage container 200 used are , it is necessary to perform an operation called "teaching" to set the transport parameters of the transport robot 230.
  • “Teaching” is an operation performed visually by a service person, and requires both the operator-side shutter 104 and the transfer robot-side shutter 105 to be in an open state.
  • the substrate transport device 102 in the present modification 6 is equipped with a "teaching mode" in which the operator can arbitrarily select the open/close state of the shutter. Further, the substrate transfer device 102 in the present modification 6 includes an open/close switch for the operator-side shutter 104 and an open/close switch for the transfer robot-side shutter 105, which can be used only in the "teaching mode".
  • the safety interlock circuit described in the third modification is disabled, and the worker-side shutter 104 and the transfer robot-side shutter 105 can be opened simultaneously.
  • the monitoring of access to the storage container installation section 220 by the light curtain 900 explained in the above-mentioned modification 4 and the monitoring of the access to the storage container installation section 220 by the light curtain 901 explained in the above-mentioned modification 5 continue. , also performed in "teaching mode”.
  • the worker side shutter 104 prevents the worker from being caught, ensuring the safety of the worker, and also prevents the transfer robot 230 from being caught by the transfer robot side shutter 105. , damage to the transport robot 230 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

搬送ロボット(230)の電源を遮断することなく、作業者の安全を確保することが可能な基板搬送装置(102)を提供する。装置外部と収納容器設置部(220)との間に作業者側シャッタ(104)を設けるとともに、搬送ロボット(230)と収納容器設置部(220)との間に搬送ロボット側シャッタ(105)を設ける。

Description

基板搬送装置
 本発明は、基板搬送装置に関し、例えば、半導体基板を搬送する基板搬送装置に適用して有効な技術に関する。
 特許第6822953号公報(特許文献1)、特開2016-58481号公報(特許文献2)および特許第5825948号公報(特許文献3)には、作業者が収納容器設置部にアクセスしている間は、搬送ロボットが収納容器設置部にアクセスすることを遮断する機構を備える技術が記載されている。
特許第6822953号公報 特開2016-58481号公報 特許第5825948号公報
 例えば、半導体ウェハやレチクルなどの基板を搬送する基板搬送装置では、基板を収納する収納容器を収納容器設置部に設置する動作は、作業者によって行われている。一方、収納容器設置部に設置された収納容器から基板を取り出して、基板を処理する処理装置内へ基板を搬入する動作あるいは基板を処理装置内から搬出して基板を収納容器に収納する動作は、搬送ロボットによって行われている。
 このように、収納容器設置部は、作業者と搬送ロボットの両方がアクセスする場所であるが、搬送ロボットは、例えば、定格出力が80W以上の産業用ロボットであり、作業者の安全を確保するために、収納容器設置部における作業者と搬送ロボットとの接触を防止する必要がある。すなわち、基板搬送装置では、作業者と搬送ロボットとの接触を防止する対策を取る必要がある。
 この点に関し、例えば、作業者が収納容器を収納容器設置部に設置する動作を行っている際、搬送ロボットの駆動電源を遮断することにより、搬送ロボットが作業者に接触することを防止することが考えられる。
 しかしながら、搬送ロボットの駆動電源を遮断してしまうと、再度、搬送ロボットを動作可能状態にするまでに時間を要することになる。また、作業者が収納容器を収納容器設置部に設置する動作を行っている間、搬送ロボットは何も作業を行うことができず、基板搬送装置での作業効率が低下する。
 したがって、搬送ロボットの駆動電源を遮断することなく、作業者と搬送ロボットとの接触を防止して、作業者の安全を確保するための工夫が望まれている。
 一実施の形態における基板搬送装置は、基板を搬送する搬送ロボットと、基板を収容する収納容器を設置可能な第1設置部と、装置外部から収納容器または第1設置部にアクセスする際の第1アクセス路を遮断可能に設けられた第1シャッタ機構と、搬送ロボットが収納容器にアクセスする際の第2アクセス路を遮断可能に設けられた第2シャッタ機構と、第1シャッタ機構および第2シャッタ機構の開閉動作を制御する制御部を備える。
 一実施の形態によれば、搬送ロボットの電源を遮断することなく、作業者の安全を確保することが可能な基板搬送装置を提供することができる。
半導体検査装置を模式的に示す斜視図である。 基板搬送装置の構成を模式的に示す上面図である。 基板搬送装置の構成を模式的に示す側面図である。 シャッタがクローズしている状態を示す図である。 シャッタがオープンしている状態を示す図である。 実施の形態における基本思想を説明する図である。 作業者が収納容器設置部にアクセスする際において、基板搬送装置の動作の流れを説明するフローチャートである。 搬送ロボットが収納容器設置部にアクセスする際において、基板搬送装置の動作の流れを説明するフローチャートである。 図8に続く基板搬送装置の動作を説明するフローチャートであって、搬送ロボットによる収納容器設置部へのアクセス後、作業者が収納容器設置部にアクセス可能な状態に移行する動作を説明するフローチャートである。 具現化態様における基板搬送装置の構成を模式的に示す図である。 具現化態様における特徴を説明する図である。 「オープンカセット」と呼ばれる収納容器を示す図である。 シャッタ機構の構成例を示す図である。 変形例1における施錠機構を説明する図である。 作業者が収納容器設置部にアクセスしていることを検知するライトカーテンを設ける例について説明する図であるとともに、搬送ロボットが収納容器設置部にアクセスしていることを検知するライトカーテンを設ける例について説明する図である。 変形例4および変形例5における基板搬送装置を示す図である。
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 (実施の形態)
 まず、基板搬送装置の概要について説明する。特に、本実施の形態では、基板搬送装置の一例として、基板搬送装置を含む半導体検査装置を取り挙げて説明する。ただし、本実施の形態おける基板搬送装置は、この例に限らず、基板を処理する基板処理装置に付随する基板搬送装置に幅広く適用することができる。また、基板搬送装置で搬送される基板として、半導体ウェハ(半導体基板)やレチクルなどを挙げることができるが、本実施の形態では、基板として半導体基板を例に取り挙げて説明する。
 <基板検査装置の概要>
 図1は、半導体検査装置100を模式的に示す斜視図である。
 図1において、半導体検査装置100は、装置後方に設けられた半導体基板処理ユニット101を有しているとともに、装置前方に設けられた基板搬送装置102を有している。
 半導体基板処理ユニット101は、半導体基板を検査または計測する半導体検査装置100としての主たる機能と、その機能を制御するコンピュータシステムや電源を含む制御部とを有している。例えば、半導体検査装置100が測長SEM(Scanning Electron Microscope)である場合、半導体基板処理ユニット101は、電子銃部、ステージ部、真空排気部および電源部を有している。一方、制御部は、これらの構成部の動作を制御するように構成されており、これらの構成部を制御することによって、半導体基板に形成された微細パターンの寸法計測を行うように構成されている。
 <基板搬送装置の構成>
 図2は、基板搬送装置102の構成を模式的に示す上面図である。
 図2において、基板搬送装置102は、制御部210と、プリアライナ211と、収納容器設置部220と、搬送ロボット230を有している。
 制御部210は、搬送ロボット230による半導体基板201の搬送動作を制御するように構成されている。
 プリアライナ211は、半導体基板201の偏芯量を測定して、偏芯量を補正するように構成されたユニットであり、半導体基板201のオリエンテーションフラットやノッチを検出して、オリエンテーションフラットやノッチの向きを揃えるユニットである。
 収納容器設置部220は、収納容器200を配置するように構成されており、収納容器200を配置するための収納容器置台221を有している。基板搬送装置102には、収納容器置台221が少なくとも1つは設けられており、例えば、図2に示すように、収納容器置台221aと収納容器置台221bが設けられている。これらの収納容器置台221aと収納容器置台221bには、同時に収納容器200を配置することができる。
 なお、図示は省略されているが、収納容器設置部220には、収納容器置台221に収納容器200が正常に配置されているか否かを確認したり、収納容器200の配置履歴を保存したり、収納容器置台221に配置された収納容器200から半導体基板201が飛び出していないかを確認するセンサ、スイッチおよびリーダが設けられている。
 搬送ロボット230は、半導体基板201を搬送可能に構成されており、制御部210による制御によって動作するように構成されている。
 図3は、基板搬送装置102の構成を模式的に示す側面図である。
 図3に示すように、基板搬送装置102においては、収納容器置台221上に収納容器200が配置されており、この収納容器200の内部に複数枚の半導体基板201が収納されていることがわかる。そして、半導体基板処理ユニット101に設けられている上位ポート240と基板搬送装置102の収納容器置台221に配置されている収納容器200との間の空間に搬送ロボット230が配置されている。
 <基板搬送装置の動作>
 続いて、基板搬送装置102の動作について図2を参照しながら説明する。
 まず、作業者は、複数枚の半導体基板201が収納された収納容器200を手作業によって収納容器設置部220の収納容器置台221上に配置する。その後、制御部210の制御によって、搬送ロボット230は、収納容器置台221上に配置されている収納容器200から半導体基板201を取り出した後、取り出した半導体基板201をプリアライナ211に配置する。次に、プリアライナ211において、半導体基板201の偏芯量の補正が行われるとともに、オリエンテーションフラットやノッチの向きが揃えられる。
 その後、制御部210による制御によって、搬送ロボット230は、プリアライナ211から半導体基板201を取り出して、半導体基板処理ユニット101への受け渡しを行うため、上位ポート240に半導体基板201を搬送する。
 そして、上位ポート240に配置された半導体基板201は、半導体基板処理ユニット101において処理される。続いて、半導体基板処理ユニット101で処理された半導体基板201は、上位ポート240に再び配置される。その後、制御部210による制御によって、搬送ロボット230は、上位ポート240に配置されている半導体基板201を取り上げた後、収納容器設置部220の収納容器置台221に配置されている収納容器200内に半導体基板201を収納する。そして、作業者は、処理済の半導体基板201が収納されている収納容器200を手作業で基板搬送装置102の外部に運ぶ。
 以上のようにして、基板搬送装置102が動作する。
 <改善の検討>
 例えば、搬送ロボット230は、定格出力が80W以上の産業用ロボットから構成されており、「SEMI」の規格によって、作業者が搬送ロボット230と接触しないように物理的遮蔽物による作業者の保護が必要とされる。
 この点に関し、搬送ロボット230は、収納容器設置部220にアクセスする。一方、収納容器設置部220は、作業者が収納容器設置部220の収納容器置台221に収納容器200を配置するためにアクセスする場所でもある。このことから、何らの対策も講じないと、収納容器設置部220においては、作業者と搬送ロボット230の間に物理的遮蔽物が存在しない状態となる。したがって、作業者と搬送ロボット230の間に物理的遮蔽物が存在しないことから、例えば、作業者が収納容器設置部220にアクセスしている際、搬送ロボット230が収納容器設置部220にアクセスすると、作業者と搬送ロボット230とが接触するおそれがある。このため、例えば、作業者と収納容器設置部220との境界にシャッタ機構(シャッタと呼ぶ場合がある)を設ける技術が考えられる。
 図4は、シャッタ103がクローズしている状態を示す図である。図4に示すように、作業者(装置外部)と収納容器設置部220の間がシャッタ103によって遮断されている。このことから、作業者は、収納容器設置部220にアクセスすることができないが、搬送ロボット230は、物理的遮蔽物(シャッタ103)で保護された状態となるため、収納容器設置部220にアクセスすることができる状態となる。
 図5は、シャッタ103がオープンしている状態を示す図である。図5に示すように、収納容器設置部220と搬送ロボット230との間には、搬送ロボット230が収納容器200から半導体基板201を取り出したり、収納容器200に半導体基板201を収納できる程度の搬送口222aおよび搬送口222bが設けられていることがわかる。このことから、図4に示すようにシャッタ103がクローズしている状態でも、搬送ロボット230は、搬送口222aあるいは搬送口222bを介して、収納容器設置部220にアクセスすることができることがわかる。
 図5において、シャッタ103がオープンしている状態では、作業者と搬送ロボット230との間に物理的遮蔽物(シャッタ103)が存在しなくなる。このため、作業者と搬送ロボット230とが接触するおそれがあるが、例えば、シャッタ103のオープンに連動したインターロック回路などで搬送ロボット230の駆動電源が遮断される。この結果、搬送ロボット230は、動作できなくなるため、作業者は、収納容器設置部220に安全にアクセスすることができることになる。
 この点に関し、搬送ロボット230の駆動電源を遮断してしまうと、再度、搬送ロボット230を動作可能状態にするまでに時間を要することになる。また、作業者が収納容器200を収納容器設置部220に設置する動作を行っている間、搬送ロボット230は何も作業を行うことができず、基板搬送装置102での作業効率が低下する。すなわち、物理的遮蔽物としてシャッタ103を設ける一方、搬送ロボット230の駆動電源を遮断する技術では、基板搬送装置102での作業効率の低下を抑制しながら、作業者の安全を確保する観点から改善の余地が存在する。
 そこで、本実施の形態では、上述した改善の余地を克服するための工夫を施している。以下では、この工夫を施した本実施の形態における技術的思想について説明する。
 <実施の形態における基本思想>
 図6は、本実施の形態における基本思想を説明する図である。
 図6において、基本思想は、装置外部と収納容器設置部220との間に作業者側シャッタ104(第1シャッタ機構)を設けるとともに、搬送ロボット230と収納容器設置部220との間に搬送ロボット側シャッタ105(第2シャッタ機構)を設ける思想である。具体的に言えば、基本思想は、装置外部から収納容器設置部220にアクセスする際の第1アクセス路を遮断可能に配置された作業者側シャッタ104と、搬送ロボット230が収納容器設置部220にアクセスする際の第2アクセス路を遮断可能に配置された搬送ロボット側シャッタ105とを基板搬送装置102に設ける思想である。つまり、基本思想は、基板搬送装置102に作業者側シャッタ104と搬送ロボット側シャッタ105という二重のシャッタ機構を設ける思想である。
 この基本思想によれば、例えば、作業者が収納容器設置部220にアクセスする際には、作業者側シャッタ104をオープン状態で、かつ、搬送ロボット側シャッタ105をクローズ状態とする。これにより、搬送ロボット230は、搬送ロボット側シャッタ105がクローズ状態となっていることから、搬送ロボット230は、収納容器設置部220にアクセスすることができない。一方、作業者は、作業者側シャッタ104がオープン状態となっていることから、作業者は、収納容器設置部220にアクセスすることができる。
 すなわち、基本思想によれば、作業者が収納容器設置部220にアクセスする場合において、作業者と搬送ロボット230との間に搬送ロボット側シャッタ105という物理的遮蔽物が常に存在するため、作業者は、搬送ロボット230との接触を気にすることなく、安全に収納容器設置部220にアクセスすることができる。
 このように、基本思想によれば、作業者が収納容器設置部220にアクセスする際、搬送ロボット230は、搬送ロボット側シャッタ105によって収納容器設置部220へのアクセスが遮断される。このことから、基本思想によれば、作業者が収納容器設置部220にアクセスする際、搬送ロボット230と作業者との接触を防止するために、搬送ロボット230の駆動電源を遮断する必要がなくなる。したがって、基本思想によれば、遮断した搬送ロボット230の駆動電源を再度投入する必要がなくなる結果、搬送ロボット230を動作可能状態にするための時間を節約することができる。このことから、基本思想によれば、基板搬送装置102での作業効率の低下を抑制しながら、作業者の安全を確保することができるという顕著な効果が得られる。
 一方、基本思想によれば、例えば、搬送ロボット230が収納容器設置部220にアクセスする際には、作業者側シャッタ104をクローズ状態で、かつ、搬送ロボット側シャッタ105をオープン状態とする。これにより、作業者は、作業者側シャッタ104がクローズ状態となっていることから、作業者は、収納容器設置部220にアクセスすることができない。一方、搬送ロボット230は、搬送ロボット側シャッタ1045がオープン状態となっていることから、搬送ロボット230は、作業者との接触を確実に防止しながら、収納容器設置部220にアクセスすることができる。
 以下では、基板搬送装置102に作業者側シャッタ104と搬送ロボット側シャッタ105という二重のシャッタ機構を設ける基本思想において、作業者と搬送ロボット230との接触を確実に回避するための基板搬送装置102の動作について説明する。
 図7は、作業者が収納容器設置部220にアクセスする際において、基板搬送装置102の動作の流れを説明するフローチャートである。
 図7において、まず、作業者側シャッタ104がクローズ状態になっているとする。そして、基板搬送装置102には、作業者側シャッタ104をオープン状態とするためのトリガとなるオープンスイッチが設けられていることを前提とする。
 作業者が収納容器設置部220にアクセスする場合、作業者は、作業者側シャッタ104をオープン状態とするためのトリガとなるオープンスイッチを押下する(S101)。すると、基板搬送装置102の制御部210は、搬送ロボット230が収納容器設置部220にアクセスしているか否かを判断する(S102)。制御部210は、搬送ロボット230が収納容器設置部220にアクセスしていると判断すると、搬送ロボット230による収納容器設置部220へのアクセスが終了するまで待機する。一方、制御部210は、搬送ロボット230が収納容器設置部220にアクセスしていないと判断すると、搬送ロボット側シャッタ105をクローズ状態にする(S103)。
 続いて、制御部210は、作業者側シャッタ104をオープン状態にする(S104)。これにより、搬送ロボット側シャッタ105がクローズ状態になっていることによって、搬送ロボット230による収納容器設置部220へのアクセスが遮断されつつ、作業者は、収納容器設置部220に安全にアクセスすることができる(S105)。
 このように、制御部210は、作業者側シャッタ104がクローズ状態となっているフェーズから、作業者側シャッタ104がオープン状態で、かつ、搬送ロボット側シャッタ105がクローズ状態である第1フェーズに移行させるように制御することにより、作業者が収納容器設置部220にアクセス可能な状態となるように構成されている。
 次に、図8は、搬送ロボット230が収納容器設置部220にアクセスする際において、基板搬送装置102の動作の流れを説明するフローチャートである。
 図8において、まず、作業者側シャッタ104がオープン状態になっているとする。そして、基板搬送装置102には、作業者側シャッタ104をクローズ状態とするためのトリガとなるクローズスイッチが設けられていることを前提とする。
 作業者は、収納容器設置部220での作業を終了する場合、作業者側シャッタ104をクローズ状態とするためのトリガとなるクローズスイッチを押下する(S201)。すると、基板搬送装置102の制御部210は、作業者が収納容器設置部220にアクセスしているか否かを判断する(S202)。制御部210は、作業者が収納容器設置部220にアクセスしていると判断すると、作業者による収納容器設置部220へのアクセスが終了するまで待機する。一方、制御部210は、作業者が収納容器設置部220にアクセスしていないと判断すると、作業者側シャッタ104をクローズ状態にする(S203)。
 続いて、制御部210は、搬送ロボット側シャッタ105をオープン状態にする(S204)。これにより、作業者側シャッタ104がクローズ状態になっていることによって、作業者による収納容器設置部220へのアクセスが遮断されつつ、搬送ロボット230は、収納容器設置部220にアクセスすることができる(S205)。
 このように、制御部210は、作業者側シャッタ104がオープン状態で、かつ、搬送ロボット側シャッタ105がクローズ状態である第1フェーズから、作業者側シャッタ104をクローズ状態にした後、搬送ロボット側シャッタ105をオープン状態にする第2フェーズに移行させるように制御することにより、搬送ロボット230によって収納容器から基板を搬出可能な状態となるように構成されている。
 図9は、図8に続く基板搬送装置102の動作を説明するフローチャートであって、搬送ロボット230による収納容器設置部220へのアクセス後、作業者が収納容器設置部220にアクセス可能な状態に移行する動作を説明するフローチャートである。
 作業者側シャッタ104がクローズ状態で、かつ、搬送ロボット側シャッタ105がオープン状態である第2フェーズにおいて、搬送ロボット230は収納容器設置部220にアクセスして、収納容器200から半導体基板201を取り出す(S301)。そして、制御部210による制御によって、搬送ロボット230は、収納容器200から取り出した半導体基板201を半導体基板処理ユニット101に搬入する(S302)。次に、半導体基板処理ユニット101において、半導体基板201の処理が行われた後(S303)、制御部210による制御によって、搬送ロボット230は、半導体基板処理ユニット101で処理された半導体基板201を半導体基板処理ユニット101から搬出する。そして、制御部210による制御によって、搬送ロボット230は、収納容器設置部220にアクセスして、収納容器200に半導体基板201を収納する(S304)。
 続いて、制御部210は、搬送ロボット230が収納容器設置部220にアクセスしているか否かを判断する(S305)。制御部210は、搬送ロボット230が収納容器設置部220にアクセスしていると判断すると、搬送ロボット230による収納容器設置部220へのアクセスが終了するまで待機する。一方、制御部210は、搬送ロボット230が収納容器設置部220にアクセスしていないと判断すると、搬送ロボット側シャッタ105をクローズ状態にする(S306)。
 そして、制御部210は、作業者側シャッタ104をオープン状態にする(S307)。これにより、搬送ロボット側シャッタ105がクローズ状態になっていることによって、搬送ロボット230による収納容器設置部220へのアクセスが遮断されつつ、作業者は、収納容器設置部220に安全にアクセスすることができる(S308)。
 このように、制御部210は、第2フェーズの状態で、搬送ロボット230によって収納容器200に半導体基板201が搬入されると、第2フェーズから、搬送ロボット側シャッタ105をクローズ状態にした後、作業者側シャッタ104をオープン状態にする第3フェーズに移行させるように構成されている。
 すなわち、図9に示すように、作業者側シャッタ104をオープン状態とする動作は、作業者によって指定された収納容器200に収納されている半導体基板201について、半導体基板処理ユニット101での処理がすべて終了し、搬送ロボット230によって収納容器200内に半導体基板201が元通りに収納された後、作業者がオープンスイッチを押下することなく、制御部210の制御によって自動で行うことができる。
 これにより、作業者は、半導体基板201の処理(検査や計測など)が終了した後、オープンスイッチを押下する必要がなくなる結果、作業者にとって基板搬送装置102の使い勝手を向上することができる。
 上述した基本思想によれば、基板搬送装置102に作業者側シャッタ104と搬送ロボット側シャッタ105という二重のシャッタ機構を設けることにより、搬送ロボット230と作業者との接触を防止するために、搬送ロボット230の駆動電源を遮断する必要がなくなる。この結果、基本思想によれば、基板搬送装置102での作業効率の低下を抑制しながら、作業者の安全を確保することができる。
 <さらなる改善の検討>
 基本思想は、搬送ロボット230の駆動電源を遮断することなく、作業者の安全を確実に確保することができる点で有用な技術的思想である。この点に関し、本発明者は、この基本思想についてさらに検討した結果、基板搬送装置102での作業効率を向上させる観点から、改善の余地が存在することを見出したので、この改善の余地について説明する。
 図6において、基板搬送装置102には、作業者側シャッタ104と搬送ロボット側シャッタ105が設けられている。そして、例えば、作業者が収納容器設置部220にアクセスする場合、制御部210は、作業者側シャッタ104をオープン状態にし、かつ、搬送ロボット側シャッタ105をクローズ状態になるように制御する。これにより、作業者が収納容器設置部220にアクセス可能となるとともに、搬送ロボット230による収納容器設置部220へのアクセスが遮断される。このことは、基本思想によれば、作業者と搬送ロボット230の接触が防止されて、作業者の安全を確保することができることを意味するが、作業者が収納容器設置部220にアクセスしている際には、搬送ロボット230は、収納容器設置部220にアクセスして作業を行うことができないことも意味する。
 例えば、図6において、基板搬送装置102の収納容器設置部220には、収納容器置台221aと収納容器置台221bが存在する。このことから、例えば、作業者側シャッタ104がオープン状態となって、作業者が収納容器置台221a上にアクセスする場合、収納容器置台221bには、作業者がアクセスしないことになる。
 ここで、作業者がアクセスしていない収納容器置台221bに搬送ロボット230がアクセスすることができれば、作業者が収納容器置台221aで作業しながら、搬送ロボット230が収納容器置台221bで作業することができるので、基板搬送装置102における作業効率の向上を図ることができると考えられる。
 ところが、基本思想では、作業者側シャッタ104がオープン状態になっているとき、搬送ロボット側シャッタ105はクローズ状態となっている。このため、基本思想では、作業者がアクセスしていない収納容器置台221bに搬送ロボット230がアクセスすることができない。つまり、基本思想では、基板搬送装置102における作業効率の向上を図る観点から、改善の余地が存在する。
 そこで、具現化態様では、基本思想に存在する改善の余地に対する工夫を施している。以下では、この工夫を施した具現化態様について説明する。
 <具現化態様>
 <<基板搬送装置の構成>>
 図10は、具現化態様における基板搬送装置102の構成を模式的に示す図である。
 図10に示すように、基板搬送装置102は、収納容器置台221aと収納容器置台221bを有しており、収納容器置台221aと収納容器置台221bとの間には、収納容器置台221aと収納容器置台221bとを隔離する隔離壁400が設けられている。
 そして、隔離壁400によって隔離された収納容器置台221aと装置外部との間には、作業者側シャッタ401aが設置されている。一方、隔離壁400によって隔離された収納容器置台221bと装置外部との間には、作業者側シャッタ401bが設置されている。
 また、収納容器置台221aと搬送ロボット230(図10では図示されず)との間には、搬送ロボット側シャッタ402aが設置されている。一方、収納容器置台221bと搬送ロボット230との間には、搬送ロボット側シャッタ402bが設置されている。
 作業者側シャッタ401a、作業者側シャッタ401b、搬送ロボット側シャッタ402aおよび搬送ロボット側シャッタ402bのそれぞれは、制御部210(図10では図示されず)の制御に基づいて、開閉動作を行うように構成されている。特に、基板搬送装置102には、スイッチ410が設けられており、このスイッチ410をトリガとして、作業者側シャッタ401aおよび作業者側シャッタ401bの開閉動作が行われるように構成されている。一方、搬送ロボット側シャッタ402aおよび搬送ロボット側シャッタ402bには、オープン状態およびクローズ状態を認識する機能が設けれており、この機能に基づく制御部210の制御によって開閉動作が行われるようになっている。
 このように、具現化態様における基板搬送装置102は、収納容器200(図10では図示されず)を設置可能な第1設置部(収納容器置台221a)と第2設置部(収納容器置台221b)とを有する。ここで、第1設置部と第2設置部は、隔離壁400で隔離されている。そして、基板搬送装置102は、装置外部から収納容器200または第1設置部にアクセスする際の第1アクセス路を遮断可能に設けられた作業者側シャッタ401aと、搬送ロボット230が収納容器200にアクセスする際の第2アクセス路を遮断可能に設けられた搬送ロボット側シャッタ402aと、装置外部から収納容器200または第2設置部にアクセスする際の第3アクセス路を遮断可能に設けられた作業者側シャッタ401bと、搬送ロボット230が収納容器200にアクセスする際の第4アクセス路を遮断可能に設けられた搬送ロボット側シャッタ402bを有する。さらに、基板搬送装置102は、作業者側シャッタ401a、作業者側シャッタ401b、搬送ロボット側シャッタ402aおよび搬送ロボット側シャッタ402bのそれぞれの開閉動作を制御するように構成された制御部を有している。
 以上のようにして、具現化態様における基板搬送装置102が構成されている。
 <<基板搬送装置の動作>>
 次に、基板搬送装置102の動作について図10を参照しながら説明する。
 例えば、作業者が収納容器置台221aにアクセスする場合を考える。この場合、まず、作業者は、スイッチ410に含まれる作業者側シャッタ401aをオープンするオープンスイッチを押下する。これにより、オープンスイッチを押下することがトリガとなって、制御部210は、作業者側シャッタ401aをオープン状態にする。このとき、制御部210は、作業者側シャッタ401aと対向する搬送ロボット側シャッタ402aをクローズ状態にする。さらに、制御部210は、作業者側シャッタ401bをクローズ状態とするとともに、作業者側シャッタ401bと対向する搬送ロボット側シャッタ402bをオープン状態にする。このように、作業者側シャッタ401aがオープン状態で、かつ、搬送ロボット側シャッタ402aがクローズ状態である場合、作業者側シャッタ401bをクローズ状態にし、かつ、搬送ロボット側シャッタ402bをオープン状態にする。これにより、作業者は、収納容器置台221aにアクセスすることができるとともに、搬送ロボット230は、収納容器置台221bにアクセスすることができる。
 続いて、作業者が収納容器置台221bにアクセスする場合を考える。この場合、まず、作業者は、スイッチ410に含まれる作業者側シャッタ401bをオープンするオープンスイッチを押下する。これにより、オープンスイッチを押下することがトリガとなって、制御部210は、作業者側シャッタ401bをオープン状態にする。このとき、制御部210は、作業者側シャッタ401bと対向する搬送ロボット側シャッタ402bをクローズ状態にする。さらに、制御部210は、作業者側シャッタ401aをクローズ状態とするとともに、作業者側シャッタ401aと対向する搬送ロボット側シャッタ402aをオープン状態にする。このように、作業者側シャッタ401bがオープン状態で、かつ、搬送ロボット側シャッタ402bがクローズ状態である場合、作業者側シャッタ401aをクローズ状態にし、かつ、搬送ロボット側シャッタ402aをオープン状態にする。これにより、作業者は、収納容器置台221bにアクセスすることができるとともに、搬送ロボット230は、収納容器置台221aにアクセスすることができる。
 <<具現化態様における特徴>>
 続いて、具体的態様における特徴点について説明する。
 具体的態様における特徴点は、例えば、図10に示すように、収納容器置台221aと収納容器置台221bとの間に隔離壁400が設けられており、収納容器置台221a側に設けられるシャッタと、収納容器置台221b側に設けられるシャッタとを独立別個に有する点にある。言い換えれば、特徴点は、隔離壁400の左側にある収納容器置台221aと装置外部との間に作業者側シャッタ401aが設けられているとともに、収納容器置台221aと搬送ロボット230との間に搬送ロボット側シャッタ402aが設けられている一方、隔離壁400の右側にある収納容器置台221bと装置外部との間に作業者側シャッタ401bが設けられているとともに、収納容器置台221bと搬送ロボット230との間に搬送ロボット側シャッタ402bが設けられている点にある。そして、この構成を前提として、作業者側シャッタ401aがオープン状態で、かつ、搬送ロボット側シャッタ402aがクローズ状態である場合、作業者側シャッタ401bをクローズ状態にし、かつ、搬送ロボット側シャッタ402bをオープン状態にするように制御部210が制御する一方、作業者側シャッタ401aがクローズ状態で、かつ、搬送ロボット側シャッタ402aがオープン状態である場合、作業者側シャッタ401bをオープン状態にし、かつ、搬送ロボット側シャッタ402bをクローズ状態にするように制御部210が制御する点に特徴点がある。
 これにより、例えば、図11に示すように、収納容器置台221aにおいて、作業者側シャッタ401aがオープン状態で、かつ、搬送ロボット側シャッタ402aがクローズ状態となる場合、作業者420は、収納容器置台221aに配置されている収納容器200にアクセスすることができる。このとき、収納容器置台221bにおいて、作業者側シャッタ401bがクローズ状態で、かつ、搬送ロボット側シャッタ402bがオープン状態となるように制御部210が制御する。この結果、図11に示すように、搬送ロボット230は、収納容器置台221bに配置されている収納容器200にアクセスすることができる。このように、具体的態様における特徴点によれば、収納容器置台221aへの作業者420のアクセスと、収納容器置台221bへの搬送ロボット230のアクセスとを同時に行うことができる。したがって、特徴点によれば、基板搬送装置102における作業効率の向上を図ることができる。そして、特徴点によれば、収納容器置台221aと収納容器置台221bとの間に隔離壁400が設けられている。このことから、収納容器置台221aへの作業者420のアクセスと収納容器置台221bへの搬送ロボット230のアクセスとが同時に行われても、隔離壁400によって、作業者420と搬送ロボット230との接触を防止することができる。以上のことから、具体的態様における特徴点によれば、作業者420の安全を確実に確保しながら、基板搬送装置102での作業効率を向上することができるという顕著な効果が得られる。
 <<オープンカセットへの適用>>
 上述した技術的思想は、収納容器として「オープンカセット」を使用する場合に適用して特に有効である。例えば、収納容器を密閉空間(例えば、チャンバ)内に配置して、密閉空間内において収納容器に搬送ロボットがアクセスする形態がある。この形態では、搬送ロボットが密閉空間内で収納容器にアクセスすることから、作業者と収納容器の間には、必ず物理的遮蔽物である密閉空間が介在する。このため、作業者と搬送ロボットとの接触によって、作業者の安全が脅かされることを少ないと考えられる。
 これに対し、例えば、図12は、「オープンカセット450」と呼ばれる収納容器を示す図である。このような「オープンカセット450」は、密閉空間に配置されて搬送ロボットがアクセスするのではなく、基板搬送装置102の収納容器置台221に配置された状態で搬送ロボットがアクセスする。また、この「オープンカセット450」は、作業者の手作業によって、収納容器置台221上に配置される。このことから、収納容器として「オープンカセット450」を使用する場合、収納容器置台221において、物理的遮蔽物がない状態で作業者と搬送ロボットの両方が「オープンカセット450」にアクセスすることになる。このことは、収納容器として「オープンカセット450」を使用する場合、作業者と搬送ロボットの接触が起こりやすく、作業者の安全を確保することが重要となることを意味する。したがって、収納容器として、「オープンカセット450」を使用する場合、上述した技術的思想を具現化した基板搬送装置102を採用することにより、作業者の安全を確実に確保することができる。つまり、上述した技術的思想を具現化した基板搬送装置102は、収納容器として「オープンカセット450」を採用した基板搬送技術に適用して特に大きな技術的意義を有している。
 <<シャッタ機構の構成例>>
 このセクションでは、シャッタとシャッタの開閉機構を合わせてシャッタ機構と呼ぶ。
 シャッタ機構は、シャッタを垂直方向に可動できる機構であれば、どのような機構でも構わない。例えば、エアシリンダとリニアガイドを用いたシャッタ機構がある。図13において、エアシリンダは、空気圧によって、シリンダロッド310の上をシリンダブロック311が直動運動する部品である。一方、リニアガイドは、リニアガイドレール320の上をリニアガイドブロック321が滑らかに移動する部品である。
 図6に示すように、ベース300にエアシリンダとリニアガイドを平行に取り付けて、シャッタ350とエアシリンダとリニアガイドをブラケット330で繋ぐ。ここで、エアシリンダの下部に上方向に流れる空気が送られると、シリンダブロック311がシリンダロッド310の上端まで直動し、ブラケット330で繋がっているリニアガイドブロック321とシャッタ350もシリンダロッド310の上端まで直動する。
 このとき、リニアガイドブロック321がシリンダブロック311の直動運動を滑らかにする結果、シャッタ350がスムーズにオープンする。
 一方、エアシリンダの上部に下方向に流れる空気が送られると、シリンダブロック311がシリンダロッド310の下端まで直動し、ブラケット330で繋がっているリニアガイドブロック321とシャッタ350もシリンダロッド310の下端まで直動する。
 このとき、リニアガイドブロック321がシリンダブロック311の直動運動を滑らかにする結果、シャッタ350がスムーズにクローズする。
 なお、シャッタ350のもう一方の片側は、上述した機構と同様にシャッタ350を直動運動させる機構を設けてもよいが、片側のみのシャッタ機構でシャッタ350の直動運動を実現するために充分である場合、シャッタ350のもう一方の片側には、シャッタ350の直動運動をガイドする機構を設けるだけでもよい。
 また、シャッタ機構には、シャッタ350のオープンおよびクローズを検知する機能が設けられているが、検知機能は、どのような機能でも構わない。
 例えば、検知機能を実現する構成として、非接触型ドアセンサを用いた構成がある。非接触型ドアセンサは、センサヘッドに対し、アクチュエータが一定の距離まで近づくとセンサヘッドの出力が「ON」となる一方、アクチュエータが一定の距離まで離れると、センサヘッドの出力が「OFF」となるセンサである。
 図13に示すように、センサヘッド340aおよびセンサヘッド340bをベース300に取り付ける一方、アクチュエータ341aおよびアクチュエータ341bをブラケット330に取り付ける。ここで、センサヘッド340aに対応しているのがアクチュエータ341aであり、センサヘッド340bに対応しているのがアクチュエータ341bである。シャッタ350がクローズ状態にあるときは、センサヘッド340aの出力が「ON」となる一方、センサヘッド340bの出力が「OFF」となる。
 センサヘッド340aおよびセンサヘッド340bの出力は、制御部210(図13では図示されず)に入力される。シャッタ350がオープンすると、アクチュエータ341aは、センサヘッド340aから離れる結果、センサヘッド340aの出力は、「OFF」となる。一方、アクチュエータ341bは、センサヘッド340bに近づく結果、シャッタ350のオープンが完了する付近でセンサヘッド340bの出力が「ON」となる。
 センサヘッド340bの出力が「ON」となると、制御部210は、シャッタ350がオープン状態になったことを認識する。ただし、センサヘッド340aおよびセンサヘッド340bの両方の出力が「ON」となっている状態、あるいは、シャッタ350がオープン動作を開始してから一定時間の間にセンサヘッド340bの出力が「ON」とならない状態が発生した場合、制御部210は、シャッタ350の動作が異常であると判断してエラー表示をするように構成されている。
 シャッタ350がクローズすると、アクチュエータ341bは、センサヘッド340bから離れる結果、センサヘッド340bの出力は、「OFF」となる。一方、アクチュエータ341aは、センサヘッド340aに近づく結果、シャッタ350のクローズ動作が完了する付近でセンサヘッド340aの出力は、「ON」となる。センサヘッド340aの出力が「ON」となると、制御部210は、シャッタ350がクローズ状態になったことを認識する。ただし、センサヘッド340bの出力が「ON」となっている状態、あるいは、シャッタ350がクローズ動作を開始してから一定時間経過してもセンサヘッド340aの出力が「OFF」となっている状態が発生した場合、制御部210は、シャッタ350の動作が異常であると判断してエラー表示をするように構成されている。
 以上のようにして、シャッタ機構が構成されている。
 <変形例1>
 次に、変形例1における基板搬送装置102について説明する。
 例えば、図6において、作業者側シャッタ104がクローズ状態のとき、あるいは、搬送ロボット側シャッタ105がクローズ状態のとき、装置外部からの力によって無理やり作業者側シャッタ104または搬送ロボット側シャッタがオープンされると、作業者と搬送ロボット230との間に物理的遮蔽物がなくなる。
 そこで、本変形例1では、作業者側シャッタ104あるいは搬送ロボット側シャッタ105がクローズ状態のとき、クローズ状態を強制的に維持するための施錠機構を設ける。これにより、たとえ、装置外部からの力によって無理やり作業者側シャッタ104または搬送ロボット側シャッタがオープンされそうになっても、施錠機構によって、クローズ状態が強制的に維持することができる。このことから、本変形例1によれば、作業者と搬送ロボット230との間に物理的遮蔽物がない状態になることを防止できる。
 施錠機構は、作業者側シャッタ104のクローズ状態、あるいは、搬送ロボット側シャッタ105のクローズ状態を施錠することができればどのような施錠機構でも構わない。
 例えば、図14は、施錠機構の一例を示す図である。
 図14では、施錠機構の一例として、ソレノイドロック機構500が示されている。ソレノイドロック機構500は、通電するとシャフト501が飛び出す一方、通電が切れるとシャフト501が引き込まれる機構である。図14に示すように、作業者側シャッタ104にシャフト501が挿入可能な穴が設けられている。このとき、シャフト501が挿入される穴は、作業者側シャッタ104に付属する部品に設けられていてもよい。
 例えば、作業者側シャッタ104がクローズ状態となると、ソレノイドロック機構500が通電するように構成されている結果、シャフト501がソレノイドロック機構500から飛び出して、シャフト501が作業者側シャッタ104に設けられた穴に挿入される。これにより、作業者側シャッタ104が施錠される。
 一方、作業者側シャッタ104をオープン状態とするときは、ソレノイドロック機構500の通電を切断することによって、シャフト501をソレノイドロック機構500に引き込むことにより、作業者側シャッタ104の施錠を解除する。
 このようにして、本変形例1によれば、作業者側シャッタ104に施錠機構を設けることにより、作業者側シャッタ104のクローズ状態を強制的に維持することができる。この結果、本変形例1によれば、作業者と搬送ロボット230との間に物理的遮蔽物がない状態になることを防止することができる。
 なお、搬送ロボット側シャッタ105にも、作業者側シャッタ104に設けられた施錠機構と同様の構成をした施錠機構が設けられる。これにより、搬送ロボット側シャッタ105においても、搬送ロボット側シャッタ105のクローズ状態を強制的に維持することができる。したがって、作業者側シャッタ104と搬送ロボット側シャッタ105の両方に施錠機構を設けることにより、作業者と搬送ロボット230との間に物理的遮蔽物がない状態になることを確実に防止することができる。
 <変形例2>
 例えば、図10において、作業者側シャッタ401aをオープン状態にする動作は、搬送ロボット側シャッタ402aがクローズ状態であることを条件として行われる。同様に、作業者側シャッタ401bをオープン状態にする動作は、搬送ロボット側シャッタ402bがクローズ状態であることを条件として行われる。
 ここで、本変形例2では、クローズ状態を検知するセンサの出力によって制御部210によるオープン状態にするための命令を無効とする論理回路を基板搬送装置102に実装するように構成されている。
 具体的に、本変形例2では、制御部210が作業者側シャッタ401aをオープン状態とする制御信号を出力した場合、搬送ロボット側シャッタ402aのクローズ状態を検知するセンサ(例えば、図13のセンサヘッド340b)の出力が「OFF」であると、上述した論理回路によって、制御部210から出力された制御信号は無効化される。
 このとき、作業者側シャッタ401aおよび搬送ロボット側シャッタ402aの両方がクローズ状態で、制御部210が両方のシャッタを同時にオープン状態とする制御信号を出力した場合、両方のシャッタがオープン状態となることを禁止できない可能性がある。
 そこで、作業者側シャッタ401aおよび搬送ロボット側シャッタ402aの両方をオープン状態とする制御部210からの出力(制御信号)は、必ず搬送ロボット側シャッタ402aをオープン状態とする制御を優先するようにする。言い換えれば、作業者側シャッタ401aおよび搬送ロボット側シャッタ402aの両方をオープン状態とする制御部210からの出力(制御信号)があった場合、上述した論理回路によって、作業者側シャッタ401aをオープン状態とする制御部210からの出力(制御信号)は無効化される。これにより、例えば、搬送ロボット230がアームを伸ばしてきたとしても、搬送ロボット230と搬送ロボット側シャッタ402aとの接触による搬送ロボット230の破損を防止することができる。
 <変形例3>
 本変形例3では、例えば、図6において、作業者側シャッタ104と搬送ロボット側シャッタ105の両方がオープン状態となった場合、搬送ロボット230の駆動電源を遮断する安全インターロック回路を基板搬送装置102に実装する例について説明する。
 ここで、安全インターロック回路は、作業者側シャッタ104および搬送ロボット側シャッタ105の両方がオープン状態となったことに連動して搬送ロボット230の駆動電源を遮断することが可能な構成であれば、どのような回路構成でも構わない。
 例えば、安全インターロック回路の一例として、機械式リレーを使用した安全インターロック回路がある。機械式リレーは、操作コイルに通電すると接点が接触してリレー接点が「ON」となる部品である。ここで、リレー接点に搬送ロボット230の駆動電源を接続する。操作コイルの入力は、作業者側シャッタ104および搬送ロボット側シャッタ105のそれぞれに備わるクローズ状態を検出するセンサの出力と接続する。
 これにより、作業者側シャッタ104あるいは搬送ロボット側シャッタ105のいずれかがクローズ状態である間だけ搬送ロボット230に電力が供給されて、搬送ロボット230が動作できるように構成されることになる。言い換えれば、本変形例3によれば、作業者側シャッタ104および搬送ロボット側シャッタ105の両方がオープン状態であると搬送ロボット230への電力の供給が遮断されることになる。
 <変形例4>
 本変形例4では、例えば、図15に示すように、作業者が収納容器設置部220にアクセスしていることを検知するライトカーテン900を設ける例について説明する。
 ライトカーテン900は、作業者を含む装置外部から収納容器設置部220へのアクセスを検知することができるように構成された装置である。本変形例4における基板搬送装置102は、ライトカーテン900が作業者を含む装置外部からの収納容器設置部220へのアクセスを検知している間は、作業者側シャッタ104をクローズ状態とすることができないように構成されている。また、本変形例4における基板搬送装置102は、作業者側シャッタ104がクローズ動作を行っている途中において、ライトカーテン900が作業者を含む装置外部からの収納容器設置部220へのアクセスを検知した場合には、作業者側シャッタ104のクローズ動作を中断するように構成されている。
 続いて、例えば、図16に示すように、互いに異なる収納容器置台221aと収納容器置台221bが設けられている場合、収納容器置台221aに対してライトカーテン900aを設置するとともに、収納容器置台221bに対してライトカーテン900bを設置する。これにより、ライトカーテン900aによって収納容器置台221aへのアクセスを検知することができるとともに、ライトカーテン900bによって収納容器置台221bへのアクセスを検知することができる結果、ライトカーテン900aおよびライトカーテン900bによる検知結果に基づいて、作業者側シャッタ401aおよび作業者側シャッタ401bのそれぞれのクローズ動作を制限することができる。このことから、本変形例4によれば、作業者が作業者側シャッタ401aあるいは作業者側シャッタ401bに挟まれることを防止でき、これによって、作業者の安全を確保することができる。
 なお、例えば、ライトカーテン900aが収納容器置台221aへのアクセスを検知しても、ライトカーテン900bが収納容器置台221bへのアクセスを検知していなければ、作業者側シャッタ401bのクローズ動作を継続して、作業者側シャッタ401bをクローズ状態とすることは可能である。つまり、作業者側シャッタ401bのクローズ動作中にライトカーテン900aがアクセスを検知しても、作業者側シャッタ401bのクローズ動作は停止せずに継続することになる。
 このようにして、互いに異なる収納容器置台221aと収納容器置台221bが設けられている場合、収納容器置台221aに対してライトカーテン900aを設けるとともに、収納容器置台221bに対してライトカーテン900bを設けることにより、作業者の安全を確保しながらも、不必要なクローズ動作の中断を防止することができる。
 <変形例5>
 本変形例5では、図15に示すように、搬送ロボット230が収納容器設置部220にアクセスしていることを検知するライトカーテン901を設ける例について説明する。
 ライトカーテン901は、搬送ロボット230による収納容器設置部220へのアクセスを検知することができるように構成された装置である。本変形例5においても、例えば、ライトカーテン901を設ける例について説明するが、搬送ロボット230が収納容器設置部220にアクセスするルートは決まっていることから、ライトカーテン901の替わりに光電センサなどを使用してもよい。
 本変形例5における基板搬送装置102は、ライトカーテン901が搬送ロボット230による収納容器設置部220へのアクセスを検知している間は、搬送ロボット側シャッタ105をクローズ状態とすることができないように構成されている。また、本変形例5における基板搬送装置102は、搬送ロボット側シャッタ105がクローズ動作を行っている途中において、ライトカーテン901が搬送ロボット230による収納容器設置部220へのアクセスを検知した場合には、搬送ロボット側シャッタ105のクローズ動作を中断するように構成されている。
 続いて、例えば、図16に示すように、互いに異なる収納容器置台221aと収納容器置台221bが設けられている場合、収納容器置台221aに対してライトカーテン901aを設置するとともに、収納容器置台221bに対してライトカーテン901bを設置する。これにより、ライトカーテン901aによって収納容器置台221aへのアクセスを検知することができるとともに、ライトカーテン901bによって収納容器置台221bへのアクセスを検知することができる結果、ライトカーテン901aおよびライトカーテン901bによる検知結果に基づいて、搬送ロボット側シャッタ402aおよび搬送ロボット側シャッタ402bのそれぞれのクローズ動作を制限することができる。
 このことから、本変形例5によれば、搬送ロボット230が搬送ロボット側シャッタ402aあるいは搬送ロボット側シャッタ402bに挟まれることを防止でき、これによって、搬送ロボット230の破損を防止することができる。
 なお、例えば、ライトカーテン901aが収納容器置台221aへのアクセスを検知しても、ライトカーテン901bが収納容器置台221bへのアクセスを検知していなければ、搬送ロボット側シャッタ402bのクローズ動作を継続して、搬送ロボット側シャッタ402bをクローズ状態とすることは可能である。つまり、搬送ロボット側シャッタ402bのクローズ動作中にライトカーテン901aがアクセスを検知しても、搬送ロボット側シャッタ402bのクローズ動作は停止せずに継続することになる。
 このようにして、互いに異なる収納容器置台221aと収納容器置台221bが設けられている場合、収納容器置台221aに対してライトカーテン901aを設けるとともに、収納容器置台221bに対してライトカーテン901bを設けることにより、搬送ロボット230の破損を防止しながらも、不必要なクローズ動作の中断を防止できる。
 <変形例6>
 例えば、収納容器200が成型品であることによる公差、基板搬送装置102および搬送ロボット230の組立誤差に起因する搬送時のクリアランスの誤差を補正するため、基板搬送装置102および使用する収納容器200によって、搬送ロボット230の搬送パラメータを設定する「ティーチング」と呼ばれる作業を行う必要がある。
 「ティーチング」は、サービスマンの目視による作業であり、作業者側シャッタ104および搬送ロボット側シャッタ105の両方をオープン状態とする必要がある。
 そこで、本変形例6における基板搬送装置102は、作業者が任意にシャッタの開閉状態を選択可能な「ティーチングモード」を備えている。また、本変形例6における基板搬送装置102は、「ティーチングモード」時にだけ使用可能な作業者側シャッタ104のオープン/クローズスイッチおよび搬送ロボット側シャッタ105のオープン/クローズスイッチを備えている。
 「動作モード」から「ティーチングモード」に切り替えると、上述した変形例3で説明した安全インターロック回路が無効となり、作業者側シャッタ104および搬送ロボット側シャッタ105を同時にオープン状態とすることができる。一方、上述した変形例4で説明したライトカーテン900による収納容器設置部220へのアクセスの監視と、上述した変形例5で説明したライトカーテン901による収納容器設置部220へのアクセスの監視は引き続き、「ティーチングモード」でも行われる。
 これにより、「ティーチングモード」においても、作業者側シャッタ104による作業者の挟み込みが防止されて、作業者の安全が確保されるとともに、搬送ロボット側シャッタ105による搬送ロボット230の挟み込みが防止されて、搬送ロボット230の破損を防止することができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 100 半導体検査装置
 101 半導体基板処理ユニット
 102 基板搬送装置
 103 シャッタ
 104 作業者側シャッタ
 105 搬送ロボット側シャッタ
 200 収納容器
 201 半導体基板
 210 制御部
 211 プリアライナ
 220 収納容器設置部
 221 収納容器置台
 221a 収納容器置台
 221b 収納容器置台
 230 搬送ロボット
 240 上位ポート
 300 ベース
 310 シリンダロッド
 311 シリンダブロック
 320 リニアガイドレール
 321 リニアガイドブロック
 330 ブラケット
 340a センサヘッド
 340b センサヘッド
 341a アクチュエータ
 341b アクチュエータ
 350 シャッタ
 400 隔離壁
 401a 作業者側シャッタ
 401b 作業者側シャッタ
 402a 搬送ロボット側シャッタ
 402b 搬送ロボット側シャッタ
 410 スイッチ
 450 オープンカセット
 500 ソレノイドロック機構
 501 シャフト
 900 ライトカーテン
 900a ライトカーテン
 900b ライトカーテン
 901 ライトカーテン
 901a ライトカーテン
 901b ライトカーテン

Claims (13)

  1.  基板を搬送する搬送ロボットと、
     前記基板を収容する第1収納容器を設置可能な第1設置部と、
     装置外部から前記第1収納容器または前記第1設置部にアクセスする際の第1アクセス路を遮断可能に設けられた第1シャッタ機構と、
     前記搬送ロボットが前記第1収納容器にアクセスする際の第2アクセス路を遮断可能に設けられた第2シャッタ機構と、
     前記第1シャッタ機構および前記第2シャッタ機構の開閉動作を制御する制御部と、
     を備える、基板搬送装置。
  2.  請求項1に記載の基板搬送装置において、
     前記基板搬送装置は、さらに、
     第2収納容器を設置可能な第2設置部と、
     装置外部から前記第2収納容器または前記第2設置部にアクセスする際の第3アクセス路を遮断可能に設けられた第3シャッタ機構と、
     前記搬送ロボットが前記第2収納容器にアクセスする際の第4アクセス路を遮断可能に設けられた第4シャッタ機構と、
     前記第1設置部と前記第2設置部とを隔離する隔離壁と、
     を有する、基板搬送装置。
  3.  請求項1に記載の基板搬送装置において、
     前記第1設置部に前記基板が収納された前記第1収納容器が設置されている状態において、
     前記制御部は、前記第1シャッタ機構がオープン状態で、かつ、前記第2シャッタ機構がクローズ状態で待機する第1フェーズから、前記第1シャッタ機構をクローズ状態にした後、前記第2シャッタ機構をオープン状態にする第2フェーズに移行させるように制御することにより、前記搬送ロボットによって前記第1収納容器から前記基板を搬出可能な状態にするように構成されている、基板搬送装置。
  4.  請求項3に記載の基板搬送装置において、
     前記第1設置部に前記基板が未収納の前記第1収納容器が設置されている状態において、
     前記制御部は、前記第2フェーズの状態で、前記搬送ロボットによって前記第1収納容器に前記基板が搬入されると、前記第2フェーズから、前記第2シャッタ機構をクローズ状態にした後、前記第1シャッタ機構をオープン状態にする第3フェーズに移行させるように構成されている、基板搬送装置。
  5.  請求項3に記載の基板搬送装置において、
     前記基板搬送装置は、前記第1フェーズから前記第2フェーズに移行させるトリガとなる第1スイッチを有する、基板搬送装置。
  6.  請求項3に記載の基板搬送装置において、
     前記制御部は、前記第2フェーズから、前記第2シャッタ機構をクローズ状態にした後、前記第1シャッタ機構をオープン状態にする第3フェーズに移行させるように構成され、
     前記基板搬送装置は、前記第2フェーズから前記第3フェーズに移行させるトリガとなる第2スイッチを有する、基板搬送装置。
  7.  請求項2に記載の基板搬送装置において、
     前記制御部は、前記第1シャッタ機構がオープン状態で、かつ、前記第2シャッタ機構がクローズ状態である場合、前記第3シャッタ機構をクローズ状態にし、かつ、前記第4シャッタ機構をオープン状態にするように構成されている、基板搬送装置。
  8.  請求項2に記載の基板搬送装置において、
     前記制御部は、前記第1シャッタ機構がクローズ状態で、かつ、前記第2シャッタ機構がオープン状態である場合、前記第3シャッタ機構をオープン状態にし、かつ、前記第4シャッタ機構をクローズ状態にするように構成されている、基板搬送装置。
  9.  請求項1に記載の基板搬送装置において、
     前記基板搬送装置は、さらに、
     前記第1シャッタ機構がクローズ状態のとき、前記第1シャッタ機構のクローズ状態を強制的に維持するための第1施錠機構と、
     前記第2シャッタ機構がクローズ状態のとき、前記第2シャッタ機構のクローズ状態を強制的に維持するための第2施錠機構と、
     を有する、基板搬送装置。
  10.  請求項1に記載の基板搬送装置において、
     前記基板搬送装置は、さらに、装置外部から前記第1アクセス路にアクセスがあることを検知する第1検知センサを有し、
     前記制御部は、前記第1検知センサからの出力に基づいて、前記第1シャッタ機構のクローズ動作中に装置外部から前記第1アクセス路にアクセスがあることを検知すると、前記第1シャッタ機構のクローズ動作を停止させるように構成されている、基板搬送装置。
  11.  請求項1に記載の基板搬送装置において、
     前記基板搬送装置は、さらに、前記搬送ロボットが前記第2アクセス路にアクセスしていることを検知する第2検知センサを有し、
     前記制御部は、前記第2検知センサからの出力に基づいて、前記第2シャッタ機構のクローズ動作中に前記搬送ロボットが前記第2アクセス路にアクセスしていることを検知すると、前記第2シャッタ機構のクローズ動作を停止させるように構成されている、基板搬送装置。
  12.  請求項1に記載の基板搬送装置において、
     前記第1収納容器は、オープンカセットである、基板搬送装置。
  13.  請求項1に記載の基板搬送装置において、
     前記基板は、半導体ウェハまたはレチクルである、基板搬送装置。
PCT/JP2022/022370 2022-06-01 2022-06-01 基板搬送装置 WO2023233597A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022370 WO2023233597A1 (ja) 2022-06-01 2022-06-01 基板搬送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022370 WO2023233597A1 (ja) 2022-06-01 2022-06-01 基板搬送装置

Publications (1)

Publication Number Publication Date
WO2023233597A1 true WO2023233597A1 (ja) 2023-12-07

Family

ID=89026155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022370 WO2023233597A1 (ja) 2022-06-01 2022-06-01 基板搬送装置

Country Status (1)

Country Link
WO (1) WO2023233597A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211764A (ja) * 1994-01-20 1995-08-11 Nikon Corp レーザ応用装置
JPH11135594A (ja) * 1997-10-30 1999-05-21 Kokusai Electric Co Ltd カセット搬送方法および装置
JP2002110756A (ja) * 2000-09-22 2002-04-12 Applied Materials Inc オープンカセット用ロードポート
JP2007250563A (ja) * 2006-03-13 2007-09-27 Disco Abrasive Syst Ltd 研削装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211764A (ja) * 1994-01-20 1995-08-11 Nikon Corp レーザ応用装置
JPH11135594A (ja) * 1997-10-30 1999-05-21 Kokusai Electric Co Ltd カセット搬送方法および装置
JP2002110756A (ja) * 2000-09-22 2002-04-12 Applied Materials Inc オープンカセット用ロードポート
JP2007250563A (ja) * 2006-03-13 2007-09-27 Disco Abrasive Syst Ltd 研削装置

Similar Documents

Publication Publication Date Title
KR100440683B1 (ko) 진공처리장치및이를사용한반도체생산라인
US7279067B2 (en) Port structure in semiconductor processing system
WO2023233597A1 (ja) 基板搬送装置
TWI831860B (zh) 基板處理裝置、開閉基板收納容器的蓋之方法、以及程式
KR20190139059A (ko) 기판 처리 방법 및 기판 처리 장치
JP4388505B2 (ja) 自動傾転付きオープンカセットロードポート
JPH05304198A (ja) 搬送装置
US20070002316A1 (en) Wafer aligner, semiconductor manufacturing equipment, and method for detecting particles on a wafer
KR101034504B1 (ko) 리니어 스케일을 이용하는 기판 이송 장치
KR102586784B1 (ko) 반송 검지 방법 및 기판 처리 장치
JP4369159B2 (ja) 真空処理装置
KR20010064306A (ko) 로딩/언로딩 웨이퍼의 파손 방지를 위한 반도체 설비
KR100754271B1 (ko) 에스엠아이에프 시스템
CN221037801U (zh) 一种半导体真空计系统及其应用的半导体设备
JP2002110756A (ja) オープンカセット用ロードポート
US20230415936A1 (en) Load port and method for opening/closing storage container
JP2007123397A (ja) 半導体製造方法
KR20080023005A (ko) 웨이퍼의 파손방지를 위한 인터록장치
US6392737B1 (en) Processing apparatus and method of control
JP2007208284A (ja) 真空処理装置における真空処理方法
JP5337639B2 (ja) 半導体装置の製造検査装置、および半導体装置の製造検査装置の制御方法
KR20050117288A (ko) 이송 챔버에서의 웨이퍼 감지 장치
JPH04291741A (ja) 真空処理装置及びその異常検出方法
KR20060016562A (ko) 반도체 제조설비
KR20070008318A (ko) 인너 도어 개폐 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944052

Country of ref document: EP

Kind code of ref document: A1